Science.gov

Sample records for beta-delayed charged-particle emission

  1. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    SciTech Connect

    Ognibene, T.J.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of {sup 31}Cl, {sup 27}P and {sup 28}P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas {Delta}E-gas {Delta}E-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in {sup 31}Cl and {sub 27}P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of {sup 31}Cl were shown to be from the decay of {sup 25}Si. In {sup 27}P, two proton groups at 459 {+-} 14 keV and 610 {+-} 11 keV, with intensities of 7 {+-} 3% and 92 {+-} 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the {beta}-decay of {sup 28}P, at 1,444 {+-} 12 keV with a 1.7 {+-} 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, {sup 17}Ne and {sup 33}Ar, were studied. A new proton group with energy 729 {+-} 15 keV was observed following the beta-decay of {sup 17}Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from {sup 17}Ne and {sup 33}Ar were resolved.

  2. Beta-delayed two-proton emission as a nuclear probe

    SciTech Connect

    Moltz, D.M.; Reiff, J.E.; Robertson, J.D.; Lang, T.F.; Cerny, J.

    1987-09-01

    A brief history of beta-delayed two-proton emission is given. Speculations about future experiments which would enhance our knowledge about both nuclear spectroscopy and this relatively unique decay mode are presented. 16 refs., 7 figs.

  3. Beta delayed alpha emission from the neutron deficient rare earth isotopes {sup 152}Tm and {sup 150}Ho

    SciTech Connect

    Nacher, E.; Tain, J. L.; Rubio, B.; Algora, A.; Estevez Aguado, M. E.; Gadea, A.; Batist, L.; Briz, J. A.; Cano-Ott, D.; Doering, J.; Mukha, I.; Plettner, C.; Roeckl, E.; Gierlik, M.; Janas, Z.

    2011-11-30

    The study of beta-delayed proton emission is a well known method to aid the determination of the beta strength distribution in nuclei far from the stability line. At the neutron deficient side of the nuclear chart the process of proton or alpha emission from excited states is energetically allowed when one goes far enough from stability. However, beta-delayed alphas have seldom been measured for nuclei heavier than A = 20. Here we present a study of the beta-delayed alpha-particle emission from {sup 152}Tm and {sup 150}Ho and their importance in the full B(GT) distribution.

  4. Studies of Charged Particle Emission in the Decay of 45Fe

    SciTech Connect

    Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Grigorenko, L.; Bingham, C. R.; Czyrkowski, H.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, Robert; Karny, M.; Korgul, A.; Kusmierz, W.; Liddick, Sean; Rajabali, Mustafa; Rykaczewski, Krzysztof Piotr; Stolz, A.

    2008-01-01

    The decay of extremely neutron-deficient isotope 45Fe has been studied by using a new type of gaseous detector in which a technique of optical imaging is used to record tracks of charged particles. The two-proton radioactivity and the beta-decay channels accompanied by proton(s) emission were clearly identified. For the first time, the angular and energy correlations between two protons emitted from the 45Fe ground-state were measured. The obtained distributions were confronted with predictions of a three-body model. Studies of beta-decay channels of 45Fe provided first unambiguous evidence for the beta-delayed three proton emission.

  5. Further measurement of the {beta}-delayed {alpha}-particle emission of {sup 16}N

    SciTech Connect

    France III, R. H.; Wilds, E. L.; McDonald, J. E.; Gai, M.

    2007-06-15

    We measured the {beta}-delayed {alpha}-particle emission spectrum of {sup 16}N with a sensitivity for {beta}-decay branching ratios of the order of 10{sup -10}. The {sup 16}N nuclei were produced using the d({sup 15}N,{sup 16}N)p reaction with 70 MeV {sup 15}N beams and a deuterium gas target 7.5 cm long at a pressure of 1250 torr. The {sup 16}N nuclei were collected (over 10 s) using a thin aluminum foil with an areal density of 180 {mu}g/cm{sup 2} tilted at 7 deg. with respect to the beam. The activity was transferred to the counting area by means of a stepping motor in less than 3 s with the counting carried out over 8 s. The {beta}-delayed {alpha}-particles were measured using a time-of-flight method to achieve a sufficiently low background. Standard calibration sources ({sup 148}Gd, {sup 241}Am, {sup 208,209}Po, and {sup 227}Ac) as well as {alpha} particles and {sup 7}Li from the {sup 10}B(n,{alpha}){sup 7}Li reaction were used for an accurate energy calibration. The energy resolution of the catcher foil (180-220 keV) was calculated and the time-of-flight resolution (3-10 nsec) was measured using the {beta}-delayed {alpha}-particle emission from {sup 8}Li that was produced using the d({sup 7}Li,{sup 8}Li)p reaction with the same setup. The line shape was corrected to account for the variation in the energy and time resolution and a high statistics spectrum of the {beta}-delayed {alpha}-particle emission of {sup 16}N is reported. However, our data (as well as earlier Mainz data and unpublished Seattle data) do not agree with an earlier measurement of the {beta}-delayed {alpha}-particle emission of {sup 16}N taken at TRIUMF after averaging over the energy resolution of our collection system. This disagreement, among other issues, prohibits accurate inclusion of the f-wave component in the R-matrix analysis.

  6. {beta}-delayed neutron emission measurements around the third r-process abundance peak

    SciTech Connect

    Caballero-Folch, R.; Cortes, G.; Calvino, F.; Gomez-Hornillos, M. B.; Riego, A.; Domingo-Pardo, C.; Tain, J. L.; Agramunt, J.; Rubio, B.; Algora, A.; Ameil, F.; Farinon, F.; Heil, M.; Knoebel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Y.; Mukha, I.; Nociforo, C.; and others

    2013-06-10

    This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around {sup 211}Hg and {sup 215}Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and {beta}-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayEd Neutron (BELEN) detector, which consisted of 30 3He counters embedded in a polyethylene matrix.

  7. Beta-delayed neutron emission measurements for r-process nuclei

    NASA Astrophysics Data System (ADS)

    Dillmann, Iris

    2014-09-01

    Beta-delayed neutron- (bn-) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the ``rapid neutron-capture process'' (r process). On one hand they lead to a detour of the material beta-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes for r-process nucleosynthesis are not yet experimentally accessible and are located in the ``terra incognita.'' With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of very neutron-rich isotopes at and beyond the border of presently known nuclei. However, reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. The investigation of bn-emitters has recently experienced a renaissance. I will show some recent results from a GSI campaign with the BELEN detector, and introduce the program planned for 2015/16 at RIKEN with the ``BRIKEN'' detector. ``BRIKEN'' (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications'') is a worldwide effort which combines 3He-neutron counters from groups in Germany, Japan, Russia, Spain, and the USA and the implantation detector AIDA from the UK to the presently largest and most efficient neutron detection setup. Planned first experiments comprise the first-time measurements of 48 b-delayed one-neutron and 24 b-delayed two-neutron emitters in the regions around doubly-magic 78Ni and 132Sn. Even some b-delayed three-neutron emitters in the heavier mass region will be tackled for the first time.

  8. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  9. Beta-delayed proton emission in neutron-deficient lanthanide isotopes

    SciTech Connect

    Wilmarth, P.A.

    1988-09-30

    Forty-two ..beta..-delayed proton precursors with 56less than or equal toZless than or equal to71 and 63less than or equal toNless than or equal to83 were produced in heavy-ion reactions at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decay properties studied at the on-line mass separation facility OASIS. Twenty-five isotopes and eight delayed proton branches were identified for the first time. Delayed proton energy spectra and proton coincident ..gamma..-ray and x-ray spectra were measured for all precursors. In a few cases, proton branching ratios were also determined. The precursor mass numbers were determined by the separator, while the proton coincident x-ray energies provided unambiguous Z identifications. The proton coincident ..gamma..-ray intensities were used to extract final state branching ratios. Proton emission from ground and isomeric states was observed in many cases. The majority of the delayed proton spectra exhibited the smooth bell-shaped distribution expected for heavy mass precursors. The experimental results were compared to statistical model calculations using standard parameter sets. Calculations using Nilsson model/RPA ..beta..-strength functions were found to reproduce the spectral shapes and branching ratios better than calculations using either constant or gross theory ..beta..-strength functions. Precursor half-life predictions from the Nilsson model/RPA ..beta..-strength functions were also in better agreement with the measured half-lives than were gross theory predictions. The ratios of positron coincident proton intensities to total proton intensities were used to determine Q/sub EC/-B/sub p/ values for several precursors near N=82. The statistical model calculations were not able to reproduce the experimental results for N=81 precursors. 154 refs., 82 figs., 19 tabs.

  10. Large beta-delayed neutron emission probabilities in the 78Ni region.

    PubMed

    Winger, J A; Ilyushkin, S V; Rykaczewski, K P; Gross, C J; Batchelder, J C; Goodin, C; Grzywacz, R; Hamilton, J H; Korgul, A; Królas, W; Liddick, S N; Mazzocchi, C; Padgett, S; Piechaczek, A; Rajabali, M M; Shapira, D; Zganjar, E F; Borzov, I N

    2009-04-10

    The beta-delayed neutron branching ratios (P{betan}) for nuclei near doubly magic 78Ni have been directly measured using a new method combining high-resolution mass separation, reacceleration, and digital beta-gamma spectroscopy of 238U fission products. The P{betan} values for the very neutron-rich isotopes ;{76-78}Cu and 83Ga were found to be much higher than previously reported and predicted. Revised calculations of the betan process, accounting for new mass measurements and an inversion of the pi2p{3/2} and pi1f{5/2} orbitals, are in better agreement with these new experimental results. PMID:19392431

  11. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  12. Emission of charged particles from excited compound nuclei

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2010-10-15

    The process of complex fragment emission is studied within the dinuclear system model. Cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup nat}Ag, {sup 78,86}Kr+{sup 12}C, and {sup 63}Cu+{sup 12}C. The mass distributions of the products of these reactions, isotopic distributions for the {sup 3}He+{sup nat}Ag and {sup 78}Kr+{sup 12}C reactions, and average total kinetic energies of the products of the {sup 78}Kr+{sup 12}C reaction are predicted.

  13. {beta}-Delayed Deuteron Emission from {sup 11}Li: Decay of the Halo

    SciTech Connect

    Raabe, R.; Ponsaers, J.; Duppen, P. van; Andreyev, A.; Buchmann, L.; Capel, P.; Kanungo, R.; Kirchner, T.; Morton, A. C.; Pearson, J.; Ruprecht, G.; Walden, P.; Borge, M. J. G.; Tengblad, O.; Fynbo, H. O. U.; Riisager, K.; Huyse, M.; Mattoon, C.; Sarazin, F.; Mukha, I.

    2008-11-21

    The deuteron-emission channel in the {beta} decay of the halo nucleus {sup 11}Li was measured at the Isotope Separator and Accelerator facility at TRIUMF by implanting postaccelerated {sup 11}Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of {sup 11}Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ratio B{sub d}=1.30(13)x10{sup -4} to be deduced for E{sub c.m.}>200 keV. The results provide the first unambiguous experimental evidence that the decay takes place essentially in the halo of {sup 11}Li and that it proceeds mainly to the {sup 9}Li+d continuum, opening up a new means to study the halo wave function of {sup 11}Li.

  14. Studies of Charged Particle Emission in the Decay of 45Fe

    SciTech Connect

    Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Grigorenko, L.; Bingham, C. R.; Czyrkowski, H.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, R.; Karny, M.; Korgul, A.; Kusmierz, W.; Liddick, Sean; Rajabali, M. M.; Rykaczewski, Krzysztof Piotr; Stolz, A.

    2008-01-01

    The decay of extremely neutron-deficient isotope 45Fe has been studied by using a new type of gaseous detector in which a technique of optical imaging is used to record tracks of charged particles. The two-proton radioactivity and the -decay channels accompanied by proton(s) emission were clearly identified. For the first time, the angular and energy correlations between two protons emitted from the 45Fe ground-state were measured. The obtained distributions were confronted with predictions of a three-body model. Studies of -decay channels of 45Fe provided first unambiguous evidence for the -delayed three proton emission.

  15. Universal decay law in charged-particle emission and exotic cluster radioactivity.

    PubMed

    Qi, C; Xu, F R; Liotta, R J; Wyss, R

    2009-08-14

    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the Q values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented. PMID:19792636

  16. {beta}-decay half-lives and {beta}-delayed neutron emission probabilities of nuclei in the region A < or approx. 110, relevant for the r process

    SciTech Connect

    Pereira, J.; Galaviz, D.; Matos, M.; Montes, F.; Hennrich, S.; Kessler, R.; Schertz, F.; Aprahamian, A.; Quinn, M.; Woehr, A.; Arndt, O.; Pfeiffer, B.; Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.; Kratz, K.-L.; Mantica, P. F.; Moeller, P.

    2009-03-15

    Measurements of {beta}-decay properties of A < or approx. 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr, and {sup 111}Mo, along with {beta}-delayed neutron emission probabilities of {sup 104}Y, {sup 109,110}Mo and upper limits for {sup 105}Y, {sup 103-107}Zr, and {sup 108,111}Mo have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.

  17. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  18. First Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Associated Half-Lives for A ≤ 72 Nuclei

    SciTech Connect

    Birch, M.; Singh, B.; Abriola, D.; Dillmann, I.; Johnson, T.D.; McCutchan, E.A.; Sonzogni, A.A.

    2014-06-15

    A comprehensive compilation and evaluation of beta-delayed neutron (β{sup −}n) emission probabilities, P{sub n}, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β{sup −}n emission in this region. The ratio P{sub n}/T{sub 1/2} is better correlated with the Q-value of the β{sup −}n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). The recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.

  19. First Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Associated Half-Lives for A ≤72 Nuclei

    SciTech Connect

    Birch, M.; Singh, B.; Abriola, D.; Dillmann, I.; Johnson, T.; McCutchan, E. A.; Sonzogni, A. A.

    2014-06-01

    After a comprehensive compilation and evaluation of beta-delayed neutron (β-n) emission probabilities, Pn, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β-nemission in this region. The ratio Pn/T1/2 is better correlated with the Q-value of the β-n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). Moreover, the recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.

  20. Thermionic and photoelectric emission of electrons from positively charged particles in a plasma with Debye shielding

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta; Mishra, Sanjay Kumar

    2015-09-01

    By utilizing the recent concept [G. Delzanno et al., Phys. Plasmas 12, 062102 (2005) and G. Delzanno and X. Tang, Phys. Rev. Lett. 113, 035002 (2014)] that the radial potential, experienced by an electron in the vicinity of a positively charged spherical particle depends on the transverse momentum of the electron, we have evaluated the rate of thermionic and photoelectron emission from a positively charged spherical particle and the corresponding average electron energy in a plasma, with Debye Screening. The effect of screening is manifested in the magnitude of a maximum in the radial potential energy versus r curve and is characterized by a parameter β which depends solely on ( r 0 / λ ) . Simple expressions for the change in the rates of emission and corresponding electron energy due to inclusion of the mechanism (mentioned above) in the analysis have been derived. The results of numerical computations have been presented and discussed. Simple expressions for the rates of electron emission from positively charged particles and corresponding average electron energy are necessary in the study of kinetics of complex plasmas. This work suffers from the limitation that the Debye length and even the nature of screening is not apriori known. In general, the evaluation of the nature of shielding and the shielding length requires a self consistent computation, similar to that carried out by Delzanno and Tang [Phys. Rev. Lett. 113, 035002 (2014)] in their work on thermionic emission in vacuum.

  1. Extension of the T{sub z} = {minus}3/2, A = 4n + 1 series of beta-delayed proton emitters to {sup 65}Se and {sup 73}Sr, and low energy beta-delayed proton emission from the T{sub z} = {minus}3/2, A = 4n + 3 nucleus {sup 23}Al

    SciTech Connect

    Batchelder, J.C.

    1993-12-01

    The series of known Tz = {minus}3/2, A = 4n + 1 nuclei has been extended to include the previously undiscovered isotopes {sup 65}Se and {sup 73}Sr, through the observation of beta-delayed proton emission via the isobaric analog state (IAS) of the beta-daughter (emitter). Due to the relatively large proton energies involved, these experiments were conducted using standard Si-Si {Delta}E-E telescopes. Beta-delayed protons arising from {sup 65}Se have been observed at an energy (laboratory) of 3.55 {plus_minus} 0.03 MeV, corresponding to the decay of the T = 3/2 isobaric analog state in {sup 65}As to the ground state of {sup 64}Ge. Similarly, beta-delayed protons from {sup 73}Sr at an energy of 3.75 {plus_minus} 0.04 MeV have been observed, corresponding to decay of the T = 3/2 isobaric analog state in {sup 73}Rb to the ground state of {sup 72}Kr. From the energies of these proton transitions, an improved prediction of the mass excesses of the two parent nuclei ({sup 65}Se and {sup 73}Sr) is made through the use of a Coulomb displacement formula. These predictions are {minus}33.41 {plus_minus} 0.26 and {minus}31.87 {plus_minus} 0.24 MeV for {sup 65}Se and {sup 73}Sr, respectively. Studies of low energy (down to {approximately}200 keV) beta-delayed protons from {sup 23}Al necessitated that a particle identification telescope with a low energy threshold for observation and identification of protons be developed. {sup 23}Al is of interest because of its role in the breakout of the hot CNO cycle leading to the astrophysical rp process.

  2. Evidence for Gamow-Teller Decay of ^{78}Ni Core from Beta-Delayed Neutron Emission Studies.

    PubMed

    Madurga, M; Paulauskas, S V; Grzywacz, R; Miller, D; Bardayan, D W; Batchelder, J C; Brewer, N T; Cizewski, J A; Fijałkowska, A; Gross, C J; Howard, M E; Ilyushkin, S V; Manning, B; Matoš, M; Mendez, A J; Miernik, K; Padgett, S W; Peters, W A; Rasco, B C; Ratkiewicz, A; Rykaczewski, K P; Stracener, D W; Wang, E H; Wolińska-Cichocka, M; Zganjar, E F

    2016-08-26

    The β-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured β-decay lifetimes. We conclude that enhanced, concentrated β-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models. PMID:27610848

  3. Energetic Charged Particle Emission from Hydrogen-Loaded pd and ti Cathodes and its Enhancement by He-4 Implantation

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.

    2006-02-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.

  4. Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for Z = 2–28

    SciTech Connect

    Birch, M.; Singh, B.; Dillmann, I.; Abriola, D.; Johnson, T.D.; McCutchan, E.A.; Sonzogni, A.A.

    2015-09-15

    We present an evaluation and compilation of β-delayed neutron probabilities and half-lives for nuclei in the region Z = 2–28 ({sup 8}He–{sup 80}Ni). This article includes the recommended values of these quantities as well as a compiled list of experimental measurements for each nucleus in the region for which β-delayed neutron emission is possible. The literature cut-off for this work is August 15{sup th}, 2015. Some notable cases as well as new standards for β-delayed neutron measurements in this mass region are also discussed.

  5. Half-lives and branchings for {beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    SciTech Connect

    Hosmer, P.; Estrade, A.; Montes, F.; Ouellette, M.; Pellegrini, E.; Schatz, H.; Aprahamian, A.; Arndt, O.; Pfeiffer, B.; Clement, R. R. C.; Mueller, W. F.; Morton, A. C.; Pereira, J.; Santi, P.; Steiner, M.; Stolz, A.; Farouqi, K.; Kratz, K.-L.; Liddick, S. N.; Mantica, P. F.

    2010-08-15

    The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes from this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.

  6. Plasma heating and emission of runaway charged particles in a plasma focus device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2016-03-01

    The required experimental E-field across plasma to generate significant runaway electrons and hard X-rays during the pinch phase and the phase with anomalous resistance has been investigated in a dense plasma focus. The plasma voltage and inductance have been measured in a plasma focus with two different anode tip structures. The results show a significant generation of charged particles and hard X-rays at smaller E-field across the plasma column in the phase of anomalous resistances compared to the pinch phase. Plasma heating process may enhance the rate of runaway-charged-particle generation due to the combined effects of a reduced Dreicer field and the avalanche effects during the phase of anomalous resistance.

  7. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    SciTech Connect

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  8. Influence of the Coulomb Field on Charged Particle Emission in Ar + Ni Reaction at 77 MeV/u

    NASA Astrophysics Data System (ADS)

    Wosinska, K.; Pluta, J.; Hanappe, F.; Stuttge, L.; Angelique, J. C.; Basrak, Z.; Benoit, B.; de Goes Brennand, E.; Bizard, G.; Colin, J.; Costa, G.; Desesquelles, P.; Dorvaux, O.; Durand, D.; Erazmus, B.; Kuleshov, S.; Lednicky, R.; Leszczynski, P.; Marques, M.; Materna, Th.; Mikhailov, K.; Papatheofanous, G.; Pawlak, T.; Przewlocki, M.; Staranowicz, A.; Stavinskiy, A.; Sztenkiel, A.; Tamain, B.; Vlasov, A.; Vorobyev, L.

    2004-03-01

    Ar+Ni collisions at 77 MeV/u were studied in the experiment E286 performed at GANIL. An important advantage of this experiment was an application of the neutron detector DEMON for registration of both neutral and charged particles. This feature allows to compare characteristics of neutrons and protons detected by the same detector and gives a possibility to determine the influence of the Coulomb field on the proton emission. Estimation of a charge of the emitting source was performed by comparing energy spectra of neutrons and protons detected under identical experimental conditions. The experimental results were compared with the prediction of the SIMON model [D. Durand, Nucl. Phys. A541, 266 (1992)] and Landau--Vlasov model [Z. Basrak, Ph. Eudes, P. Abgrall, F. Haddad, F. Sébille, Nucl. Phys. A624, 472 (1997)].

  9. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    NASA Astrophysics Data System (ADS)

    Ahmad, Syed Bilal; McNeill, Fiona E.; Prestwich, William V.; Byun, Soo Hyun; Seymour, Colin; Mothersill, Carmel E.

    2014-01-01

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some "bystander effects" that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 1010 protons mm-2 s-1. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  10. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  11. Effects of T-odd asymmetry of the emission of light charged particles and photons during fission of heavy nuclei by polarized neutrons

    SciTech Connect

    Gagarskii, A. M.; Guseva, I. S.; Goennenwein, F.; Kopach, Yu. N.; Mutterer, M.; Kuz'mina, T. E.; Petrov, G. A.; Tyurin, G.; Nesvizhevsky, V.

    2011-12-15

    The new physical effects of T-odd asymmetry of the emission of light charged particles (LCPs) during the ternary fission of some heavy nuclei by cold polarized neutrons have been experimentally studied. The coefficients of triple scalar and vector correlation of the pulses of light particles and fission fragments (TRI effect) and the fivefold correlation of the same vectors (ROT effect) have been measured. These effects are believed to be caused by the rotation of polarized fissioning system around its polarization direction. The treatment of the experimental data for LCPs in the framework of this hypothesis leads to a good agreement between the calculation results and experimental data. The calculated value of the angle of rotation of the fission axis in the ternary fission of the polarized fissioning {sup 236}U* compound nucleus was used to process the results of measuring the ROT effect for {gamma} photons from binary-fission fragments of the same nucleus. A satisfactory description of these experimental data is obtained which serves a convincing confirmation of the rotation hypothesis.

  12. New Beta-delayed Neutron Measurements in the Light-mass Fission Group

    SciTech Connect

    Agramunt, J.; García, A.R.; Algora, A.; Äystö, J.; Caballero-Folch, R.; Calviño, F.; Cano-Ott, D.; Cortés, G.; Domingo-Pardo, C.; Eronen, T.; Gelletly, W.; Gómez-Hornillos, M.B.; and others

    2014-06-15

    A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

  13. Search for {beta}-delayed fission of {sup 228}Ac

    SciTech Connect

    Xu Yanbing; Ding Huajie; Yuan Shuanggui; Yang Weifan; Niu Yanning; Li Yingjun; Xiao Yonghou; Zhang Shengdong; Lu Xiting

    2006-10-15

    Radium was radiochemically separated from natural thorium. Thin {sup 228}Ra{yields}{beta}{sup -228}Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe {gamma}-ray detector. The {beta}-delayed fission events of {sup 228}Ac were observed and its {beta}-delayed fission probability was found to be (5{+-}2)x10{sup -12}.

  14. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  15. Tumor therapy with heavy charged particles

    NASA Astrophysics Data System (ADS)

    Blattmann, Hans

    1999-11-01

    Nuclear science has contributed significantly to the development of tumor therapy with heavy charged particles. Interest evolved for neutron therapies in the forties because of the increased radiobiological effectiveness (RBE) compared to photon irradiation. The development of more powerful proton and heavy ion accelerators with higher energies or higher intensities, made new particles for radiation therapy available. Pions, protons, light ions, from helium up to silicon were studied in view of precision dose delivery and increased RBE. Without the parallel development of new diagnostic techniques such as computer tomography (CT) and positron emission tomography (PET) the rapid development would not have been possible. Heavy-charged particle therapy has now come into a consolidation phase. Hospital-based facilities are built by industry, and research institutes focus on refinements in dose delivery and treatment planning, as well as systems for monitoring dose delivery and for dose distribution verification.

  16. Coaxial charged particle energy analyzer

    NASA Technical Reports Server (NTRS)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  17. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.

    1993-01-01

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  18. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  19. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  20. Searches for Fractionally Charged Particles

    SciTech Connect

    Perl, Martin L.; Lee, Eric R.; Loomba, Dinesh; /New Mexico U.

    2012-04-12

    Since the initial measurements of the electron charge were made a century ago, experimenters have faced the persistent question of the existence of elementary particles with charges that are fractional multiples of the electron charge. In this review, we discuss the results of recent searches for these fractionally charged particles.

  1. Apparatus for irradiation with charged particle beams

    SciTech Connect

    Tamura, H.; Ishitani, T.; Shimase, A.

    1984-10-23

    An apparatus according to the present invention for irradiating a specimen with charged particle beams comprises a single charged particle generating source from which the charged particle beams formed of electrons and negative ions, respectively, can be simultaneously derived; a specimen holder on which the specimen is placed; and charged particle irradiation means which is interposed between the charged particle generating source and the specimen holder in order to focus the charged particle beams and to irradiate the surface of the specimen with the focused beams, and which includes at least one magnetic lens and at least one electrostatic lens that are individually disposed.

  2. Electrodynamics of massless charged particles

    SciTech Connect

    Lechner, Kurt

    2015-02-15

    We derive the classical dynamics of massless charged particles in a rigorous way from first principles. Since due to ultraviolet divergences this dynamics does not follow from an action principle, we rely on (a) Maxwell’s equations, (b) Lorentz- and reparameterization-invariance, and (c) local conservation of energy and momentum. Despite the presence of pronounced singularities of the electromagnetic field along Dirac-like strings, we give a constructive proof of the existence of a unique distribution-valued energy-momentum tensor. Its conservation requires the particles to obey standard Lorentz equations and they experience, hence, no radiation reaction. Correspondingly, the dynamics of interacting classical massless charged particles can be consistently defined, although they do not emit bremsstrahlung end experience no self-interaction.

  3. Characterization of a neutron-beta counting system with beta-delayed neutron emitters

    NASA Astrophysics Data System (ADS)

    Agramunt, J.; Tain, J. L.; Gómez-Hornillos, M. B.; Garcia, A. R.; Albiol, F.; Algora, A.; Caballero-Folch, R.; Calviño, F.; Cano-Ott, D.; Cortés, G.; Domingo-Pardo, C.; Eronen, T.; Gelletly, W.; Gorelov, D.; Gorlychev, V.; Hakala, H.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kolhinen, V.; Kucuk, L.; Martinez, T.; Mason, P. J. R.; Moore, I.; Penttilä, H.; Podolyák, Zs.; Pretel, C.; Reponen, M.; Riego, A.; Rissanen, J.; Rubio, B.; Saastamoinen, A.; Tarifeño-Saldivia, A.; Valencia, E.

    2016-01-01

    A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accuracy of neutron emission probabilities is discussed. A new accurate value of the neutron emission probability for the important delayed-neutron precursor 137I was obtained, Pn = 7.76(14)%.

  4. Accelerators for charged particle therapy

    NASA Astrophysics Data System (ADS)

    Flanz, Jacob

    2015-04-01

    History has shown that energetic particles can be useful for medical applications. From the time, in 1895 when Roentgen discovered X-rays, and in 1913 when Coolidge developed the vacuum X-ray tube, energetic particles have been an important tool for medicine. Development of the appropriate tool for effective and safe radiotherapy requires an in-depth understanding of the application and constraints. Various solutions are possible and choices must be analyzed on the basis of the suitability for meeting the requirements. Some of the requirements of charged particle therapy are summarized and various accelerator options are described and discussed.

  5. Gated charged-particle trap

    DOEpatents

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  6. Study of Beta-delayed Neutrons near 78Ni using VANDLE

    NASA Astrophysics Data System (ADS)

    Paulauskas, S.; Madurga, M.; Grzywacz, R.; Peters, W.; Vandle Collaboration

    2015-10-01

    As nuclei become more neutron rich, the nuclear structure changes their properties. For example, beta decays will access increasingly more neutron unbound states. The measurement of neutrons emitted from these states is critical, as beta-delayed neutron emission becomes a dominating decay mode. To this end, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) measures the energy of neutrons emitted from excited states above the neutron separation energy populated through beta decay or transfer reactions. The time-of-flight technique determines the energy, which requires a time resolution on the order of 1 ns. In addition, the detector requires a low detection threshold to measure neutron energies of 100 keV or lower. A successful experimental campaign at the Holifield Radioactive Ion Beam Facility, using ions produced via proton induced fission on 238U, has yielded results on beta-delayed neutrons emitted from isotopes near 78Ni. Of particular interest, is the observation of low-energy neutrons emitted from states well above the neutron separation energy. Results from this experiment will be presented. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552 and the Office of Nuclear Physics.

  7. Magnetic guidance of charged particles

    NASA Astrophysics Data System (ADS)

    Dubbers, Dirk

    2015-09-01

    Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  8. Search for fractionally charged particles

    SciTech Connect

    Lackner, K.S.; Zweig, G.

    1982-01-01

    Quarks, the constituents of hadrons and fermion fields of quantum chromodynamics, have fractional charges -1/3e and 2/3e. All charges are integral multiples of 1/3e and not e, as was previously believed. Therefore it is natural to ask if isolated particles of fractional charge exist, either as an intrinsic part of matter, or as particles that can be produced at high energy accelerators. This question can only be answered by experiment, and remains interesting even if quantum chromodynamics turns out to be an absolutely confining theory of quarks. For example, small deviations from the standard version of quantum chromodynamics, or the incorporation of quantum chromodynamics into a more comprehensive theory, could require the existence of free fractionally charged particles.

  9. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  10. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  11. Electrostatic wire stabilizing a charged particle beam

    DOEpatents

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  12. Beta-Delayed Neutron Spectroscopy Using VANDLE at CARIBU

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Kolos, K.; Grzywacz, R.; Paulauskas, S. V.; Madurga, M.; Savard, G.; Brewer, N. T.; Vandle Collaboration

    2015-10-01

    Measurement of spectroscopic information on beta-delayed neutrons of neutron rich fission fragments is of interest to the areas of astrophysics, reactor design, nuclear structure and stockpile stewardship. Using the Time of Flight (TOF) method, the Versatile Array of Neutron Detectors at Low Energy(VANDLE)[1,2,3] measured fission fragments of 252Cf provided by CARIBU at Argonne National Lab. 135,136Sb and 85As isotopes were measured to explore the nuclear structure around doubly magic nuclei 132Sn and 78Ni. A new TOF start detector was developed for this experiment using new Silicon Photo-Multipliers from SensL to allow for a lower beta particle energy detection threshold and better timing resolution compared to previous VANDLE experiments. This work is funded by the U.S. Department of Energy NNSA under the Stewardship Science Academic Alliance program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  13. Means for counteracting charged particle beam divergence

    DOEpatents

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  14. {beta}-delayed proton decays near the proton drip line

    SciTech Connect

    Xu, S.-W.; Li, Z.-K.; Xie, Y.-X.; Pan, Q.-Y.; Huang, W.-X.; Wang, X.-D.; Yu, Y.; Xing, Y.-B.; Shu, N.-C.; Chen, Y.-S.; Xu, F.-R.; Wang, K.

    2005-05-01

    We briefly reviewed and summarized the experimental study on {beta}-delayed proton decays published by our group over the last 8 years, namely the experimental observation of {beta}-delayed proton decays of nine new nuclides in the rare-earth region near the proton drip line and five nuclides in the mass 90 region with N{approx}Z by utilizing the p-{gamma} coincidence technique in combination with a He-jet tape transport system. In addition, important technical details of the experiments were provided. The experimental results were compared to the theoretical predictions of some nuclear models, resulting in the following conclusions. (1) The experimental half-lives for {sup 85}Mo, {sup 92}Rh, as well as the predicted 'waiting point' nuclei {sup 89}Ru and {sup 93}Pd were 5-10 times longer than the macroscopic-microscopic model predictions of Moeller et al. [At. Data Nucl. Data Tables 66,131(1997)]. These data considerably influenced the predictions of the mass abundances of the nuclides produced in the rp process. (2) The experimental assignments of spin and parity for the drip-line nuclei {sup 142}Ho and {sup 128}Pm could not be well predicted by any of the nuclear models. Nevertheless, the configuration-constrained nuclear potential-energy surfaces calculated by means of a Woods-Saxon-Strutinsky method could reproduce the assignments. (3) The ALICE code overestimated by one or two orders of magnitude the production-reaction cross sections of the nine studied rare-earth nuclei, while the HIVAP code overestimated them by approximately one order of magnitude.

  15. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  16. Electronically shielded solid state charged particle detector

    SciTech Connect

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1995-12-31

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  17. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  18. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    SciTech Connect

    Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and

  19. Ferroelectric Devices Emit Charged Particles and Radiation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Felsteiner, Joshua; Karsik, Yakov

    2005-01-01

    Devices called solid-state ferroelectric- based sources (SSFBSs) are under development as sources of electrons, ions, ultraviolet light, and x-rays for diverse applications in characterization and processing of materials. Whereas heretofore it has been necessary to use a different device to generate each of the aforementioned species of charged particles or radiation, a single SSFBS can be configured and operated to selectively generate any of the species as needed using a single source. Relative to comparable prior sources based, variously, on field emission, thermionic emission, and gaseous discharge plasmas, SSFBSs demand less power, and are compact and lightweight. An SSFBS exploits the unique physical characteristics of a ferroelectric material in the presence of a high-frequency pulsed electric field. The basic building block of an SSFBS is a ferroelectric cathode -- a ferroelectric wafer with a solid electrode covering its rear face and a grid electrode on its front face (see figure). The application of a voltage pulse -- typically having amplitude of several kilovolts and duration of several nanoseconds -- causes dense surface plasma to form near the grid wires on the front surface.

  20. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  1. Quenching gas for detectors of charged particles

    DOEpatents

    Atac, M.

    1974-01-22

    Operation of detectors of charged particles such as wire counters and Geiger-Muller tubes is improved by filling the counters with a quenching-gas mixture of argon, isobutane and methylchloroform. (Official Gazette)

  2. Charged particle periodicity in the Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Carbary, J. F.; Krimigis, S. M.

    1982-01-01

    The present investigation is concerned with the first definitive evidence for charged particle modulations near the magnetic rotation period at Saturn. This periodicity is apparent in the ratios (and spectra) of low energy charged particles in the Saturnian magnetosphere. Most of the data presented were taken during the Voyager 2 outbound portion of the Saturn encounter. During this time the spacecraft was at high latitudes (approximately 30 deg) in the southern hemisphere of the Saturnian magnetosphere. The probe's trajectory was approximately along the dawn meridian at an essentially constant local time. The observation that the charged particle modulation is consistent with the Saturn Kilometric Radiation (SKR) period provides a basic input for the resolution of a puzzle which has existed ever since the discovery of the SKR modulation. The charged particle periodicity identified suggests that a basic asymmetry must exist in the Saturnian magnetosphere.

  3. Charged particle dynamics in turbulent current sheets

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Vainchtein, D. L.; Neishtadt, A. I.; Zelenyi, L. M.

    2016-05-01

    We study dynamics of charged particle in current sheets with magnetic fluctuations. We use the adiabatic theory to describe the nonperturbed charged particle motion and show that magnetic field fluctuations destroy the adiabatic invariant. We demonstrate that the evolution of particle adiabatic invariant's distribution is described by a diffusion equation and derive analytical estimates of the rate of adiabatic invariant's diffusion. This rate is proportional to power density of magnetic field fluctuations. We compare analytical estimates with numerical simulations. We show that adiabatic invariant diffusion results in transient particles trapping in the current sheet. For magnetic field fluctuation amplitude a few times larger than a normal magnetic field component, more than 50% of transient particles become trapped. We discuss the possible consequences of destruction of adiabaticity of the charged particle motion on the state of the current sheets.

  4. Quantum and classical dissipation of charged particles

    SciTech Connect

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  5. Measurements of double-differential cross sections of charged-particle emission reactions for several structural elements of fusion power reactors by 14.1-MeV incident neutrons

    SciTech Connect

    Kokooo; Murata, Isao; Takahashi, Akito

    1999-05-01

    A two-dimensional energy and time-of-flight charged-particle spectrometer has been developed and used to measure the double-differential cross-section (DDX) data of (n,xp) and (n,x{alpha}) reactions for several elements with 14.1-MeV incident neutrons at OKTAVIAN, the Intense 14-MeV Neutron Source Facility of Osaka University. The DDX data of the {sup 51}V(n, xp), {sup 51}V(n, x{alpha}), {sup nat}Fe(n, xp), {sup nat}Fe(n,x{alpha}), {sup 59}Co(n, xp), {sup 59}Co(n, x{alpha}), {sup nat}Ni(n, x{alpha}), {sup nat}Cu(n, x{alpha}), {sup 93}Nb(n, xp), {sup 93}Nb(n, x{alpha}), and {sup nat}Mo(n, xp) reactions are measured. The angle-integrated energy differential cross-section (EDX) data were deduced from the measured DDX data and compared with other experimental results [except for the {sup 59}Co(n, xp) reaction] and evaluated nuclear data of JENDL fusion file (JENDL-FF). A comparison was also done with the ENDF/B-VI for the total reaction cross sections of all measured reactions except for the {sup nat}Mo(n, xp) reaction and the EDX of the {sup nat}Ni(n, x{alpha}) and {sup nat}Cu(n, x{alpha}) reactions. The theoretical calculations were done by using the SINCROS-II code. The measured data agreed fairly well with other data for almost all the reactions. the JENDL-FF and SINCROS-II data underestimate the measured EDX data for the reactions of {sup 93}Nb(n, x{alpha}) and {sup nat}Mo(n, xp). For the {sup nat}Fe(n, xp), {sup nat}Fe(n, x{alpha}), {sup 59}Co(n, x{alpha}), and {sup nat}Ni(n, x{alpha}) reactions, smaller data are given than other data, i.e., other experimental data, JENDL-FF, and ENDF/B-VI. The SINCROS-II code can reproduce well for both the proton and alpha-particle emission cross-section values.

  6. The charged particle radiation environment for AXAF

    NASA Technical Reports Server (NTRS)

    Joy, Marshall

    1990-01-01

    The Advanced X Ray Astrophysics Facility (AXAF) will be subjected to several sources of charged particle radiation during its 15-year orbital lifetime: geomagnetically-trapped electrons and protons, galactic cosmic ray particles, and solar flare events. These radiation levels are presented for the AXAF orbit for use in the design of the observatory's science instruments.

  7. Studying Charged Particle Optics: An Undergraduate Course

    ERIC Educational Resources Information Center

    Ovalle, V.; Otomar, D. R.; Pereira, J. M.; Ferreira, N.; Pinho, R. R.; Santos A. C. F.

    2008-01-01

    This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal…

  8. Charged particle radiation environment for the LST. [measuring charged particle dose rates

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Burrell, M. O.; Wright, J. J.

    1974-01-01

    Preliminary charged particle dose rates are presented for the LST orbit. The trapped proton component appears to dominate the total dose for the expected shielding available. Typical dose rates should range from 400 to 800 millirads/day.

  9. Charged Particle lunar Environment Experiment (CPLEE)

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1974-01-01

    Research development in the Charged Particle Lunar Environment Experiment (CPLEE) is reported. The CPLEE is ion-electron spectrometer placed on the lunar surface for the purpose of measuring charged particle fluxes impacting the moon from a variety of regions and to study the interactions between space plasmas and the lunar surface. The principal accomplishments reported include: (1) furnishing design specifications for construction of the CPLEE instruments; (2) development of an advanced computer-controlled facility for automated instrument calibration; (3) active participation in the deployment and past-deployment operational phases with regard to data verification and operational mode selection; and (4) publication of research papers, including a study of lunar photoelectrons, a study of plasmas resulting from man-made lunar impart events, a study of magnetotail and magnetosheath particle populations, and a study of solar-flare interplanetary particles.

  10. Charged particle concepts for fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Collins, F. G.; Koepf, D.

    1981-01-01

    Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.

  11. Method and apparatus for charged particle propagation

    DOEpatents

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  12. Charged Particle Therapy for Hepatocellular Carcinoma

    PubMed Central

    Skinner, Heath D.; Hong, Theodore S.; Krishnan, Sunil

    2011-01-01

    Historically, the use of external beam radiotherapy for hepatocellular carcinoma (HCC) has been limited by toxicity to the uninvolved liver and surrounding structures. Advances in photon radiotherapy have improved dose conformality to the tumor and facilitated dose escalation, a key contributor to improved HCC radiation treatment outcomes. However, despite these advances in photon radiotherapy, significant volumes of liver still receive low doses of radiation that can preclude dose escalation, particularly in patients with limited functional liver reserves. By capitalizing on the lack of exit dose along the beam path beyond the tumor and higher biological effectiveness, charged particle therapy offers the promise of maximizing tumor control via dose escalation without excessive liver toxicity. In this review we discuss the distinctive biophysical attributes of both proton and carbon ion radiotherapy, particularly as they pertain to treatment of HCC. We also review the available literature regarding clinical outcomes and toxicity of using charged particles for the treatment of HCC. PMID:21939857

  13. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  14. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  15. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  16. Charged particles in curved space-time

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, K.; Jalili, O.

    2016-03-01

    Considering the dynamics of geometry and the matter fields, dynamical equations of geometry and the matter fields are re-derived. The solutions of these equations are studied. We focus on a charged particle and explain the axiomatic approach to drive the electromagnetic self-force on its motion, then the energy conservation is considered. A new mathematical concept, which is introduced in axiomatic approach in general, is discussed.

  17. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  18. Visualization of charged particle traversals in cells

    SciTech Connect

    Metting, N.F.; Braby, L.A.

    1997-12-31

    This research addresses the early events that occur in the cell, and particularly in the cell nucleus, after passage of a charged particle. The authors present an assay system which locates the path of a charged particle through the cell nucleus, and speculate that this will be a valuable tool to define a start point for cell signaling of DNA repair processes, as well as signaling of cell-cycle checkpoint proteins. This study of the biological effects of low doses of high LET particles stems from the need to understand molecular mechanisms of long term health effects originating from the heavy particle component of galactic cosmic rays, a major concern in extended space missions. In the deep-space environment each target cell would be traversed only once a month, on average, by a heavy charged particle (1); therefore it was important to use very low particle fluences for subsequent analysis and understanding of resulting measurements. The Single-Cell/Single-particle Irradiator at PNNL was used to deliver particles from an electrostatic accelerator, and thus eliminate most of the experimental variability in the exposure of cells to high LET radiation. The number of tracks through each cell can be specified, rather than the random number obtained with conventional irradiation. Irradiation can be limited to a specified portion of the cell, and the variation in stopping power of the particles as they enter the cell can be minimized.

  19. Soviet research on crystal channeling of charged particle beams

    NASA Astrophysics Data System (ADS)

    Kassel, S.

    1985-03-01

    This report presents an overview of Soviet research in charged particle beam channeling in crystals from 1972 to the present, and the resulting electromagnetic emission, including Soviet proposals for channeling emission lasers in the X-ray region of the spectrum. It analyzes Soviet attitudes toward crystal channeling of charged particles as a subject of research, describes performers of the research, and indicates the level of effort involved. It presents a brief history of crystal channeling research, the differences between channeling and other kinds of electromagnetic radiation, the definition of the main research issues, and estimates of the potential capabilities of channeling radiation, all based on the Soviet viewpoint. It then describes Soviet proposals for laser systems utilizing the channeling radiation mechanism, and analyzes Soviet experimental work involving the observation and measurement of channeling radiation. The author concludes that the outstanding feature of Soviet research in this area is the optimistic belief of Soviet specialists in the technological potential of this research, but finds that the role of the laser proposals in Soviet planning is ambiguous.

  20. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  1. Charged particle beam current monitoring tutorial

    SciTech Connect

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  2. Radiation from moving charged particles with spin

    SciTech Connect

    Luccio, A.

    1992-10-05

    The theory of radiation emitted by a charged particle with spin in relativistic motion in an external magnetic field is reviewed. Approximate expressions suitable numerical computation, in far and near field, are derived. In particular, the case of the passage of a particle accelerator beam through an undulator is considered. It is shown that observation of the spectrum of the emitted radiation, in its two states of polarization, can be used not only for beam diagnostics, but also to measure the spin state of the accelerated particles. Undulator radiation is compared with Compton scattering of laser light by the particle beam. Examples for high energy electron and proton colliders are presented.

  3. Born expansions for charged particle scattering

    SciTech Connect

    Macek, J.H. Oak Ridge National Lab., TN ); Barrachina, R.O. . Centro Atomico Bariloche)

    1989-01-01

    High-order terms in Born expansions of scattering amplitudes in powers of charge are frequently divergent when long-range Coulomb interactions are present asymptotically. Expansions which are free from these logarithmic divergences have been constructed recently. We illustrate these expansions with the simplest example, namely the non-relativistic Rutherford scattering of two charged particles. This approach represents an adequate framework for the calculation of transition amplitudes and a comprehensive starting point for the development of consistent perturbation approximations in multi-channel descriptions of strongly interacting atomic systems. 17 refs.

  4. Position Sensitive Detection System for Charged Particles

    SciTech Connect

    Coello, E. A.; Favela, F.; Curiel, Q.; Chavez, E; Huerta, A.; Varela, A.; Shapira, Dan

    2012-01-01

    The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm3 scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.

  5. Neutron Decay Array for beta-delayed neutron Decay Studies

    NASA Astrophysics Data System (ADS)

    Lorusso, Giuseppe; Pereira, J.; Hosmer, P.; Kern, L.; Kratz, K.; Montes, F.; Reeder, P.; Santi, P.; Schatz, H.; Schertz, F.; Wör, A.

    The Neutron Emission Ratio Observer (NERO), has been constructed for use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System BCS [1] in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  6. Microsparks Generated by Charged Particles in Dielectric Liquids

    NASA Astrophysics Data System (ADS)

    Geiger, Robert

    2012-10-01

    The electrodynamics of charged particles in dielectric liquids have been described by several authors [1,2]. As a charged particle approaches an electrode of opposite charge the local electric field eventually exceeds the dielectric strength of the liquid and a microspark is generated. These plasmas can be very small, about < 5 μm, and may exhibit non-thermal behavior. Such non-thermal behavior can provide interesting and efficient chemical reactions [3]. An understanding of the plasma properties for this type of discharge can provide a simple means of generating non-thermal plasmas in dielectric liquids, such as oils or other hydrocarbons, which can be used to chemically process the liquids. Such a technology may lead to a highly efficient method of heavy oil upgrading which can be easily scaled. In order to understand the plasma properties optical emission spectroscopy is carried out for various hydrocarbons and voltage-current characteristics are used to determine the energy cost for this process. [4pt] [1] Melcher, James R. Continuum Electromechanics. Cambridge, MA: MIT Press, 1981.[0pt] [2] Jones, Thomas B. Electromechanics of Particles. Cambridge University Press 1995.[0pt] [3] Staack, D., Fridman, A., Gutsol, A., Gogotsi, Y. and Friedman, G. 2008, Angew. Chem., Int. Ed. 47, 8020.

  7. Charged particle optics without detailed field maps

    NASA Astrophysics Data System (ADS)

    Carey, David C.

    1993-12-01

    For the initial design of a beam line or charged particle optical system, it is both useful and convenient to be able to describe the components in terms of a small number of parameters. These parameters are used in a calculation of a transfer map which represents the effect of the beam line on a particle trajectory. The transfer map is often expressed as some kind of series expansion. A calculation to first order requires the smallest number of descriptive parameters. Extension of the calculation to higher orders requires a greater number of parameters. From our mathematical backgrounds we have come to have certain expectations as to the characteristics of a series expansion. These expectations may not always be commensurate with the physics of charged particle beam lines. The reconciliation of these expectations will be discussed. The example used will be the program TRANSPORT and its extension to third order. The third-order expansion may represent the inherent limit of the series representation without numerical integration. We shall explain why we may have reached that limit.

  8. Search milli-charged particles at SLAC

    SciTech Connect

    Langeveld, W.G.J.

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  9. Method and apparatus for charged particle propagation

    DOEpatents

    Hershcovitch, Ady

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.

  10. Measurement of the spectra of doubly charged particles emitted in bombardment of lead nuclei by. cap alpha. particles with energy 3. 6 GeV/nucleon

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Vinogradov, A.A.; Grigor'yan, Y.I.; Dukhanov, V.I.; Ippolitov, M.S.; Karadzhev, K.V.; Lebedev, A.L.; Man'ko, V.I.; Nikolaev, S.A.; Polunin, Y.P.; Tsvetkov, A.A.

    1983-12-01

    We have measured the spectra of double charged particles emitted in interaction of 3.6 GeV/nucleon ..cap alpha.. particles with lead nuclei. Spectra were measured at emission angles from 10 to 95/sup 0/ in the range of secondary-particle velocities 0.37<..beta..<0.55. Angular distributions were obtained, the total cross section for emission of doubly charged particles was evaluated, and the ratios of the contributions of doubly and singly charged particles were determined. The rapidity distributions of the invariant cross sections for production of doubly charged particles reveal maxima at a rapidity yroughly-equal0.15--0.20.

  11. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  12. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  13. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  14. Beta-Delayed Neutron Spectroscopy with Trapped Fission Products

    NASA Astrophysics Data System (ADS)

    Czeszumska, A.; Scielzo, N. D.; Norman, E. B.; Savard, G.; Aprahamian, A.; Burkey, M.; Caldwell, S. A.; Chiara, C. J.; Clark, J. A.; Harker, J.; Marley, S. T.; Morgan, G.; Orford, R.; Padgett, S.; Perez Galvan, A.; Segel, R. E.; Sharma, K. S.; Siegl, K.; Strauss, S.; Yee, R. M.

    2014-09-01

    Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. This work was supported under contracts DE-NA0000979 (NSSC), DE-AC52-07NA27344 (LLNL), DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (U. Maryland), DE-FG02-98ER41086 (Northwestern U.), NSERC, Canada, under Application No. 216974, and DHS.

  15. Neutrons and charged particles in radiotherapy. Oncology overview

    SciTech Connect

    Not Available

    1984-10-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Neutrons and charged particles in radiotherapy of head and neck cancer; Neutrons and charged particles in radiotherapy of central nervous system cancer; Neutrons and charged particles in radiotherapy of digestive cancer; Neutrons and charged particles in radiotherapy of gynecologic cancer; Neutrons and charged particles in radiotherapy of musculoskeletal cancer; Neutrons and charged particles in radiotherapy of other organ site cancer; Neutrons and charged particles in radiotherapy of multiple site cancer; Neutrons and charged particles in radiotherapy--relative biological effectiveness; Neutrons and charged particles in radiotherapy--instrumentation and technology; Neutrons and charged particles in radiotherapy--reviews.

  16. Olivines: revelation of tracks of charged particles.

    PubMed

    Krishnaswami, S; Lal, D; Prabhu, N; Tamhane, A S

    1971-10-15

    A one-step, three-component aqueous etchant was developed for revealing the tracks of charged particles in olivine. The etchant reveals tracks of small cone angle, which are equally well developed in all the crystallographic directions. The scope of fossil cosmic-ray track studies in extraterrestrial samples has thus been increased, because olivine is often an abundant constituent and because it has a higher threshold ionization for track registration and has lower uranium, thorium, and trace element concentrations as compared with pyroxenes and feldspars. The etchant does not attack any of the principal rock-forming minerals in normal etching time, which allows a nondestructive study of fossil tracks in thin-section mounts. The study of fossil cosmic-ray tracks in olivine is particularly valuable for investigations of very, very heavy cosmic-ray nuclei and for highly irradiated samples such as those found in the lunar regolith. PMID:17778062

  17. Lateral distribution on charged particles in EAS

    NASA Technical Reports Server (NTRS)

    Dedenko, L. G.; Sulakov, V. F.; Kulikov, G. V.; Solovjeva, V. I.

    1985-01-01

    Lateral distribution of charged particles which allow for the finiteness of energy gamma-quanta, the inhomogeneity of the atmosphere and the experimental selection of EAS are needed to interpret experimental data. The effects of finiteness of energy of gamma-quanta which produce the partial electron-photon cascades were considered by substituting K R sub m instead of R sub m in NKG approximation where K was found to be 0.56 from comparison with the experimental data. New results on the lateral distribution of electrons in the partial cascades from gamma-quanta were obtained. It is shown that the coefficient K can be regarded as a constant. The last approximation of K was found to be most adequate when compared with the experimental data. The inhomogeneity of the atmosphere, muons and experimental selection are considered. The calculation of Ne are extended from 100,000 to 10 million for sea level and for Akeno level.

  18. Radiation reaction for a massless charged particle

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.; Sharapov, A. A.

    2003-07-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  19. Charged particle radiation exposure of geocentric satellites

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1989-01-01

    The near-earth radiation environment is characterized, summarizing published data on trapped and transient charged particles and their potential effects on hardware systems and the crews of manned missions. Topics examined include the role of the magnetosphere, the five radiation domains, cyclic and sporadic variations in the radiation environment, the potential effect of a high-altitude nuclear explosion, NASA empirical models for predicting trapped proton and electron fluxes, and the South Atlantic anomaly and the estimation of flux-free periods. Consideration is given to solar cosmic rays and heavy ions, Galactic cosmic rays, geomagnetic shielding, secondary radiation, the design of shielding systems, variables affecting dose evaluations, and ionizing-radiation doses. Extensive diagrams, graphs, and tables of numerical data are provided.

  20. (Interaction of charged particles with matter)

    SciTech Connect

    Crawford, O.H.

    1990-12-05

    This report covers the activity of the traveler participating in a workshop entitled The 13th Werner Brandt Workshop on the Interaction of Charged Particles with Solids and conducting collaborative research with two physicists at Tokyo University. The Werner Brandt Workshops are organized by members of the traveler's group, led by Dr. R. H. Ritchie, with advice from an international committee. The traveler participated in planning for the next in the series of workshops, which will be held in or near the traveler's home base. Oak Ridge, Tennessee, in early 1992. He interacted with scientists from Japan, Spain, USSR, Israel, and other countries, initiated plans for a new collaboration with a Japanese scientist, and renewed existing collaborations, At Tokyo University, the traveler performed collaborative research with Professors Y. Yamazaki and K. Komaki on two topics of importance to the traveler's programs with the Department of Energy (DOE).

  1. Spallation nucleosynthesis by accelerated charged-particles

    SciTech Connect

    Goriely, S.

    2008-05-12

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84{<=}Z{<=}99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38charged-particles, mainly protons and {alpha}-particles, that in turn can by interaction with the stellar material modify the surface content.The present contribution explores to what extent the spallation processes resulting from the interaction of the stellar material with stellar energetic particle can by themselves only explain the abundances determined by observation at the surface of HD101065. We show that specific parametric simulations can explain many different observational aspects, and in particular that a significant production of Z>30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements.

  2. Physical sputtering of metallic systems by charged-particle impact

    SciTech Connect

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  3. Development of a WDM platform for charged-particle stopping experiments

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Grabowski, P. E.; Li, C. K.; Collins, G. W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S. B.; Hu, S. X.; Gatu Johnson, M.; Keiter, P.; Reynolds, H.; Rygg, J. R.; Séguin, F. H.; Petrasso, R. D.

    2016-05-01

    A platform has been developed for generating large and relatively quiescent plasmas in the warm-dense matter (WDM) regime on the OMEGA laser facility. A cylindrical geometry is used to allow charged-particle probing along the axis. The plasma heating is radiative by L-shell emission generated on the outside of the cylinder. The cylinder drive is characterized with x-ray diagnostics. Possibilities for direct characterization of the plasma temperature are discussed. Finally, the unimportance of electromagnetic fields around the target is demonstrated with proton radiography. We expect this platform to be used extensively in future experiments studying charged-particle stopping in this regime.

  4. Development of a WDM platform for charged-particle stopping experiments

    SciTech Connect

    Zylstra, A. B.; Frenje, J. A.; Grabowski, P. E.; Li, C. K.; Collins, G. W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S. B.; Hu, S. X.; Johnson, M. Gatu; Keiter, P.; Reynolds, H.; Rygg, J. R.; Seguin, F. H.; Petrasso, R. D.

    2016-01-01

    A platform has been developed for generating large and relatively quiescent plasmas in the warm-dense matter (WDM) regime on the OMEGA laser facility. A cylindrical geometry is used to allow charged-particle probing along the axis. The plasma heating is radiative by L-shell emission generated on the outside of the cylinder. The cylinder drive is characterized with x-ray diagnostics. Possibilities for direct characterization of the plasma temperature are discussed. Lastly, the unimportance of electromagnetic fields around the target is demonstrated with proton radiography. We expect this platform to be used extensively in future experiments studying charged-particle stopping in this regime.

  5. Boundary effects of electromagnetic vacuum fluctuations on charged particles

    SciTech Connect

    Hsiang, J.-T.; Wu, T.-H.; Leet, D.-S.

    2008-10-10

    The nature of electromagnetic vacuum fluctuations in the presence of the boundary is investigated from their effects on the dynamics of charged particles. These effects may be observable via the velocity fluctuations of the charge particles near the conducting plate, where the effects of vacuum fluctuations are found to be anisotrpoic. The corresponding stochastic equation of motion for the charged particle is also derived under the semiclassical approximation.

  6. Electrostatic wire for stabilizing a charged particle beam

    DOEpatents

    Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  7. Experimental study of the beta-delayed proton decays of {sup 145,147}Er

    SciTech Connect

    Ma, F.; Zhou, X. H.; Zheng, Y.; Xu, S. W.; Xie, Y. X.; Chen, L.; Lei, X. G.; Guo, Y. X.; Zhang, Y. H.; Li, Z. K.; Qiang, Y. H.; Guo, S.; Wang, H. X.; Zhou, H. B.; Ding, B.; Li, G. S.; Zhang, N. T.

    2010-04-15

    The beta-delayed proton decays of {sup 145,147}Er have been studied experimentally using the {sup 58}Ni+{sup 92}Mo reaction at beam energy of 383 MeV. On the basis of a He-jet apparatus coupled with a tape transport system, the beta-delayed proton radioactivities both from the nus{sub 1/2} ground state and the nuh{sub 11/2} isomer in {sup 145,147}Er were observed by proton-gamma coincidence measurements. By analyzing the time distributions of the 4{sup +}->2{sup +}gamma transitions in the granddaughter nuclei {sup 144,146}Dy, the half-lives of 1.0+-0.3 s and 1.6+-0.2 s have been deduced for the nuh{sub 11/2} isomers in {sup 145,147}Er, respectively.

  8. A detection system for very low-energy protons from {beta}-delayed proton decay

    SciTech Connect

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M.

    2012-11-20

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from {beta}-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the {beta}-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to {approx}80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  9. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  10. Beta-delayed proton activities: /sup 147/Dy and /sup 149/Er

    SciTech Connect

    Toth, K.S.; Moltz, D.M.; Schloemer, E.C.; Cable, M.D.; Avignone, F.T. III; Ellis-Akovali, Y.A.

    1984-01-01

    The present paper discusses mainly the ..beta..-delayed proton spectra of /sup 147/Dy and of the hitherto unknown isotope, /sup 149/Er. However, following the submittal of the abstract for this conference we have now observed delayed protons following the decay of /sup 145/Dy. Additionally, we have identified a 0.5-s delayed-proton emitter and tentatively assign it to the new isotope, /sup 151/Yb.

  11. DNA fragmentation by charged particle tracks

    NASA Astrophysics Data System (ADS)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  12. Energetic Charged Particle Injections at Saturn

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.; Mauk, B. H.; Brandt, P. C.; Carbary, J. F.; Rymer, A. M.

    2008-12-01

    The Cassini spacecraft has been in Saturn orbit for over 4 years. The Magnetospheric Imaging Instrument (MIMI) is a charged and neutral particle instrument with three separate sensors. On every perigee pass to date, data taken by MIMI reveal the presence of very recent and/or older charged particle injections. For our purposes, injections are spatially confined populations whose fluxes are recognizably greater than the fluxes of the ambient population. These populations are transient in nature and our previous work and the work of others has shown that they evolve essentially through the usual corotation and gradient-curvature drifts. However, it is not completely understood whether all of the injections observed by MIMI, in the few keV to MeV energy range, are associated with the same physical mechanism. Injections can, in principle, be caused by local accelerations of a fraction of the denser, lower energy particles. On the other hand, injections may also be associated with processes that transport particles radially, such as in magnetospheric flux tube interchange or large scale magnetospheric reconfigurations. In this paper, we will present a survey of the data set, an organization of the injections by their properties, and some hypotheses about how these properties reveal information about the underlying physical generation mechanisms.

  13. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  14. Peculiarities of propagation of charged particles in solar corona

    NASA Technical Reports Server (NTRS)

    Pisarenko, N. F.; Mikryukova, N. A.; Shafer, Y. G.; Morozova, E. I.; Klimenko, V. V.; Timofeev, V. E.

    1985-01-01

    The influence of boundaries of the large scale unipolar magnetic regions (UMR) on the Sun upon the charged particle propagation in the solar corona and interplanetary space is investigated. Increases of the charged particle fluxes from solar flares on November 4 and 20, 1978 detected by Venera-11 and Prognoz-1 and on December 7, 1982 by Venera-13 and "GMS-2" were analyzed.

  15. Determination of time zero from a charged particle detector

    DOEpatents

    Green, Jesse Andrew

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  16. Characterization and separation of charged particles

    SciTech Connect

    Mukherjee, A.

    1987-01-01

    An investigation into the removal of electrically charged particles by using an electric field was carried out in both liquid and gaseous media. The systems studied in liquid media were clay particles suspended in synthetic fuels such as tar sand extracts and shale oils, whereas in gaseous media, the electrostatic removal of pyrites from coal was the objective. For proper design of separation equipment the charge of the particles was characterized as a function of the system variables. For the systems studied in the liquid media, the charge of the particles arises due to the adsorption of asphaltenes present in the synthetic fuel. The magnitude of the charge is strongly dependent on the amount of adsorbed asphaltenes. Small quantities of water have a drastic effect on the charge of the particles. As a result of the particle charge, a crossflow electrofilter can be used to completely remove these particles from the synthetic fuels. In gaseous media, the particles get charged by triboelectrification. The charge of pyrites and coal was measured in a continuous recirculating pneumatic conveyor using a ball probe as well as a Faraday cage. The charge of both coal and pyrites depends on the solid velocity, humidity, particle size, solids concentration, and surface oxidation. In most cases there is a sufficient charge difference between coal and pyrites to provide a driving force for electrostatic separation. Based on the charge difference a novel electrostatic separator was constructed. An improvement in the separator was made using a hydrodynamic model for two phase flow. Good agreement between the predictions of the model and experimental results were obtained.

  17. Charged particle acceleration in nonuniform plasmas

    SciTech Connect

    Bulanov, S.V.; Naumova, N.M.; Dudnikova, G.I.; Vshivkov, V.A.; Pegoraro, F.; Pogorelsky, I.V.

    1996-11-01

    The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a {much_gt} 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order {lambda}{sub p}. The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations.

  18. Guiding of charged particles through capillaries in insulating materials

    NASA Astrophysics Data System (ADS)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  19. Quantum interface to charged particles in a vacuum

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroshi

    2015-11-01

    A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [Okamoto and Nagatani, Appl. Phys. Lett. 104, 062604 (2014), 10.1063/1.4865244]. Either a clockwise or counterclockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the device's properties, sources of errors, and possible applications are studied in detail. In particular, applications include detection of a charged particle essentially without applying a classical force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.

  20. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    SciTech Connect

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  1. Proton-Induced X-ray Emission (PIXE) from the Galilean Satellites: Modeling charged-particle interactions on the satellite surfaces and the prospect for direct measurement of the elemental compositions

    NASA Astrophysics Data System (ADS)

    Kraft, R.; Nulsen, S.; Germain, G.; Kenter, A.

    2015-12-01

    Energetic particles in the Jovian magnetosphere impact the surface of the Galilean moons andgenerate characteristic X-ray lines from the elemental constituents due to the proton-inducedX-ray emission (PIXE) process. The X-ray spectra of these satellites provide direct measurementsof their elemental surface compositions. Chandra X-ray Observatory (CXO) observationsof Jupiter detected oxygen emission from Io and Europa (Elsner et al. 2005). We presentcalculations of the expected PIXE from each of the Galilean satellites for various models oftheir surface constituents. We discuss the viability of detecting emission lines fromelements other than oxygen with deep observations from the current generation of Earth-orbiting X-ray observatories,and describe the implications to our understanding of the surface processes from suchdetections. Finally, we outline the potential discovery space for a dedicated X-ray imagingspectrometer flown on a mission to the Jovian system.

  2. Charged particle beam scanning using deformed high gradient insulator

    SciTech Connect

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  3. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  4. Multipole radiation in charged-particle scattering

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1990-01-01

    This paper formulates the general problem of photon emission in particle scattering using a classical and quantum mechanical approach. The connection between the classical short collision time (SCT) and Born results is examined for various special classifications of problems. In the dipole case the two formulations yield results that can be expressed in the same form and for arbitrary scattering potential. For quadrupole emission the SCT and Born results are the same only for a short-range potential, however. The quadrupole problem is more sensitive to details in the process because the calculation requires an expansion of the total amplitude for the process to lowest order in the photon wave number or momentum. The special case of photon emission associated with spin-flip transitions during scattering is considered for spin-1/2 particles. Like classical magnetic dipole radiation, there is no infrared divergence feature for this type of emission.

  5. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  6. PIG charged particle source with hydrogen supply from a metal-hydride cathode

    NASA Astrophysics Data System (ADS)

    Borgun, Ie V.; Ryabchikov, D. L.; Sereda, I. N.; Tseluyko, A. F.

    2014-05-01

    We present the results of an experimental investigation of a Penning-type charged-particles source with a metal-hydride cathode. The main characteristic of the experiment is internal hydrogen supply from the metal-hydride cathode under the conditions of ion-stimulated desorption; we studied its influence on the source's emissive characteristics. An additional mode of source operation was observed involving axial electron emission; the decisive effect was revealed of the desorbed hydrogen on the axial electron emission. The ion energy distribution function was measured and its dependence on the external discharge parameters was determined.

  7. 950809 Charged particle transport updated multi-group diffusion

    SciTech Connect

    Corman, E.G.; Perkins, S.T.; Dairiki, N.T.

    1995-09-01

    In 1974, a charged particle transport scheme was introduced which utilized a multi-group diffusion method for the spatial transport and slowing down of energetic ions in a hot plasma. In this treatment a diffusion coefficient was used which was flux-limited to provide, hopefully, some degree of accuracy when the slowing down of an energetic charged particle is dominated by Coulomb collisions with thermal ions and electrons in a plasma medium. An advantage of this method was a very fast, memory-contained program for calculating the behavior of energetic charged particles which resulted in smoothly varying particle number densities and energy depositions. The main limitation of the original multi-group charged particle diffusion scheme is its constraint to a basic ten group structure; the same ten group structure for each of the five energetic ions tracked. This is regarded as a severe limitation, inasmuch as more groups would be desired to simulate more accurately the corresponding Monte Carlo results of energies deposited over spatial zones from a charged particle source. More generally, it seems preferable to have a different group structure for each particle type since they are created at inherently different energies. In this paper, the basic theory and multi-group description will be given. This is followed by the specific techniques that were used to solve the resultant equations. Finally, the modifications that were made to the cross section data as well as the methods used for energy and momentum deposition are described.

  8. Systems for detecting charged particles in object inspection

    SciTech Connect

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  9. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  10. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  11. Charged particles on the Earth-Jupiter-Europa spacecraft trajectory

    NASA Astrophysics Data System (ADS)

    Podzolko, M. V.; Getselev, I. V.; Gubar, Yu. I.; Veselovsky, I. S.; Sukhanov, A. A.

    2011-08-01

    Charged particle fluxes on the trajectory of future Russian space research mission to Jupiter and its satellite Europa are investigated. The existing experimental data and models of Jupiter's main magnetic field and radiation belts are summarized. Preliminary results of computations of energetic particle fluxes and radiation doses for each stage of the flight are given. Special attention is paid to estimation of radiation conditions in Europa's orbit and on its surface; influence of the satellite on spatial distribution of the fluxes of charged particles of various energies is studied.

  12. Magnetospheric vortex formation: self-organized confinement of charged particles.

    PubMed

    Yoshida, Z; Saitoh, H; Morikawa, J; Yano, Y; Watanabe, S; Ogawa, Y

    2010-06-11

    A magnetospheric configuration gives rise to various peculiar plasma phenomena that pose conundrums to astrophysical studies; at the same time, innovative technologies may draw on the rich physics of magnetospheric plasmas. We have created a "laboratory magnetosphere" with a levitating superconducting ring magnet. Here we show that charged particles (electrons) self-organize a stable vortex, in which particles diffuse inward to steepen the density gradient. The rotating electron cloud is sustained for more than 300 s. Because of its simple geometry and self-organization, this system will have wide applications in confining single- and multispecies charged particles. PMID:20867249

  13. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  14. Ion beam enhanced emission of charged particles from hot graphite

    NASA Astrophysics Data System (ADS)

    Lozano, J.; Kessel, Q. C.; Pollack, E.; Smith, W. W.

    2001-07-01

    Thermal desorption spectroscopy of ions from positively biased graphite (grafoil) has been investigated by measuring the energies of the emitted ions with a hemispherical electrostatic analyzer and the masses with a residual gas analyzer under ultra-high vacuum conditions. Potassium is one of the ions emitted at temperatures above 800 °C. The present data show that under near threshold conditions (4V), ions appear with well-defined energies equal approximately to the bias voltage minus 4V. This phenomenon can be greatly enhanced by prior bombardment with an ion beam. It is not clear whether these energies are the result of resonant process on the hot surface or simply due to a process attributable to surface chemistry. At higher biases the peaks broaden in energy and the energy deficit increases.

  15. Nondestructive diagnostics of charged particle beams in accelerators

    NASA Astrophysics Data System (ADS)

    Logachev, P. V.; Meshkov, O. I.; Starostenko, A. A.; Nikiforov, D. A.; Andrianov, A. V.; Maltseva, Yu. I.; Levichev, A. E.; Emanov, F. A.

    2016-03-01

    The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

  16. Electromagnetic field of fractal distribution of charged particles

    SciTech Connect

    Tarasov, Vasily E.

    2005-08-15

    Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous fractal distribution are considered. The electric dipole and quadrupole moments for fractal distribution are derived.

  17. EFFECTS OF CHARGED PARTICLES ON CASCADE IMPACTOR CALIBRATIONS

    EPA Science Inventory

    The report gives results of a determination of collection characteristics for charged and uncharged particles in cascade impactors. Impaction collection efficiency was shown to be as much as 20 percent greater for charged particles than for uncharged particles with certain substr...

  18. Apparatus for Suspension of Charged Particles and Droplets

    ERIC Educational Resources Information Center

    Berg, T. G. Owe

    1969-01-01

    Describes an apparatus designed to study the properties of charged particles suspended in an electric field. The apparatus consists of a suspension chamber, an optical system and power supplies and controls. Experiments conducted include determination of particle size, charge-to-mass ratio and particle collisions and exchange. (LC)

  19. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  20. Silicon PIN diode array hybrids for charged particle detection

    SciTech Connect

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab.

  1. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  2. Diffusion of charged particles in a random magnetic field

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1972-01-01

    When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

  3. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  4. The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Simmons, E.; Trache, L.; Banu, A.; McCleskey, M.; Roeder, B.; Spiridon, A.; Tribble, R. E.; Davinson, T.; Woods, P. J.; Lotay, G. J.; Wallace, J.; Doherty, D.; Saastamoinen, A.

    2013-03-01

    The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the beta-decay of 27P. A clean and abundant source of 27P was produced for the first time and separated with MARS. A new implantation-decay station which allows increased efficiency for low energy protons and for high-energy gamma-rays was used. We measured gamma-rays and beta-delayed protons emitted from states above the proton threshold in the daughter nucleus 27Si to identify and characterize the resonances. The lifetime of 27P was also measured with accuracy under 2%.

  5. Proof-of-principle measurement of beta-delayed neutron precursor 89Br using VANDLE

    NASA Astrophysics Data System (ADS)

    Paulauskas, Stanley; Grzywacz, R.; Madurga, M.; Padgett, S.; Vandle Collaboration

    2011-10-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) uses the time of flight technique to measure the energy of neutrons from various nuclear processes. Beta delayed neutrons from fission fragments typically have an energy below 1 MeV, making measurements of their energy challenging. This has led to the use of a reliable off-the-shelf digital electronics system to instrument VANDLE. However, the timing resolution and neutron-energy threshold of the system required investigation. Timing resolutions better than 1 ns have been obtained. The digital system can be operated with low thresholds to obtain high detection efficiency for low energy neutrons (E >150 keV). A proof-of-principle experiment using 89Br was conducted at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). 89Br is produced in proton induced fission of 238U and was chosen because its neutron energy spectrum has been measured by G. Ewan et al. (Z. Phys. A. 318, 309-314, (1984)). This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Co- operative Agreement No. DE-FG52-08NA28552.

  6. A dedicated ion trap at CARIBU for beta-delayed neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Barbara; Scielzo, N. D.; Norman, E. B.; Savard, G.; Clark, J. A.; Levand, A. F.; Aprahamian, A.; Burkey, M.; Caldwell, S.; Czeszumska, A.; Marley, S. T.; Morgan, G. E.; Nystrom, A.; Orford, R.; Padgett, S. W.; Perez Galvan, A.; Sharma, K. S.; Siegl, K.; Strauss, S.

    2015-10-01

    Trapped radioactive ions suspended in vacuum allow for a new way to perform beta-delayed neutron spectroscopy. Decay branching ratios and energy spectra of the emitted neutrons are inferred from a measurement of the nuclear recoil, thereby circumventing the many limitations associated with direct neutron detection. Plans for the development of a dedicated ion trap for experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory are summarized. The trap design has been guided by experience gained from recent ion-trap experiments measuring 137 - 138 , 140I, 134-136Sb, and 144-145Cs. The improved nuclear data that can be collected are needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship. Supported by NSF under Grant Number PHY-1419765 and by U.S. DOE under the Nuclear Energy University Program Project Number 13-5485, Contract Numbers DE-AC02-06CH11357 (ANL) and DE-AC52-07NA27344 (LLNL), and Award Number DE-NA0000979 (NNSA).

  7. Charged-particle probing of x-ray-driven inertial-fusion implosions.

    PubMed

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M; Petrasso, R D; Amendt, P A; Koch, J A; Landen, O L; Park, H S; Robey, H F; Town, R P J; Casner, A; Philippe, F; Betti, R; Knauer, J P; Meyerhofer, D D; Back, C A; Kilkenny, J D; Nikroo, A

    2010-03-01

    Measurements of x-ray-driven implosions with charged particles have resulted in the quantitative characterization of critical aspects of indirect-drive inertial fusion. Three types of spontaneous electric fields differing in strength by two orders of magnitude, the largest being nearly one-tenth of the Bohr field, were discovered with time-gated proton radiographic imaging and spectrally resolved proton self-emission. The views of the spatial structure and temporal evolution of both the laser drive in a hohlraum and implosion properties provide essential insight into, and modeling validation of, x-ray-driven implosions. PMID:20110464

  8. First- and second-order charged particle optics

    SciTech Connect

    Brown, K.L.; Servranckx, R.V.

    1984-07-01

    Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures.

  9. Production of carbon monoxide by charged particle deposition.

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Sawada, T.; Edgar, B. C.; Uman, M. A.

    1973-01-01

    Recent studies of electron energy deposition in CO2 and CO based upon a large set of electron impact cross sections are utilized to estimate the telluric CO directly produced by various charged-particle deposition mechanisms. The mechanisms considered are (1) lightning, (2) cloud coronal discharges, (3) background radioactivity, (4) natural electrostatic discharges, (5) photoelectrons in the ionosphere, (6) auroral electrons, (7) auroral protons, (8) cosmic rays, and (9) solar wind. 'Ball park' estimates of the global CO production by each of these mechanisms are given. Apart from mechanisms 1, 2, and 5, all CO production mechanisms are estimated to be small compared to artificial sources. If, as appears to be the case, the hot oxygen atoms and ions and other atomic species immediately produced by these three charged-particle deposition mechanisms react rapidly with CO2 to produce CO, these mechanisms can readily lead to CO production levels in the multimegaton-per-year range.

  10. Brownian dynamics of charged particles in a constant magnetic field

    SciTech Connect

    Hou, L. J.; Piel, A.; Miskovic, Z. L.; Shukla, P. K.

    2009-05-15

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect, and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions, and, particularly, complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  11. ELECTRO-OPTICAL DETECTION OF CHARGED PARTICLE BEAMS.

    SciTech Connect

    SEMERTZIDIS,Y.K.CASTILLO,V.LARSEN,R.C.LAZARUS,D.M.MAGURNO,B.SRINIVASAN-RAO,T.TSANG,T.USACK,V.,ET AL.

    2003-03-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO{sub 3} crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10 ps bunches of 1 mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45 GHz bandwidth. The fastest rise time measured, 120 ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.

  12. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  13. Universal behavior of charged particle production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  14. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  15. Paul trapping of charged particles in aqueous solution

    PubMed Central

    Guan, Weihua; Joseph, Sony; Park, Jae Hyun; Krstić, Predrag S.; Reed, Mark A.

    2011-01-01

    We experimentally demonstrate the feasibility of an aqueous Paul trap using a proof-of-principle planar device. Radio frequency voltages are used to generate an alternating focusing/defocusing potential well in two orthogonal directions. Individual charged particles are dynamically confined into nanometer scale in space. Compared with conventional Paul traps working in frictionless vacuum, the aqueous environment associated with damping forces and thermally induced fluctuations (Brownian noise) exerts a fundamental influence on the underlying physics. We investigate the impact of these two effects on the confining dynamics, with the aim to reduce the rms value of the positional fluctuations. We find that the rms fluctuations can be modulated by adjusting the voltages and frequencies. This technique provides an alternative for the localization and control of charged particles in an aqueous environment. PMID:21606331

  16. Searches for Fractionally Charged Particles: What Should Be Done Next?

    SciTech Connect

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  17. Charged particle detectors made from thin layers of amorphous silicon

    SciTech Connect

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (..cap alpha..-Si:H) as solid state thin film charged particle detectors. /sup 241/Am alphas were successfully detected with ..cap alpha..-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed.

  18. The formation of negatively charged particles in thermoemission plasmas

    SciTech Connect

    Vishnyakov, V. I. Dragan, G. S.; Florko, A. V.

    2008-01-15

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  19. The formation of negatively charged particles in thermoemission plasmas

    NASA Astrophysics Data System (ADS)

    Vishnyakov, V. I.; Dragan, G. S.; Florko, A. V.

    2008-01-01

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  20. Spatiotemporal analysis of DNA repair using charged particle radiation.

    PubMed

    Tobias, F; Durante, M; Taucher-Scholz, G; Jakob, B

    2010-01-01

    Approaches to visualise the dynamics of the DNA lesion processing substantially contributes to the understanding of the hierarchical organisation of the DNA damage response pathways. Charged particle irradiation has recently emerged as a tool to generate discrete sites of subnuclear damage by its means of extremely localised dose deposition at low energies, thus facilitating the spatiotemporal analysis of repair events. In addition, they are of high interest for risk estimations of human space exploration (e.g. mars mission) in the high energy regime (HZE). In this short review we will give examples for the application of charged particle irradiation to study spatiotemporal aspects of DNA damage recognition and repair in the context of recent achievements in this field. Beamline microscopy allows determining the exact kinetics of repair-related proteins after irradiation with different charged particles that induce different lesion densities. The classification into fast recruited proteins like DNA-PK or XRCC1 or slower recruited ones like 53BP1 or MDC1 helps to establish the hierarchical organisation of damage recognition and subsequent repair events. Additionally, motional analysis of DNA lesions induced by traversing particles proved information about the mobility of DSBs. Increased mobility or the absence of large scale motion has direct consequences on the formation of chromosomal translocations and, thus, on mechanisms of cancer formation. Charged particle microbeams offer the interesting perspective of precise nuclear or subnuclear targeting with a defined number of ions, avoiding the Poisson distribution of traversals inherent to broad beam experiments. With the help of the microbeam, geometrical patterns of traversing ions can be applied facilitating the analysis of spatial organisation of repair. PMID:19944777

  1. Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Hill, T. W.; Wolf, R. A.

    1988-01-01

    Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.

  2. Sausage mode of a pinched charged particle beam

    SciTech Connect

    Lee, E.P.

    1981-02-10

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion.

  3. An update on (n,charged particle) research at WNR

    SciTech Connect

    Haight, R.C.; Bateman, F.B.; Sterbenz, S.M.; Grimes, S.M.; Wasson, O.A.; Maier-Komor, P.; Vonach, H.

    1995-12-31

    Neutron-induced reactions producing light charged particles continue to be investigated at the spallation fast-neutron source at the Los Alamos Neutron Science Center (LANSCE). New data on the cross sections for alpha-particle production for neutrons on {sup 58}Ni and {sup 60}Ni are presented from threshold to 50 MeV. Recent changes in the experiment now allow protons, deuterons, tritons, {sup 3}He and alpha particles to be identified.

  4. Nonlinear dynamics of inhomogeneous mismatched charged particle beams

    SciTech Connect

    Nunes, R. P.; Rizzato, F. B.

    2012-08-13

    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.

  5. Neutron-Induced Charged Particle Studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  6. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  7. Charged particle LET-spectra measurements aboard LDEF

    NASA Technical Reports Server (NTRS)

    Csige, I.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Benton, E. R.; Parnell, T. A.; Watts, J. W., Jr.

    1992-01-01

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack.

  8. Charged Particle Environment Definition for NGST: Model Development

    NASA Technical Reports Server (NTRS)

    Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.

    2000-01-01

    NGST will operate in a halo orbit about the L2 point, 1.5 million km from the Earth, where the spacecraft will periodically travel through the magnetotail region. There are a number of tools available to calculate the high energy, ionizing radiation particle environment from galactic cosmic rays and from solar disturbances. However, space environment tools are not generally available to provide assessments of charged particle environment and its variations in the solar wind, magnetosheath, and magnetotail at L2 distances. An engineering-level phenomenology code (LRAD) was therefore developed to facilitate the definition of charged particle environments in the vicinity of the L2 point in support of the NGST program. LRAD contains models tied to satellite measurement data of the solar wind and magnetotail regions. The model provides particle flux and fluence calculations necessary to predict spacecraft charging conditions and the degradation of materials used in the construction of NGST. This paper describes the LRAD environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.

  9. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines. PMID:3383341

  10. Search for Fractional-Charge Particles in Meteoritic Material

    SciTech Connect

    Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Halyo, Valerie; Loomba, Dinesh

    2007-10-19

    We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5 {mu}m with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth's surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3x10{sup -21} particles per nucleon in the meteoritic material and less than 1.9x10{sup -23} particles per nucleon in the mineral oil.

  11. Determining Charged Particle Flux Direction in MSL/RAD

    NASA Astrophysics Data System (ADS)

    Appel, J. K.; Kohler, J.; Guo, J.; Ehresmann, B.; Zeitlin, C. J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Rafkin, S. C.; Boehm, E.; Böttcher, S. I.; Martin-Garcia, C.; Brinza, D. E.; Weigle, E.; Lohf, H.; Burmeister, S.; Reitz, G.; Matthiae, D.; Posner, A.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Radiation Assessment Detector (RAD) is an instrument onboard the Mars Science Laboratory (MSL) rover Curiosity, currently characterizing the radiation environment on the surface of Mars. The radiation entering the instrument from above consists mostly of Galactic Cosmic Rays (GCRs) modulated by the Martian atmosphere. From below, the instrument is exposed to secondary radiation produced by the interactions of the GCR with the soil. This secondary radiation gets further modulated going through the rover body before entering RAD. We developed a method of determining the direction of the charged particles measured by RAD. This method also extends the energy range possible for measurements with RAD beyond the intruments design limit. Using a combination of GEANT4 and Planetocosmics simulations, we reconstructed the expected charged particle spectra and intensities for upward and downward directed radiation which can be compared with observations. With the developed method, we are able to, for the first time, measure the upward charged particle flux with RAD both during the cruise phase and the surface science phase. Comparing the results of the simulations with the instrument data sets enables us to evaluate the simulation tools used to predict the Martian radiation envronment.

  12. Glass transition of charged particles in two-dimensional confinement.

    PubMed

    Yazdi, Anoosheh; Heinen, Marco; Ivlev, Alexei; Löwen, Hartmut; Sperl, Matthias

    2015-05-01

    The glass transition of mesoscopic charged particles in two-dimensional confinement is studied by mode-coupling theory. We consider two types of effective interactions between the particles, corresponding to two different models for the distribution of surrounding ions that are integrated out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-Hückel (Yukawa)-type effective interaction. The second, experimentally more relevant system is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma current toward the electrode gives rise to an anisotropic effective interaction potential between the particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that covers the typical range of experimentally accessible plasma conditions, we calculate and compare the mode-coupling predictions for the glass transition in both kinds of systems. PMID:26066171

  13. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  14. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    PubMed Central

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  15. Physical interactions of charged particles for radiotherapy and space applications.

    PubMed

    Zeitlin, Cary

    2012-11-01

    In this paper, the basic physics by which energetic charged particles deposit energy in matter is reviewed. Energetic charged particles are used for radiotherapy and are encountered in spaceflight, where they pose a health risk to astronauts. They interact with matter through nuclear and electromagnetic forces. Deposition of energy occurs mostly along the trajectory of the incoming particle, but depending on the type of incident particle and its energy, there is some nonzero probability for energy deposition relatively far from the nominal trajectory, either due to long-ranged knock-on electrons (sometimes called delta rays) or from the products of nuclear fragmentation, including neutrons. In the therapy setting, dose localization is of paramount importance, and the deposition of energy outside nominal treatment volumes complicates planning and increases the risk of secondary cancers as well as noncancer effects in normal tissue. Statistical effects are also important and will be discussed. In contrast to radiation therapy patients, astronauts in space receive comparatively small whole-body radiation doses from energetic charged particles and associated secondary radiation. A unique aspect of space radiation exposures is the high-energy heavy-ion component of the dose. This is not present in terrestrial exposures except in carbon-ion radiotherapy. Designers of space missions must limit exposures to keep risk within acceptable limits. These limits are, at present, defined for low-Earth orbit, but not for deep-space missions outside the geomagnetosphere. Most of the uncertainty in risk assessment for such missions comes from the lack of understanding of the biological effectiveness of the heavy-ion component, with a smaller component due to uncertainties in transport physics and dosimetry. These same uncertainties are also critical in the therapy setting. PMID:23032883

  16. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    PubMed

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  17. The theory of charged particle temperatures in the upper atmosphere.

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Walker, J. C. G.

    1973-01-01

    The thermal structure of the earth's upper atmosphere is examined in detail, with emphasis on the physical processes that govern the behavior of charged-particle temperatures. The characteristic features of and competition between the heating, cooling, and thermal conduction processes that govern electron and ion temperatures in the mid-latitude and auroral ionospheric regions are theoretically analyzed, and appropriate comparisons are made with experimental data. The proposed elaborate theory is considered qualitatively successful in accounting for the thermal structure of the ionosphere, and points requiring quantitative verification are delineated.

  18. Trajectories of charged particles trapped in Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Öztürk, M. Kaan

    2012-05-01

    This article presents the theory of relativistic charged-particle motion in Earth's magnetosphere, at a level suitable for undergraduate courses. I discuss particle and guiding center motion and derive the three adiabatic invariants associated with the three periodic motions in a dipolar field. I provide 12 computational exercises that can be used as classroom assignments or for self-study. Two of the exercises, drift-shell bifurcation and Speiser orbits, are adapted from active magnetospheric research. The PYTHON code provided in the supplement can be used to replicate the trajectories and can be easily extended for different field geometries.

  19. On the energy losses of fast charged particles

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2010-09-01

    The energy losses of fast charged particles colliding with atoms have been considered in the eikonal approximation. It has been shown that the nonperturbative contribution to the effective stopping from the region of the intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target) not only can be significant as compared to shell corrections to the Bethe-Bloch formula (usually considered in the first order of perturbation theory), but also can provide significant (up to 50%) corrections to this formula.

  20. Energy loss of charged particles colliding with an oscillator

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.

    2015-04-01

    Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state | m> = |0> is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

  1. DART: a simulation code for charged particle beams

    SciTech Connect

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-05-16

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs.

  2. The one charged particle decay modes of the tau

    SciTech Connect

    Perl, M.L.

    1987-11-01

    Tables of measurements of the total branching fraction of tau lepton decays to modes with one charged particle are given along with the major individual branching fractions. The reason a combination of measurements and calculations is needed to display the discrepancy is described briefly. It is argued that uncertainties in measurements of the branching fractions for multiple photon decay modes prevent complete reliance on experiment. The multiple photon modes are discussed in more detail. Present research on experimental technique problems relative to the apparent discrepancy is summarized. (LEW)

  3. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  4. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  5. Channeling problem for charged particles produced by confining environment

    SciTech Connect

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  6. QUADOS intercomparison: a summary of photon and charged particle problems.

    PubMed

    Gualdrini, G; Agosteo, S; Ménard, S; Price, R A; Chartier, J-L; Grosswendt, B; Kodeli, I; Leuthold, G P; Siebert, B R L; Tagziria, H; Tanner, R J; Terrissol, M; Zankl, M

    2005-01-01

    QUADOS, a Concerted Action of the European Commission, has promoted an intercomparison aimed at evaluating the use of computational codes for dosimetry in radiation protection and medical physics. This intercomparison was open to all users of radiation transport codes. Eight problems were selected for their relevance to the radiation dosimetry community, five of which involved photon and proton transport. This paper focuses on the analysis of the photon and charged particle problems. The neutron problems were presented in a paper at the NEUDOS9 conference. PMID:16381790

  7. Charged particle and magnetic field research in space

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.

  8. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  9. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  10. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  11. On charged particle tracks in cellulose nitrate and Lexan

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1972-01-01

    Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.

  12. First Results from the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Semones, Edward; Zeitland, Cary

    2016-01-01

    The Charged Particle Detector (CPD) subsystem of the ISS-RAD detector has been making measurements of high-energy charged and neutral particles since the unit was deployed on Feb. 1, 2016. The CPD is nearly identical to the MSL-RAD instrument, but onboard data processing has been significantly modified to meet ISS requirements. We will present dose rates and LET spectra obtained over the first six months of operations, as well as preliminary results obtained from the limited sample of pulse-height analyzed raw data that has been telemetered to Earth.

  13. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas; Byer, Robert L.

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  14. A detection system for charged-particle decay studies with a continuous-implantation method

    NASA Astrophysics Data System (ADS)

    Sun, L. J.; Xu, X. X.; Lin, C. J.; Wang, J. S.; Fang, D. Q.; Li, Z. H.; Wang, Y. T.; Li, J.; Yang, L.; Ma, N. R.; Wang, K.; Zang, H. L.; Wang, H. W.; Li, C.; Shi, C. Z.; Nie, M. W.; Li, X. F.; Li, H.; Ma, J. B.; Ma, P.; Jin, S. L.; Huang, M. R.; Bai, Z.; Wang, J. G.; Yang, F.; Jia, H. M.; Zhang, H. Q.; Liu, Z. H.; Bao, P. F.; Wang, D. X.; Yang, Y. Y.; Zhou, Y. J.; Ma, W. H.; Chen, J.

    2015-12-01

    A new detection system with high detection efficiency and low detection threshold has been developed for charged-particle decay studies, including β-delayed proton, α decay or direct proton emission from proton-rich nuclei. The performance was evaluated by using the β-delayed proton emitter 24Si produced by projectile fragmentation at the First Radioactive Ion Beam Line in Lanzhou. Under a continuous-beam mode, the isotopes of interest were implanted into two double-sided silicon strip detectors, where the subsequent decays were measured and correlated to the preceding implantations by using position and time information. The system allows us to measure protons with energies down to about 200 keV without obvious β background in the proton spectrum. Further application of the detection system can be extended to the measurements of β-delayed proton decay and the direct proton emission of more exotic proton-rich nuclei.

  15. A new look at reaction mechanisms with 4. pi. charged-particle and neutron multiplicity measurements

    SciTech Connect

    Sarantites, D.G.; Semkow, T.M.; Sobotka, L.G.; Abenante, V.; Li, Z.; Majka, Z.; Nicolis, N.G.; Stracener, D.W.; Hensley, D.C.; Beene, J.R.

    1987-01-01

    We have studied the excitation of target-like fragments produced in the reactions of 331.9 MeV /sup 28/Si + /sup 181/Ta. The light charged particles and intermediate mass fragments were detected in a small, highly segmented 4..pi.. phoswich detector system placed inside the spin spectrometer, a 4..pi.. NaI array which served as a neutron and ..gamma..-ray detector. All target emissions indicate that excitation ceases to increase with decreasing projectile-like fragment energy, as it should if the primary reaction is binary. Non-equilibrium neutron, proton and ..cap alpha..-particle emission and projectile fragmentation conspire and limit the conversion of kinetic energy into target excitation. This effect is more pronounced for PLF away from the injection point and for the largest kinetic energy losses. 8 refs., 10 figs.

  16. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Barlini, S.; Casini, G.; Pasquali, G.; Piantelli, S.; Carboni, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Corsi, A.; Crespi, F.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Leoni, S.; Million, B.; Montanari, D.; Morelli, L.; Nannini, A.; Nicolini, R.; Poggi, G.; Vannini, G.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Dudek, J.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Męczyński, W. M.; Myalski, S.; Styczeń, J.; Ziębliński, M.

    2014-03-01

    The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A ~ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  17. Charged particle decay of hot and rotating 88Mo nuclei in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Piantelli, S.; Casini, G.; Barlini, S.; Carboni, S.; Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Cinausero, M.; Gramegna, F.; Kravchuk, V. L.; Morelli, L.; Marchi, T.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Chbihi, A.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Fornal, B.; Giaz, A.; Krzysiek, M.; Leoni, S.; Matejska-Minda, M.; Mazumdar, I.; MÈ©czyński, W.; Million, B.; Montanari, D.; Myalski, S.; Nicolini, R.; Olmi, A.; Pasquali, G.; Prete, G.; Roberts, O. J.; Styczeń, J.; Szpak, B.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; ZiÈ©bliński, M.

    2016-03-01

    A study of fusion-evaporation and (partly) fusion-fission channels for the 88Mo compound nucleus, produced at different excitation energies in the reaction 48Ti+40Ca at 300, 450, and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α particles; they may be due both to pre-equilibrium emission and to reaction channels (such as deep inelastic collisions or quasifission/quasifusion) different from the compound nucleus formation.

  18. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  19. Radial distribution of charged particles in a magnetic field.

    PubMed

    Sjue, S K L; Broussard, L J; Makela, M; McGaughey, P L; Young, A R; Zeck, B A

    2015-02-01

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle's helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112-119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a (207)Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed. PMID:25725818

  20. Radial distribution of charged particles in a magnetic field

    SciTech Connect

    Sjue, S. K. L. Broussard, L. J.; Makela, M.; McGaughey, P. L.; Young, A. R.; Zeck, B. A.

    2015-02-15

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle’s helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112–119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a {sup 207}Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed.

  1. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  2. Charged particle LET-spectra measurements aboard LDEF

    NASA Technical Reports Server (NTRS)

    Csige, I.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Benton, E. R.; Parnell, T. A.; Watts, John W., Jr.

    1991-01-01

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 250 to 1000 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The Short Range (SR) and Galactic Cosmic Ray (GCR) components were measured separately. The integral dose and dose rate spectra of charged particles are also given. The high LET portion of the LET spectra was measured with high statistical accuracy. This is a unique result of this experiment due to the low flux of this type of particle under typical shielding conditions.

  3. Microscopic visualization of a biological response to charged particle traversal

    NASA Astrophysics Data System (ADS)

    Taucher-Scholz, G.; Jakob, B.; Becker, G.; Scholz, M.

    2003-08-01

    Understanding the molecular mechanisms underlying biological effects of charged particle radiation has become increasingly important in view of the use of ion beams in tumor therapy. Elucidating how the enhanced efficiency of densely ionizing radiation in cell killing is related to the initial causative lesions, namely DNA double-strand breaks, constitutes a major task in radiobiology. The inhomogeneous spatial distribution of energy deposition leading to the induction of more complex and less reparable DNA lesions is the basis for high-LET effects. But the cellular response to radiation damage also involves the interplay between repair and signal transduction proteins with the aim of coordinating the processing of DNA damage and cell cycle progression to allow time for repair. Charged particles are used as a probe for the production of localized subcellular damage to study these aspects of the biological response to ionizing radiation. Immunocytochemical techniques applied in combination with confocal laser microscopy allow to monitor the relocalization of DNA damage response proteins within individual nuclei following irradiation. In particular, the rapid accumulation of the signalling protein p21 at sites of heavy ion-induced DNA damage reflects the microscopic distribution of dose deposited within nuclei of irradiated human fibroblasts. The biological response pattern for p21 is presented for high and low energy ion beams, involving different particle species and representing a wide range of radiation qualities.

  4. Electromagnetic radiation of charged particles in stochastic motion

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Mocanu, Gabriela

    2016-03-01

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency.

  5. Optimization of monolithic charged-particle sensor arrays

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart; Li, Shengdong; Chen, Yandong

    2007-09-01

    Direct-detection CMOS image sensors optimized for charged-particle imaging applications, such as electron microscopy and particle physics, have been designed, fabricated and characterized. These devices directly image charged particles without reliance on image-degrading hybrid technologies such as the use of scintillating materials. Based on standard CMOS Active Pixel Sensor (APS) technology, the sensor arrays use an 8-20 μm thick epitaxial layer that acts as a sensitive region for the generation and collection of ionization electrons resulting from impinging high-energy particles. A range of optimizations to this technology have been developed via simulation and experimental device design. These include the simulation and measurement of charge-collection efficiency vs. recombination, effect of diode area and stray capacitance vs. signal gain and noise, and the effect of different epitaxial silicon depths. Several experimental devices and full-scale prototypes are presented, including two prototypes that systematically and independently vary pixel pitch and diode area, and a complete high-resolution camera for electron microscopy optimized through experiment and simulation. The electron microscope camera has 1×1 k 2 pixels with a 5 μm pixel pitch and an 8 μm epitaxial silicon thickness.

  6. METHOD AND APPARATUS FOR DETERMINING CHARGED PARTICLE MOTION

    DOEpatents

    Kerns, Q.A.

    1959-08-01

    An analog system for determining the motion of charged particles in three dimensional electrical fields is described. A model electrode structure is formed and potentials are applied to the electrodes to provide an analog of the field which is to be studied. To simulate charged particles within the model, conducting spheres are placed at points from which particle motion is to be traced. To free the spheres from gravitational attraction in order that they will be electrostatically accelerated through the model, the apparatus is suspended and dropped. During the pericd that the model is dropping the spheres move through the electrcde structure with a motion corresponding to that of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data which frequently can otherwise be obtained only with a digital computer.

  7. [Galactic heavy charged particles damaging effect on biological structures].

    PubMed

    Grigor'ev, A I; Krasavin, E A; Ostrovskiĭ, M A

    2013-03-01

    A concept of the radiation risk of the manned interplanetary flights is proposed and substantiated. Heavy charged particles that are a component of the galactic cosmic rays (GCR) have a high damaging effect on the biological structures as great amount of energy is deposited in heavy particle tracks. The high biological effectiveness of heavy ions is observed in their action on cell genetic structures and the whole organism, including the brain structures. The hippocampus is the part of the central nervous system that is the most sensitive to radiation--first of all, to heavy charged particles. Irradiation of animals with accelerated iron ions at doses corresponding to the real fluxes of GCR heavy nuclei, to which Mars mission crews can be exposed, leads to marked behavioral function disorders in the post-irradiation period. To evaluate the radiation risk for the interplanetary flight crews, the concept of successful mission accomplishment is introduced. In these conditions, the central nervous system structures can be the critical target of GCR heavy nuclei. Their damage can modify the higher integrative functions of the brain and cause disorders in the crew members' operator performances. PMID:23789432

  8. The dynamics of charged particles in turbulent astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Dung, Rudiger; Petrosian, Vahe

    1994-01-01

    We consider the resonant interaction of energetic charged particles and transverse plasma wave propagating parallel and/or antiparallel to the uniform magnetic field B(sub 0) in an underlying background plasma of density n. The coupling of the plasma waves and the energetic particles will be controlled by the ratio n/(the absolute value of B(sub 0)(exp 2). A variation of this ratio leads to a strong variation of the dynamics of the energetic particles. By taking into account the whole transverse plasma branch for the resonant interaction we discuss the influence of the background plasma density, the background magnetic field, the cross helicity, and the magnetic helicities on the dynamics of charged particles in astrophysical plasmas. It is shown that low-energy electrons can be accelerated efficiently by the higher electromagnetic waves and short-wavelength whistlers for low values of the ratio n/(the absolute value of B(sub 0)(exp 2), which means for low values of the ratio of plasma frequency to gyrofrequency.

  9. A simple charged particle spectrometer for a pion production experiment

    NASA Astrophysics Data System (ADS)

    Borozdin, Konstantin; Brockwell, Michael; Chung, Kiwhan; Green, Andrew; Hogan, Gary; Jason, Andy; Mariam, Fesseha; Miyadera, Haruo; Morris, Christopher; Spaulding, Randy; Wang, Zhehui

    2010-02-01

    Measurement of a charged particle energy is not a new task, but inexpensive ways of such measurement are of interest, in particular as they open new opportunities for advanced charged particle radiography. We describe a magnetic spectrometer we have recently built for pion production measurement experiments at LANSCE (Los Alamos). The spectrometer consists of four modules of drift tubes and a bending magnet. A maximum magnetic field in the bending magnet was about 7500 Gauss. Drift tubes of 2 inches in diameter were made of thin carbon fiber to minimize multiple scattering in their walls. The spectrometer was used in the scattering experiment with primary beam of 800 MeV protons and C or Al target. We present measurements of secondary protons, pions and muons scattered in the reverse direction. Energy deposited in 1 cm thick plastic scintillator and 4" CsI was compared to the energy measured from the particle bending in the magnetic field. Experimental data are compared to GEANT4 modeling. We discuss, how this technology may be applied to the particle identification and to the energy loss measurements. )

  10. Analysis of LEAM experiment response to charged particles

    NASA Technical Reports Server (NTRS)

    Perkins, D.

    1976-01-01

    The objectives of the Lunar Ejecta and Meteorites Experiment (LEAM) were to measure the long-term variations in cosmic dust influx rates and the extent and nature of the lunar ejecta. While analyzing these characteristics in the data, it was discovered that a majority of the events could not be associated with hypervelocity particle impacts of the type usually identified with cosmic dust, but could only be correlated with the lunar surface and local sun angle. The possibility that charged particles could be incident on the sensors led to an analysis of the electronics to determine if such signals could cause the large pulse height analysis (PHA) signals. A qualitative analysis of the PHA circuit showed that an alternative mode of operation existed if the input signal were composed of pulses with pulse durations very long compared to the durations for which it was designed. This alternative mode would give large PHA outputs even though the actual input amplitudes were small. This revelation led to the examination of the sensor and its response to charged particles to determine the type of signals that could be expected.

  11. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Bellini, F.; Bini, F.; Collamati, F.; Collini, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Frallicciardi, P. M.; La Tessa, C.; Marafini, M.; Mattei, I.; Miraglia, F.; Morganti, S.; Ortega, P. G.; Patera, V.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Schuy, C.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Vanstalle, M.; Voena, C.

    2015-02-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevance for PT applications: 12C beam of 80 MeV/u at LNS, 12C beam 220 MeV/u at GSI, and 12C, 4He, 16O beams with energy in the 50-300 MeV/u range at HIT. Finally, a project for a multimodal dose-monitor device exploiting the prompt photons and charged particles emission will be presented.

  12. beta. -delayed fission from /sup 256/Es/sup m/ and the level scheme of /sup 256/Fm

    SciTech Connect

    Hall, H.L.; Gregorich, K.E.; Henderson, R.A.; Lee, D.M.; Hoffman, D.C.; Bunker, M.E.; Fowler, M.M.; Lysaght, P.; Starner, J.W.; Wilhelmy, J.B.; and others

    1989-05-01

    The 7.6-h isotope /sup 256/Es/sup m/ was produced from a 2.5-..mu..g/cm/sup 2/ target of /sup 254/Es by the (t,p) reaction. The reaction products were separated radiochemically, and the decay properties of /sup 256/Es/sup m/ were determined via ..beta..-..gamma.., ..gamma..-..gamma.., and ..beta..-fission correlation techniques. From these measurements we were able to assign 57 ..gamma.. rays to 26 levels in the daughter /sup 256/Fm. An isomeric level was observed at 1425 keV and assigned a spin and parity of 7/sup -/. This level has a t/sub 1/2/ of (70 +- 5) ns and we observed two ..beta..-delayed fissions with delay times in the proper time range to be associated with fission from this level. This gives a ..beta..-delayed fission probability of 2 x 10/sup -5/ for this level and a partial fission half-life of 0.8/sub -0.7//sup +8.8/ ms at the 95% confidence level.

  13. Electron optics of spheroid charged particle energy analyzers

    NASA Astrophysics Data System (ADS)

    Cubric, D.; Kholine, N.; Konishi, I.

    2011-07-01

    A new class of charged particle energy analyzers, spheroid energy analyzers (SEA) that are characterized with very high energy resolution and transmission, is presented. A prototype analyzer was built that has achieved a relative energy resolution of 0.05% at a transmission of 21% out of a 2π steradian. A very high order of focusing of these analyzers is presented via simulation that indicates the existence of 13th order focusing in one of our models. This promises further improvements in energy resolution in future practical analyzer embodiments. A novel geometrical framework is presented, which describes SEA analyzers in general terms within which well known types of analyzers CMA and CHA appear to be only particular examples.

  14. Designing of electrode for high energy charged particle acceleration

    NASA Astrophysics Data System (ADS)

    Das, Basanta Kumar; Shyam, A.

    2010-02-01

    Vacuum insulation plays an important role in charged particle acceleration. We are making one compact size neutron generator in our lab. For this purpose the deuterium ions are formed in a penning ion source and extracted along the axis of the electrode arrangement. For neutron generation from D-T reaction, the deuterium ions are to be accelerated up to ~ 100KeV to the tritium target. After extraction of the ions from the ion source, the ions pass through the acceleration electrode. For high acceleration voltage, selecting the shape of the electrode is important. The plane geometry leads to high electric field at the edge whereas a curved geometry reduces this effect. The study of the physical processes at the electrode surface due to ion interaction is crucial. In this presentation, we will present the designing of the electrode for our purpose and discuss the issues related to the physical process at the surface of the electrode

  15. Multiple scattering and charged-particle - hydrogen-atom collisions

    NASA Technical Reports Server (NTRS)

    Franco, V.; Thomas, B. K.

    1979-01-01

    Glauber-approximation scattering amplitudes for charged-particle - hydrogen-atom elastic and inelastic collisions are derived directly in terms of the known particle-electron and particle-proton Coulomb scattering amplitudes and the known hydrogen-atom form factors. It is shown that the particle-hydrogen amplitude contains no single-scattering term. The double-scattering term is obtained as a two-dimensional integral in momentum space. It is demonstrated how the result can be used as the starting point for an alternative and relatively simple derivation, in closed form, of the Glauber particle-hydrogen scattering amplitude for transitions from the ground state to an arbitrary (nlm) state.

  16. Nonequatorial charged particle confinement around Kerr black holes

    SciTech Connect

    Preti, Giovanni

    2010-01-15

    We analyze the nonequatorial charged particle dynamics around a rotating black hole in the presence of an external magnetic field, the latter being given by Wald's exact analytical solution to the Maxwell's equations in the Kerr background. At variance with the corresponding Schwarzschild case, the behavior of the particle becomes here markedly charge-sign dependent, and the more so the more the Kerr parameter increases. The interplay between the rotating black hole and the magnetic field is shown to provide a mechanism both for selective charge ejection in axially collimated jetlike trajectories, and for selective charge confinement into nonequatorial bound orbits around the hole; the possibility of such a confinement allows the fate of an accreting particle to not necessarily be doomed: infall into the hole can be prevented, and the neutrality of the Kerr source could therefore be preserved, while the charge is safely parked into bound cross-equatorial orbits all around it.

  17. Energetic charged particle beams for disablement of mines

    SciTech Connect

    Wuest, C.R.

    1995-03-27

    LLNL has an ongoing program of weapons disablement using energetic charged particle beams; this program combines theoretical and experimental expertise in accelerators, high-energy and nuclear physics, plasma physics and hydrodynamics to simulate/measure effects of electron and proton beams on weapons. This paper reviews work by LLNL, LANL and NSWC on detonating sensitive and insensitive high explosives and land mines using high-current electron beams. Computer simulations are given. 20--160 MeV electron beams incident on wet/dry soils are being studied, along with electron beam propagation in air. Compact high current, high energy accelerators are being developed for mine clearing. Countermine missions of interest are discussed. 25 refs., 9 figs.

  18. Energetic charged particles in Saturn's magnetosphere: Voyager 2 results

    SciTech Connect

    Vogt, R.E.; Chenette, D.L.; Cummings, A.C.; Garrard, T.L.; Stone, E.C.; Schardt, A.W.; Trainor, J.H.; Lal, N.; McDonald, F.B.

    1982-01-29

    Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the greater than or equal to 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more varible, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0-million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approx. 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

  19. Hybrid finite element and Brownian dynamics method for charged particles

    NASA Astrophysics Data System (ADS)

    Huber, Gary A.; Miao, Yinglong; Zhou, Shenggao; Li, Bo; McCammon, J. Andrew

    2016-04-01

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  20. DART: A simulation code for charged particle beams: Revision 1

    SciTech Connect

    White, R.C.; Barr, W.L.; Moir, R.W.

    1989-07-31

    This paper presents a recently modified version of the 2-D code, DART, which can simulate the behavior of a beam of charged particles whose trajectories are determined by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation includes space charge, secondary electrons, and the ionization of neutral gas. A beam can contain up to nine superimposed beamlets of different energy and species. The calculation of energy conversion efficiency and the method of specifying the electrode geometry are described. Basic procedures for using the code are given, and sample input and output fields are shown. 7 refs., 18 figs.

  1. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  2. Early experiments in charged particle beams from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Banks, P. M.; Williamson, P. R.; Baker, K. D.; Obayashi, T.; Burch, J. L.

    1982-01-01

    Characteristics of studies on board the Shuttle involving the interaction of particle beams with the atmosphere and the ionosphere, and the effects of the beams on the electrical potential of the platform, are discussed. Noting that the Shuttle allows greater weight and power demands by scientific payloads than previous satellite launches, the OSS-1 Vehicle Charging and Potential experiment and the Spacelab 1 Particle Accelerator and Phenomena Induced by Charged Particle Beams are described. Instrumentation details are provided, including charge and current probes, the Spherical Retarding Potential Analyzer, the Fast Pulse Electron Generator, and digital control and interface units. The SEPAC equipment, which comprises an electron beam accelerator, and MPD plasma jet, and diagnostic units are detailed, and operating procedures and experiment objectives are outlined.

  3. Anisotropy-driven collective instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-12-01

    The classical electrostatic Harris instability is generalized to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space charge. For a long, coasting beam, the eigenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A simple theoretical model is developed which describes the essential features of the linear stage of the instability. Both the simulations and the analytical theory clearly show that moderately intense beams are linearly unstable to short-wavelength perturbations provided the ratio of the longitudinal temperature to the transverse temperature is smaller than some threshold value. The delta-f particle-in-cell code BEST has been used to study the detailed nonlinear evolution and saturation of the instability.

  4. Charged-particle cross section data for fusion plasma applications

    SciTech Connect

    Miley, G.H.

    1980-01-01

    Cross-section data for fusion plasma calculations are reviewed for three categories: fusion reactions, nuclear elastic and inelastic scattering. While the data base for the basic D-T fuel cycle seems adequate for present purposes, continued refinement appears warranted. Further, increasing emphasis on advanced-fuel fusion introduces requirements for new reaction rate and charged-particle scattering data over a wider range of reacting species (light elements through /sup 11/B) and over a larger energy range (to several MeV). These new needs are discussed along with suggestions for increased emphasis on providing the user with more convenient compilations. In particular, the extension of reactivities (< sigma V) to non-Maxwellian distributions, scattering matrix data, and development of computer based files are noted.

  5. Early and late mammalian responses to heavy charged particles

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.

    1986-01-01

    This overview summarizes murine results on acute lethality responses, inactivation of marrow CFU-S and intestinal microcolonies, testes weight loss, life span shortening, and posterior lens opacification in mice irradiated with heavy charged particles. RBE-LET relationships for these mammalian responses are compared with results from in vitro studies. The trend is that the maximum RBE for in vivo responses tends to be lower and occurs at a lower LET than for inactivation of V79 and T-1 cells in culture. Based on inactivation cross sections, the response of CFU-S in vivo conforms to expectations from earlier studies with prokaryotic systems and mammalian cells in culture. Effects of heavy ions are compared with fission spectrum neutrons, and the results are consistent with the interpretation that RBEs are lower than for fission neutrons at about the same LET, probably due to differences in track structure.

  6. Measurement of charged-particle stopping in warm dense plasma.

    PubMed

    Zylstra, A B; Frenje, J A; Grabowski, P E; Li, C K; Collins, G W; Fitzsimmons, P; Glenzer, S; Graziani, F; Hansen, S B; Hu, S X; Johnson, M Gatu; Keiter, P; Reynolds, H; Rygg, J R; Séguin, F H; Petrasso, R D

    2015-05-29

    We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ∼32  eV, corresponding to moderately coupled [(e^{2}/a)/(k_{B}T_{e}+E_{F})∼0.3] and moderately degenerate [k_{B}T_{e}/E_{F}∼2] "warm-dense matter" (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma. PMID:26066441

  7. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  8. Systems and methods of varying charged particle beam spot size

    SciTech Connect

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  9. Cataract production in mice by heavy charged particles

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.; Jose, U.; Yang, V. V.; Barker, M. E.

    1981-01-01

    The cataractogenic effects of heavy charged particles are evaluated in mice in relation to dose and ionization density. The relative biological effectiveness in relation to linear energy transfer for various particles is considered. Results indicated that low single doses (5 to 20 rad) of Fe 56 or Ar 40 particles are cataractogenic at 11 to 18 months after irradiation; onset and density of the opacification are dose related and cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial linear energy transfer dependence. The severity of cataracts is reduced significantly when 417 rad of Co 60 gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of C12 doses over 24 weeks.

  10. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    NASA Astrophysics Data System (ADS)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-11-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.

  11. Study of space charge compensation phenomena in charged particle beams

    SciTech Connect

    Veltri, P.; Serianni, G.; Cavenago, M.

    2012-02-15

    The propagation of a charged particle beam is accompanied by the production of secondary particles created in the interaction of the beam itself with the background gas flowing in the accelerator tube. In the drift region, where the electric field of the electrodes is negligible, secondary particles may accumulate giving a plasma which shields the self-induced potential of the charged beam. This phenomenon, known as space charge compensation is a typical issue in accelerator physics, where it is usually addressed by means of 1D radial transport codes or Monte Carlo codes. The present paper describes some theoretical studies on this phenomenon, presenting a Particle in Cell-Monte Carlo (PIC-MC) Code developed ad hoc where both radial and axial confinements of secondary particles are calculated. The features of the model, offering a new insight on the problem, are described and some results discussed.

  12. Accelerators for charged particle therapy: PAMELA and related issues

    NASA Astrophysics Data System (ADS)

    Peach, Ken

    2014-05-01

    Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaLApplications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

  13. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  14. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.

    2012-10-20

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  15. Commissioning of the DIAMANT 'Chessboard' Light-Charged-Particle CsI Detector Array with AFRODITE

    SciTech Connect

    Komati, F.S.; Bark, R.A.; Gueorguieva, E.; Lawrie, J.J.; Mullins, S.M.; Murray, S.H.T.; Sharpey-Schafer, J.F.; Gal, J.; Kalinka, G.; Krasznahorkay, A.; Molnar, J.; Nyako, B.M.; Timar, J.; Zolnai, L.; Juhasz, K.; Lipoglavsek, M.; Maliage, M.; Ramashidza, M.; Vymers, P.; Scheurer, J. N.

    2005-11-21

    In a commissioning measurement, the 'Chessboard' section of the DIAMANT charged-particle array has been coupled with the AFRODITE {gamma}-ray spectrometer at the iThemba Laboratory for Accelerator Based Sciences. Two data-sets were obtained following the bombardment of a 170Er target with a 13C beam at energies of 80 and 70 MeV, respectively. Offline analysis has thus far enabled the extension of a number of rotational bands associated with high-K intrinsic states in 176Hf. Also, the A = 172, 173 and 174 stable isotopes of ytterbium were populated via 2{alpha}xn channels with strengths of {approx}30-to-40% of the {alpha}xn yields. This, together with the comparative weakness of the pxn channels, is consistent with incomplete fusion as the dominant reaction mechanism responsible for the {alpha}-particle emission.

  16. Charged particles produced in neutron reactions on nuclei from beryllium to gold

    SciTech Connect

    Haight, R.C.

    1997-08-01

    Charged-particle production in reactions of neutrons with nuclei has been studied over the past several years with the spallation source of neutrons from 1 to 50 MeV at the Los Alamos Neutron Science Center (LANSCE). Target nuclides include 9Be, C, 27Al, Si, 56Fe, 59Co, 58,60Ni, 93Nb and 197Au. Proton, deuteron, triton, 3He and 4He emission spectra, angular distributions and production cross sections have been measured. Transitions from the compound nuclear reaction mechanism to precompound reactions are clearly seen in the data. The data are compared with data from the literature where available, with evaluated nuclear data libraries, and with calculations where the selection of the nuclear level density prescription is of great importance. Calculations normalized at En = 14 MeV can differ from the present data by a factor of 2 for neutron energies between 5 and 10 MeV.

  17. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been

  18. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  19. Charged Particle Effects on Solar Sails - An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Minow, Joseph I.

    2004-01-01

    The NASA In-Space Propulsion Program is currently sponsoring a comprehensive look at the effects of the charged particle environment on the first generation of Solar Sail propulsion systems. As part of this, a joint NASA MSFC/JPL team is investigating the effects of spacecraft charging on the preliminary ISP Solar Sail mission designs. This paper will begin by reviewing the plasma environments being proposed for such missions-these range from the ambient solar wind at approximately 1 AU in the ecliptic plane, approximately 0.5 AU solar-polar orbit, and geosynchronous orbit. Following a discussion of the critical design issues associated with Solar Sails from a charging standpoint, a simple Sail configuration for modeling purposes will be presented. Results for the various environments will be illustrated in terms of the estimated surface potentials for the Solar Sail using the NASCAP-2K charging analysis program. Based on these potentials, representative plasma flow fields and potential contours surrounding the Solar Sail will then be presented. The implications of these results--the surface potentials and plasma flow--will be discussed in the context of their effects on Solar Sail operations and structural configurations.

  20. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  1. Accelerators for heavy-charged-particle radiation therapy.

    PubMed

    Coutrakon, George B

    2007-08-01

    This paper focuses on current and future designs of medical hadron accelerators for treating cancers and other diseases. Presently, five vendors and several national laboratories have produced heavy-particle medical accelerators for accelerating nuclei from hydrogen (protons) up through carbon and oxygen. Particle energies are varied to control the beam penetration depth in the patient. As of the end of 2006, four hospitals and one clinic in the United States offer proton treatments; there are five more such facilities in Japan. In most cases, these facilities use accelerators designed explicitly for cancer treatments. The accelerator types are a combination of synchrotrons, cyclotrons, and linear accelerators; some carry advanced features such as respiration gating, intensity modulation, and rapid energy changes, which contribute to better dose conformity on the tumor when using heavy charged particles. Recent interest in carbon nuclei for cancer treatment has led some vendors to offer carbon-ion and proton capability in their accelerator systems, so that either ion can be used. These features are now being incorporated for medical accelerators in new facilities. PMID:17668952

  2. O the Penetration of Fast-Charged Particles.

    NASA Astrophysics Data System (ADS)

    Perry, David John

    The work presented here is intended to provide theoretical support for medical physicists who are interested in improving radiotherapy treatment plans involving charged particle beams. These plans still rely heavily on empirical behavior rather than theory as a basis for making predictions. In the most frequent therapy applications, electron beams, typically with initial energies between 5-20 MeV, penetrate materials of low atomic number. Energy loss is predominately by ionization and the effects of multiple scattering by repeated Coulomb deflections from nuclei are of primary interest. Our development is strongly influenced by these applications and so we begin our work with a review of Fermi-Eyges theory. This theory and ideas which were equivalent to it have dramatically improved electron beam treatment plans over the last several years, as is now generally recognized. This theory also has significant limitations due to the approximations or assumptions that it makes. Since we can improve and extend these results by relaxing some of the key assumptions, we continue by considering some generalizations of this basic theory and we discuss those which were given by Snyder-Scott, Lewis and Yang in some detail. Yang's theory had significant potential for applications but this theory will not work properly unless its time development is handled differently. This leads us to present a wave solution to the penetration problem in our final chapter. Sample calculations of the most important distributions are given there as well.

  3. Chaotic motion of charged particles in toroidal magnetic configurations

    SciTech Connect

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  4. MOS Circuitry Would Detect Low-Energy Charged Particles

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva; Wadsworth, Mark

    2003-01-01

    Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.

  5. Local phase transformation in alloys during charged-particle irradiation

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.

    1984-10-01

    Among the various mechanisms and processes by which energetic irradiation can alter the phase stability of alloys, radiation-induced segregation is one of the most important phenomena. Radiation-induced segregation in alloys occurs as a consequence of preferential coupling between persistent fluxes of excess defects and solute atoms, leading to local enrichment or depletion of alloying elements. Thus, this phenomenon tends to drive alloy systems away from thermodynamic equilibrium, on a local scale. During charged-particle irradiations, the spatial nonuniformity in the defect production gives rise to a combination of persistent defect fluxes, near the irradiated surface and in the peak-damage region. This defect-flux combination can modify the alloy composition in a complex fashion, i.e., it can destabilize pre-existing phases, causing spatially- and temporally-dependent precipitation of new metastable phases. The effects of radiation-induced segregation on local phase transformations in Ni-based alloys during proton bombardment and high-voltage electron-microscope irradiation at elevated temperatures are discussed.

  6. New description of charged particle propagation in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, James A.

    1994-01-01

    When charged particles spiral along a large constant magnetic field, their trajectories are scattered by random components that are superposed on the guiding field. In the simplest analysis of this situation, scattering causes the particles to diffuse parallel to the guiding field. At the next level of approximation, moving pulses that correspond to a coherent mode of propagation are present, but they are represented by delta-functions whose infinitely narrow width makes no sense physically and is inconsistent with the finite duration of coherent pulses observed in solar energetic particle events. To derive a more realistic description, the transport problem is formulated in terms of 4 x 4 matrices, which derive from a representation of the particle distribution function in terms of eigenfunctions of the scattering operator, and which lead to useful approximations that give explicit predictions of the detailed evolution not only of the coherent pulses, but also of the diffusive wake. More specifically, the new description embodies a simple convolution of a narrow Gaussian with the solutions above that involve delta-functions, but with a slightly reduced coherent velocity. The validity of these approximations, which can easily be calculated on a desktop computer, has been exhaustively confirmed by comparison with results of Monte Carlo simulations which kept track of 50 million particles and which were carried out on the Maspar computer at Goddard Space Flight Center.

  7. Kinetic phenomena in charged particle transport in gases and plasmas

    SciTech Connect

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

  8. METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM

    DOEpatents

    Aaland, K.; Kuenning, R.W.; Harmon, R.K.

    1961-05-01

    A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.

  9. Cataract production in mice by heavy charged particles

    SciTech Connect

    Ainsworth, E.H.; Jose, J.; Yang, V.V.; Barker, M.E.

    1981-03-01

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron (/sup 56/Fe) or argon (/sup 40/Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of /sup 60/Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of /sup 12/C doses over 24 weeks.

  10. Heavy charged-particle induced lesions in rabbit cerebral cortex

    SciTech Connect

    Woodruff, K.H.; Lyman, J.T.; Fabrikant, J.I.

    1988-02-01

    Fourteen male rabbits received single doses of 20, 40, and 80 Gy of neon irradiation with an extended Bragg peak. They were sacrificed at 1 day, 1 week, and 6 months post-irradiation. The tissue changes which showed a significant time-dose relationship were leakage of carbon particles from blood vessels, focal arachnoiditis, hemorrhage, cystic necrosis, and a total histopathologic score using a point system of grading. The focal nature of the lesions was clearly demonstrated with 2 mm thick macrotome sections. The transition zone between damaged brain and microscopically normal appearing brain was less than 1 mm and the tissue damage induced was morphologically similar to that of other radiation modalities. These findings may have important therapeutic implications for patients. The sharply demarcated boundaries of heavy charged-particle induced lesions suggest these beams will be useful for obliterating tissue in areas where it is critical that a transition from undamaged to severely damaged tissue must occur over a short distance, such as in the central nervous system.

  11. Harmonic Ratcheting for Ferrite Tuned RF Acceleration of Charged Particles

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Brennan, Mike

    2013-04-01

    One of the most persistent difficulties in the design of RF cavities for acceleration of charged particles is the rapid and efficient acceleration of particles over a large range of frequencies. From medical synchrotrons to accelerator driven systems, there is a strong need for fast acceleration of protons and light ions over hundreds of MeV. Conventionally, this is a costly undertaking, requiring specially designed ferrite loaded cavities to be tuned over a large range of frequencies. Ferromagnetic materials allow for the precise adjustment of cavity resonant frequency, but rapid changes in the frequency as well as operation outside material specific frequency ranges result in significant Q-loss to the cavity. This leads to a considerable increase in power required and is thus undesirable for regular operation. We introduce an acceleration scheme known as harmonic ratcheting which can be used to reduce the cavity frequency range needed for accelerating an ion beam in a synchrotron. In particular, this scheme addresses the need for high rep. rate machines for applications such as radiation therapy in which low beam intensity is needed. We demonstrate with simulations the type of ramps achievable using this technique and consider its advantages over h=1 acceleration schemes.

  12. Coherent Light induced in Optical Fiber by a Charged Particle

    NASA Astrophysics Data System (ADS)

    Artru, Xavier; Ray, Cédric

    2016-07-01

    Coherent light production in an optical fiber by a charged particle (named PIGL, for particle-induced guided, light) is reviewed. From the microscopic point of view, light is emitted by transient electric dipoles induced in the fiber medium by the Coulomb field of the particle. The phenomenon can also considered as the capture of virtual photons of the particle field by the fiber. Two types of captures are distinguished. Type-I takes place in a uniform part of the fiber; then the photon keeps its longitudinal momentum pz . Type-II takes place near an end or in a non-uniform part of the fiber; then pz is not conserved. Type-I PIGL is not affected by background lights external to the fiber. At grazing incidence it becomes nearly monochromatic. Its circular polarization depends on the angular momentum of the particle about the fiber and on the relative velocity between the particle and the guided wave. A general formula for the yield of Type-II radiation, based on the reciprocity theorem, is proposed. This radiation can be assisted by metallic objects stuck to the fiber, via plasmon excitation. A periodic structure leads to a guided Smith-Purcell radiation. Applications of PIGL in beam diagnostics are considered.

  13. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  14. The Average Quality Factors by TEPC for Charged Particles

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Cucinotta, Francis A.

    2004-01-01

    The quality factor used in radiation protection is defined as a function of LET, Q(sub ave)(LET). However, tissue equivalent proportional counters (TEPC) measure the average quality factors as a function of lineal energy (y), Q(sub ave)(Y). A model of the TEPC response for charged particles considers energy deposition as a function of impact parameter from the ion s path to the volume, and describes the escape of energy out of sensitive volume by delta-rays and the entry of delta rays from the high-density wall into the low-density gas-volume. A common goal for operational detectors is to measure the average radiation quality to within accuracy of 25%. Using our TEPC response model and the NASA space radiation transport model we show that this accuracy is obtained by a properly calibrated TEPC. However, when the individual contributions from trapped protons and galactic cosmic rays (GCR) are considered; the average quality factor obtained by TEPC is overestimated for trapped protons and underestimated for GCR by about 30%, i.e., a compensating error. Using TEPC's values for trapped protons for Q(sub ave)(y), we obtained average quality factors in the 2.07-2.32 range. However, Q(sub ave)(LET) ranges from 1.5-1.65 as spacecraft shielding depth increases. The average quality factors for trapped protons on STS-89 demonstrate that the model of the TEPC response is in good agreement with flight TEPC data for Q(sub ave)(y), and thus Q(sub ave)(LET) for trapped protons is overestimated by TEPC. Preliminary comparisons for the complete GCR spectra show that Q(sub ave)(LET) for GCR is approximately 3.2-4.1, while TEPC measures 2.9-3.4 for QQ(sub ave)(y), indicating that QQ(sub ave)(LET) for GCR is underestimated by TEPC.

  15. Enke-like method for tracing trajectories of charged particles

    NASA Astrophysics Data System (ADS)

    Kabin, K.; Bonner, G.

    2013-12-01

    Using analytical properties of particle dynamics is often beneficial for numerical solutions of the equations of motion. Enke's method, sometimes used in Astrodynamics and Orbital Mechanics, is a good example of such an approach. In Enke's method, instead of solving the equations of motion directly one solves for the deviation from an exact solution of a more tractable problem (the 'osculating solution'). For the motion of charged particles, the simplest osculating solution corresponds to gyration in a constant magnetic field. We apply this method to trace electrons in a geomagnetic field; this initial work focuses on equatorially mirroring particles. We find that solving for the deviations from the gyration motion substantially improves the accuracy as well as stability of the integration. Reasonable approximations to particles' trajectories are obtained with time steps as large as half of the gyroperiod. Another benefit of Enke's method is a superior conservation of energy. Although not symplectic by design, Enke's method is almost completely free of secular error for the energy, in sharp contrast to most commonly-used Runge-Kutta methods. Further improvements in accuracy can be achieved by using more sophisticated osculating solutions which account for the gradient-curvature drift of the particles. Enke's method can be straightforwardly applied as an integration scheme for test-particle simulation of radiation belt or ring current electrons and protons and it can be used with any empirical or MHD model of the magnetic field. We suggest that, with small time steps Enke's approach may be valuable in applications where high accuracy is required. We also suggest that with large time steps it may be used as an alternative to a guiding center approximation.

  16. Genetic Regulation of Charged Particle Mutagenesis in Human Cells

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.

    1999-01-01

    Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.

  17. Theory of using magnetic deflections to combine charged particle beams.

    SciTech Connect

    Doyle, Barney Lee; Steckbeck, Mackenzie K.

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass- energy products (MEP), the low MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equations is given by: , 1 2 c s c s r B B r where and are the magnetic fields in the steering and bending magnet and is s B c B c s r r the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high MEP beam will be directed into the sample. (page intentionally left blank)

  18. On charged particle equilibrium violation in external photon fields

    SciTech Connect

    Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo

    2012-03-15

    Purpose: In a recent paper by Bouchard et al.[Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al.[Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. Methods: In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Conclusions: Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k{sub Q{sub p{sub c{sub s{sub r,Q}{sup f{sub p}{sub c}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}}}) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.

  19. Charged Particle Therapy with Mini-Segmented Beams

    PubMed Central

    Dilmanian, F. Avraham; Eley, John G.; Rusek, Adam; Krishnan, Sunil

    2015-01-01

    One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely, “interleaved carbon minibeams” and “radiosurgery with arrays of proton and light ion minibeams,” both utilize beams segmented into arrays of parallel “minibeams” of about 0.3 mm incident-beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90° angles and made to “interleave” at the target to produce a solid radiation field within the target. As a result, the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology 6-month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, TX, USA; and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain

  20. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  1. Intermediate regime of charged particle scattering in the field-reversal configuration

    SciTech Connect

    Shustov, P. I. Yushkov, E. V.; Artemyev, A. V.

    2015-12-15

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  2. Correlations of neutral and charged particles in 40Ar- 58Ni reaction at 77 MeV/u

    NASA Astrophysics Data System (ADS)

    Wosińska, K.; Pluta, J.; Hanappe, F.; Stuttge, L.; Angelique, J. C.; Benoit, B.; de Goes Brennand, E.; Bizard, G.; Colin, J.; Costa, G.; Desesquelles, P.; Dorvaux, O.; Durand, D.; Erazmus, B.; Kuleshov, S.; Lednicky, R.; Marques, M.; Materna, Th.; Mikhailov, K.; Papatheofanous, G.; Pawlak, T.; Staranowicz, A.; Stavinskiy, A.; Tamain, B.; Vlasov, A.; Vorobyev, L.

    2007-04-01

    The measurement of the two-particle correlation function for different particle species allows to obtain information about the development of the particle emission process: the space-time properties of emitting sources and the emission time sequence of different particles. The single-particle characteristics and two-particle correlation functions for neutral and charged particles registered in forward direction are used to determine that the heavy fragments (deuterons and tritons) are emitted in the first stage of the reaction (pre-equilibrium source) while the majority of neutrons and protons originates from the long-lived quasi-projectile. The emission time sequence of protons, neutrons and deuterons has been obtained from the analysis of non-identical particle correlation functions.

  3. Production of leading charged particles and leading charged-particle jets at small transverse momenta in p p collisions at √{s }=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.

    2015-12-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given pTmin threshold starting at pTmin=0.8 and 1 GeV, respectively, is studied in p p collisions at √{s }=8 TeV . The particles and the jets are measured in the pseudorapidity ranges |η | <2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and to other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  4. Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultrarelativistic energies

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2011-02-01

    Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |η|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dNch/dη and the total charged-particle multiplicity Nch are found to factorize into a product of independent functions of collision energy, sNN, and centrality given in terms of the number of nucleons participating in the collision, Npart. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lnsNN)2 over the full range of collision energy of sNN=2.7-200 GeV.

  5. Determination of uranium in urine samples of fuel element fabrication workers by beta-delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Gabelmann, H.; Lerch, M.; Kratz, K.-L.; Rudolph, W.

    1984-06-01

    Within the health physics examination of fuel element fabrication workers, the control of uranium incorporation is of importance. This is commonly performed by the determination of the alpha activity concentration of uranium excreted in the urine. However, since the chemical separation procedure and the preparation of alpha-counting samples are complicated and time-consuming, this method may imply restrictions on the routine control of large numbers of persons. Therefore, we have investigated the applicability of measuring the beta-delayed neutrons from thermal neutron induced fission of the 235U in the urine samples. The uranium was separated by coprecipitation with Fe(OH) 3 from the urine samples and irradiated in a rabbit system of the Mainz TRIGA reactor. The neutrons were counted with a 3He long counter. The detection limit of 0.3 to 0.9 pCi 1 -1 is comparable to that of alpha spectrometry, but the time required for one sample, from preparation to data evaluation is less than 25 min.

  6. Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.

  7. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    PubMed Central

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  8. Calibration and Readiness of the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Rios, R.

    2015-01-01

    The International Space Station (ISS) Radiation Assessment Detector (RAD) is an intravehicular energetic particle detector designed to measure a broad spectrum of charged particle and neutron radiation unique to the ISS radiation environment. In this presentation, a summary of calibration and readiness of the RAD Sensor Head (RSH) - also referred to as the Charged Particle Detector (CPD) - for ISS will be presented. Calibration for the RSH consists of p, He, C, O, Si, and Fe ion data collected at the NASA Space Radiation Laboratory (NSRL) and Indiana University Cyclotron Facility (IUCF). The RSH consists of four detectors used in measuring the spectroscopy of charged particles - A, B, C, and D; high-energy neutral particles and charged particles are measured in E; and the last detector - F - is an anti-coincidence detector. A, B, and C are made from Si; D is made from BGO; E and F are made from EJ260XL plastic scintillator.

  9. Ground state configurations of charged particles in a disk at zero temperature

    NASA Astrophysics Data System (ADS)

    Cerkaski, M.; Nazmitdinov, R. G.

    2014-11-01

    We discuss a novel theoretical approach which explains the self-organization of charged particles in a disk geometry. It allows to calculate readily equilibrium configurations for n <= 400 with a remarkable accuracy, when compared with the molecular dynamics calculations.

  10. A model for electrophoretic transport of charged particles through membrane before steady state

    NASA Astrophysics Data System (ADS)

    de Souza, Tatiana Miranda; Fragoso, Viviane Muniz da Silva; Cruz, Frederico Alan de Oliveira

    2015-12-01

    In this paper, we are presenting a model for electrophoretic motion of a charged particle through the membrane before it reaches the steady state, based on concepts of Physics. Some results from analysis of the model are discussed.

  11. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    PubMed

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  12. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  13. Ratio of double to single ionization of He by photon and charged particle impact

    SciTech Connect

    Manson, S.T.

    1994-12-31

    The well-known relationship between ionization of atoms by fast charged particles and by photons, the Bethe-Born theory, is applied to the ratio of double ionization to single ionization of He, a process that has been under intense recent scrutiny. It is found that for sufficiently fast charged particles, this ratio for the single differential cross sections, differential in the energy transferred to the atom, {Delta}E, is equal to the photoionization ratio at a photon energy hv = {Delta}E, and this result is unmodified even for ionization by relativistic charged particles. In addition, a relation for the ratio of total charged particle impact ionization cross sections to the photoionization ratio is derived. The results are compared with recent experimental data and various discrepancies are uncovered. Possible sources of these discrepancies are discussed.

  14. CHANTI: a fast and efficient charged particle veto detector for the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Ambrosino, F.; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-01

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  15. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2013-07-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  16. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2012-10-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  17. TRAK_RF - Electromagnetic Field and Charged Particle Simulations in RF Devices

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Rees, Daniel

    1997-05-01

    An integrated software system has been developed to model electromagnetic fields and charged particle orbits in high-power RF devices. The primary application is simulation of electron multipactoring in linac vacuum windows for Accelerator Production of Tritium(G. Lawrence, et.al., Conventional and Superconducting RF Linac Design for the APT Project, in Proc. 1996 Int'l. Linear Acc. Conf. (Geneva, 1996), to be published.). The finite-element frequency-domain field solver can determine resonant fields such as cutoff and propagating modes of waveguides and TE(mnp) and TM(mnp) modes of cylindrical structures. In contrast to codes like Superfish, TRAK_RF makes direct determinations of power dissipation and phase shifts resulting ffrom lossy materials and walls. Furthermore, the program can handle scattering solutions, simulating free-space conditions with resistive termination boundary layers. TRAK_RF has advanced particle tracking capabilities to investigate a variety of innovative window designs. The program can simutaneously apply three numerical solutions for electrostatic, magnetostatic and electromagnetic fields on independent conformal triangular meshes. The finite-element method allows an unambiguous determination of particle collisions with material surfaces. It is possible to define up to 32 material types with energy-dependent secondary emission coefficients. TRAK_RF has a versatile automatic mesh generator with an interactive drafting utility for boundary input. Other applications include cavity design, radar and communications, microwave systems, and beam optics in RF accelerators.

  18. Measurement of energy deposited by charged-particle beams in composite targets

    SciTech Connect

    Farley, E.; Becker, J.; Crase, K.; Howe, R.; Selway, D.

    1980-07-02

    We have measured the energy deposited in two types of composite targets by a number of charged-particle beams: targets made of /sup 238/U, Lucite, and polyethylene were exposed to 0.26-GeV protons and 0.33-GeV deuterons, and aluminum-Lucite composites were exposed to 0.5-GeV electrons. In addition, we measured neutrons and gamma rays emitted from solid targets of various materials (including /sup 238/U and iron) exposed to 0.26-GeV protons and 0.33-GeV deuterons. We used passive detectors (thermoluminescence dosimeters, Lexan fission track recorders, and photographic emulsions) to measure the nonfission dose and the fission-fragment dose from the primary beam and its shower of products. Measurements were made at various depths and radial positions in the targets. Plots and numerical values of the measured doses are presented. The emission of neutrons and gamma rays was measured with a liquid-deuterated-benzene detector. In general, the dose profile with depth is similar for 0.26-GeV protons and 0.33-GeV deuterons. The ratio of return neutrons to gamma rays increases with increasing target mass number. Deuterons, however, produce from 1.7 to 5.8 times as many neutrons and gamma rays per particle as do protons.

  19. The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Wilson, J. K.

    2013-06-01

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket into the permanently shadowed region (PSR) within Cabeus crater and detected water vapor and ice, as well as other volatiles, in the ejecta plume. The Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph on board the Lunar Reconnaissance Orbiter (LRO), observed this plume as FUV emissions from the fluorescence of sunlight by molecular hydrogen (H2) and other constituents. Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can dissociate the molecules in water ice to form H2. We examine how much H2can be formed by these types of particle radiation interacting with water ice sequestered in the regolith within PSRs, and we assess whether it can account for the H2 observed by LAMP. To estimate H2formation, we use the GCR and SEP radiation dose rates measured by the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER). The exposure time of the ice is calculated by considering meteoritic gardening and the penetration depth of the energetic particles. We find that GCRs and SEPs could convert at least 1-7% of the original water molecules into H2. Therefore, given the amount of water detected by LCROSS, such particle radiation‒induced dissociation of water ice could likely account for a significant percentage (10-100%) of the H2measured by LAMP.

  20. Mapping of electrical potential distributions with charged particle beams

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1982-01-01

    Methods for measuring electrostatic potentials on and near dielectric surfaces charged to several kilovolts are studied. Secondary emission from those charged dielectrics is measured. Candidates for potential measurement include the induced charge, from which potential is calculated; the trajectory endpoints of either high or low energy particles traversing the region near the surface; trajectory impact on the surface; and creating ions at points of interest near the surface. Some of the methods require computer simulations and iterative calculation if potential maps are to be generated. Several approaches are described and compared. A method using a half-cylinder as a test chamber and low-energy probing beams is adapted for the measurement of seconary emission.

  1. Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Martins, T. Dos Reis; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Zito, G.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Primavera, F.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, T. A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Da Cruz E Silva, C. Beir ao; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; Moon, D. H.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-05-01

    Transverse momentum spectra of charged particles are measured by the CMS experiment at the CERN LHC in pPb collisions at , in the range and pseudorapidity in the proton-nucleon center-of-mass frame. For , the charged-particle production is asymmetric about , with smaller yield observed in the direction of the proton beam, qualitatively consistent with expectations from shadowing in nuclear parton distribution functions (nPDF). A pp reference spectrum at is obtained by interpolation from previous measurements at higher and lower center-of-mass energies. The distribution measured in pPb collisions shows an enhancement of charged particles with compared to expectations from the pp reference. The enhancement is larger than predicted by perturbative quantum chromodynamics calculations that include antishadowing modifications of nPDFs.

  2. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    SciTech Connect

    Park, Jae Hyun; Krstic, Predrag S.

    2011-06-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at much heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement.

  3. Torque or no torque? Simple charged particle motion observed in different inertial frames

    NASA Astrophysics Data System (ADS)

    Jackson, J. D.

    2004-12-01

    In a given inertial frame, a charged particle initially at rest moves in the central electric field caused by a fixed charge at the origin. The particle has no initial angular momentum and experiences no torque. However, in an inertial frame moving with a nonvanishing velocity with respect to the first, the charged particle's motion is subject to the Lorentz force with both electric and magnetic fields produced by the "fixed" charge, which is now in uniform motion. The charged particle experiences a torque from the magnetic part of the force; its nonvanishing angular momentum changes in time. This puzzle is analyzed in detail from different reference frames. The chief characteristic of the motion, independent of the choice of the inertial frame, is the constancy in time of the orientation of the relative coordinate r as the particle moves with respect to the fixed (or uniformly moving) charge.

  4. An APL program for the distribution of energy deposition by charged particles passing through thin absorbers

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    1985-01-01

    An APL program which numerically evaluates the probability density function (PDF) for the energy deposited in a thin absorber by a charged particle is proposed, with application to the construction, pointing, and control of spacecraft. With this program, the PDF of the restricted energy loss distribution of Watts (1973) is derived, and Vavilov's (1957) distribution is obtained by proper parameter selection. The method is demonstrated with the example of the effect of charged particle induced radiation on the Hubble Space Telescope (HST) pointing accuracy. A Monte Carlo study simulates the photon noise caused by charged particles passing through the photomultiplier tube window, and the stochastic variation of energy loss is introduced into the simulation by generating random energy losses from a power law distribution. The program eliminates annoying loop procedures, and model parameter sensitivity can be studied using the graphical output.

  5. Statistical similarity between high energy charged particle fluxes in near-earth space and earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, P.; Chang, Z.; Wang, H.; Lu, H.

    2014-05-01

    It has long been noticed that rapid short-term variations of high energy charged particle fluxes in near-Earth space occur more frequently several hours before the main shock of earthquakes. Physicists wish that this observation supply a possible precursor of strong earthquakes. Based on DEMETER data, we investigate statistical behaviors of flux fluctuations for high energy charged particles in near-Earth space. Long-term clustering, scaling, and universality in the temporal occurrence are found. There is high degree statistical similarity between high energy charged particle fluxes in near-Earth space and earthquakes. Thus, the observations of the high energy particle fluxes in near-Earth space may supply a useful tool in the study of earthquakes.

  6. Synchro-curvature radiation of charged particles in the strong curved magnetic fields

    SciTech Connect

    Kelner, S. R.; Prosekin, A. Yu.; Aharonian, F. A. E-mail: Anton.Prosekin@mpi-hd.mpg.de

    2015-01-01

    It is generally believed that the radiation of relativistic particles in a curved magnetic field proceeds in either the synchrotron or the curvature radiation modes. In this paper we show that in strong curved magnetic fields a significant fraction of the energy of relativistic electrons can be radiated away in the intermediate, the so-called synchro-curvature regime. Because of the persistent change of the trajectory curvature, the radiation varies with the frequency of particle gyration. While this effect can be ignored in the synchrotron and curvature regimes, the variability plays a key role in the formation of the synchro-curvature radiation. Using the Hamiltonian formalism, we find that the particle trajectory has the form of a helix wound around the drift trajectory. This allows us to calculate analytically the intensity and energy distribution of prompt radiation in the general case of magnetic bremsstrahlung in the curved magnetic field. We show that the transition to the limit of the synchrotron and curvature radiation regimes is determined by the relation between the drift velocity and the component of the particle velocity perpendicular to the drift trajectory. The detailed numerical calculations, which take into account the energy losses of particles, confirm the principal conclusions based on the simplified analytical treatment of the problem, and allow us to analyze quantitatively the transition between different radiation regimes for a broad range of initial pitch angles. These calculations demonstrate that even very small pitch angles may lead to significant deviations from the spectrum of the standard curvature radiation when it is formally assumed that a charged particle moves strictly along the magnetic line. We argue that in the case of realization of specific configurations of the electric and magnetic fields, the gamma-ray emission of the pulsar magnetospheres can be dominated by the component radiated in the synchro-curvature regime.

  7. Measurement of the charged particle spectra from neutron irradiated tissue-equivalent plastic

    SciTech Connect

    Earls, L.M.

    1981-01-01

    The charged particle spectra from the 49 MeV deuteron on beryllium neutron beam onto Shonka A-150 tissue-equivalent plastic has been measured as a function of off-axis angle from 10/sup 0/ to 90/sup 0/. Particle detection was accomplished by silicon detectors in a detector telescope array. A ..delta..E-E algorithm was used to identify particles. Average particle energies for protons, deuterons, and alpha particles have been calculated and compared with calculations made by Wells. Certain discrepancies between Wells' slowing down spectra and the detected charged particle spectra have been observed.

  8. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    SciTech Connect

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-18

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  9. Use of CMOS imagers to measure high fluxes of charged particles

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  10. Effect of charged particle multiplicity fluctuations on flow harmonics in event-by-event hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A. K.

    2013-03-01

    In nucleon-nucleon collisions, a charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collisions in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte Carlo Glauber model of initial condition is generalized to include the fluctuations. Explicit simulations with the generalized Monte Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have a large effect on the flow harmonics.

  11. Means for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1982-09-21

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  12. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    ERIC Educational Resources Information Center

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  13. Traps for storing charged particles and antiparticles in high-precision experiments

    NASA Astrophysics Data System (ADS)

    Eseev, M. K.; Meshkov, I. N.

    2016-03-01

    The storage and confinement of charged particles and antiparticles (electrons, positrons, ions) in open traps and storage rings of various designs are considered. Experiments on positron storage in the Penning - Malmberg - Surko trap in the Low-Energy Particle Toroidal Accumulator (LEPTA) are described in detail.

  14. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    ERIC Educational Resources Information Center

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  15. Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field

    ERIC Educational Resources Information Center

    Ladino, L. A.; Rondón, S. H.; Orduz, P.

    2015-01-01

    This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…

  16. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  17. Suppression of an unwanted flow of charged particles in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Kasatov, D.; Koshkarev, A.; Makarov, A.; Ostreinov, Yu.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2016-04-01

    In the construction of a tandem accelerator with vacuum insulation several changes were made. This allowed us to suppress the unwanted flow of charged particles in the accelerator, to improve its high-voltage stability, and to increase the proton beam current from 1.6 mA to 5 mA.

  18. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency. PMID:27575228

  19. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  20. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    NASA Astrophysics Data System (ADS)

    Niu, H.; Chang, H. C.; Cho, I. C.; Chen, C. H.; Liu, C. S.; Chou, W. T.

    2014-08-01

    In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair.

  1. Description of light charged particle multiplicities in the framework of dinuclear system model

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2012-12-01

    In the framework of dinuclear system (DNS) model we calculate the light charged particle (LCP) multiplicities produced in fusion and quasifission reactions and their kinetic energy spectra. Calculations indicate that with increasing bombarding energy the ratio of LCP multiplicity from fragments MFF to corresponding LCP multiplicity from compound nucleus (CN) MCN strongly increases.

  2. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    SciTech Connect

    Sean Strasburg; Ronald C. Davidson

    2000-05-30

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic pertubations about a waterbag equilibrium.

  3. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  4. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOEpatents

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  5. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system. 892.5050 Section 892.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5050 Medical...

  6. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical charged-particle radiation therapy system. 892.5050 Section 892.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5050 Medical...

  7. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical charged-particle radiation therapy system. 892.5050 Section 892.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5050 Medical...

  8. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical charged-particle radiation therapy system. 892.5050 Section 892.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5050 Medical...

  9. Relaxation and emittance growth of a thermal charged-particle beam

    SciTech Connect

    Teles, Tarcisio N.; Pakter, Renato; Levin, Yan

    2009-10-26

    We present a theory that allows us to accurately calculate the distribution functions and the emittance growth of a thermal charged-particle beam after it relaxes to equilibrium. The theory can be used to obtain the fraction of particles, which will evaporate from the beam to form a halo. The calculated emittance growth is found to be in excellent agreement with the simulations.

  10. Polarization correction in the theory of energy losses by charged particles

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2015-05-15

    A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.

  11. Transition radiations in X-ray region. [considering charged particle passage through Mylar

    NASA Technical Reports Server (NTRS)

    George, M. C.

    1975-01-01

    The theory of production of radiations in the transoptical region by the passage of high energy charged particles through the interface of two media is discussed. Based on the theoretical model, calculations are made for electrons of selected energy range passing through Mylar.

  12. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles. PMID:24479508

  13. Histogramming of the Charged Particle Measurements with MSL/RAD - Comparison of Histogram Data with Simulations

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Zeitlin, C.; Hassler, D. M.; Wimmer-Schweingruber, R. F.; Boettcher, S.; Koehler, J.; Martin, C.; Brinza, D.; Rafkin, S. C.

    2012-12-01

    The Radiation Assessment Detector (RAD) on-board the Mars Science Laboratory (MSL) is designed to measure a broad range of energetic particle radiation. A significant part of this radiation consists of charged particles, which mainly stem from cosmic background radiation, Solar particle events, and secondaries created by the interaction of these particles with the Martian atmosphere and soil. To measure charged particles RAD is equipped with a set of detectors: a particle telescope consisting of three silicon Solid-State Detectors (SSDs), a CsI scintillator and a plastic scintillator, as well as a further plastic scintillator used as anti-coincidence. RAD uses an elaborate post-processing logic to analyze if a measured event qualifies as a charged particle, as well as to distinguish between particles stopping in any one of the detectors and particles penetrating the whole detector stack. RAD then arranges these qualifying events in an appropriate stopping or penetrating charged particle histogram, reducing the data volume necessary to maintain crucial information about the measured particle. For ground-based data analysis it is of prime importance to derive information, such as particle species or energy, from the data in the downloaded histograms. Here, we will present how the chosen binning of these histograms enables us to derive this information. Pre-flight, we used the Monte-Carlo code GEANT4 to simulate the expected particle radiation and its interactions with a full model of the RAD sensor head. By mirroring the on-board processing logic, we derived statistics of which particle species and energies populate any one bin in the set of charged particle histograms. Finally, we will compare the resulting histogram data from RAD cruise and surface observations with simulations. RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to SwRI, and by DLR in Germany under contract to Christian-Albrechts-Universitaet zu Kiel (CAU).

  14. Neutron capture studies: 1, Multiple capture reactions and implications for calculated beta-delayed fission rates: 2, The nuclear level structure of 238Np

    SciTech Connect

    Hoff, R.W.

    1988-02-19

    Astrophysical r-process calculations of transbismuth elements are of interest because certain actinide pairs can be treated as chronometers in determining the duration of nucleosynthesis. For one such calculation where a particularly long galactic age was derived, 21 + 2 - 4 Gyr, we present evidence that the effect of beta-delayed fission appears to be seriously overestimated in uranium decay chains with A = 252 to 257. With this conclusion, it follows that this estimate of the galactic age must be considered more uncertain than if the calculated rates of beta-delayed fission were found to be acceptable. The nuclear level structure of 238Np has been investigated using the 237Np(n,..gamma..)238Np reaction and the alpha decay of 242mAm as experimental probes. Having established a level scheme for 238Np that includes 47 excited levels and 93 secondary transitions, we find a high degree of correspondence between the experimental band structure and that of a semi-empirical model developed to predict excitations in odd-odd deformed nuclei. 35 refs., 4 figs., 3 tabs.

  15. Charged Particle Multiplicity and Open Heavy Flavor Physics in Relativistic Heavy Ion Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Yujiao

    In this thesis, two independent measurements are presented: the measurements of centrality dependence and pseudo-rapidity dependence of charged particle multiplicities, and the measurements of centrality dependence of open heavy flavor suppression. These measurements are carried out with the Pb+Pb collisions data at the LHC energy sNN = 2.76 TeV with the ATLAS detector. For the charged particle measurements, charged particles are reconstructed with two algorithms (2-point "tracklet" and full tracking) from the pixel detector only. Measurements are presented of the per-event charged particle density distribution, dNch /deta and the average charged particle multiplicity in the pseudo-rapidity interval |eta| <0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sNN results measured at RHIC. The shape of the dNch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement. For the open heavy flavor suppression measurements, muons identified by the muon spectrometer are classified as heavy flavor decays and background contributions by using a fitting procedure with templates from Monte Carlo samples. Results are presented for the per-event muon yield as a function of muon transverse momentum, p T, over the range of 4 < pT < 14 GeV. Over that momentum range single muon production results largely from heavy quark decays. The centrality dependence of the muon yields is characterized by the "central to peripheral" ratio, RCP. Using this measure, muon production from heavy quark decays is found to be suppressed by a centrality-dependent factor that increases smoothly from peripheral to central collisions. Muon production is suppressed by approximately a factor of two in central collisions relative to

  16. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  17. Evaluation of the relative TL efficiency of the thermoluminescent detectors to heavy charged particles.

    PubMed

    Sądel, M; Bilski, P; Swakoń, J; Weber, A

    2016-01-01

    The relative thermoluminescence efficiency, η, is in general not constant but depends on ionisation density. Evaluation of the η is therefore important especially for correct interpretation of measurements of densely ionising radiation doses in proton radiotherapy or in space dosimetry. The correct determination of the η is not always straightforward especially when more strongly ionising radiation is to be measured. In the present work, the process of calculation of the η based on two kinds of heavy charged particles was studied. Several factors which may influence the value of the η and their significance for the final result were discussed. These include for example non-uniform deposition of the dose within the detector volume, self-attenuation of thermoluminescent light, choice of the reference radiation, etc. The presented approach was applied to the experimental results of η of LiF:Mg,Ti detectors irradiated with two kinds of heavy charged particles, protons and alpha particles. PMID:25656042

  18. A precision technique for mounting scintillating fiber ribbons for charged particle tracking

    SciTech Connect

    Carabello, S.; Gau, D.; Howell, B.; Koltick, D.; Pischalnikov, Y.; Michael, D.

    1996-06-01

    The authors have undertaken a research program to develop a Scintillating Fiber charged particle Tracking (SFT) detector for the D0 upgrade experiment at FNAL. They have developed a construction method utilizing scintillating fibers first accurately formed into ribbons, then precisely locating these ribbons on the inside and outside of a lightweight cylindrical base. A Coordinate Measuring Machine (CMM) is used to control each step of the ribbon mounting procedure. Ribbons 2m long, containing 255 fibers each have been placed on composite structures with accuracy {approximately}20 {micro}m. The technique for producing highly accurate fiber ribbons and the method of precision placement of ribbons are presented. The spatial calibration of a charged particle tracker using the CMM measurements are discussed.

  19. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    SciTech Connect

    Chen, Chiping

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  20. Birkeland currents and charged particles in the high-latitude prenoon region - A new interpretation

    NASA Technical Reports Server (NTRS)

    Bythrow, P. F.; Potemra, T. A.; Erlandson, R. E.; Zanetti, L. J.; Klumpar, D. M.

    1988-01-01

    The relationship between Birkeland currents and charged particles in the ionosphere was investigated for the period between the late morning through early afternoon, using data on simultaneous conjugate measurements of magnetic fields and charged particles at low altitude in the high-latitude prenoon sector, acquired on November 1, 1984 by four spacecraft, IMP 8, AMPTE CCE, DMSP F7, and HILAT. The results of these observations indicate that, for both northward and southward IMF, the traditional 'cusp Birkeland currents' lie poleward of the most intense sheathlike particle precipitation, and it is likely that these currents map to the plasma mantle and are associated with divergent flow of ionospheric plasma near noon. It is suggested that the traditional 'cusp' current system might be more appropriately named the 'mantle' Birkeland current system.

  1. (n, charged particle) reactions on lp-shell nuclides at 14 MeV

    SciTech Connect

    Haight, R.C.

    1981-06-01

    The reactions (n,p), (n,d), (n,t) and (n,..cap alpha..) of 14-MeV neutrons with 1p-shell nuclides are of interest in several areas: they can provide tests of charge symmetry by comparisons with proton-induced reactions (on T=O nuclides); they allow study of the complex, often many-body decay of excited nuclear states; and they yield information on final-state interactions. As part of the program in (n, charged particle) reaction studies, several 1p-shell nuclides were investigated: /sup 9/Be, /sup 12/C, /sup 14/N, and /sup 16/O at E/sub n/ = 14 MeV (Haight et. al. 1981). These measurements, with the newly developed magnetic quadrupole charged-particle spectrometer, provide data with a much higher signal-to-background than heretofore available. Experimental methods and results are briefly described. (WHK)

  2. Measurement of Few Body Interactions in Tri-Atomic Molecular Dissociation into Three Charged Particles

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; Jordon-Thaden, Brandon; Weise, Lisa; Jaecks, Duane

    2010-03-01

    Threshold ionization of atoms by electron impact remains an area of interest. Near threshold, where the total energy of the system is approximately zero, the motion of charged particles is highly correlated. Similarly, near threshold dissociation into three or more charges particles is involve highly correlated motion as the particles slowly move apart under the influence of the long-range Coulomb interaction. We will present a novel approach to gain insight into these interactions, where no simplifying approximations such as placing one of the particles near the center-of-mass, is theoretically viable. In these triple coincidence experiments, the final state momenta of all particles are measured with sub-meV resolution sufficient to resolve rovibrational levels. This allows us to determine the initial state of the tri-atomic molecular ion.

  3. Status of the L2 and Lunar Charged Particle Environment Models

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Diekmann, Anne M.; Blackwell, William C., Jr.

    2007-01-01

    The L2 Charged Particle Environment (L2-CPE) model is an engineering tool which provides free field charged particle environments for distant magnetotail, magnetosheath, and solar wind environments. L2-CPE is intended for use in assessing contributions from low energy radiation environments (4.1 keV to few MeV) to radiation dose in thin materials used in construction of spacecraft to be placed in orbit about the Sun-Earth L2 point. This paper describes the status of the current version of the L2-CPE model including structure of the model used to organize plasma environments into solar wind, magnetosheath, and magnetotail environments, the algorithms used to estimate radiation fluence in sparsely sampled environments, the updated graphical user interface, and output options for flux and fluence environments. In addition, we describe the status and plans for updating the model to include environments relevant to lunar programs.

  4. A novel three-charged-particles Faddeev-type equation in momentum space

    SciTech Connect

    Oryu, S.; Nishinohara, S.; Sonoda, K.; Shiiki, N.; Togawa, Y.; Chiba, S.

    2005-05-06

    The three-charged-particle Faddeev-type equations for a full potential system are presented in momentum space. The potential is composed of a short range two-body, nuclear potential and a three-body-force potential plus the long range Coulomb potential. A novel framework is proposed for this purpose which contains two innovations aimed at realizing a breakthrough for the notoriously troublesome long range behavior of charged particle systems and tedious Coulomb prescriptions in momentum space calculations. One involves introduction of a Coulomb boundary condition and the other is a new definition of the Coulomb amplitude using two-potential theory for VC = VR + V{phi} with respect to a screened Coulomb potential VR and the remainder V{phi} = VC - VR. Some important equations, which are underlined in our approach, are mathematically proved. The formulation is not only rigorous but also useful for numerical calculations.

  5. Looking for milli-charged particles with a new experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Haas, Andrew; Hill, Christopher S.; Izaguirre, Eder; Yavin, Itay

    2015-06-01

    We propose a new experiment at the Large Hadron Collider (LHC) that offers a powerful and model-independent probe for milli-charged particles. This experiment could be sensitive to charges in the range 10-3 e-10-1 e for masses in the range 0.1-100 GeV, which is the least constrained part of the parameter space for milli-charged particles. This is a new window of opportunity for exploring physics beyond the Standard Model at the LHC. The key new ingredients of the proposal are the identification of an optimal location for the detector and a telescopic/coincidence design that greatly reduces the background.

  6. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the “Killing tower” of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  7. Radiation biophysical aspects of charged particles: From the nanoscale to therapy

    NASA Astrophysics Data System (ADS)

    Scifoni, Emanuele

    2015-04-01

    Charged particle applications for radiotherapy are motivated by their specific advantages in terms of dose delivery and biological effect. These advantages have to a large extent originated from the peculiarities of ion beam energy deposition patterns in the medium on a microscopic, down to a nanoscopic scale. A large amount of research was conducted in this direction, especially in the last two decades, profiting also from the parallel investigations going on in radiation protection for space exploration. The main biophysical aspects of charged particles, which are relevant to hadrontherapy are shortly reviewed in the present contribution, namely focusing on relative biological effectiveness (RBE), oxygen enhancement ratio (OER) and combination with radiosensitizers. A summary of present major research direction on both microscopic and macroscopic assessment of the specific mechanism of radiation damage will be given, as well as several open challenges for a better understanding of the whole process, which still limit the full exploitation of ion beams for radiotherapy.

  8. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. < Nch>/< Npart/2> in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  9. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    SciTech Connect

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-15

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  10. Responses of a direct ion storage dosimeter (DIS-1) to heavy charged particles.

    PubMed

    Yasuda, H

    2001-12-01

    The responses of a direct ion storage dosimeter (DIS-1) to energetic heavy charged particles were examined using (4)He, (12)C, (40)Ar and (56)Fe ion beams at the HIMAC at the National Institute of Radiological Sciences. The efficiency of the DIS-1 on the basis of absorbed dose was almost unity for the helium and carbon ions and was slightly decreased for the argon and iron ions. The linearity in the dose response and the angular independence for these heavy ions were fairly good. Although further studies are necessary, these results suggest that the DIS-1 would be a suitable passive dosimeter for measurements of absorbed dose in a field dominated by heavy charged particles such as the space environment. PMID:11741505

  11. Multiplicity of charged particles in 800 GeV p-p interactions

    NASA Astrophysics Data System (ADS)

    Ammar, R.; Aziz, T.; Banerjee, S.; Baland, J. F.; Ball, S.; Ball, R. C.; Bromberg, C.; Brun, R.; Canough, G. E.; Coffin, T.; Commichau, V.; Davis, R.; Dershem, T. O.; Dixon, R. L.; Fenker, H. C.; Ganguli, S. N.; Gensch, U.; Giokaris, N.; Girtler, P.; Goshaw, A. T.; Gress, J.; Gurtu, A.; Henri, V. P.; Hernandez, J. J.; Hrubec, J.; Iori, M.; Jones, L. W.; Knauss, D.; Kuhn, D.; Kwak, N.; Leedom, I. D.; Legros, P.; Lemonne, J.; Leutz, H.; Liu, X.; Malhotra, P. K.; Marraffino, J. M.; Mendez, G. E.; Mikocki, S.; Miller, R.; Naumann, T.; Neuhofer, G.; Nguyen, A.; Nikolic, M.; Nowak, H.; Pilette, P.; Poppleton, A.; Poirier, J.; Raghavan, R.; Rasner, K.; Reucroft, S.; Robertson, W. J.; Roe, B. P.; Roos, C. E.; Roth, A.; Senko, M.; Struczinski, W.; Subramanian, A.; Touboul, M. C.; Vonck, B.; Voyvodic, L.; Walker, W. D.; Waters, J. W.; Weber, M. F.; Webster, M. S.; Wickens, J.; Wild, C. F.

    1986-09-01

    Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number nch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is = 10.26+/-0.15. For nch>=8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.

  12. Electrodynamics of a generalized charged particle in doubly special relativity framework

    SciTech Connect

    Pramanik, Souvik; Ghosh, Subir; Pal, Probir

    2014-07-15

    In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac framework of Hamiltonian constraint analysis.

  13. New and improved apparatus and method for monitoring the intensities of charged-particle beams

    DOEpatents

    Varma, M.N.; Baum, J.W.

    1981-01-16

    Charged particle beam monitoring means are disposed in the path of a charged particle beam in an experimental device. The monitoring means comprise a beam monitoring component which is operable to prevent passage of a portion of beam, while concomitantly permitting passage of another portion thereof for incidence in an experimental chamber, and providing a signal (I/sub m/) indicative of the intensity of the beam portion which is not passed. Caibration means are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I/sub f/) indicative of the intensity thereof. Means are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  14. Experience in charged particle irradiation of tumors of the skull base

    SciTech Connect

    Castro, J.R.; Linstadt, D.E.; Bahary, J.P.; Petti, P.L.; Daftari, I. Collier, J.M.; Gutin, P.H.; Gauger, G.; Phillips, T.L.

    1994-07-01

    The purpose was to review the experience at University of California Lawrence Berkeley Laboratory in using charged particles to irradiate primary neoplasms of the skull base and those extending to the skull base from the nasopharynx and paranasal sinuses. During the period from 1977 to 1992, 223 patients were irradiated with charged particles at the Lawrence Berkeley Laboratory for tumors either arising in or extending to the skull base, of whom 48 (22%) had recurrent lesions, either post previous surgery or radiotherapy. One hundred twenty-six patients had lesions arising in the cranial base, mostly chordoma (53), chondrosarcoma (27), paraclival meningioma (27) with 19 patients having other histologies such as osteosarcoma or neurofibrosarcoma. There were also 31 patients with primary or recurrent squamous carcinoma of the nasopharynx extending to the skull base, 44 patients with major or minor salivary gland tumors, mostly adenocarcinoma, and 22 patients with squamous carcinoma of the paranasal sinuses, all with cranial base extension. Local control and survival appeared improved in tumors arising in the skull base, following the ability with charged particles to deliver high doses (mean of 65 GY-equivalent) with relative sparing of the adjacent normal tissues. The Kaplan-Meier 5-year local control was 85% for meningioma, 78% for chondrosarcoma, 63% for chordoma and 58% for other sarcoma. Follow-up ranged from 4-191 months with a median of 51 months. Charged particle radiotherapy is highly effective in controlling cranial base lesions which have been partially resected. Better tumor localization with CT and MRI, improved 3-D treatment planning and beam delivery techniques have continued to reduce the level of serious complications and increase local control and survival. 35 refs., 4 figs., 8 tabs.

  15. Quantum-Mechanical Contributions to Numerical Simulations of Charged Particle Transport at the DNA Scale

    NASA Astrophysics Data System (ADS)

    Champion, Christophe; Galassi, Mariel E.; Weck, Philippe F.; Fojón, Omar; Hanssen, Jocelyn; Rivarola, Roberto D.

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented to provide accurate multiple differential and total cross sections for describing the two most important ionizing processes, namely, ionization and capture induced by heavy charged particles in targets of biological interest. Water and DNA bases are then successively investigated by reporting in particular a detailed study of the influence of the target description on the cross section calculations.

  16. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    NASA Astrophysics Data System (ADS)

    Akhter, T.; Fedele, R.; Nicola, S. De; Tanjia, F.; Jovanović, D.; Mannan, A.

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  17. Dynamics of Charged Particles Around a Magnetized Black Hole with Pseudo—Newtonian Potential

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wu, Xin; Sun, Wei

    2013-10-01

    The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detailedly. An optimal fourth-order force gradient symplectic method, as a global symplectic integrator that can simultaneously solve both the equations of motion and the variational equations, is used to calculate fast Lyapunov indicators. In this way, dynamical structures are described, and parameter domains for causing chaos are found.

  18. Charged particle motions in a magnetic field which reduce to motions in a potential

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1974-01-01

    If the Hamiltonian for the motion of a charged particle in a magnetic field has one or more cyclic coordinates it may often be viewed as representing the motion of a particle subject to a potential V. The use of V provides qualitative insight about the motion even in some cases where a solution of the motion cannot be obtained. Several examples using this concept are reviewed and discussed.

  19. Generalized Ohm's law for a background plasma in the presence of relativistic charged particles.

    PubMed

    Sherlock, M

    2010-05-21

    A generalized Ohm's law is derived for a system composed of a background magnetohydrodynamic plasma and a lower density relativistic charged-particle distribution. The interpretation of Ohmic electric fields occurring due to force balance breaks down for such a system and instead an approach based on Maxwell's equations along with the particle flux equations is necessary. Three additional terms arise in Ohm's law and each is verified numerically. PMID:20867035

  20. Generalized Ohm's Law for a Background Plasma in the Presence of Relativistic Charged Particles

    SciTech Connect

    Sherlock, M.

    2010-05-21

    A generalized Ohm's law is derived for a system composed of a background magnetohydrodynamic plasma and a lower density relativistic charged-particle distribution. The interpretation of Ohmic electric fields occurring due to force balance breaks down for such a system and instead an approach based on Maxwell's equations along with the particle flux equations is necessary. Three additional terms arise in Ohm's law and each is verified numerically.

  1. Characterisation of Medipix3 silicon detectors in a charged-particle beam

    NASA Astrophysics Data System (ADS)

    Akiba, K.; Alozy, J.; Aoude, R.; van Beuzekom, M.; Buytaert, J.; Collins, P.; Dosil Suárez, A.; Dumps, R.; Gallas, A.; Hombach, C.; Hynds, D.; John, M.; Leflat, A.; Li, Y.; Pérez Trigo, E.; Plackett, R.; Reid, M. M.; Rodríguez Pérez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Velthuis, J. J.; Wysokiński, M.

    2016-01-01

    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.

  2. Test results of modified electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.; Huang, K. H.

    1983-01-01

    Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m.

  3. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

  4. New Density Estimation Methods for Charged Particle Beams With Applications to Microbunching Instability

    SciTech Connect

    Balsa Terzic, Gabriele Bassi

    2011-07-01

    In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  5. Theoretical model of the electric field produced by charged particles in windblown sand flux

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaojing; He, Lihong; Zhou, Youhe

    2004-08-01

    Taking into account the coupled interactions among wind velocity, sand movement, and the electric field, we develop a general theoretical model for calculating the electric fields produced by charged sand particles in the three sand movement types, saltation, suspension and creep, quantifying the electric field of a point charge by Coulomb's law. The numerical results of the electric field are in good agreement with both the field data and the wind tunnel experimental results. The profile of the electric field intensity produced by charged particles in windblown sand flux is quantitatively analyzed in detail and compared with those generated by charged particles only in the saltation layer or in the creep layer. The results demonstrate that the profile of the electric field produced by charged particles in one sand movement type is different from that by those in other types and that the signs of the charge acquired by the particles also alter the features of the profile. Finally, the effects of the wind velocity and the charge of the windblown sand particles on the electric field intensity are discussed.

  6. Charge, energy, and LET spectra measurements of charged particles in P0006 experiment of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1992-01-01

    Measurements are under way of the charged particle radiation environment of the LDEF satellite using stacks of plastic nuclear track detectors (PNTDs) placed in different locations of the satellite. In the initial work, the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTDs located on the west end of the satellite. Primary and secondary stopping heavy ions as well as relativistic galactic cosmic rays (mostly iron particles) were measured separately. The results will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed study of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEUs) in microelectronics and, especially, more accurate assessment of the risk, contributed by the different components of the radiation field to the health and safety of crew members.

  7. Preliminary test results of electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1982-01-01

    A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.

  8. Survival of Deinococcus radiodurans against laboratory-simulated solar wind charged particles.

    PubMed

    Paulino-Lima, Ivan Gláucio; Janot-Pacheco, Eduardo; Galante, Douglas; Cockell, Charles; Olsson-Francis, Karen; Brucato, John Robert; Baratta, Giuseppe Antonio; Strazzulla, Giovanni; Merrigan, Tony; McCullough, Robert; Mason, Nigel; Lage, Claudia

    2011-11-01

    In this experimental study, cells of the radiation-resistant bacterium Deinococcus radiodurans were exposed to several different sources of radiation chosen to replicate the charged particles found in the solar wind. Naked cells or cells mixed with dust grains (basalt or sandstone) differing in elemental composition were exposed to electrons, protons, and ions to determine the probability of cell survival after irradiation. Doses necessary to reduce the viability of cell population to 10% (LD(10)) were determined under different experimental conditions. The results of this study indicate that low-energy particle radiation (2-4 keV), typically present in the slow component of the solar wind, had no effect on dehydrated cells, even if exposed at fluences only reached in more than 1000 years at Sun-Earth distance (1 AU). Higher-energy ions (200 keV) found in solar flares would inactivate 90% of exposed cells after several events in less than 1 year at 1 AU. When mixed with dust grains, LD(10) increases about 10-fold. These results show that, compared to the highly deleterious effects of UV radiation, solar wind charged particles are relatively benign, and organisms protected under grains from UV radiation would also be protected from the charged particles considered in this study. PMID:22059692

  9. Determination of concentration of charged particles in various regions of thunderstorms

    NASA Astrophysics Data System (ADS)

    Detwiler, A. G.; Mo, Q.

    2015-12-01

    During the Severe Thunderstorm Precipitation and Electrification Study in 2000, data on hydrometeor sizes and charges were obtained in thunderstorms using an optical array probe modified by the New Mexico Institute of Mining and Technology and mounted on the South Dakota School of Mines and Technology armored T-28 research aircraft. Analysis yielded quantitative observations of hydrometeor size and charge data in selected regions of storms with relatively low concentrations of charged particles. In most regions hydrometeor concentrations were so high that there were multiple charged particles in the probe sample volume at the same time and quantitative charge analysis was not possible. While it is impossible to reliably determine individual particle charges in these high concentration regions, we can use Poisson statistics to estimate the total number concentration of charged particles based on the fraction of records with just one particle in them. We compare these number concentrations for different thunderstorm regions, including updrafts, flanking cells, core precipitation regions, and trailing stratiform regions, at approximately the -10 C level, in several thunderstorms. We will discuss the implications of these results for understanding charge-separation processes in thunderstorms.

  10. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    SciTech Connect

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  11. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  12. TOPICAL REVIEW: Charged-particle multiplicity in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Fiete Grosse-Oetringhaus, Jan; Reygers, Klaus

    2010-08-01

    This review summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(\\bar{p}) collisions between \\sqrt{s} = 23.6 {\\;GeV} and \\sqrt{s} = 1.8\\;TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of \\sqrt{s}. Feynman scaling, KNO scaling as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of two or more negative binomial distributions is discussed. Moreover, similarities between the energy dependence of charged-particle multiplicities in p+p(\\bar{p}) and e+e- collisions are studied. Finally, various predictions for pseudorapidity densities, average multiplicities in full phase space and multiplicity distributions of charged particles in p+p(\\bar{p}) collisions at the LHC energies of \\sqrt{s} = 7\\;TeV, 10\\;TeV and 14 TeV are summarized and compared.

  13. Comparative biology approaches for charged particle exposures and cancer development processes

    NASA Astrophysics Data System (ADS)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We

  14. Ratio of double to single ionization of helium: The relationship between ionization by photons and by bare charged particles

    SciTech Connect

    Manson, S.T. ); McGuire, J.H. )

    1995-01-01

    It is well known that cross sections for ionization of atoms by fast charged particles and by photons are related by the Bethe-Born theory. We employ this relationship to derive a corresponding relation for the ratio [ital R] of double to single ionization including the first two terms of the Bethe expansion. For sufficiently fast charged particles, where the second term can be ignored, the ratios as a function of [Delta][ital E]---the energies transferred to the atom by the projectile---for ionization by charged particles [ital R][sub [ital z

  15. The {beta}-delayed {alpha}-spectrum of {sup 16}N and the astrophysical aspects of the {sup 12}C({alpha},{gamma}){sup 16}O reaction

    SciTech Connect

    Azuma, R.E.; Buchmann, L.; Barker, F.C.

    1995-08-01

    Radiative alpha-capture by {sup 12}C is a key process occurring during the helium-burning phase in red giant stars, and its rate remains one of the most significant uncertainties in the nucleosynthetic calculations for massive stars. This is largely due to the lack of precise experimental information concerning the values of the reduced {alpha}-particle widths of the J{sup {pi}} = 1{sup {minus}} and 2{sup +} subthreshold states in {sup 16}O to which the higher-energy radiative capture data are only weakly sensitive. Of these two states, the reduced {alpha}-width of the E{sub x} = 7.12 MeV J{sup {pi}} = 1{sup {minus}} level has been predicted to have a considerable effect on the structure of the hitherto unmeasured low-energy region of the {beta}-delayed {alpha}-particle spectrum of {sup 16}N. Experiments using the TRIUMF isotope separator TISOL have been performed to measure this {alpha}-spectrum down to an energy of E{sub {alpha}} = 600 keV, utilizing a coincidence technique which also accounts completely for the detector response function. The {alpha}-spectrum, containing 10{sup 6} counts, has been incorporated into both R- and K-matrix analyses along with the previously measured {sup 12}C({alpha},{gamma}){sup 16}O cross section and the {sup 12}C + {alpha} elastic phase shifts to yield a much improved value for S{sub E1}(300) keV. In light of this new determination of S{sub E1}(300), the available radiative capture data and elastic scattering phase shifts are re-analyzed, along with {beta}-delayed {alpha}-spectrum of {sup 16}N in an attempt also to place improved limits on the S{sub E1}(300) contribution to the {sup 12}C({alpha},{gamma}){sup 16}O cross section.

  16. Scaling of charged particle production in d+Au collisions at √(sNN)=200GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2005-09-01

    The measured pseudorapidity distributions of primary charged particles over a wide pseudorapidity range of |η|≤5.4 and integrated charged particle multiplicities in d+Au collisions at √(sNN)=200GeV are presented as a function of collision centrality. The longitudinal features of d+Au collisions at √(sNN)=200GeV are found to be very similar to those seen in p+A collisions at lower energies. The total multiplicity of charged particles is found to scale with the total number of participants according to NdAuch=1/2Nppch, and the energy dependence of the density of charged particles produced in the fragmentation region exhibits extended longitudinal scaling.

  17. Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman, de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Muiño, P. Conde; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; Garcia, C.; Navarro, J. E. Garcia; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Plante, I. Jen-La; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Miotto, G. Lehmann; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Cheong, A. Leung Fook; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Moya, M. Miñano; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Hong, V. Nguyen Thi; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Adam, E. Romero; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Martinez, V. Sanchez; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Camillocci, E. Solfaroli; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Viegas, F. J. Tique Aires; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Cakir, I. Turk; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolik Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vaque, F. Vives; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu, Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Smit, G. V. Ybeles; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-07-01

    Using inelastic proton-proton interactions at sqrt {s} = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the pythia and herwig++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

  18. New density estimation methods for charged particle beams with applications to microbunching instability

    SciTech Connect

    Terzic, B.; Bassi, G.

    2011-07-08

    In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043], designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  19. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles.

    PubMed

    Baulch, Janet E; Craver, Brianna M; Tran, Katherine K; Yu, Liping; Chmielewski, Nicole; Allen, Barrett D; Limoli, Charles L

    2015-08-01

    Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC) exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO) and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively) in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS) was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut's ability to perform complex tasks during extended missions in deep space. PMID:25800120

  20. Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2003-10-20

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T{sub {perpendicular}b}/T{sub {parallel}b} >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r{sub w}. The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T{sub {perpendicular}b}/T{sub {parallel}b}){sup Weibel} >> (T{sub {perpendicular}b}/T{sub {parallel}b}){sup Harris}) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability.

  1. Interaction energy and closest approach of moving charged particles on a plasma and neutral gas background

    NASA Astrophysics Data System (ADS)

    Øien, Alf H.

    2012-02-01

    Electric interaction between two negatively charged particles of different sizes on a mixed background of positive, negative, and neutral particles is complex and has relevance both to dusty plasmas and to transports in ionized fluids in general. We consider particularly effects during interaction that particle velocity and neutrals in the background may have on the well-known “dressing” and electric shielding that is due to the charged part of the background and how the interaction energy is modified because of this. Without such effects earlier works show the interaction becomes attractive when the distance between the two particles is a bit larger than the Debye length. We use a model where one of the two interacting particles has a radius much larger than the Debye length and the other a radius shorter than the Debye length. Then, the complex interaction may be more easily determined for particle separation up to a few Debye lengths. We consider the larger particle as stationary while the smaller may move. We find quite simple analytic expressions for the dressed particle interaction energy over the whole range of speed of the incoming smaller particle, assumed coming head on the larger particle, and the whole range of neutral particle densities. We also derive a distance of closest approach of small and large particles for all such parameter values. This distance is important for excluded volume estimations for moving small charged particles in media populated by large charged particles on a background as described above, and hence, important for determining the speed of flow of the smaller particles through such media.

  2. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles

    PubMed Central

    Baulch, Janet E.; Craver, Brianna M.; Tran, Katherine K.; Yu, Liping; Chmielewski, Nicole; Allen, Barrett D.; Limoli, Charles L.

    2015-01-01

    Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC) exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO) and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively) in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS) was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut’s ability to perform complex tasks during extended missions in deep space. PMID:25800120

  3. Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    NASA Astrophysics Data System (ADS)

    Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin

    2016-04-01

    We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.

  4. Charged particle therapy for cancer: the inheritance of the Cavendish scientists?

    PubMed

    Jones, Bleddyn; Dale, Roger G; Cárabe-Fernández, Alejandro

    2009-03-01

    The history of developments in atomic physics and its applications follows the decisive input provided by Maxwell and subsequent discoveries by his successors at the Cavendish Laboratory. In medicine the potential applications of particle physics (with the notable exception of the electron) were unfortunately delayed by the disappointing experiences with neutron therapy, which produced long-term scepticism. Neutrons are not appropriate for cancer therapy because not only their physical dose distributions offer no advantages over X-rays, but also their biological dose distributions are worse. The much improved dose distributions achieved with charged particles offer real prospects for better treatment outcomes because of the large reduction in the volume of unnecessarily irradiated tissue in many situations. Charged particle therapy is relatively new and can be applied with increasing confidence due to advances in radiology and computing, but at present there are insufficient numbers of treatment facilities to produce statistically powerful studies to compare treatment outcomes with those of X-rays. Considerable progress has been achieved in Japan and Germany with pilot studies of carbon ions but their efficacy compared with protons needs to be tested: in theory carbon should be better for intrinsically radio-resistant and for the most hypoxic tumours. The optimisation of proton and ion beam therapy in clinical practice remains to be achieved, but there are good scientific reasons why these modalities will be preferred by patients and their physicians in the future. Regrettably, despite hosting many of the momentous discoveries that enabled the development of charged particle therapy, the UK is slow to adopt and implement this very important form of cancer treatment. PMID:18693025

  5. New density estimation methods for charged particle beams with applications to microbunching instability

    NASA Astrophysics Data System (ADS)

    Terzić, Balša; Bassi, Gabriele

    2011-07-01

    In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009); PRABFM1098-440210.1103/PhysRevSTAB.12.080704G. Bassi and B. Terzić, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043], designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.080704], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  6. Developing Antimatter Containment Technology: Modeling Charged Particle Oscillations in a Penning-Malmberg Trap

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.

    2003-01-01

    The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.

  7. Electromagnetic Weibel instability in intense charged particle beams with large energy anisotropy

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-12-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Rev. ST Accel. Beams 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-type instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T⊥b/T∥b≫1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius rw. The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy [(T⊥b/T∥b)Weibel≫(T⊥b/T∥b)Harris] below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability.

  8. Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, T.; Tajima, T.

    2014-05-01

    Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.

  9. Charged particle trajectories in the field of a charge near a Schwarzschild blackhole

    NASA Astrophysics Data System (ADS)

    Sonar, V. P.; Dhurandhar, S. V.; Dadhich, N.

    1985-12-01

    Motion of charged particles in the field of a charge placed near the Schwarzschild blackhole is considered. The electromagnetic field gets modified owing to gravitational field of the black hole. The system, charge plus the hole, is axisymmetric (no longer spherically symmetric) which poses difficulty in obtaining analytic solutions of equations of motion. However, motion along the axis and circular orbits about the axis of symmetry are discussed. In view of the asymmetry in charge distribution, a particle will have circular orbits only off the equatorial plane.

  10. A new method of charged particle identification based on frequency spectrum analysis

    NASA Astrophysics Data System (ADS)

    Jin-Tao, Zhu; Guo-Fu, Liu; Jun, Yang; Xiao-Liang, Luo; Lei, Zhang; Li-Feng, Ji

    2016-03-01

    A new frequency domain method for charged particle identification, called Frequency Ratio Analysis (FRA), is proposed by analyzing the frequency spectra of proton pulses and alpha pulses acquired from a totally depleted Si detector. Identification performance of the FRA method is evaluated and compared with two time domain methods, the current pulse amplitude method and the second moment method. The results show that the FRA method is not only feasible and effective but also superior to the two time domain methods, as it achieves an obvious increase in value of the figure-of-merit (FOM). Supported by National Natural Science Foundation of China (11175254, 11375264)

  11. Tunneling of massive and charged particles from noncommutative Reissner-Nordström black hole

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Islamzadeh, Sara

    2013-10-01

    Massive charged and uncharged particles tunneling from commutative Reissner-Nordström black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordström black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a solution to the information loss problem. We also study thermodynamics of noncommutative horizon in this setup.

  12. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    PubMed

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired. PMID:19054679

  13. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    NASA Technical Reports Server (NTRS)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  14. Sealing system for a movable vacuum chamber of a charged particle beam machine

    SciTech Connect

    Anderl, P.; Kappelsberger, E.; Konig, D.; Monch, C.; Scheffels, W.; Steigerwald, K.

    1982-11-09

    A system for sealing the working vacuum chamber of a charged particle beam machine which is movable with respect to a workpiece is disclosed. The system includes a housing with a central compartment having wire-shaped elements urged against the workpiece to provide a seal therebetween, and lateral compartments, each having a packing of sealing material which is biased against the workpiece surface of a spring arrangement. Rollers and a flexible lip seal arrangement having a flexible sheath of synthetic rubber are also disclosed.

  15. Mercuric iodide (HgI 2) semiconductor devices as charged particle detectors

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Raymond, R. S.; Ristinen, R. A.; Schnepple, W. F.; Ortale, C.

    1983-07-01

    The properties of HgI 2 semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with fwhm resolution of 5-15% is observed for 1,2H and 3,4He ions, E < 40 MeV. Fast proton damage is observed for 10 10 protons/cm 2. However, based on measurements with two HgI 2 detectors, little fast neutron damage is apparent at fluences up to 10 15 neutrons/cm 2. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  16. The average motion of a charged particle in a dipole field

    NASA Technical Reports Server (NTRS)

    Chen, A. J.; Stern, D. P.

    1974-01-01

    The numerical representation of the average motion of a charged particle trapped in a geomagnetic field is developed. An assumption is made of the conservation of the first two adiabatic invariants where integration is along a field line between mirror points. The averaged motion also involved the parameters defining the magnetic field line to which the particle is attached. Methods involved in obtaining the motion in the equatorial plane of model magnetospheres are based on Hamiltonian functions. The restrictions imposed by the special nature of the dipole field are defined.

  17. An electro- magneto-static field for confinement of charged particle beams and plasmas

    NASA Astrophysics Data System (ADS)

    Pacheco, Jose L.

    A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell- Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro- magneto-static fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of

  18. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    SciTech Connect

    Yu, Deyang Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  19. GENERAL: Hawking Radiation of Charged Particles in Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Li, Huai-Fan

    2010-03-01

    We extend the method that Banerjee and Majhi have used to discuss Hawking radiation. Under the condition that the total energy and electrical charge of spacetime are conserved, we investigate Hawking radiation of the charged black hole by a new Tortoise coordinate transformation. Taking the reaction of the radiation of the particle to the spacetime into consideration, we not only derive the radiation spectrum that satisfies the unitary principle in quantum mechanics but also show that the contribution of ingoing particles is equal to the one of outgoing particles on the similar chemical potential term in radiation spectrum caused by charged particles.

  20. The suppression of charged-particle-induced noise in infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Briotta, D. A., Jr.

    1982-01-01

    A d.c.-coupled transimpedance amplifier/pulse suppression circuit designed to remove charged-particle-induced noise from infrared detectors is described. Noise spikes produced by single particle events are large and have short rise times, and can degrade the performance of an infrared detector in moderate radiation environments. The use of the suppression circuit improves the signal-to-noise ratio by a factor of 1.6:1, which corresponds to a reduction in required observing time by a factor of about 2.6.

  1. Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2004-04-09

    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics.

  2. Nonlinear d--ta-f Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson; Hong Qin

    2002-05-07

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.

  3. State to State and Charged Particle Kinetic Modeling of Time Filtering and Cs Addition

    SciTech Connect

    Capitelli, M.; Gorse, C.; Longo, S.; Diomede, P.; Pagano, D.

    2007-08-10

    We present here an account on the progress of kinetic simulation of non equilibrium plasmas in conditions of interest for negative ion production by using the 1D Bari code for hydrogen plasma simulation. The model includes the state to state kinetics of the vibrational level population of hydrogen molecules, plus a PIC/MCC module for the multispecies dynamics of charged particles. In particular we present new results for the modeling of two issues of great interest: the time filtering and the Cs addition via surface coverage.

  4. Two distinct types of the inhibition of vasculogenesis by different species of charged particles

    PubMed Central

    2013-01-01

    Background Charged particle radiation is known to be more biologically effective than photon radiation. One example of this is the inhibition of the formation of human blood vessels. This effect is an important factor influencing human health and is relevant to space travel as well as to cancer radiotherapy. We have previously shown that ion particles with a high energy deposition, or linear energy transfer (LET) are more than four times more effective at disrupting mature vessel tissue models than particles with a lower LET. For vasculogenesis however, the relative biological effectiveness between particles is the same. This unexpected result prompted us to investigate whether the inhibition of vasculogenesis was occurring by distinct mechanisms. Methods Using 3-Dimensional human vessel models, we developed assays that determine at what stage angiogenesis is inhibited. Vessel morphology, the presence of motile tip structures, and changes in the matrix architecture were assessed. To confirm that the mechanisms are distinct, stimulation of Protein Kinase C (PKC) with phorbol ester (PMA) was employed to selectively restore vessel formation in cultures where early motile tip activity was inhibited. Results Endothelial cells in 3-D culture exposed to low LET protons failed to make connections with other cells but eventually developed a central lumen. Conversely, cells exposed to high LET Fe charged particles extended cellular processes and made connections to other cells but did not develop a central lumen. The microtubule and actin cytoskeletons indicated that motility at the extending tips of endothelial cells is inhibited by low LET but not high LET particles. Actin-rich protrusive structures that contain bundled microtubules showed a 65% decrease when exposed to low LET particles but not high LET particles, with commensurate changes in the matrix architecture. Stimulation of PKC with PMA restored tip motility and capillary formation in low but not high LET particle

  5. Volume-preserving algorithm for secular relativistic dynamics of charged particles

    SciTech Connect

    Zhang, Ruili; Liu, Jian; Wang, Yulei; He, Yang; Qin, Hong; Sun, Yajuan

    2015-04-15

    Secular dynamics of relativistic charged particles has theoretical significance and a wide range of applications. However, conventional algorithms are not applicable to this problem due to the coherent accumulation of numerical errors. To overcome this difficulty, we develop a volume-preserving algorithm (VPA) with long-term accuracy and conservativeness via a systematic splitting method. Applied to the simulation of runaway electrons with a time-span over 10 magnitudes, the VPA generates accurate results and enables the discovery of new physics for secular runaway dynamics.

  6. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  7. Restoring The Azimuthal Symmetry Of Charged Particle Lateral Density In The Range Of KASCADE-Grande

    SciTech Connect

    Sima, O.; Rebel, H.; Apel, W. D.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.

    2010-11-24

    KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located in Karlsruhe Institute of Technology (Campus North), Germany. An important observable for analyzing the EAS is the lateral density of charged particles in the intrinsic shower plane. This observable is deduced from the basic information provided by the Grande scintillators - the energy deposit - first in the observation plane, by using a Lateral Energy Correction Function (LECF), then in the intrinsic shower plane, by applying an adequate mapping procedure. In both steps azimuthal.

  8. Gridless retarding potential analyzer for use in very-low-energy charged particle detection

    NASA Technical Reports Server (NTRS)

    Shyn, T. W.; Sharp, W. E.; Hays, P. B.

    1976-01-01

    The theory of the hyperbolic retarding potential analyzer in the electrostatic mode is developed in detail and verified in the laboratory. A monoenergetic electron beam is used for the laboratory investigation. The analyzer (acronym HARP) has advantages over other conventional electrostatic analyzers; among them are less contact potential influence and high throughput because of the symmetry shape of the analyzer. The most useful application of the HARP is in detecting low-energy charged particles. A sample of low-energy particle data obtained in the earth's ionosphere is given.

  9. Chaos and collective relaxation in galaxies and charged-particle beams

    SciTech Connect

    Bohn, Courtlandt; Kandrup, Henry E.; Kishek, Rami A.; O'Shea, Patrick G.; Reiser, Martin; Sideris, Ioannis V.; /Florida U. /Northern Illinois U.

    2003-01-01

    Both galaxies and charged particle beams can exhibit collective relaxation on surprisingly short time scales. This can be attributed to the effects of chaos, often triggered by resonances caused by time-dependences in the bulk potential, which act almost identically for attractive gravitational and repulsive electrostatic forces. These similarities suggest that many physical processes at work in galaxies, albeit not subject to direct controlled experiments, can be tested indirectly using facilities such as the University of Maryland Electron Ring (UMER) currently nearing completion.

  10. The diffusive idealization of charged-particle transport in random magnetic fields. [cosmic ray propagation

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1974-01-01

    The uniqueness and accuracy of the equations which describe the transport of charged particles diffusing in a random magnetic field parallel to a relatively large guiding field is examined. With regard to uniqueness, it is found that the same coefficient of diffusion is obtained by three methods that have apparently led to discrepancies in previous work. With regard to accuracy, it is found that two corrections must be added to Fick's law in which the diffusive flux is proportional to the gradient of the density. Explicit expressions are given for a characteristic time and a characteristic length which describe the corrections.

  11. Charged particle behavior in low-frequency geomagnetic pulsations 4. Compressional waves

    SciTech Connect

    Kivelson, M.G.; Southwood, D.J.

    1985-02-01

    In this fourth paper of a series concerning charged particle behavior in ultralow frequency waves in the terrestrial magnetosphere, we examine the particle flux response expected in waves with a strong compressional magnetic component. Two effects, which we label betatron and mirror, dominate the behavior expected for nonresonant particles with the mirror effect expected in most circumstances. Resonant behavior is a strong function of signal symmetry, much as discussed in earlier papers. We conclude by examining recently published observations of particle flux oscillations associated with compressional signals.

  12. Charged particle behavior in low-frequency geomagnetic pulsations 2. Graphical approach

    SciTech Connect

    Southwood, D.J.; Kivelson, M.G.

    1982-03-01

    The behavior of charged particles in an ultralow frequency magnetospheric pulsation with standing wave structure along the magnetic field is interpreted by using a graphical approach. Attention is directed principally to the way in which particles are accelerated as they bounce and drift through a wave with which they are in resonance, but nonresonant particles are also discussed. Under appropriate conditions, passage through the wave leads to modulation of particle energy. Applications emphasize the necessity of considering the large-scale structure of a wave in interpreting the particle behavior seen at a particular point in space.

  13. Minimum uncertainty states in angular momentum and angle variables for charged particles in structured electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Rodríguez-Méndez, D.; Hacyan, S.; Jáuregui, R.

    2013-10-01

    We study the phase-space properties of a charged particle in a static electromagnetic field exhibiting vortex pairs with complementary topological charges and in a pure gauge field. A stationary solution of the Schrödinger equation that minimizes the uncertainty relations for angular momentum and trigonometric functions of the phase is obtained. It does not exhibit vortices and the angular momentum is due to the gauge field only. Increasing the topological charge of the vortices increases the regions where the Wigner function in the angle-angular momentum plane takes negative values, and thus enhances the quantum character of the dynamics.

  14. Fokker-Planck equations for charged-particle transport in random fields.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1972-01-01

    The Fokker-Planck equations for charged-particle dynamics are rederived, extending somewhat the elegant discussion of Hasselmann and Wibberenz. It is shown that the usual results are obtae and the conclusions in many cases are correct over a very broad range in energy. In particular, the rate for pitch-angle scattering may be accurately given down to energies much lower than previously thought. Recent claims that these Fokker-Planck equations are in general incorrect are thus shown to be in error.

  15. Trajectories of charged particles in radial electric and uniform axial magnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1979-01-01

    Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.

  16. Rapid measurement of charged particle beam profiles using a current flux grating

    SciTech Connect

    Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2015-02-15

    The principle and physics issues of charged particle beam diagnostics using a current flux grating are presented. Unidirectional array of conducting channels with interstitial insulating layers of spacing d is placed in the beam path to capture flux of charge and electronically reproduce an exact beam current profile with density variation. The role of secondary electrons due to the impinging particle beam (both electron and ion) on the probe is addressed and a correction factor is introduced. A 2-dimensional profile of the electron beam is obtained by rotating the probe about the beam axis. Finally, a comparison of measured beam profile with a Gaussian is presented.

  17. A New Method to Study Hawking Radiation of Charged Particle from Stationary Axisymmetric Sen Black Hole

    NASA Astrophysics Data System (ADS)

    Yang, Shu-Zheng; Chen, De-You

    2007-01-01

    Taking the self-gravitation interaction and energy conservation, charge conservation and angular momentum conservation into account, we discuss the tunnelling characteristics of the charged particle from Sen black hole by the Hamilton-Jacobi method. The result shows that the tunnelling probability is related to the change of Bekenstein-Hawking entropy, and the actual radiation spectrum deviates from the pure thermal one, which is consistent with the result of Parikh and Wilczek and gives a new method to correct the Hawking pure thermal spectrum of Sen black hole.

  18. Charged particle flows in the beam extraction region of a negative ion source for NBI

    NASA Astrophysics Data System (ADS)

    Geng, S.; Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Takeiri, Y.; Shibuya, M.; Kaneko, O.

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV.

  19. Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; D Erasmo, G.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.

    2013-12-01

    Differential cross sections of charged particles in inelastic pp collisions as a function of p T have been measured at at the LHC. The p T spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual cannot be described by NLO-pQCD, the relative increase of cross section with is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at up to p T=50 GeV/ c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

  20. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    NASA Astrophysics Data System (ADS)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  1. Hardware and software for ground tests of onboard charged particle spectrometers

    SciTech Connect

    Batischev, A. G. Galper, A. M.; Grishin, S. A.; Naumov, P. Yu.; Niadvetski, N. S.

    2015-12-15

    The article presents a hardware and software complex for ground tests of onboard charged particle spectrometers that are designed at the National Research Nuclear University MEPhI for monitoring of nuclear-physical factors of space weather and can be installed in a wide class of satellites. The structural scheme and operating principles of component parts are discussed. The main algorithm and software features are presented. The technique of ground spectrometer tests and calibrations in various measurement modes at atmospheric cosmic particle flows, both in autonomous laboratories and in interface tests as part of a satellite, is also described.

  2. Statistical interpretation of joint multiplicity distributions of neutrons and charged particles

    NASA Astrophysics Data System (ADS)

    Tõke, J.; Agnihotri, D. K.; Skulski, W.; Schröder, W. U.

    2001-02-01

    Experimental joint multiplicity distributions of neutrons and charged particles provide a striking signal of the characteristic decay processes of nuclear systems following energetic nuclear reactions. They present, therefore, a valuable tool for testing theoretical models for such decay processes. The power of this experimental tool is demonstrated by a comparison of an experimental joint multiplicity distribution to the predictions of different theoretical models of statistical decay of excited nuclear systems. It is shown that, while generally phase-space based models offer a quantitative description of the observed correlation pattern of such an experimental multiplicity distribution, some models of nuclear multifragmentation fail to account for salient features of the observed correlation.

  3. Final Report - Interaction of radiation and charged particles in miniature plasma structures

    SciTech Connect

    Antonsen, Thomas M.

    2014-07-16

    The extension of our program to the development of theories and models capable of describing the interactions of intense laser pulses and charged particles in miniature plasma channels is reported. These channels, which have recently been created in the laboratory, have unique dispersion properties that make them interesting for a variety of applications including particle acceleration, high harmonic generation, and THz generation. Our program systematically explored the properties of these channels, including dispersion, losses, and coupling. A particular application that was pursued is the generation of intense pulses of THz radiation by short laser pulses propagating these channels. We also explored the nonlinear dynamics of laser pulses propagating in these channels.

  4. Charged Particle in a Time-dependent Electric Field: A White Noise Functional Approach

    SciTech Connect

    Gravador, E. B.; Bornales, J. B.; Liwanag, M. J.

    2008-06-18

    The propagator for a charged particle in a time-dependent electric field is calculated following Hida and Streit's framework where the propagator is the T-transform of Feynman functional. However, we have to regard the potential V = -qE({tau})x{identical_to}{radical}((m/({Dirac_h}/2{pi}))){xi}x following C. C. Bernido and M. V. Carpio-Bernido's prescription of time-dependent potentials. The result agrees with the limiting form of Eqn. (16) of N. Morgenstern Horing, H. L. Cui, and G. Fiorenza, when the magnetic field is switched off, and Eqn. (17) of [3] when the electric field is constant in time.

  5. Ultra-fast detection of relativistic charged particle beam bunches using optical techniques

    NASA Astrophysics Data System (ADS)

    Nikas, Dimitrios S.

    The use of light as a carrier of information has been the subject of discussion for many scientific papers. This approach has some unique features which distinguish it from conventional electronics. These are realized in applications like telecommunications where the use of optical fibers and Electro-Optic sampling is the industry standard. Electro-Optic sampling employs the "Pockels" or "Electro-Optic" effect. Pockels discovered that an electric field applied to some crystals changes the birefringence properties of the crystal, and hence the polarization of light that propagates through it. By placing the crystal between crossed polarizers, the transmitted light intensity changes as a function of the applied field. We made the first Electro-Optical (EO) detection of a relativistic charged particle beam, applying its Lorentz contracted electric field on an EO LiNbO 3 crystal. The resulted intensity modulation was initially reconstructed using a fast photodiode and a digital oscilloscope. The signal rise time was bandwidth limited (˜90ps) from the electronics used and a series of tests to establish our signal EO nature was performed. In particular, the amplitude of the EO modulation was found to increase linearly with the charge of the particle beam and decrease with the optical beam path distance from the charged particle beam. Also the signal polarity changed sign when the direction of the applied electric field was reversed. Next an optimized (for maximum modulation), zero bias, EO modulator was constructed for use with the limited dynamic range of the Streak Camera for the first non destructive, completely optical, detection of a charged particle beam. The observed signal may be an image of unexpected piezoelectrically generated sound waves that propagate at the X-axis of the LiNbO3 crystal. In such a case, sound waves generated in the surface as well as inside the crystal, change the index of refraction of the crystal through the photoelastic effect and as a

  6. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and ..gamma..-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs.

  7. Analysis of Charged Particle/Photon Correlations in Hadronic Multiparticle Production

    SciTech Connect

    Bjorken, James

    2003-05-23

    In order to analyze data on joint charged-particle/photon distributions from an experimental search (T-864, MiniMax) for disoriented chiral condensate (DCC) at the Fermilab Tevatron collider, we have identified robust observables, ratios of normalized bivariate factorial moments, with many desirable properties. These include insensitivity to many efficiency corrections and the details of the modeling of the primary pion production, and sensitivity to the production of DCC, as opposed to the generic, binomial-distribution partition of pions into charged and neutral species. The relevant formalism is developed and tested in Monte-Carlo simulations of the MiniMax experimental conditions.

  8. Charged particle flows in the beam extraction region of a negative ion source for NBI.

    PubMed

    Geng, S; Tsumori, K; Nakano, H; Kisaki, M; Ikeda, K; Osakabe, M; Nagaoka, K; Takeiri, Y; Shibuya, M; Kaneko, O

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV. PMID:26931985

  9. Measurements of charged-particle stopping around the Bragg peak in OMEGA ICF plasmas

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Li, C. K.; Seguin, F.; Zylstra, A.; Petrasso, R.; Grabowski, P.; Mancini, R.; Regan, S.; Delettrez, J.; Glebov, V.; Sangster, T.

    2014-10-01

    We report on measurements of charged-particle stopping around the Bragg peak in plasmas relevant to Inertial Confinement Fusion (ICF). The energy loss of DD-tritons, DD-protons, D3He-alphas and D3He-protons, which are ideal particles for validating approximations to the ion-electron collision operator, have been measured in D3He gas-filled filled implosions. These experiments are relevant to alpha-particle transport and heating in hot-sport ignition experiments. As the DD and D3He fusion products span a large range of velocities, these measurements represent the first detailed experimental study of charged-particle stopping, ranging from linear low-velocity stopping, through the Bragg peak, to high-velocity stopping. The results are contrasted to commonly used theories, including the Brown-Preston-Singleton and Li-Petrasso formalisms. The data is also used to rule out theories that neglect quantum diffraction and dynamic screening. This work was supported in part by the US DOE, NLUF, LLE and GA.

  10. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  11. A running spectral index in supersymmetric dark-matter models with quasistable charged particles

    SciTech Connect

    Profumo, Stefano; Ullio, Piero

    2005-01-15

    We show that charged particles decaying in the early Universe can induce a scale-dependent or running spectral index in the small-scale linear and nonlinear matter power spectrum and discuss examples of this effect in minimal supersymmetric models in which the lightest neutralino is a viable cold-dark-matter candidate. We find configurations in which the neutralino relic density is set by coannihilations with a long-lived stau and the late decay of staus partially suppresses the linear matter power spectrum. Nonlinear evolution on small scales then causes the modified linear power spectrum to evolve to a nonlinear power spectrum similar to (but different in detail) models parametrized by a constant running {alpha}{sub s}=dn{sub s}/dlnk by redshifts of 2 to 4. Thus, Lyman-{alpha} forest observations, which probe the matter power spectrum at these redshifts, might not discriminate between the two effects. However, a measurement of the angular power spectrum of primordial 21-cm radiation from redshift z{approx_equal}30-200 might distinguish between this charged-decay model and a primordial running spectral index. The direct production of a long-lived charged particle at future colliders is a dramatic prediction of this model.

  12. Energy loss of tens keV charged particles traveling in the hot dense carbon plasma

    NASA Astrophysics Data System (ADS)

    Fu, ZhenGuo; Wang, ZhiGang; He, Bin; Li, DaFang; Zhang, Ping

    2016-08-01

    The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E 0, traveling in the hot dense carbon (C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E 0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E 0 < 100 keV, about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data. We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.

  13. TOPICAL REVIEW: Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data

    NASA Astrophysics Data System (ADS)

    Petrovic, Z. Lj; Suvakov, M.; Nikitovic, Z.; Dujko, S.; Sasic, O.; Jovanovic, J.; Malovic, G.; Stojanovic, V.

    2007-02-01

    In this review we discuss the current status of the physics of charged particle swarms, mainly electrons. The whole field is analysed mainly through its relationship to plasma modelling and illustrated by some recent examples developed mainly by our group. The measurements of the swarm coefficients and the availability of the data are briefly discussed. More time is devoted to the development of complete electron molecule cross section sets along with recent examples such as NO, CF4 and HBr. We extend the discussion to the availability of ion and fast neutral data and how swarm experiments may serve to provide new data. As a point where new insight into the kinetics of charge particle transport is provided, the role of kinetic phenomena is discussed and recent examples are listed. We focus here on giving two examples on how non-conservative processes make dramatic effects in transport, the negative absolute mobility and the negative differential conductivity for positrons in argon. Finally we discuss the applicability of swarm data in plasma modelling and the relationship to other fields where swarm experiments and analysis make significant contributions. Based on the general invited lecture presented by the first author at ESCAMPIG 2006 at Lecce in Italy.

  14. Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach

    NASA Astrophysics Data System (ADS)

    Stafford, M. A.

    1985-05-01

    Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. (The state transition matrix for a system of linear, ordinary, first-order, constant coefficient differential equations is a special case of such a semigroup.) The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite-dimensional systems. An appropriate underlying Banach space is identified for a simple, but non-trivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized.

  15. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer.

    PubMed

    Zhu, L X; Waldren, C A; Vannias, D; Hei, T K

    1996-03-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs. PMID:8927691

  16. Chaotic dynamics in charged-particle beams: Possible analogs of galactic evolution

    SciTech Connect

    Bohn, Courtlandt L.; /Northern Illinois U. /Fermilab

    2004-12-01

    During the last couple of years of his life, Henry Kandrup became intensely interested in using charged-particle beams as a tool for exploring the dynamics of evolving galaxies. He and I recognized that both galaxies and charged-particle beams can exhibit collisionless relaxation on surprisingly short time scales, and that this circumstance can be attributed to phase mixing of chaotic orbits. The chaos is often triggered by resonances caused by time dependence in the bulk potential, which acts almost identically for attractive gravitational forces as for repulsive electrostatic forces superposed on external focusing forces. Together we published several papers concerning evolving beams and galaxies, papers that relate to diverse topics such as the physics of chaotic mixing, the applicability of the Vlasov-Poisson formalism, and the production of diffuse halos. We also teamed with people from the University of Maryland to begin designing controlled experiments to be done at the University of Maryland Electron Ring. This paper highlights our collaborative findings as well as plans for future investigations that the findings have motivated.

  17. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    SciTech Connect

    Sullivan, Michael K.; Fryberger, David

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  18. Beta camera for static and dynamic imaging of charged-particle emitting radionuclides in biologic samples

    SciTech Connect

    Ljunggren, K.; Strand, S.E. )

    1990-12-01

    A detection system based on microchannel plates has been constructed to image charged particles emitted by radionuclides in biomedical samples. This technique has significant advantages over conventional film autoradiography for investigating the distribution of radiolabeled compounds: shorter acquisition times due to the high sensitivity, easier sample handling, direct quantification and the ability to perform dynamic studies. The detector performance shows a spatial resolution of 0.9 mm for carbon-14 ({sup 14}C) (0.156 MeV), good linearity and homogeneity. The noise level is below 50/(cm{sup 2}.sec). Successful imaging with this system has been performed with beta-emitters {sup 14}C, sulfur-35 ({sup 35}S), iodine-131 ({sup 131}I), yttrium-90 (90Y), and positron emitters gallium-68 ({sup 68}Ga), and fluorine-18 ({sup 18}F). Dynamic studies of axonal transport of {sup 35}S-methionine in a nerve, and static images of 90Y-labeled monoclonal antibodies in slices of tumors are presented. The system shows promise for rapid quantitative imaging of charged-particle emitting radionuclides in small biologic samples.

  19. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer

    NASA Technical Reports Server (NTRS)

    Zhu, L. X.; Waldren, C. A.; Vannias, D.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs.

  20. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  1. Charged particle radiotherapy at the Hyogo Ion Beam Medical Center: Characteristics, technology and clinical results

    PubMed Central

    Abe, Mitsuyuki

    2007-01-01

    The Hyogo Ion Beam Medical Center was constructed in 2001 as the world’s first charged particle radiotherapy center where both proton and carbon-ion radiotherapy can be performed. From April 2001 to February 2007, more than 1,400 patients with a variety of cancers were treated. Most of the tumors except for prostate cancer were considered hard to cure with standard treatments such as surgery or conventional x-ray radiotherapy. The clinical results obtained so far are very encouraging, mainly due to the excellent dose localization to the tumor and strong cell killing effects of protons and carbon-ions. The good indications are localized tumors including skull base tumors, head and neck tumors, cancers of the lung, the liver, and the prostate, and bone and soft tissue sarcomas. Charged particle radiotherapy will significantly improve the quality of life of cancer patients and promote their speedy return to normal lives or work if it is used for early stage cancer. PMID:24367141

  2. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  3. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  4. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  5. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis

    SciTech Connect

    Wang, Zhen; Nabhan, Mohammed; Schild, Steven E.; Stafford, Scott L.; Petersen, Ivy A.; Foote, Robert L.; Murad, M. Hassan

    2013-05-01

    Charged particle therapy (CPT) delivered with either protons, helium ions, or carbon ions, has been used to treat uveal melanoma. The present analysis was performed to systematically evaluate the efficacy and adverse effects of CPT for uveal melanoma. We searched EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and SciVerse Scopus and cross-referenced recent systematic reviews through January 2012. Two independent reviewers identified clinical trials and observational studies of CPT (protons, helium ions, and carbon ions). These reviewers extracted data and assessed study quality. Twenty-seven studies enrolling 8809 uveal melanoma patients met inclusion criteria. The rate of local recurrence was significantly less with CPT than with brachytherapy (odds ratio [OR] = 0.22, 95% confidence interval [CI], 0.21-0.23). There were no significant differences in mortality or enucleation rates. Results were robust in multiple sensitivity analyses. CPT was also associated with lower retinopathy and cataract formation rates. Data suggest better outcomes may be possible with charged particle therapy with respect to local recurrence, retinopathy, and cataract formation rates. The overall quality of the evidence is low, and higher quality comparative effectiveness studies are needed to provide better evidence.

  6. Tracking down the links between charged particles and biological response: A UK perspective

    NASA Astrophysics Data System (ADS)

    Hill, Mark A.

    2013-07-01

    The UK has a long history of radiobiology research into charged particles, with interest likely to expand in the coming years following the recent government announcement of £250 million to build two proton beam therapy facilities in the UK. A brief overview of research and facilities past and present with respect to radiation protection and oncology along with biological consequences and underlying mechanisms will be presented and discussed. Increased knowledge of the mechanisms underpinning the radiation action on biological systems is important in understanding, not only the risks associated with exposure, but also in optimising radiotherapy treatment of cancer. Ionizing radiation is always in the form of structure tracks which are a unique characteristic of ionizing radiation alone producing damage grossly different and far more biologically effective than endogenous damage. The track structure is the prime determinant of biological response to DNA, with charged particles of increasing LET leading to an increase in the frequency and complexity of clustered DNA damage. High-LET particles will also produce non-homogeneous dose distribution through a cell nucleus resulting in correlated DNA breaks along the path of the particle and an increase in the probability of complex chromosomal rearrangements. However it is now well established that there is variety of phenomena that do not conform to the conventional paradigm of targeted radiobiology, but there is insufficient evidence to assess the implications of these non-targeted effects for radiotherapy or relevance to risk for human health.

  7. Tracking down the links between charged particles and biological response: A UK perspective

    SciTech Connect

    Hill, Mark A.

    2013-07-18

    The UK has a long history of radiobiology research into charged particles, with interest likely to expand in the coming years following the recent government announcement of Pound-Sign 250 million to build two proton beam therapy facilities in the UK. A brief overview of research and facilities past and present with respect to radiation protection and oncology along with biological consequences and underlying mechanisms will be presented and discussed. Increased knowledge of the mechanisms underpinning the radiation action on biological systems is important in understanding, not only the risks associated with exposure, but also in optimising radiotherapy treatment of cancer. Ionizing radiation is always in the form of structure tracks which are a unique characteristic of ionizing radiation alone producing damage grossly different and far more biologically effective than endogenous damage. The track structure is the prime determinant of biological response to DNA, with charged particles of increasing LET leading to an increase in the frequency and complexity of clustered DNA damage. High-LET particles will also produce non-homogeneous dose distribution through a cell nucleus resulting in correlated DNA breaks along the path of the particle and an increase in the probability of complex chromosomal rearrangements. However it is now well established that there is variety of phenomena that do not conform to the conventional paradigm of targeted radiobiology, but there is insufficient evidence to assess the implications of these non-targeted effects for radiotherapy or relevance to risk for human health.

  8. EARLY-TIME VELOCITY AUTOCORRELATION FOR CHARGED PARTICLES DIFFUSION AND DRIFT IN STATIC MAGNETIC TURBULENCE

    SciTech Connect

    Fraschetti, F.; Giacalone, J.

    2012-08-20

    Using test-particle simulations, we investigate the temporal dependence of the two-point velocity correlation function for charged particles scattering in a time-independent spatially fluctuating magnetic field derived from a three-dimensional isotropic turbulence power spectrum. Such a correlation function allowed us to compute the spatial coefficients of diffusion both parallel and perpendicular to the average magnetic field. Our simulations confirm the dependence of the perpendicular diffusion coefficient on turbulence energy density and particle energy predicted previously by a model for early-time charged particle transport. Using the computed diffusion coefficients, we exploit the particle velocity autocorrelation to investigate the timescale over which the particles 'decorrelate' from the solution to the unperturbed equation of motion. Decorrelation timescales are evaluated for parallel and perpendicular motions, including the drift of the particles from the local magnetic field line. The regimes of strong and weak magnetic turbulence are compared for various values of the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. Our simulation parameters can be applied to energetic particles in the interplanetary space, cosmic rays at the supernova shocks, and cosmic-rays transport in the intergalactic medium.

  9. Small-scale gradients of charged particles in the heliospheric magnetic field

    SciTech Connect

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  10. Quantum and classical fall of a charged particle onto a stationary dipolar target.

    PubMed

    Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J

    2009-12-31

    The quantum dynamics of the fall of a charged particle (i.e., the capture of a charged particle) onto a stationary dipolar target is considered. Extending previous approaches for the calculation of rate coefficients in the lowest channels, we now determine rate coefficients for all channels until the quantum rate coefficients converge to their classical counterpart. The results bridge the gap between the capture of light particles (electrons) and heavy particles (ions) in the limit of sudden dynamics, when the collision time is short in comparison to the rotational period of the molecular target. The quantum-classical correspondence is discussed in terms of semiclassical numbers of channels which are open for capture in effective potentials formed by charge-dipole attraction and centrifugal repulsion. The quantum capture rate coefficients are presented through classical rate coefficients and correction factors that converge to unity for high temperatures and whose behavior at ultralow temperatures, for not too small values of the dipole moment, is determined by semiclassical numbers of capture channels. PMID:19518061

  11. Nonlinear Delta-f Particle Simulations of Collective Effects in High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.

    2004-11-01

    A wide range of collective effects in high intensity charged particle beams have been numerically studied using the nonlinear delta-f particle simulation method implemented in the Beam Equilibrium Stability and Transport (BEST) code. For the electron-ion two-stream instability in high intensity accelerators and storage rings, the secondary electron yield effects are self-consistently studied by coupling the secondary electron yield library CMEE with the instability simulations. Progress has also been made in applying the delta-f particle simulation method to bunched beams, and a three-dimensional equilibrium solver has been implemented. With the help of recently developed parallel diagnostic techniques, we are able to characterize the chaotic particle dynamics under the influences of collective instabilities as well as three-dimensional equilibrium fields. To further extend the application areas of the delta-f particle simulation method, 2D domain decomposition is being developed using the Message Passing Interface, and three-dimensional equilibria with anisotropic temperature in the transverse and longitudinal directions are being investigated. References: [1] R. C. Davidson and H. Qin, An Introduction to the Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). [2] H. Qin, Physics of Plasmas 10, 2078 (2003). [3] H. Qin, E. A. Startsev, and R. C. Davidson, Physical Review Special Topics on Accelerators and Beams 6, 014401 (2003).

  12. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  13. Charged-particle distributions in √{ s} = 13 TeVpp interactions measured with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Nechansky, F.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-07-01

    Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb-1, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

  14. A Pulsed X-Ray And Charged Particle Beam Generator Used In The Low Photon Energy Region

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1989-06-01

    The construction and the fundamental studies for a pulsed x-ray and charged particle beam generator used in the low photon energy region are described. This generator consisted of the following components: a high-voltage power supply, a high-voltage coaxial oil condenser of 120kV-0.2pF, a gas gap switch, a low-impedance coaxial transmission line, a turbo molecular pump, and a pulsed x-ray and charged particle beam tube. The condenser was charged from -60 to -100kV and was connected to the radiation tube through a gas gap switch. The electric charge stored by the condenser was discharged to the radiation tube when the gas gap switch was closed. This radiation tube produced pulsed (flash) x-rays through copper foil anodes. The charged particle beam was produced by the ionized air outside of the anode window due to the production of a high dose rate of x-rays, and these charged particles were accelerated by the electric field between the anode and ground. Both kinds of radiation were produced simultaneously, and the migration time of the charged particles corresponded to the duration of the pulsed x-rays.

  15. Coarse analysis of multiscale systems: Diffuser flows, charged particle motion, and connections to averaging theory

    NASA Astrophysics Data System (ADS)

    Fung, Jimmy

    We describe a technique for the efficient computation of the dominant-scale dynamics of a fluid system when only a high-fidelity simulation is available. Such a technique is desirable when governing equations for the dominant scales are unavailable, when model reduction is impractical, or when the original high-fidelity computation is expensive. We adopt the coarse analysis framework proposed by I. G. Kevrekidis (Comm. Math. Sci. 2003), where a computational superstructure is designed to use short-time, high-fidelity simulations to extract the dominant features for a multiscale system. We apply this technique to compute the dominant features of the compressible flow through a planar diffuser. We apply the proper orthogonal decomposition to classify the dominant and subdominant scales of diffuser flows. We derive a coarse projective Adams-Bashforth time integration routine and compute averaged diffuser flows. The results include accurate tracking of the dominant-scale dynamics for a range of parameter values for the computational superstructure. These results demonstrate that coarse analysis methods are useful for solving fluid flow problems of a multiscale nature. In order to elucidate the behavior of coarse analysis techniques, we make comparisons to averaging theory. To this end, we derive governing equations for the average motion of charged particles in a magnetic field in a number of different settings. First, we apply a novel procedure, inspired by WKB theory and Whitham averaging, to average the variational principle. The resulting equations are equivalent to the guiding center equations for charged particle motion; this marks an instance where averaging and variational principles commute. Secondly, we apply Lagrangian averaging techniques, previously applied in fluid mechanics, to derive averaged equations. Making comparisons to the WKB/Whitham derivation allows for the necessary closure of the Lagrangian averaging formulation. We also discuss the

  16. Investigations of charged particle motion on the surfaces of dusty, airless solar system bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.

    2013-12-01

    Dynamic charging conditions exist on the dusty surfaces of planetary bodies such as the Moon, asteroids, and the moons of Mars. On these so-called 'airless bodies', the motions of dust particles above the surface become complex due to grain-grain and grain-plasma interactions. For example, tribocharging and other charge transfer processes can occur due to relative dust grain movements, and charged dust grains immersed in plasma interact with local electromagnetic forces. This is thought to lead to effects such as the lunar 'horizon glow,' (Rennilson and Criswell, 1974, The Moon, 10) and potential dusty 'fountains' above the lunar surface (Stubbs et al., 2006, Adv. Sp. Res., 37). Regolith grains can be mobilized by impacts or other mechanical disturbances, or simply by the Coulomb force acting on grains. Previous work has increased our theoretical understanding of the behavior of charged particles in these low-gravity environments (i.e. Poppe and Horanyi, 2010, JGR, A115; Colwell et al., 2007, Rev. Geophys., 45 (and references therein)). Experimental work has also analyzed grain surface charging due to plasma or tribocharging (Sickafoose et al., 2001, JGR, 106) and the motion of grains on surfaces in the presence of an electric field (Wang et al., 2009, JGR, 114). Occasionally, there is disagreement between theoretical predictions and observations. We present the results of new laboratory experiments aimed at understanding particle charging and the dynamics of charged particles on the surfaces of airless bodies. In the initial experiments, we analyze the motion of particles in the presence of an electric field in vacuum, either in a bell-jar or in a 0.75-second microgravity drop tower experiment box. Prior to motion, particles may be charged due to triboelectric effects, plasma interactions, or a combination of the two. Motion is induced by shaking or by low-velocity impacts in order to simulate the natural motion of slow-moving objects on regolith surfaces, or

  17. Charged-particle induced radiation damage of a HPGe gamma-ray detector during spaceflight

    NASA Astrophysics Data System (ADS)

    Evans, L. G.; Starr, R.; Brückner, J.; Boynton, W. V.; Bailey, S. H.; Trombka, J. I.

    1999-02-01

    The Mars Observer spacecraft was launched on September 26, 1992 with a planned arrival at Mars after an 11-month cruise. Among the scientific instruments carried on the spacecraft was a Gamma-Ray Spectrometer (GRS) experiment to measure the composition of Mars. The GRS used a passively cooled high-purity germanium detector for measurements in the 0.2-10MeV region. The sensor was a closed-end co-axial detector, 5.5cm diameter by 5.5cm long, and had an efficiency along its axis of 28% at 1332keV relative to a standard NaI(Tl) detector. The sensor was surrounded by a thin (0.5cm) plastic charged-particle shield. This was the first planetary mission to use a cooled Ge detector. It was expected that the long duration in space of three years would cause an increase in the energy resolution of the detector due to radiation damage and could affect the expected science return of the GRS. Shortly before arrival, on August 21, 1993, contact was lost with the spacecraft following the pressurization of the propellent tank for the orbital-insertion rocket motor. During much of the cruise to Mars, the GRS was actively collecting background data. The instrument provided over 1200h of data collection during periods of both quiescent sun and solar flares. From the charged particle interactions in the shield, the total number of cosmic ray hits on the detector could be determined. The average cosmic ray flux at the MO GRS was about 2.5cm-2s-1. The estimated fluence of charged particles during cruise was about 108 particles cm-2 with 31% of these occurring during a single solar proton event of approximately 10 days duration. During cruise, the detector energy resolution determined from a background gamma-ray at 1312keV degraded from 2.4keV full-width at half-maximum shortly after launch to 6.4keV 11 months later. This result agrees well with measurements from ground-based accelerator irradiations (at 1.5GeV) on a similar size detector.

  18. Charged Particle and Gamma-Ray Measurements of Heavy Ion Fusion.

    NASA Astrophysics Data System (ADS)

    Wu, Mien-Win

    1981-06-01

    Heavy ion fusion has been studied by charged particle and (gamma)-ray measurements. In the charged particle experiment, the total fusion cross sections for the systems ('18)O + ('27)Al, ('28,30)Si have been measured in the energy range 30 MeV (LESSTHEQ) E(,lab). (LESSTHEQ) 68 MeV by detecting the evaporation residues directly in a (DELTA)E-E fusion telescope. The fusion cross sections for the systems ('18)O + ('27)Al, ('28)Si were found to saturate at (TURN)1150 mb and that for ('18)O + ('30)Si at (TURN)1250 mb. A smooth energy dependence of fusion cross sections has been observed for all three systems, with the possible exception that a very broad and not pronounced structure has been noticed for ('18)O + ('28)Si at (TURN)27 MeV c.m. energy. Parameterizations of the data for the three systems with the Glas-Mosel model and the Bass model are presented. The fusion data for ('18)O + ('28)Si are also discussed in terms of the statistical yrast model. In the (gamma)-ray experiment, the partial fusion cross sections for the systems ('19)F + 27Al, ('18)O + ('28)Si and ('16)O + ('30)Si have been determined over three common excitation energies of 48.9 MeV, 53 MeV and 55.5 MeV by measuring the deexcitation (gamma)-ray yields for the various evaporation residues in two Ge(Li) detectors and normalizing to the total fusion cross sections measured in the charged particle measurements. Comparing the measured partial fusion cross sections for the three systems with the cascaded Hauser-Feshbach calculations, a reasonably good fit has been found for most of the strongly populated evaporation residues, while big discrepancies have been observed for the weakly populated ones. The interesting features observed from the comparison of the over-all fit between the measured fusion data and the statistical model calculations for ('16)O + ('30)Si and the other two systems are discussed. The relative excitation functions for 9 strongly populated nuclei for the above three systems have also

  19. Effects of target size on the comparison of photon and charged particle dose distributions

    SciTech Connect

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs.

  20. Self-consistent simulation studies of periodically focused intense charged-particle beams

    NASA Astrophysics Data System (ADS)

    Chen, C.; Jameson, R. A.

    1995-09-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos.

  1. Two components in charged particle production in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bylinkin, A. A.; Chernyavskaya, N. S.; Rostovtsev, A. A.

    2016-02-01

    Transverse momentum spectra of charged particle production in heavy-ion collisions are considered in terms of a recently introduced Two Component parameterization combining exponential ("soft") and power-law ("hard") functional forms. The charged hadron densities calculated separately for them are plotted versus number of participating nucleons, Npart. The obtained dependences are discussed and the possible link between the two component parameterization introduced by the authors and the two component model historically used for the case of heavy-ion collisions is established. Next, the variations of the parameters of the introduced approach with the center of mass energy and centrality are studied using the available data from RHIC and LHC experiments. The spectra shapes are found to show universal dependences on Npart for all investigated collision energies.

  2. Gravitational Field of a Charged Particle with a Field Mass in Three-Dimensional Electrodynamics

    NASA Astrophysics Data System (ADS)

    Pevzner, M. Sh.

    2015-08-01

    In three-dimensional electrodynamics in the Newtonian approximation the gravitational field of a charged particle with a field mass of classical origin has been investigated; the potential and the intensity of the gravitational field have been calculated, both taking the contribution of polarization of the fermion vacuum to the classical potential of the electric field into account and without taking it into account. It has been shown that taking the polarization of the vacuum into account, both with massive fermions in the vacuum loops and with massless fermions in the vacuum loops, does not alter the asymptotic behavior or the intensity of the gravitational field at large distances, which is evidence of the presence of gravitational confinement. The influence of the simplifications made here on the final results is discussed, as are also prospects for their improvement.

  3. Charged particle depletion surrounding Saturn's F ring - Evidence for a moonlet belt?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Burns, Joseph A.

    1988-01-01

    An improved model of the Saturn magnetosphere and of the locations of known moons and rings is invoked in the present reconsideration of Pioneer 11 observations of five abrupt depletions in the flux of trapped magnetospheric electrons within a 2000-km-wide band around the F ring. It is inferred that the observed depletions of charged particles are caused by clumps of material with low optical depth; it is further hypothesized that these clumps are composed of regolith ejecta, are generated by collisions occurring within a belt of unseen, moonlet-scale (or smaller) objects occupying the entire radial region between Pandora and Prometheus. Attention is given to a self-consistent scenario in which these debris clouds are created, longitudinally spread, swept up onto belt object surfaces, and then thrown off by a subsequent collision.

  4. An analysis of the structure of Saturn's magnetic field using charged particle absorption signatures

    SciTech Connect

    Chenette, D.L.; Davis, L. Jr.

    1983-06-01

    A technique is derived for determining the structure of Saturn's magnetic field. This technique uses the observed positions of charged particle absorption signatures due to the satellites and rings of Saturn to determine the parameters of an axially symmetric, spherical harmonic model of the magnetic field using the method of least squares. Absorption signatures observed along the Pioneer 11, Voyager 1, and Voyager 2 spacecraft trajectories are used to derive values for the orientation of the magnetic symmetry axis relative to Saturn's axis of rotation, the axial displacement of the center of the magnetic dipole from the center of Saturn, and the magnitude of the external field component. A comparison of these results with the magnetic field model parameters deduced from analyses of magnetometer data supports models which incorporate a northward offset of the dipole center by about 0.05 R(3).

  5. Charged particle depletion surrounding Saturn's F ring - evidence for a moonlet belt

    SciTech Connect

    Cuzzi, J.N.; Burns, J.A.

    1988-05-01

    An improved model of the Saturn magnetosphere and of the locations of known moons and rings is invoked in the present reconsideration of Pioneer 11 observations of five abrupt depletions in the flux of trapped magnetospheric electrons within a 2000-km-wide band around the F ring. It is inferred that the observed depletions of charged particles are caused by clumps of material with low optical depth; it is further hypothesized that these clumps are composed of regolith ejecta, are generated by collisions occurring within a belt of unseen, moonlet-scale (or smaller) objects occupying the entire radial region between Pandora and Prometheus. Attention is given to a self-consistent scenario in which these debris clouds are created, longitudinally spread, swept up onto belt object surfaces, and then thrown off by a subsequent collision. 76 references.

  6. Analysis of the structure of Saturn's magnetic field using charged particle absorption signatures

    SciTech Connect

    Chenette, D.L.; Davis, L. Jr.

    1982-07-01

    A new technique is derived for determining the structure of Saturn's magnetic field. This technique uses the observed positions of charged particle absorption signatures due to the satellites and rings of Saturn to determine the parameters of an axially symmetric, spherical harmonic model of the magnetic field using the method of least squares. Absorption signatures observed along the Pioneer 11, Voyager 1, and Voyager 2 spacecraft trajectories are used to derive values for the orientation of the magnetic symmetry axis relative to Saturn's axis of rotation, the axial displacement of the center of the magnetic dipole from the center of Saturn, and the magnitude of the external field component. Comparing these results with the magnetic field model parameters deduced from analyses of magnetometer data leads us to prefer models that incorporate a northward offset of the dipole center by about 0.05 R/sub s/.

  7. Clinical results of stereotactic heavy-charged-particle radiosurgery for intracranial angiographically occult vascular malformations

    SciTech Connect

    Levy, R.P.; Fabrikant, J.I.; Phillips, M.H.; Frankel, K.A.; Steinberg, G.K.; Marks, M.P.; DeLaPaz, R.L.; Chuang, F.Y.S.; Lyman, J.T.

    1989-12-01

    Angiographically occult vascular malformations (AOVMs) of the brain have been recognized for many years to cause neurologic morbidity and mortality. They generally become symptomatic due to intracranial hemorrhage, focal mass effect, seizures or headaches. The true incidence of AOVMs is unknown, but autopsy studies suggest that they are more common than high-flow angiographically demonstrable arteriovenous malformations (AVMs). We have developed stereotactic heavy-charged-particle Bragg peak radiosurgery for the treatment of inoperable intracranial vascular malformations, using the helium ion beams at the Lawrence Berkeley Laboratory 184-inch Synchrocyclotron and Bevatron. This report describes the protocol for patient selection, radiosurgical treatment planning method, clinical and neuroradiologic results and complications encountered, and discusses the strengths and limitations of the method. 10 refs., 1 fig.

  8. Mitigating chromatic effects for the transverse focusing of intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor; Davidson, Ronald

    2013-09-01

    A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.

  9. Spectral and structural stability properties of charged particle dynamics in coupled latticesa)

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Chung, Moses; Davidson, Ronald C.; Burby, Joshua W.

    2015-05-01

    It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.

  10. [Experimental studies of the relative biological effectiveness of accelerated charged particles varying in energy].

    PubMed

    Fedorenko, B S; Petrov, V M; Smirnova, O A; Vorozhtsova, S V; Abrosimova, A N

    2006-01-01

    Experimental results and literary data were analyzed for the relative biological effectiveness of heavy charged particles in a broad range of energy and LET to cells of humans and other mammals in culture, whole body of laboratory animals, microorganisms, bacteriophages, and plants. Analyzed were data obtained with the use of a diversity of tests of acute and delayed lesions induced by ionizing radiation, cancers and cataracts, specifically. Non-parametric methods are applied in parallel to the classic method of calculating the coefficients of relative biological effectiveness by correlating the equal-effective doses of the standard and a given radiation. Consideration is given to factors that may modify RBE values estimated for different types of radiation. PMID:17193971

  11. Orbits of magnetized charged particles in parabolic and inverse electrostatic potentials

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.

    2016-02-01

    Analytic solutions are presented for the orbit of a charged particle in the combination of a uniform axial magnetic field and parabolic electrostatic potential. These trajectories are shown to correspond to the sum of two individually rotating vectors with one vector rotating at a constant fast frequency and the other rotating in the same sense but with a constant slow frequency. These solutions are related to Penning trap orbits and to stochastic orbits. If the lengths of the two rotating vectors are identical, the particle has zero canonical angular momentum in which case the particle orbit will traverse the origin. If the potential has an inverse dependence on distance from the source of the potential, the particle can impact the source. Axis-encircling orbits are where the length of the vector associated with the fast frequency is longer than the vector associated with the slow frequency. Non-axis-encircling orbits are the other way around.

  12. Exploiting MIC architectures for the simulation of channeling of charged particles in crystals

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Karpusenko, Vadim

    2016-08-01

    Coherent effects of ultra-relativistic particles in crystals is an area of science under development. DYNECHARM + + is a toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures. The particle trajectory in a crystal is computed through numerical integration of the equation of motion. The code was revised and improved in order to exploit parallelization on multi-cores and vectorization of single instructions on multiple data. An Intel Xeon Phi card was adopted for the performance measurements. The computation time was proved to scale linearly as a function of the number of physical and virtual cores. By enabling the auto-vectorization flag of the compiler a three time speedup was obtained. The performances of the card were compared to the Dual Xeon ones.

  13. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-12-01

    A search is performed for heavy long-lived charged particles using 3.0 fb^{-1} of proton-proton collisions collected at √{s} = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8 < η < 4.9. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 { GeV/c^2}.

  14. Spectral and structural stability properties of charged particle dynamics in coupled lattices

    SciTech Connect

    Qin, Hong; Chung, Moses; Davidson, Ronald C.; Burby, Joshua W.

    2015-05-15

    It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.

  15. Numerical studies of the Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.

    2004-11-01

    In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  16. Motion of charged particles around a magnetized/electrified black hole

    NASA Astrophysics Data System (ADS)

    Lim, Yen-Kheng

    2015-01-01

    Geodesic equations of timelike and null charged particles in the Ernst metric are studied. We consider two distinct forms of the Ernst solution where the Maxwell potential represents either a uniform electric or magnetic field. Circular orbits in various configurations are considered, as well as their perturbations and stability. We find that the electric field strength must be below a certain charge-dependent critical value for these orbits to be stable. The case of the magnetic Ernst metric contains a limit which reduces to the Melvin magnetic universe. In this case the equations of motion are solved to reveal cycloidlike or trochoidlike motion, similar to those found by Frolov and Shoom around black holes immersed in test magnetic fields.

  17. Observations of interplanetary energetic charged particles from gamma-ray line solar flares

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Gloeckler, G.; Klecker, B.; Hovestadt, D.

    1981-01-01

    Results from ISEE-3 experiments on interplanetary energetic charged particles on June 7, June 21, and July 1, 1980 dealing with gamma ray producing solar flares are reported. The data were gathered by the Ultra Low Energy Wide Angle Telescope, which comprises a thin window, flow through proportional counter/solid-state detector composition telescope. Evidence of a specified time delay from an observed flare and the recording of 0.44-1.3 MeV electrons on ISEE-3 combined with quiescent periods of at least two hours before the observations and recording provides a link between the events. The data indicates interplanetary energetic particle enhancement, and a second, similar set of occurrences was also observed. Protons were accelerated up to 10-20 MeV. No enrichment of either He-3 or Fe was found.

  18. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    SciTech Connect

    Silbar, Richard R.

    1999-07-26

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules.

  19. Modeling of intense charged particle bunch dynamics in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Barminova, H. Y.; Saratovskyh, M. S.

    2015-09-01

    Program module CAMFT is developed to simulate the intense charged particle bunch dynamics in external magnetic fields. The program is based on the accurate solution of the motion equation for each particle of the intense bunch. The program is written on C++ language and uses standart OpenMP (version 2.0) for parallelization, so one can simulate the behavior of the bunch with intensity about 109-1010 particles. Visual C++ and library Qt 4.8.3 of qtcreator are used for the result visualization. Dynamics of the bunch with arbitrary phase distributions in magnetic fields of arbitrary geometry may be studied by means of the program. The actual CAMFT version is checked while simulating the accelerating structure with racetrack geometry. Modified CAMFT version is checked for ITEP Heavy-Ion Prototype charge-state separator.

  20. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    SciTech Connect

    J. QIANG; R. RYNE; S. HABIB

    2000-05-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the friction and diffusion coefficients are computed from first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators.

  1. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGESBeta

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; et al

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories inmore » WDM plasma.« less

  2. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  3. Quantum radiation produced by a uniformly accelerating charged particle in thermal random motion

    NASA Astrophysics Data System (ADS)

    Oshita, Naritaka; Yamamoto, Kazuhiro; Zhang, Sen

    2016-04-01

    We investigate the properties of quantum radiation produced by a uniformly accelerating charged particle undergoing thermal random motion, which originates from the coupling to the vacuum fluctuations of the electromagnetic field. Because the thermal random motion is regarded to result from the Unruh effect, the quantum radiation might give us hints of the Unruh effect. The energy flux of the quantum radiation is negative and smaller than that of Larmor radiation by one order in a /m , where a is the constant acceleration and m is the mass of the particle. Thus, the quantum radiation appears to be a suppression of the classical Larmor radiation. The quantum interference effect plays an important role in this unique signature. The results are consistent with the predictions of a model consisting of a particle coupled to a massless scalar field as well as those of the previous studies on the quantum effect on the Larmor radiation.

  4. Charged particle behavior in low-frequency geomagnetic pulsations. 3. Spin phase dependence

    SciTech Connect

    Kivelson, M.G.; Southwood, D.J.

    1983-01-01

    Low-frequency modulations of the fluxes of magnetospheric charged particles are often observed in conjunction with geomagnetic pulsations. In some cases, the flux modulations depend on detector look direction even after effects arising from pitch angle anisotropy have been removed. For a detector on a spinning spacecraft, the look direction dependence creates flux modulations ordered by the spin phase angle, so the term 'spin phase dependence' provides a convenient description of the phenomenon considered in this paper. Spin phase dependence occurs only when the gyroradius of the detected particles (charge q; energy, W) is comparable with some other characteristic length of the problem. In particular, spin phase dependence occurs when the particle gyroradius a/sub L/ is comparable with lambda/sub perpendicular/, the wavelength transverse to B. ATS 6 and GEOS have provided examples of this type of 'finite gyroradius' effect. Wave-related spin phase dependence may also arise with a/sub L/<

  5. A Time-of-Flight System for Low Energy Charged Particles

    NASA Astrophysics Data System (ADS)

    Giordano, Micheal; Sadwick, Krystalyn; Fletcher, Kurt; Padalino, Stephen

    2013-10-01

    A time-of-flight system has been developed to measure the energy of charged particles in the keV range. Positively charged ions passing through very thin carbon films mounted on grids generate secondary electrons. These electrons are accelerated by a -2000 V grid bias towards a grounded channeltron electron multiplier (CEM) which amplifies the signal. Two CEM detector assemblies are mounted 23.1 cm apart along the path of the ions. An ion generates a start signal by passing through the first CEM and a stop signal by passing through the second. The start and stop signals generate a time-of-flight spectrum via conventional electronics. Higher energy alpha particles from radioactive sources have been used to test the system. This time-of-flight system will be deployed to measure the energies of 15 to 30 keV ions produced by a duoplasmatron ion source that is used to characterize ICF detectors.

  6. Fractional diffusion by Levy stochastic motion of charged particles in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Del-Castillo Negrete, Diego

    2015-11-01

    The motion of charged particles in the presence of alpha-stable Levy noise in a constant external magnetic field and linear friction is studied via Monte Carlo numerical simulations. The Levy noise is introduced to model the effect of non-local transport due to fractional diffusion in velocity space. The statistical properties of the velocity moments and energy for various values of the Levy index α are investigated. Of particular interest is the study of the resulting non-Maxwellian particle distribution functions and their dependence on alpha, the magnetic field amplitude, and the friction. We also explore the role of asymmetric Levy noise, the interplay of regular and fractional diffusion, and compute the statistical moments of displacements. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 no. 246540).

  7. The Stopping Power of Asteroidal Materials as High-Energy Charged Particle Shielding

    NASA Astrophysics Data System (ADS)

    Pohl, Leos; Johnson, Daniel; Britt, Daniel

    2014-11-01

    Extended human missions in deep space face a challenging radiation environment from high-energy galactic cosmic rays and solar energetic particles generated by solar flares and related coronal mass ejections. Shielding to attenuate these high-energy particles will require significant mass and volume, and would be extremely expensive launch from the surface of the earth. One possible solution could be the use of asteroidal resources as shielding for these high-energy particles. The effectiveness of shielding material for moderately relativistic charged particles is a function of the mean rate of energy loss, primarily to ionization and atomic excitation and is termed stopping power. In general, low atomic number elements are more effective per unit volume. We have calculated the stopping power for the average compositions of all major meteorite groups and will compare these data with typical spacecraft materials.

  8. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  9. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  10. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    NASA Technical Reports Server (NTRS)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  11. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. PMID:21198098

  12. Transverse momentum dependence of inclusive primary charged-particle production in p-Pb collisions at

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.

    2014-09-01

    The transverse momentum ($p_{\\mathrm T}$) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC in the range $0.15

  13. Charged particle tracking through electrostatic wire meshes using the finite element method

    NASA Astrophysics Data System (ADS)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P.

    2016-06-01

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  14. Charged particle motions in the distended magnetospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1982-01-01

    Charged particle motion in the guiding center approximation is analyzed for models of the Jovian and Saturnian magnetospheric magnetic fields based on Voyager magnetometer observations. Field lines are traced and exhibit the distention which arises from azimuthally circulating magnetospheric currents. The spatial dependencies of the guiding center bounce period and azimuthal drift rate are investigated for the model fields. Non-dipolar effects in the gradient-curvature drift rate are most important at the equator and affect particles with all mirror latitudes. The effect is a factor of 10-15 for Jupiter with its strong magnetodisc current and 1-2 for Saturn with its more moderate ring current. Limits of adiabaticity, where particle gyroradii become comparable with magnetic scale lengths, are discussed and are shown to occur at quite modest kinetic energies for protons and heavier ions.

  15. Measurement of charged-particle stopping in warm-dense plasma

    SciTech Connect

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; Johnson, M. Gatu; Keiter, P.; Reynolds, H.; Rygg, J.  R.; Séguin, F. H.; Petrasso, R. D.

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.

  16. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    SciTech Connect

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B.; Kunnen, G. R.; Allee, D. R.; Sastré-Hernández, J.; Contreras-Puente, G.; Mendoza-Pérez, R.

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  17. Charged particle radiation environment for the Spacelab and other missions in low earth orbit, revision A

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Wright, J. J.

    1976-01-01

    The physical charged particle dose to be encountered in low earth orbit Spacelab missions is estimated for orbits of inclinations from e8.5 to 90 deg and altitudes from 200 to 800 km. The dose encountered is strongly altitude dependent, with a weaker dependence on inclination. Doses range from 0.007 rads/day at 28.5 deg and 200 km to 1.57 rads/day at 28.5 deg and 800 km behind a 5.0 g/sq cm shield. Geomagnetically trapped protons were the primary source of damage over most of the range of altitudes and inclinations, with galactic cosmic rays making a significant contribution at the lowest altitudes.

  18. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  19. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  20. Computer and laboratory simulation of interactions between spacecraft surfaces and charged-particle environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1979-01-01

    Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.

  1. Analysis of charged-particle{endash}photon correlations in hadronic multiparticle production

    SciTech Connect

    MiniMax Collaboration

    1997-05-01

    In order to analyze data on joint charged-particle{endash}photon distributions from an experimental search (T-864, MiniMax) for disoriented chiral condensate (DCC) at the Fermilab Tevatron collider, we have identified robust observables, ratios of normalized bivariate factorial moments, with many desirable properties. These include insensitivity to many efficiency corrections and the details of the modeling of the primary pion production, and sensitivity to the production of DCC, as opposed to the generic, binomial-distribution partition of pions into charged and neutral species. The relevant formalism is developed and tested in Monte Carlo simulations of the MiniMax experimental conditions. {copyright} {ital 1997} {ital The American Physical Society}

  2. The effect of adiabatic focusing upon charged particle propagation in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1975-01-01

    Charged particles propagating along the diverging lines of force of a spatially inhomogeneous guiding field were considered as they are scattered by random fields. Their longitudinal transport is described in terms of the eigenfunctions of a Sturm-Liouville operator incorporating the effect of adiabatic focussing along with that of scattering. The relaxation times and characteristic velocities are graphed and tabulated. The particle density is evaluated as a function of space and time for two different regimes. In the first regime (relatively weak focussing), a diffusive mode of propagation is dominant but coherent modes are also dominant. In the second regime (strong focussing), diffusion does not occur and the propagation is purely coherent. This supercoherent mode corresponds exactly to the so-called scatter-free propagation of kilovolt solar flare electrons. On a larger scale, focussed transport provides an interpretation of many observed characteristics of extragalactic radio sources.

  3. Weyl correspondence for a charged particle in the field of a magnetic monopole

    NASA Astrophysics Data System (ADS)

    Soloviev, M. A.

    2016-05-01

    We construct a generalized Weyl correspondence for an electrically charged particle in the field of the Dirac magnetic monopole. Our starting points are a global Lagrangian description of this system as a constrained system with U(1) gauge symmetry given in terms of the fiber bundle theory and a reduction of the presymplectic structure arising on the constraint surface. In contrast to the recently proposed quantization scheme based on using a quaternionic Hilbert module, the quantum operators corresponding to classical observables in our construction act in the complex Hilbert space of U(1)-equivariant functions introduced by Greub and Petry. These functions are defined on the total space of a fiber bundle that is topologically equivalent to the Hopf fibration.

  4. Cytogenetic effects of heavy charged particles of galactic cosmic radiation in experiments aboard Cosmos-1129 biosatellite

    SciTech Connect

    Nevzgodina, L.V.; Maksimova, Y.N.

    1982-08-01

    An experiment was carried out on lettuce (Lactuca sativa) seeds flown in a biocontainer equipped with plastic detectors to record heavy charged particles (HCP). The purpose of the experiment was to determine the yield of aberrant cells as a result of irradiation, and to identify this effect as a function of HCP topography in the seed. The cytogenetic examination of flight seedlings revealed a significant difference between the seeds which were hit with HCP and those that remained intact. This indicates a significant contribution of the heavy component of galactic cosmic radiation into the radiobiological effect. The relationship between the radiobiological effect and the HCP topography in the seed was established: zones of the root and stem meristem proved to be the most sensitive targets.

  5. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOEpatents

    Douglas, David R.; Benson, Stephen V.

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  6. Nanocrystalline materials for the dosimetry of heavy charged particles: A review

    NASA Astrophysics Data System (ADS)

    Salah, Numan

    2011-01-01

    Thermally stimulated luminescence or better known as thermoluminescence (TL) is a powerful technique extensively used for dosimetry of ionizing radiations. TL dosimeter (TLD) materials presently in use are inorganic crystalline materials. They are in the form of chips, single crystals or microcrystalline size powder. The most popular are LiF:Mg,Ti, LiF:Mg,Cu,P, CaSO 4:Dy, CaF 2:Dy and Al 2O 3:C. However, these TLD materials are not capable of precisely detecting heavy charged particles (HCP) irradiations in their present forms. The saturation effect is the major problem, which occurs at relatively low fluences (doses). Moreover, there is a significant variation in the TL glow curves structure with increase in doses, which is undesirable for the use in dosimetry. However, with the use of very tiny particles such as nanoscale TLD materials, this problem is overcome to a major extent. The TL results of the recently reported nanomaterials have revealed very imperative characteristics such as high sensitivity and saturation at very high doses. Recent studies on different luminescent nanomaterials showed that they have a potential application in dosimetry of heavy charged particles using TL technique, where the conventional microcrystalline phosphors saturate. This paper is a review on the prepared TLD nanomaterials, studied for their TL response to HCP. These are CaSO 4:Dy, LiF:Mg,Cu,P, K 2Ca 2(SO 4) 3:Eu and Ba 0.97Ca 0.03SO 4:Eu nanomaterials. The important results obtained in these nanomaterials and the possibility of using them as HCP dosimeters are discussed.

  7. Analysis of the field-assisted permanent assembly of oppositely charged particles.

    PubMed

    Bharti, Bhuvnesh; Findenegg, Gerhard H; Velev, Orlin D

    2014-06-10

    We characterize experimentally and analyze analytically a novel electric-field-assisted process for the assembly of permanent chains of oppositely charged microparticles in an aqueous environment. Long chains of oppositely charged particles are rapidly formed when an external electric field is applied and break up into permanent linear fragments upon switching off the field. The resulting secondary chains are stabilized by attractive electrostatic and van der Waals interactions between the particles. We find that the length of the permanent chains is strongly dependent on the relative size (microsphere diameter D) of small and large particles and can be tuned by varying the particle size ratio s = Dsm/Dlg and particle number ratio r = Nsm/Nlg. Three latex microsphere systems of different particle size ratio, s = 0.9, 0.45, and 0.225, were characterized at different particle number ratios r by determining experimentally the length distribution of the permanent chains. The results are compared with statistical models based on a one-step or two-step process of forming the primary chains. We find that the one-step model is applicable to the system of similarly sized particles (s = 0.9) and the two-step chaining model is applicable to the system of dissimilarly sized particles (s = 0.225), where the large particles form chains first and the small ones serve as binders, which are later drawn in the junctions. Long permanent chains are formed only from particles of dissimilar size for which our model predicts a linear increase in the mean chain length with increasing r. On the basis of these results, we formulate a set of assembly rules for permanent colloidal chain formation by oppositely charged particles. The results make possible the precise large-scale formation of particle chains of any length, which can serve as components in new gels, biomaterials, and fluids with controlled rheology. PMID:24836191

  8. Apoptotic regulation and mutagenesis in human cells exposes to charged particles of importance for spaceflight

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Hain, J.; Wu, P.; Wiese, C.

    Exposure to ionizing radiation can elicit two modes of cell death - necrosis or apoptosis. In human lymphoid cells, the predominant mechanism of radiation- induced cell death is apoptosis. The most likely exposure of individual human cells to heavy ions (e.g. Fe or Si) during spaceflight will result from single particle traversals. Here we report the fluence-response for apoptosis in human TK6 B- lymp hoblasts and provide evidence that single Fe ion traversals can stimulate an apoptotic response. The apoptotic response to charged particle exposures includes scrambling of the phospholipid bilayer in the cell membrane, activation of caspase signaling cascades and degradation of DNA into oligonucleosomes. We have also explored the importance of apoptotic regulation on the frequency and spectrum of mutations arising after exposure to charged particles. We used isogenic derivatives of TK6 cells stably transfected with pSFFV-neo-bcl-xL (encoding the anti-apoptotic gene BCL-XL and the neomycin resistance gene) or with pSFFV neo (encoding only- the neomycin resistance gene). TK6-bclxL cells were more susceptible to mutations at the TK1 locus than TK6-neo cells following exposure to protons, silicon ions or Fe ions. Molecular analysis demonstrated that most Fe-ion-induced mutations arose by loss of heterozygosity (LOH). In TK6-bclxL cells, more of the LOH occurred via mitotic recombination than in TK6-neo cells where the predominant mode of LOH was via deletion. We are currently mapping the LOH tracts to further define the biological bases for the differential sensitivity to Fe-ion-induced mutagenesis as a function of the genotype of the cell at risk. Supported by NASA grant T-964W to A. Kronenberg

  9. A model for the prediction of droplet size in Pickering emulsions stabilized by oppositely charged particles.

    PubMed

    Nallamilli, Trivikram; Mani, Ethayaraja; Basavaraj, Madivala G

    2014-08-12

    Colloidal particles irreversibly adsorb at fluid-fluid interfaces stabilizing what are commonly called "Pickering" emulsions and foams. A simple geometrical model, the limited coalescence model, was earlier proposed to estimate droplet sizes in emulsions. This model assumes that all of the particles are effective in stabilization. The model predicts that the average emulsion drop size scales inversely with the total number of particles, confirmed qualitatively with experimental data on Pickering emulsions. In recent years, there has been an increasing interest in synthesizing emulsions with oppositely charged particles (OCPs). In our experimental study, we observed that the drop size varies nonmonotonically with the number ratio of oppositely charged colloids, even when a fixed total number concentration of colloids is used, showing a minimum. We develop a mathematical model to predict this dependence of drop size on number ratio in such a mixed particle system. The proposed model is based on the hypothesis that oppositely charged colloids form stable clusters due to the strong electrostatic attraction between them and that these clusters are the effective stabilizing agents. The proposed model is a two-parameter model, parameters being the ratio of effective charge of OCPs (denoted as k) and the size of the aggregate containing X particles formed due to aggregation of OCPs. Because the size of aggregates formed during emulsification is not directly measurable, we use suitable values of parameters k and X to best match the experimental observations. The model predictions are in qualitative agreement with experimentally observed nonmonotonic variation of droplet sizes. Using experiments and theory, we present a physical insight into the formation of OCP stabilized Pickering emulsions. Our model upgrades the existing Wiley's limited coalescence model as applied to emulsions containing a binary mixture of oppositely charged particles. PMID:25054284

  10. Pitch-angle Scattering of Energetic Charged Particles in Nearly Constant Magnitude Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Sun, P.; Jokipii, J. R.; Giacalone, J.

    2016-08-01

    We use a method developed by Roberts that optimizes the phase angles of an ensemble of plane waves with amplitudes determined from a Kolmogorov-like power spectrum, to construct magnetic field vector fluctuations having nearly constant magnitude and large variances in its components. This is a representation of the turbulent magnetic field consistent with that observed in the solar wind. Charged-particle pitch-angle diffusion coefficients are determined by integrating the equations of motion for a large number of charged particles moving under the influence of forces from our predefined magnetic field. We tested different cases by varying the kinetic energy of the particles (E p) and the turbulent magnetic field variance ({σ }B2). For each combination of E p and {σ }B2, we tested three different models: (1) the so-called “slab” model, where the turbulent magnetic field depends on only one spatial coordinate and has significant fluctuations in its magnitude (b=\\sqrt{δ {B}x2(z)+δ {B}y2(z)+{B}02}) (2) the slab model optimized with nearly constant magnitude b; and (3) the slab model turbulent magnetic field with nearly constant magnitude plus a “variance-conserving” adjustment. In the last case, this model attempts to conserve the variance of the turbulent components ({σ }{Bx}2+{σ }{By}2), which is found to decrease during the optimization with nearly constant magnitude. We found that there is little or no effect on the pitch-angle diffusion coefficient {D}μ μ between models 1 and 2. However, the result from model 3 is significantly different. We also introduce a new method to accurately determine the pitch-angle diffusion coefficients as a function of μ.

  11. Transverse energy distribution, charged particle multiplicities and spectra in /sup 16/O-nucleus collisions

    SciTech Connect

    Sunier, J.W.

    1987-01-01

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4..pi.. calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on /sup 16/O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for /sup 16/O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs.

  12. Charged Particle Energization and Transport in Reservoirs throughout the Heliosphere: 1. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-09-01

    “Reservoirs” of energetic charged particles are regions where the particle population is quasi-trapped in large-scale (relative to the gyroradii) magnetic field structures. Reservoirs are found throughout the heliosphere: the huge heliosheath (90charged particles within these reservoirs is produced by the interaction when the particle magnetic drifts have a component along the large-scale electric fields produced by plasma convection. The appropriate description of this transport is “weak scattering”, in which the particle's first adiabatic invariant (magnetic moment) is approximately conserved while the particle itself moves rather freely along magnetic field lines. Considerable insight into the observed properties of energization processes can be gained from a remarkably simple equation that describes the particle's fractional time-rate-of-change of momentum (dlnp/dt) which depends only upon its pitch angle, the divergence of the plasma velocity (V⊥) transverse to the magnetic field), and the inner product of (V⊥) with the curvature vector of the field lines. The possibilities encompassed in this simple (but general) equation are quite rich, so we restrict our application of it in this paper to the compressive acceleration of SEPs within CMEs.

  13. Response of colony-forming units-spleen to heavy charged particles.

    PubMed

    Ainsworth, E J; Kelly, L S; Mahlmann, L J; Schooley, J C; Thomas, R H; Howard, J; Alpen, E L

    1983-10-01

    Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons. PMID:6622650

  14. Production of .sup.64 Cu and other radionuclides using a charged-particle accelerator

    DOEpatents

    Welch, Michael J.; McCarthy, Deborah W.; Shefer, Ruth E.; Klinkowstein, Robert E.

    2000-01-01

    Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area. The irradiated target is remotely and automatically transferred from the target holder, preferably without transferring any target holder subassemblies, to a conveyance system which is preferably a pneumatic or hydraulic conveyance system, and then further transferred to an automated separation system. The system is effective for processing a single target or a plurality of targets. After separation, the unreacted target material can be recycled for preparation of other targets. In a preferred application of the invention, a biomedical cyclotron has been used to produce over 500 mCi of .sup.64 Cu having a specific activity of over 300 mCi/.mu.g Cu according to the reaction .sup.64 Ni(p,n).sup.64 Cu. These results indicate that accelerator-produced .sup.64 Cu is suitable for radiopharmaceutical diagnostic and therapeutic applications.

  15. Charged particle tracking in a water Cherenkov optical time projection chamber

    NASA Astrophysics Data System (ADS)

    Oberla, Eric

    A first experimental test of tracking relativistic charged particles by `drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) at the Fermilab Test Beam Facility is described. By measuring the relative time-of-arrival and (z,φ) coordinates of individual photons, we show spatial and angular resolutions on the charged particle track of 15 mm and 60 mrad, respectively, over a track length of 40 cm. The OTPC consists of a 77 cm long, 40~kg cylindrical water mass instrumented with a combination of commercial 5.1x 5.1 cm2 micro-channel plate photo-multiplier tubes (MCP-PMT) and 6.7 x6.7 cm2 mirrors. Using planar MCP-PMTs with an anode of 50O microstrips, it is feasible to resolve the time-of-arrival of a single photon to ≤100 ps and its detected position to a few~mm. The MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposing each MCP-PMT on the far side of the detector cylinder, which effectively doubles the photo-detection efficiency and provides a time-resolved image of the Cherenkov light on the opposing wall. A 180-channel data acquisition system digitizes the MCP-PMT signals using the PSEC4 waveform sampling chip operating at 10 Gigasamples-per-second. The detector was installed on the Fermilab MCenter test-beam in a location where the primary flux is multi-GeV muons. Approximately 80 Cherenkov photons are detected for a through-going muon track in an event duration of 2 ns.

  16. Generation of discrete scattering cross sections and demonstration of Monte Carlo charged particle transport in the Milagro IMC code package

    SciTech Connect

    Walsh, J. A.; Palmer, T. S.; Urbatsch, T. J.

    2013-07-01

    A new method for generating discrete scattering cross sections to be used in charged particle transport calculations is investigated. The method of data generation is presented and compared to current methods for obtaining discrete cross sections. The new, more generalized approach allows greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data generated with the new method is verified through a comparison with discrete data obtained with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code package, Milagro. The implementation of this capability is verified using test problems with analytic solutions as well as a comparison of electron dose-depth profiles calculated with Milagro and an already-established electron transport code. An initial investigation of a preliminary integration of the discrete cross section generation method with the new charged particle transport capability in Milagro is also presented. (authors)

  17. Charged-particle distributions in pp interactions at √{s}=8 { TeV} measured with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medici, M.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko,