Science.gov

Sample records for beta-delayed charged-particle emission

  1. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    SciTech Connect

    Ognibene, T.J.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of {sup 31}Cl, {sup 27}P and {sup 28}P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas {Delta}E-gas {Delta}E-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in {sup 31}Cl and {sub 27}P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of {sup 31}Cl were shown to be from the decay of {sup 25}Si. In {sup 27}P, two proton groups at 459 {+-} 14 keV and 610 {+-} 11 keV, with intensities of 7 {+-} 3% and 92 {+-} 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the {beta}-decay of {sup 28}P, at 1,444 {+-} 12 keV with a 1.7 {+-} 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, {sup 17}Ne and {sup 33}Ar, were studied. A new proton group with energy 729 {+-} 15 keV was observed following the beta-decay of {sup 17}Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from {sup 17}Ne and {sup 33}Ar were resolved.

  2. Beta-delayed two-proton emission as a nuclear probe

    SciTech Connect

    Moltz, D.M.; Reiff, J.E.; Robertson, J.D.; Lang, T.F.; Cerny, J.

    1987-09-01

    A brief history of beta-delayed two-proton emission is given. Speculations about future experiments which would enhance our knowledge about both nuclear spectroscopy and this relatively unique decay mode are presented. 16 refs., 7 figs.

  3. Beta delayed alpha emission from the neutron deficient rare earth isotopes {sup 152}Tm and {sup 150}Ho

    SciTech Connect

    Nacher, E.; Tain, J. L.; Rubio, B.; Algora, A.; Estevez Aguado, M. E.; Gadea, A.; Batist, L.; Briz, J. A.; Cano-Ott, D.; Doering, J.; Mukha, I.; Plettner, C.; Roeckl, E.; Gierlik, M.; Janas, Z.

    2011-11-30

    The study of beta-delayed proton emission is a well known method to aid the determination of the beta strength distribution in nuclei far from the stability line. At the neutron deficient side of the nuclear chart the process of proton or alpha emission from excited states is energetically allowed when one goes far enough from stability. However, beta-delayed alphas have seldom been measured for nuclei heavier than A = 20. Here we present a study of the beta-delayed alpha-particle emission from {sup 152}Tm and {sup 150}Ho and their importance in the full B(GT) distribution.

  4. Studies of Charged Particle Emission in the Decay of 45Fe

    SciTech Connect

    Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Grigorenko, L.; Bingham, C. R.; Czyrkowski, H.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, Robert; Karny, M.; Korgul, A.; Kusmierz, W.; Liddick, Sean; Rajabali, Mustafa; Rykaczewski, Krzysztof Piotr; Stolz, A.

    2008-01-01

    The decay of extremely neutron-deficient isotope 45Fe has been studied by using a new type of gaseous detector in which a technique of optical imaging is used to record tracks of charged particles. The two-proton radioactivity and the beta-decay channels accompanied by proton(s) emission were clearly identified. For the first time, the angular and energy correlations between two protons emitted from the 45Fe ground-state were measured. The obtained distributions were confronted with predictions of a three-body model. Studies of beta-decay channels of 45Fe provided first unambiguous evidence for the beta-delayed three proton emission.

  5. Further measurement of the {beta}-delayed {alpha}-particle emission of {sup 16}N

    SciTech Connect

    France III, R. H.; Wilds, E. L.; McDonald, J. E.; Gai, M.

    2007-06-15

    We measured the {beta}-delayed {alpha}-particle emission spectrum of {sup 16}N with a sensitivity for {beta}-decay branching ratios of the order of 10{sup -10}. The {sup 16}N nuclei were produced using the d({sup 15}N,{sup 16}N)p reaction with 70 MeV {sup 15}N beams and a deuterium gas target 7.5 cm long at a pressure of 1250 torr. The {sup 16}N nuclei were collected (over 10 s) using a thin aluminum foil with an areal density of 180 {mu}g/cm{sup 2} tilted at 7 deg. with respect to the beam. The activity was transferred to the counting area by means of a stepping motor in less than 3 s with the counting carried out over 8 s. The {beta}-delayed {alpha}-particles were measured using a time-of-flight method to achieve a sufficiently low background. Standard calibration sources ({sup 148}Gd, {sup 241}Am, {sup 208,209}Po, and {sup 227}Ac) as well as {alpha} particles and {sup 7}Li from the {sup 10}B(n,{alpha}){sup 7}Li reaction were used for an accurate energy calibration. The energy resolution of the catcher foil (180-220 keV) was calculated and the time-of-flight resolution (3-10 nsec) was measured using the {beta}-delayed {alpha}-particle emission from {sup 8}Li that was produced using the d({sup 7}Li,{sup 8}Li)p reaction with the same setup. The line shape was corrected to account for the variation in the energy and time resolution and a high statistics spectrum of the {beta}-delayed {alpha}-particle emission of {sup 16}N is reported. However, our data (as well as earlier Mainz data and unpublished Seattle data) do not agree with an earlier measurement of the {beta}-delayed {alpha}-particle emission of {sup 16}N taken at TRIUMF after averaging over the energy resolution of our collection system. This disagreement, among other issues, prohibits accurate inclusion of the f-wave component in the R-matrix analysis.

  6. {beta}-delayed neutron emission measurements around the third r-process abundance peak

    SciTech Connect

    Caballero-Folch, R.; Cortes, G.; Calvino, F.; Gomez-Hornillos, M. B.; Riego, A.; Domingo-Pardo, C.; Tain, J. L.; Agramunt, J.; Rubio, B.; Algora, A.; Ameil, F.; Farinon, F.; Heil, M.; Knoebel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Y.; Mukha, I.; Nociforo, C.; and others

    2013-06-10

    This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around {sup 211}Hg and {sup 215}Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and {beta}-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayEd Neutron (BELEN) detector, which consisted of 30 3He counters embedded in a polyethylene matrix.

  7. Beta-delayed neutron emission measurements for r-process nuclei

    NASA Astrophysics Data System (ADS)

    Dillmann, Iris

    2014-09-01

    Beta-delayed neutron- (bn-) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the ``rapid neutron-capture process'' (r process). On one hand they lead to a detour of the material beta-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes for r-process nucleosynthesis are not yet experimentally accessible and are located in the ``terra incognita.'' With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of very neutron-rich isotopes at and beyond the border of presently known nuclei. However, reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. The investigation of bn-emitters has recently experienced a renaissance. I will show some recent results from a GSI campaign with the BELEN detector, and introduce the program planned for 2015/16 at RIKEN with the ``BRIKEN'' detector. ``BRIKEN'' (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications'') is a worldwide effort which combines 3He-neutron counters from groups in Germany, Japan, Russia, Spain, and the USA and the implantation detector AIDA from the UK to the presently largest and most efficient neutron detection setup. Planned first experiments comprise the first-time measurements of 48 b-delayed one-neutron and 24 b-delayed two-neutron emitters in the regions around doubly-magic 78Ni and 132Sn. Even some b-delayed three-neutron emitters in the heavier mass region will be tackled for the first time.

  8. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  9. Beta-delayed proton emission in neutron-deficient lanthanide isotopes

    SciTech Connect

    Wilmarth, P.A.

    1988-09-30

    Forty-two ..beta..-delayed proton precursors with 56less than or equal toZless than or equal to71 and 63less than or equal toNless than or equal to83 were produced in heavy-ion reactions at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decay properties studied at the on-line mass separation facility OASIS. Twenty-five isotopes and eight delayed proton branches were identified for the first time. Delayed proton energy spectra and proton coincident ..gamma..-ray and x-ray spectra were measured for all precursors. In a few cases, proton branching ratios were also determined. The precursor mass numbers were determined by the separator, while the proton coincident x-ray energies provided unambiguous Z identifications. The proton coincident ..gamma..-ray intensities were used to extract final state branching ratios. Proton emission from ground and isomeric states was observed in many cases. The majority of the delayed proton spectra exhibited the smooth bell-shaped distribution expected for heavy mass precursors. The experimental results were compared to statistical model calculations using standard parameter sets. Calculations using Nilsson model/RPA ..beta..-strength functions were found to reproduce the spectral shapes and branching ratios better than calculations using either constant or gross theory ..beta..-strength functions. Precursor half-life predictions from the Nilsson model/RPA ..beta..-strength functions were also in better agreement with the measured half-lives than were gross theory predictions. The ratios of positron coincident proton intensities to total proton intensities were used to determine Q/sub EC/-B/sub p/ values for several precursors near N=82. The statistical model calculations were not able to reproduce the experimental results for N=81 precursors. 154 refs., 82 figs., 19 tabs.

  10. Large beta-delayed neutron emission probabilities in the 78Ni region.

    PubMed

    Winger, J A; Ilyushkin, S V; Rykaczewski, K P; Gross, C J; Batchelder, J C; Goodin, C; Grzywacz, R; Hamilton, J H; Korgul, A; Królas, W; Liddick, S N; Mazzocchi, C; Padgett, S; Piechaczek, A; Rajabali, M M; Shapira, D; Zganjar, E F; Borzov, I N

    2009-04-10

    The beta-delayed neutron branching ratios (P{betan}) for nuclei near doubly magic 78Ni have been directly measured using a new method combining high-resolution mass separation, reacceleration, and digital beta-gamma spectroscopy of 238U fission products. The P{betan} values for the very neutron-rich isotopes ;{76-78}Cu and 83Ga were found to be much higher than previously reported and predicted. Revised calculations of the betan process, accounting for new mass measurements and an inversion of the pi2p{3/2} and pi1f{5/2} orbitals, are in better agreement with these new experimental results. PMID:19392431

  11. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  12. Emission of charged particles from excited compound nuclei

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2010-10-15

    The process of complex fragment emission is studied within the dinuclear system model. Cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup nat}Ag, {sup 78,86}Kr+{sup 12}C, and {sup 63}Cu+{sup 12}C. The mass distributions of the products of these reactions, isotopic distributions for the {sup 3}He+{sup nat}Ag and {sup 78}Kr+{sup 12}C reactions, and average total kinetic energies of the products of the {sup 78}Kr+{sup 12}C reaction are predicted.

  13. {beta}-Delayed Deuteron Emission from {sup 11}Li: Decay of the Halo

    SciTech Connect

    Raabe, R.; Ponsaers, J.; Duppen, P. van; Andreyev, A.; Buchmann, L.; Capel, P.; Kanungo, R.; Kirchner, T.; Morton, A. C.; Pearson, J.; Ruprecht, G.; Walden, P.; Borge, M. J. G.; Tengblad, O.; Fynbo, H. O. U.; Riisager, K.; Huyse, M.; Mattoon, C.; Sarazin, F.; Mukha, I.

    2008-11-21

    The deuteron-emission channel in the {beta} decay of the halo nucleus {sup 11}Li was measured at the Isotope Separator and Accelerator facility at TRIUMF by implanting postaccelerated {sup 11}Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of {sup 11}Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ratio B{sub d}=1.30(13)x10{sup -4} to be deduced for E{sub c.m.}>200 keV. The results provide the first unambiguous experimental evidence that the decay takes place essentially in the halo of {sup 11}Li and that it proceeds mainly to the {sup 9}Li+d continuum, opening up a new means to study the halo wave function of {sup 11}Li.

  14. Universal decay law in charged-particle emission and exotic cluster radioactivity.

    PubMed

    Qi, C; Xu, F R; Liotta, R J; Wyss, R

    2009-08-14

    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the Q values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented. PMID:19792636

  15. Studies of Charged Particle Emission in the Decay of 45Fe

    SciTech Connect

    Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Grigorenko, L.; Bingham, C. R.; Czyrkowski, H.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, R.; Karny, M.; Korgul, A.; Kusmierz, W.; Liddick, Sean; Rajabali, M. M.; Rykaczewski, Krzysztof Piotr; Stolz, A.

    2008-01-01

    The decay of extremely neutron-deficient isotope 45Fe has been studied by using a new type of gaseous detector in which a technique of optical imaging is used to record tracks of charged particles. The two-proton radioactivity and the -decay channels accompanied by proton(s) emission were clearly identified. For the first time, the angular and energy correlations between two protons emitted from the 45Fe ground-state were measured. The obtained distributions were confronted with predictions of a three-body model. Studies of -decay channels of 45Fe provided first unambiguous evidence for the -delayed three proton emission.

  16. {beta}-decay half-lives and {beta}-delayed neutron emission probabilities of nuclei in the region A < or approx. 110, relevant for the r process

    SciTech Connect

    Pereira, J.; Galaviz, D.; Matos, M.; Montes, F.; Hennrich, S.; Kessler, R.; Schertz, F.; Aprahamian, A.; Quinn, M.; Woehr, A.; Arndt, O.; Pfeiffer, B.; Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.; Kratz, K.-L.; Mantica, P. F.; Moeller, P.

    2009-03-15

    Measurements of {beta}-decay properties of A < or approx. 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr, and {sup 111}Mo, along with {beta}-delayed neutron emission probabilities of {sup 104}Y, {sup 109,110}Mo and upper limits for {sup 105}Y, {sup 103-107}Zr, and {sup 108,111}Mo have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.

  17. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  18. First Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Associated Half-Lives for A ≤ 72 Nuclei

    SciTech Connect

    Birch, M.; Singh, B.; Abriola, D.; Dillmann, I.; Johnson, T.D.; McCutchan, E.A.; Sonzogni, A.A.

    2014-06-15

    A comprehensive compilation and evaluation of beta-delayed neutron (β{sup −}n) emission probabilities, P{sub n}, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β{sup −}n emission in this region. The ratio P{sub n}/T{sub 1/2} is better correlated with the Q-value of the β{sup −}n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). The recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.

  19. First Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Associated Half-Lives for A ≤72 Nuclei

    SciTech Connect

    Birch, M.; Singh, B.; Abriola, D.; Dillmann, I.; Johnson, T.; McCutchan, E. A.; Sonzogni, A. A.

    2014-06-01

    After a comprehensive compilation and evaluation of beta-delayed neutron (β-n) emission probabilities, Pn, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β-nemission in this region. The ratio Pn/T1/2 is better correlated with the Q-value of the β-n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). Moreover, the recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.

  20. Thermionic and photoelectric emission of electrons from positively charged particles in a plasma with Debye shielding

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta; Mishra, Sanjay Kumar

    2015-09-01

    By utilizing the recent concept [G. Delzanno et al., Phys. Plasmas 12, 062102 (2005) and G. Delzanno and X. Tang, Phys. Rev. Lett. 113, 035002 (2014)] that the radial potential, experienced by an electron in the vicinity of a positively charged spherical particle depends on the transverse momentum of the electron, we have evaluated the rate of thermionic and photoelectron emission from a positively charged spherical particle and the corresponding average electron energy in a plasma, with Debye Screening. The effect of screening is manifested in the magnitude of a maximum in the radial potential energy versus r curve and is characterized by a parameter β which depends solely on ( r 0 / λ ) . Simple expressions for the change in the rates of emission and corresponding electron energy due to inclusion of the mechanism (mentioned above) in the analysis have been derived. The results of numerical computations have been presented and discussed. Simple expressions for the rates of electron emission from positively charged particles and corresponding average electron energy are necessary in the study of kinetics of complex plasmas. This work suffers from the limitation that the Debye length and even the nature of screening is not apriori known. In general, the evaluation of the nature of shielding and the shielding length requires a self consistent computation, similar to that carried out by Delzanno and Tang [Phys. Rev. Lett. 113, 035002 (2014)] in their work on thermionic emission in vacuum.

  1. Extension of the T{sub z} = {minus}3/2, A = 4n + 1 series of beta-delayed proton emitters to {sup 65}Se and {sup 73}Sr, and low energy beta-delayed proton emission from the T{sub z} = {minus}3/2, A = 4n + 3 nucleus {sup 23}Al

    SciTech Connect

    Batchelder, J.C.

    1993-12-01

    The series of known Tz = {minus}3/2, A = 4n + 1 nuclei has been extended to include the previously undiscovered isotopes {sup 65}Se and {sup 73}Sr, through the observation of beta-delayed proton emission via the isobaric analog state (IAS) of the beta-daughter (emitter). Due to the relatively large proton energies involved, these experiments were conducted using standard Si-Si {Delta}E-E telescopes. Beta-delayed protons arising from {sup 65}Se have been observed at an energy (laboratory) of 3.55 {plus_minus} 0.03 MeV, corresponding to the decay of the T = 3/2 isobaric analog state in {sup 65}As to the ground state of {sup 64}Ge. Similarly, beta-delayed protons from {sup 73}Sr at an energy of 3.75 {plus_minus} 0.04 MeV have been observed, corresponding to decay of the T = 3/2 isobaric analog state in {sup 73}Rb to the ground state of {sup 72}Kr. From the energies of these proton transitions, an improved prediction of the mass excesses of the two parent nuclei ({sup 65}Se and {sup 73}Sr) is made through the use of a Coulomb displacement formula. These predictions are {minus}33.41 {plus_minus} 0.26 and {minus}31.87 {plus_minus} 0.24 MeV for {sup 65}Se and {sup 73}Sr, respectively. Studies of low energy (down to {approximately}200 keV) beta-delayed protons from {sup 23}Al necessitated that a particle identification telescope with a low energy threshold for observation and identification of protons be developed. {sup 23}Al is of interest because of its role in the breakout of the hot CNO cycle leading to the astrophysical rp process.

  2. Evidence for Gamow-Teller Decay of ^{78}Ni Core from Beta-Delayed Neutron Emission Studies.

    PubMed

    Madurga, M; Paulauskas, S V; Grzywacz, R; Miller, D; Bardayan, D W; Batchelder, J C; Brewer, N T; Cizewski, J A; Fijałkowska, A; Gross, C J; Howard, M E; Ilyushkin, S V; Manning, B; Matoš, M; Mendez, A J; Miernik, K; Padgett, S W; Peters, W A; Rasco, B C; Ratkiewicz, A; Rykaczewski, K P; Stracener, D W; Wang, E H; Wolińska-Cichocka, M; Zganjar, E F

    2016-08-26

    The β-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured β-decay lifetimes. We conclude that enhanced, concentrated β-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models. PMID:27610848

  3. Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for Z = 2–28

    SciTech Connect

    Birch, M.; Singh, B.; Dillmann, I.; Abriola, D.; Johnson, T.D.; McCutchan, E.A.; Sonzogni, A.A.

    2015-09-15

    We present an evaluation and compilation of β-delayed neutron probabilities and half-lives for nuclei in the region Z = 2–28 ({sup 8}He–{sup 80}Ni). This article includes the recommended values of these quantities as well as a compiled list of experimental measurements for each nucleus in the region for which β-delayed neutron emission is possible. The literature cut-off for this work is August 15{sup th}, 2015. Some notable cases as well as new standards for β-delayed neutron measurements in this mass region are also discussed.

  4. Energetic Charged Particle Emission from Hydrogen-Loaded pd and ti Cathodes and its Enhancement by He-4 Implantation

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.

    2006-02-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.

  5. Half-lives and branchings for {beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    SciTech Connect

    Hosmer, P.; Estrade, A.; Montes, F.; Ouellette, M.; Pellegrini, E.; Schatz, H.; Aprahamian, A.; Arndt, O.; Pfeiffer, B.; Clement, R. R. C.; Mueller, W. F.; Morton, A. C.; Pereira, J.; Santi, P.; Steiner, M.; Stolz, A.; Farouqi, K.; Kratz, K.-L.; Liddick, S. N.; Mantica, P. F.

    2010-08-15

    The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes from this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.

  6. Plasma heating and emission of runaway charged particles in a plasma focus device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2016-03-01

    The required experimental E-field across plasma to generate significant runaway electrons and hard X-rays during the pinch phase and the phase with anomalous resistance has been investigated in a dense plasma focus. The plasma voltage and inductance have been measured in a plasma focus with two different anode tip structures. The results show a significant generation of charged particles and hard X-rays at smaller E-field across the plasma column in the phase of anomalous resistances compared to the pinch phase. Plasma heating process may enhance the rate of runaway-charged-particle generation due to the combined effects of a reduced Dreicer field and the avalanche effects during the phase of anomalous resistance.

  7. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    SciTech Connect

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  8. Influence of the Coulomb Field on Charged Particle Emission in Ar + Ni Reaction at 77 MeV/u

    NASA Astrophysics Data System (ADS)

    Wosinska, K.; Pluta, J.; Hanappe, F.; Stuttge, L.; Angelique, J. C.; Basrak, Z.; Benoit, B.; de Goes Brennand, E.; Bizard, G.; Colin, J.; Costa, G.; Desesquelles, P.; Dorvaux, O.; Durand, D.; Erazmus, B.; Kuleshov, S.; Lednicky, R.; Leszczynski, P.; Marques, M.; Materna, Th.; Mikhailov, K.; Papatheofanous, G.; Pawlak, T.; Przewlocki, M.; Staranowicz, A.; Stavinskiy, A.; Sztenkiel, A.; Tamain, B.; Vlasov, A.; Vorobyev, L.

    2004-03-01

    Ar+Ni collisions at 77 MeV/u were studied in the experiment E286 performed at GANIL. An important advantage of this experiment was an application of the neutron detector DEMON for registration of both neutral and charged particles. This feature allows to compare characteristics of neutrons and protons detected by the same detector and gives a possibility to determine the influence of the Coulomb field on the proton emission. Estimation of a charge of the emitting source was performed by comparing energy spectra of neutrons and protons detected under identical experimental conditions. The experimental results were compared with the prediction of the SIMON model [D. Durand, Nucl. Phys. A541, 266 (1992)] and Landau--Vlasov model [Z. Basrak, Ph. Eudes, P. Abgrall, F. Haddad, F. Sébille, Nucl. Phys. A624, 472 (1997)].

  9. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    NASA Astrophysics Data System (ADS)

    Ahmad, Syed Bilal; McNeill, Fiona E.; Prestwich, William V.; Byun, Soo Hyun; Seymour, Colin; Mothersill, Carmel E.

    2014-01-01

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some "bystander effects" that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 1010 protons mm-2 s-1. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  10. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  11. Effects of T-odd asymmetry of the emission of light charged particles and photons during fission of heavy nuclei by polarized neutrons

    SciTech Connect

    Gagarskii, A. M.; Guseva, I. S.; Goennenwein, F.; Kopach, Yu. N.; Mutterer, M.; Kuz'mina, T. E.; Petrov, G. A.; Tyurin, G.; Nesvizhevsky, V.

    2011-12-15

    The new physical effects of T-odd asymmetry of the emission of light charged particles (LCPs) during the ternary fission of some heavy nuclei by cold polarized neutrons have been experimentally studied. The coefficients of triple scalar and vector correlation of the pulses of light particles and fission fragments (TRI effect) and the fivefold correlation of the same vectors (ROT effect) have been measured. These effects are believed to be caused by the rotation of polarized fissioning system around its polarization direction. The treatment of the experimental data for LCPs in the framework of this hypothesis leads to a good agreement between the calculation results and experimental data. The calculated value of the angle of rotation of the fission axis in the ternary fission of the polarized fissioning {sup 236}U* compound nucleus was used to process the results of measuring the ROT effect for {gamma} photons from binary-fission fragments of the same nucleus. A satisfactory description of these experimental data is obtained which serves a convincing confirmation of the rotation hypothesis.

  12. New Beta-delayed Neutron Measurements in the Light-mass Fission Group

    SciTech Connect

    Agramunt, J.; García, A.R.; Algora, A.; Äystö, J.; Caballero-Folch, R.; Calviño, F.; Cano-Ott, D.; Cortés, G.; Domingo-Pardo, C.; Eronen, T.; Gelletly, W.; Gómez-Hornillos, M.B.; and others

    2014-06-15

    A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

  13. Search for {beta}-delayed fission of {sup 228}Ac

    SciTech Connect

    Xu Yanbing; Ding Huajie; Yuan Shuanggui; Yang Weifan; Niu Yanning; Li Yingjun; Xiao Yonghou; Zhang Shengdong; Lu Xiting

    2006-10-15

    Radium was radiochemically separated from natural thorium. Thin {sup 228}Ra{yields}{beta}{sup -228}Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe {gamma}-ray detector. The {beta}-delayed fission events of {sup 228}Ac were observed and its {beta}-delayed fission probability was found to be (5{+-}2)x10{sup -12}.

  14. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  15. Tumor therapy with heavy charged particles

    NASA Astrophysics Data System (ADS)

    Blattmann, Hans

    1999-11-01

    Nuclear science has contributed significantly to the development of tumor therapy with heavy charged particles. Interest evolved for neutron therapies in the forties because of the increased radiobiological effectiveness (RBE) compared to photon irradiation. The development of more powerful proton and heavy ion accelerators with higher energies or higher intensities, made new particles for radiation therapy available. Pions, protons, light ions, from helium up to silicon were studied in view of precision dose delivery and increased RBE. Without the parallel development of new diagnostic techniques such as computer tomography (CT) and positron emission tomography (PET) the rapid development would not have been possible. Heavy-charged particle therapy has now come into a consolidation phase. Hospital-based facilities are built by industry, and research institutes focus on refinements in dose delivery and treatment planning, as well as systems for monitoring dose delivery and for dose distribution verification.

  16. Coaxial charged particle energy analyzer

    NASA Technical Reports Server (NTRS)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  17. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.

    1993-01-01

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  18. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  19. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  20. Searches for Fractionally Charged Particles

    SciTech Connect

    Perl, Martin L.; Lee, Eric R.; Loomba, Dinesh; /New Mexico U.

    2012-04-12

    Since the initial measurements of the electron charge were made a century ago, experimenters have faced the persistent question of the existence of elementary particles with charges that are fractional multiples of the electron charge. In this review, we discuss the results of recent searches for these fractionally charged particles.

  1. Apparatus for irradiation with charged particle beams

    SciTech Connect

    Tamura, H.; Ishitani, T.; Shimase, A.

    1984-10-23

    An apparatus according to the present invention for irradiating a specimen with charged particle beams comprises a single charged particle generating source from which the charged particle beams formed of electrons and negative ions, respectively, can be simultaneously derived; a specimen holder on which the specimen is placed; and charged particle irradiation means which is interposed between the charged particle generating source and the specimen holder in order to focus the charged particle beams and to irradiate the surface of the specimen with the focused beams, and which includes at least one magnetic lens and at least one electrostatic lens that are individually disposed.

  2. Electrodynamics of massless charged particles

    SciTech Connect

    Lechner, Kurt

    2015-02-15

    We derive the classical dynamics of massless charged particles in a rigorous way from first principles. Since due to ultraviolet divergences this dynamics does not follow from an action principle, we rely on (a) Maxwell’s equations, (b) Lorentz- and reparameterization-invariance, and (c) local conservation of energy and momentum. Despite the presence of pronounced singularities of the electromagnetic field along Dirac-like strings, we give a constructive proof of the existence of a unique distribution-valued energy-momentum tensor. Its conservation requires the particles to obey standard Lorentz equations and they experience, hence, no radiation reaction. Correspondingly, the dynamics of interacting classical massless charged particles can be consistently defined, although they do not emit bremsstrahlung end experience no self-interaction.

  3. Characterization of a neutron-beta counting system with beta-delayed neutron emitters

    NASA Astrophysics Data System (ADS)

    Agramunt, J.; Tain, J. L.; Gómez-Hornillos, M. B.; Garcia, A. R.; Albiol, F.; Algora, A.; Caballero-Folch, R.; Calviño, F.; Cano-Ott, D.; Cortés, G.; Domingo-Pardo, C.; Eronen, T.; Gelletly, W.; Gorelov, D.; Gorlychev, V.; Hakala, H.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kolhinen, V.; Kucuk, L.; Martinez, T.; Mason, P. J. R.; Moore, I.; Penttilä, H.; Podolyák, Zs.; Pretel, C.; Reponen, M.; Riego, A.; Rissanen, J.; Rubio, B.; Saastamoinen, A.; Tarifeño-Saldivia, A.; Valencia, E.

    2016-01-01

    A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accuracy of neutron emission probabilities is discussed. A new accurate value of the neutron emission probability for the important delayed-neutron precursor 137I was obtained, Pn = 7.76(14)%.

  4. Accelerators for charged particle therapy

    NASA Astrophysics Data System (ADS)

    Flanz, Jacob

    2015-04-01

    History has shown that energetic particles can be useful for medical applications. From the time, in 1895 when Roentgen discovered X-rays, and in 1913 when Coolidge developed the vacuum X-ray tube, energetic particles have been an important tool for medicine. Development of the appropriate tool for effective and safe radiotherapy requires an in-depth understanding of the application and constraints. Various solutions are possible and choices must be analyzed on the basis of the suitability for meeting the requirements. Some of the requirements of charged particle therapy are summarized and various accelerator options are described and discussed.

  5. Gated charged-particle trap

    DOEpatents

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  6. Study of Beta-delayed Neutrons near 78Ni using VANDLE

    NASA Astrophysics Data System (ADS)

    Paulauskas, S.; Madurga, M.; Grzywacz, R.; Peters, W.; Vandle Collaboration

    2015-10-01

    As nuclei become more neutron rich, the nuclear structure changes their properties. For example, beta decays will access increasingly more neutron unbound states. The measurement of neutrons emitted from these states is critical, as beta-delayed neutron emission becomes a dominating decay mode. To this end, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) measures the energy of neutrons emitted from excited states above the neutron separation energy populated through beta decay or transfer reactions. The time-of-flight technique determines the energy, which requires a time resolution on the order of 1 ns. In addition, the detector requires a low detection threshold to measure neutron energies of 100 keV or lower. A successful experimental campaign at the Holifield Radioactive Ion Beam Facility, using ions produced via proton induced fission on 238U, has yielded results on beta-delayed neutrons emitted from isotopes near 78Ni. Of particular interest, is the observation of low-energy neutrons emitted from states well above the neutron separation energy. Results from this experiment will be presented. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552 and the Office of Nuclear Physics.

  7. Search for fractionally charged particles

    SciTech Connect

    Lackner, K.S.; Zweig, G.

    1982-01-01

    Quarks, the constituents of hadrons and fermion fields of quantum chromodynamics, have fractional charges -1/3e and 2/3e. All charges are integral multiples of 1/3e and not e, as was previously believed. Therefore it is natural to ask if isolated particles of fractional charge exist, either as an intrinsic part of matter, or as particles that can be produced at high energy accelerators. This question can only be answered by experiment, and remains interesting even if quantum chromodynamics turns out to be an absolutely confining theory of quarks. For example, small deviations from the standard version of quantum chromodynamics, or the incorporation of quantum chromodynamics into a more comprehensive theory, could require the existence of free fractionally charged particles.

  8. Magnetic guidance of charged particles

    NASA Astrophysics Data System (ADS)

    Dubbers, Dirk

    2015-09-01

    Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  9. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  10. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  11. Electrostatic wire stabilizing a charged particle beam

    DOEpatents

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  12. Beta-Delayed Neutron Spectroscopy Using VANDLE at CARIBU

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Kolos, K.; Grzywacz, R.; Paulauskas, S. V.; Madurga, M.; Savard, G.; Brewer, N. T.; Vandle Collaboration

    2015-10-01

    Measurement of spectroscopic information on beta-delayed neutrons of neutron rich fission fragments is of interest to the areas of astrophysics, reactor design, nuclear structure and stockpile stewardship. Using the Time of Flight (TOF) method, the Versatile Array of Neutron Detectors at Low Energy(VANDLE)[1,2,3] measured fission fragments of 252Cf provided by CARIBU at Argonne National Lab. 135,136Sb and 85As isotopes were measured to explore the nuclear structure around doubly magic nuclei 132Sn and 78Ni. A new TOF start detector was developed for this experiment using new Silicon Photo-Multipliers from SensL to allow for a lower beta particle energy detection threshold and better timing resolution compared to previous VANDLE experiments. This work is funded by the U.S. Department of Energy NNSA under the Stewardship Science Academic Alliance program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  13. Means for counteracting charged particle beam divergence

    DOEpatents

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  14. {beta}-delayed proton decays near the proton drip line

    SciTech Connect

    Xu, S.-W.; Li, Z.-K.; Xie, Y.-X.; Pan, Q.-Y.; Huang, W.-X.; Wang, X.-D.; Yu, Y.; Xing, Y.-B.; Shu, N.-C.; Chen, Y.-S.; Xu, F.-R.; Wang, K.

    2005-05-01

    We briefly reviewed and summarized the experimental study on {beta}-delayed proton decays published by our group over the last 8 years, namely the experimental observation of {beta}-delayed proton decays of nine new nuclides in the rare-earth region near the proton drip line and five nuclides in the mass 90 region with N{approx}Z by utilizing the p-{gamma} coincidence technique in combination with a He-jet tape transport system. In addition, important technical details of the experiments were provided. The experimental results were compared to the theoretical predictions of some nuclear models, resulting in the following conclusions. (1) The experimental half-lives for {sup 85}Mo, {sup 92}Rh, as well as the predicted 'waiting point' nuclei {sup 89}Ru and {sup 93}Pd were 5-10 times longer than the macroscopic-microscopic model predictions of Moeller et al. [At. Data Nucl. Data Tables 66,131(1997)]. These data considerably influenced the predictions of the mass abundances of the nuclides produced in the rp process. (2) The experimental assignments of spin and parity for the drip-line nuclei {sup 142}Ho and {sup 128}Pm could not be well predicted by any of the nuclear models. Nevertheless, the configuration-constrained nuclear potential-energy surfaces calculated by means of a Woods-Saxon-Strutinsky method could reproduce the assignments. (3) The ALICE code overestimated by one or two orders of magnitude the production-reaction cross sections of the nine studied rare-earth nuclei, while the HIVAP code overestimated them by approximately one order of magnitude.

  15. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  16. Electronically shielded solid state charged particle detector

    SciTech Connect

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1995-12-31

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  17. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  18. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    SciTech Connect

    Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and

  19. Ferroelectric Devices Emit Charged Particles and Radiation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Felsteiner, Joshua; Karsik, Yakov

    2005-01-01

    Devices called solid-state ferroelectric- based sources (SSFBSs) are under development as sources of electrons, ions, ultraviolet light, and x-rays for diverse applications in characterization and processing of materials. Whereas heretofore it has been necessary to use a different device to generate each of the aforementioned species of charged particles or radiation, a single SSFBS can be configured and operated to selectively generate any of the species as needed using a single source. Relative to comparable prior sources based, variously, on field emission, thermionic emission, and gaseous discharge plasmas, SSFBSs demand less power, and are compact and lightweight. An SSFBS exploits the unique physical characteristics of a ferroelectric material in the presence of a high-frequency pulsed electric field. The basic building block of an SSFBS is a ferroelectric cathode -- a ferroelectric wafer with a solid electrode covering its rear face and a grid electrode on its front face (see figure). The application of a voltage pulse -- typically having amplitude of several kilovolts and duration of several nanoseconds -- causes dense surface plasma to form near the grid wires on the front surface.

  20. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  1. Quenching gas for detectors of charged particles

    DOEpatents

    Atac, M.

    1974-01-22

    Operation of detectors of charged particles such as wire counters and Geiger-Muller tubes is improved by filling the counters with a quenching-gas mixture of argon, isobutane and methylchloroform. (Official Gazette)

  2. Charged particle periodicity in the Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Carbary, J. F.; Krimigis, S. M.

    1982-01-01

    The present investigation is concerned with the first definitive evidence for charged particle modulations near the magnetic rotation period at Saturn. This periodicity is apparent in the ratios (and spectra) of low energy charged particles in the Saturnian magnetosphere. Most of the data presented were taken during the Voyager 2 outbound portion of the Saturn encounter. During this time the spacecraft was at high latitudes (approximately 30 deg) in the southern hemisphere of the Saturnian magnetosphere. The probe's trajectory was approximately along the dawn meridian at an essentially constant local time. The observation that the charged particle modulation is consistent with the Saturn Kilometric Radiation (SKR) period provides a basic input for the resolution of a puzzle which has existed ever since the discovery of the SKR modulation. The charged particle periodicity identified suggests that a basic asymmetry must exist in the Saturnian magnetosphere.

  3. Quantum and classical dissipation of charged particles

    SciTech Connect

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  4. Charged particle dynamics in turbulent current sheets

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Vainchtein, D. L.; Neishtadt, A. I.; Zelenyi, L. M.

    2016-05-01

    We study dynamics of charged particle in current sheets with magnetic fluctuations. We use the adiabatic theory to describe the nonperturbed charged particle motion and show that magnetic field fluctuations destroy the adiabatic invariant. We demonstrate that the evolution of particle adiabatic invariant's distribution is described by a diffusion equation and derive analytical estimates of the rate of adiabatic invariant's diffusion. This rate is proportional to power density of magnetic field fluctuations. We compare analytical estimates with numerical simulations. We show that adiabatic invariant diffusion results in transient particles trapping in the current sheet. For magnetic field fluctuation amplitude a few times larger than a normal magnetic field component, more than 50% of transient particles become trapped. We discuss the possible consequences of destruction of adiabaticity of the charged particle motion on the state of the current sheets.

  5. Measurements of double-differential cross sections of charged-particle emission reactions for several structural elements of fusion power reactors by 14.1-MeV incident neutrons

    SciTech Connect

    Kokooo; Murata, Isao; Takahashi, Akito

    1999-05-01

    A two-dimensional energy and time-of-flight charged-particle spectrometer has been developed and used to measure the double-differential cross-section (DDX) data of (n,xp) and (n,x{alpha}) reactions for several elements with 14.1-MeV incident neutrons at OKTAVIAN, the Intense 14-MeV Neutron Source Facility of Osaka University. The DDX data of the {sup 51}V(n, xp), {sup 51}V(n, x{alpha}), {sup nat}Fe(n, xp), {sup nat}Fe(n,x{alpha}), {sup 59}Co(n, xp), {sup 59}Co(n, x{alpha}), {sup nat}Ni(n, x{alpha}), {sup nat}Cu(n, x{alpha}), {sup 93}Nb(n, xp), {sup 93}Nb(n, x{alpha}), and {sup nat}Mo(n, xp) reactions are measured. The angle-integrated energy differential cross-section (EDX) data were deduced from the measured DDX data and compared with other experimental results [except for the {sup 59}Co(n, xp) reaction] and evaluated nuclear data of JENDL fusion file (JENDL-FF). A comparison was also done with the ENDF/B-VI for the total reaction cross sections of all measured reactions except for the {sup nat}Mo(n, xp) reaction and the EDX of the {sup nat}Ni(n, x{alpha}) and {sup nat}Cu(n, x{alpha}) reactions. The theoretical calculations were done by using the SINCROS-II code. The measured data agreed fairly well with other data for almost all the reactions. the JENDL-FF and SINCROS-II data underestimate the measured EDX data for the reactions of {sup 93}Nb(n, x{alpha}) and {sup nat}Mo(n, xp). For the {sup nat}Fe(n, xp), {sup nat}Fe(n, x{alpha}), {sup 59}Co(n, x{alpha}), and {sup nat}Ni(n, x{alpha}) reactions, smaller data are given than other data, i.e., other experimental data, JENDL-FF, and ENDF/B-VI. The SINCROS-II code can reproduce well for both the proton and alpha-particle emission cross-section values.

  6. The charged particle radiation environment for AXAF

    NASA Technical Reports Server (NTRS)

    Joy, Marshall

    1990-01-01

    The Advanced X Ray Astrophysics Facility (AXAF) will be subjected to several sources of charged particle radiation during its 15-year orbital lifetime: geomagnetically-trapped electrons and protons, galactic cosmic ray particles, and solar flare events. These radiation levels are presented for the AXAF orbit for use in the design of the observatory's science instruments.

  7. Studying Charged Particle Optics: An Undergraduate Course

    ERIC Educational Resources Information Center

    Ovalle, V.; Otomar, D. R.; Pereira, J. M.; Ferreira, N.; Pinho, R. R.; Santos A. C. F.

    2008-01-01

    This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal…

  8. Charged particle radiation environment for the LST. [measuring charged particle dose rates

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Burrell, M. O.; Wright, J. J.

    1974-01-01

    Preliminary charged particle dose rates are presented for the LST orbit. The trapped proton component appears to dominate the total dose for the expected shielding available. Typical dose rates should range from 400 to 800 millirads/day.

  9. Charged particle concepts for fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Collins, F. G.; Koepf, D.

    1981-01-01

    Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.

  10. Charged Particle lunar Environment Experiment (CPLEE)

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1974-01-01

    Research development in the Charged Particle Lunar Environment Experiment (CPLEE) is reported. The CPLEE is ion-electron spectrometer placed on the lunar surface for the purpose of measuring charged particle fluxes impacting the moon from a variety of regions and to study the interactions between space plasmas and the lunar surface. The principal accomplishments reported include: (1) furnishing design specifications for construction of the CPLEE instruments; (2) development of an advanced computer-controlled facility for automated instrument calibration; (3) active participation in the deployment and past-deployment operational phases with regard to data verification and operational mode selection; and (4) publication of research papers, including a study of lunar photoelectrons, a study of plasmas resulting from man-made lunar impart events, a study of magnetotail and magnetosheath particle populations, and a study of solar-flare interplanetary particles.

  11. Charged Particle Therapy for Hepatocellular Carcinoma

    PubMed Central

    Skinner, Heath D.; Hong, Theodore S.; Krishnan, Sunil

    2011-01-01

    Historically, the use of external beam radiotherapy for hepatocellular carcinoma (HCC) has been limited by toxicity to the uninvolved liver and surrounding structures. Advances in photon radiotherapy have improved dose conformality to the tumor and facilitated dose escalation, a key contributor to improved HCC radiation treatment outcomes. However, despite these advances in photon radiotherapy, significant volumes of liver still receive low doses of radiation that can preclude dose escalation, particularly in patients with limited functional liver reserves. By capitalizing on the lack of exit dose along the beam path beyond the tumor and higher biological effectiveness, charged particle therapy offers the promise of maximizing tumor control via dose escalation without excessive liver toxicity. In this review we discuss the distinctive biophysical attributes of both proton and carbon ion radiotherapy, particularly as they pertain to treatment of HCC. We also review the available literature regarding clinical outcomes and toxicity of using charged particles for the treatment of HCC. PMID:21939857

  12. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  13. Method and apparatus for charged particle propagation

    DOEpatents

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  14. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  15. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  16. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  17. Charged particles in curved space-time

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, K.; Jalili, O.

    2016-03-01

    Considering the dynamics of geometry and the matter fields, dynamical equations of geometry and the matter fields are re-derived. The solutions of these equations are studied. We focus on a charged particle and explain the axiomatic approach to drive the electromagnetic self-force on its motion, then the energy conservation is considered. A new mathematical concept, which is introduced in axiomatic approach in general, is discussed.

  18. Visualization of charged particle traversals in cells

    SciTech Connect

    Metting, N.F.; Braby, L.A.

    1997-12-31

    This research addresses the early events that occur in the cell, and particularly in the cell nucleus, after passage of a charged particle. The authors present an assay system which locates the path of a charged particle through the cell nucleus, and speculate that this will be a valuable tool to define a start point for cell signaling of DNA repair processes, as well as signaling of cell-cycle checkpoint proteins. This study of the biological effects of low doses of high LET particles stems from the need to understand molecular mechanisms of long term health effects originating from the heavy particle component of galactic cosmic rays, a major concern in extended space missions. In the deep-space environment each target cell would be traversed only once a month, on average, by a heavy charged particle (1); therefore it was important to use very low particle fluences for subsequent analysis and understanding of resulting measurements. The Single-Cell/Single-particle Irradiator at PNNL was used to deliver particles from an electrostatic accelerator, and thus eliminate most of the experimental variability in the exposure of cells to high LET radiation. The number of tracks through each cell can be specified, rather than the random number obtained with conventional irradiation. Irradiation can be limited to a specified portion of the cell, and the variation in stopping power of the particles as they enter the cell can be minimized.

  19. Soviet research on crystal channeling of charged particle beams

    NASA Astrophysics Data System (ADS)

    Kassel, S.

    1985-03-01

    This report presents an overview of Soviet research in charged particle beam channeling in crystals from 1972 to the present, and the resulting electromagnetic emission, including Soviet proposals for channeling emission lasers in the X-ray region of the spectrum. It analyzes Soviet attitudes toward crystal channeling of charged particles as a subject of research, describes performers of the research, and indicates the level of effort involved. It presents a brief history of crystal channeling research, the differences between channeling and other kinds of electromagnetic radiation, the definition of the main research issues, and estimates of the potential capabilities of channeling radiation, all based on the Soviet viewpoint. It then describes Soviet proposals for laser systems utilizing the channeling radiation mechanism, and analyzes Soviet experimental work involving the observation and measurement of channeling radiation. The author concludes that the outstanding feature of Soviet research in this area is the optimistic belief of Soviet specialists in the technological potential of this research, but finds that the role of the laser proposals in Soviet planning is ambiguous.

  20. Neutron Decay Array for beta-delayed neutron Decay Studies

    NASA Astrophysics Data System (ADS)

    Lorusso, Giuseppe; Pereira, J.; Hosmer, P.; Kern, L.; Kratz, K.; Montes, F.; Reeder, P.; Santi, P.; Schatz, H.; Schertz, F.; Wör, A.

    The Neutron Emission Ratio Observer (NERO), has been constructed for use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System BCS [1] in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  1. Position Sensitive Detection System for Charged Particles

    SciTech Connect

    Coello, E. A.; Favela, F.; Curiel, Q.; Chavez, E; Huerta, A.; Varela, A.; Shapira, Dan

    2012-01-01

    The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm3 scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.

  2. Radiation from moving charged particles with spin

    SciTech Connect

    Luccio, A.

    1992-10-05

    The theory of radiation emitted by a charged particle with spin in relativistic motion in an external magnetic field is reviewed. Approximate expressions suitable numerical computation, in far and near field, are derived. In particular, the case of the passage of a particle accelerator beam through an undulator is considered. It is shown that observation of the spectrum of the emitted radiation, in its two states of polarization, can be used not only for beam diagnostics, but also to measure the spin state of the accelerated particles. Undulator radiation is compared with Compton scattering of laser light by the particle beam. Examples for high energy electron and proton colliders are presented.

  3. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  4. Charged particle beam current monitoring tutorial

    SciTech Connect

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  5. Born expansions for charged particle scattering

    SciTech Connect

    Macek, J.H. Oak Ridge National Lab., TN ); Barrachina, R.O. . Centro Atomico Bariloche)

    1989-01-01

    High-order terms in Born expansions of scattering amplitudes in powers of charge are frequently divergent when long-range Coulomb interactions are present asymptotically. Expansions which are free from these logarithmic divergences have been constructed recently. We illustrate these expansions with the simplest example, namely the non-relativistic Rutherford scattering of two charged particles. This approach represents an adequate framework for the calculation of transition amplitudes and a comprehensive starting point for the development of consistent perturbation approximations in multi-channel descriptions of strongly interacting atomic systems. 17 refs.

  6. Microsparks Generated by Charged Particles in Dielectric Liquids

    NASA Astrophysics Data System (ADS)

    Geiger, Robert

    2012-10-01

    The electrodynamics of charged particles in dielectric liquids have been described by several authors [1,2]. As a charged particle approaches an electrode of opposite charge the local electric field eventually exceeds the dielectric strength of the liquid and a microspark is generated. These plasmas can be very small, about < 5 μm, and may exhibit non-thermal behavior. Such non-thermal behavior can provide interesting and efficient chemical reactions [3]. An understanding of the plasma properties for this type of discharge can provide a simple means of generating non-thermal plasmas in dielectric liquids, such as oils or other hydrocarbons, which can be used to chemically process the liquids. Such a technology may lead to a highly efficient method of heavy oil upgrading which can be easily scaled. In order to understand the plasma properties optical emission spectroscopy is carried out for various hydrocarbons and voltage-current characteristics are used to determine the energy cost for this process. [4pt] [1] Melcher, James R. Continuum Electromechanics. Cambridge, MA: MIT Press, 1981.[0pt] [2] Jones, Thomas B. Electromechanics of Particles. Cambridge University Press 1995.[0pt] [3] Staack, D., Fridman, A., Gutsol, A., Gogotsi, Y. and Friedman, G. 2008, Angew. Chem., Int. Ed. 47, 8020.

  7. Charged particle optics without detailed field maps

    NASA Astrophysics Data System (ADS)

    Carey, David C.

    1993-12-01

    For the initial design of a beam line or charged particle optical system, it is both useful and convenient to be able to describe the components in terms of a small number of parameters. These parameters are used in a calculation of a transfer map which represents the effect of the beam line on a particle trajectory. The transfer map is often expressed as some kind of series expansion. A calculation to first order requires the smallest number of descriptive parameters. Extension of the calculation to higher orders requires a greater number of parameters. From our mathematical backgrounds we have come to have certain expectations as to the characteristics of a series expansion. These expectations may not always be commensurate with the physics of charged particle beam lines. The reconciliation of these expectations will be discussed. The example used will be the program TRANSPORT and its extension to third order. The third-order expansion may represent the inherent limit of the series representation without numerical integration. We shall explain why we may have reached that limit.

  8. Search milli-charged particles at SLAC

    SciTech Connect

    Langeveld, W.G.J.

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  9. Method and apparatus for charged particle propagation

    DOEpatents

    Hershcovitch, Ady

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.

  10. Measurement of the spectra of doubly charged particles emitted in bombardment of lead nuclei by. cap alpha. particles with energy 3. 6 GeV/nucleon

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Vinogradov, A.A.; Grigor'yan, Y.I.; Dukhanov, V.I.; Ippolitov, M.S.; Karadzhev, K.V.; Lebedev, A.L.; Man'ko, V.I.; Nikolaev, S.A.; Polunin, Y.P.; Tsvetkov, A.A.

    1983-12-01

    We have measured the spectra of double charged particles emitted in interaction of 3.6 GeV/nucleon ..cap alpha.. particles with lead nuclei. Spectra were measured at emission angles from 10 to 95/sup 0/ in the range of secondary-particle velocities 0.37<..beta..<0.55. Angular distributions were obtained, the total cross section for emission of doubly charged particles was evaluated, and the ratios of the contributions of doubly and singly charged particles were determined. The rapidity distributions of the invariant cross sections for production of doubly charged particles reveal maxima at a rapidity yroughly-equal0.15--0.20.

  11. Beta-Delayed Neutron Spectroscopy with Trapped Fission Products

    NASA Astrophysics Data System (ADS)

    Czeszumska, A.; Scielzo, N. D.; Norman, E. B.; Savard, G.; Aprahamian, A.; Burkey, M.; Caldwell, S. A.; Chiara, C. J.; Clark, J. A.; Harker, J.; Marley, S. T.; Morgan, G.; Orford, R.; Padgett, S.; Perez Galvan, A.; Segel, R. E.; Sharma, K. S.; Siegl, K.; Strauss, S.; Yee, R. M.

    2014-09-01

    Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. This work was supported under contracts DE-NA0000979 (NSSC), DE-AC52-07NA27344 (LLNL), DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (U. Maryland), DE-FG02-98ER41086 (Northwestern U.), NSERC, Canada, under Application No. 216974, and DHS.

  12. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  13. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  14. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  15. Neutrons and charged particles in radiotherapy. Oncology overview

    SciTech Connect

    Not Available

    1984-10-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Neutrons and charged particles in radiotherapy of head and neck cancer; Neutrons and charged particles in radiotherapy of central nervous system cancer; Neutrons and charged particles in radiotherapy of digestive cancer; Neutrons and charged particles in radiotherapy of gynecologic cancer; Neutrons and charged particles in radiotherapy of musculoskeletal cancer; Neutrons and charged particles in radiotherapy of other organ site cancer; Neutrons and charged particles in radiotherapy of multiple site cancer; Neutrons and charged particles in radiotherapy--relative biological effectiveness; Neutrons and charged particles in radiotherapy--instrumentation and technology; Neutrons and charged particles in radiotherapy--reviews.

  16. Olivines: revelation of tracks of charged particles.

    PubMed

    Krishnaswami, S; Lal, D; Prabhu, N; Tamhane, A S

    1971-10-15

    A one-step, three-component aqueous etchant was developed for revealing the tracks of charged particles in olivine. The etchant reveals tracks of small cone angle, which are equally well developed in all the crystallographic directions. The scope of fossil cosmic-ray track studies in extraterrestrial samples has thus been increased, because olivine is often an abundant constituent and because it has a higher threshold ionization for track registration and has lower uranium, thorium, and trace element concentrations as compared with pyroxenes and feldspars. The etchant does not attack any of the principal rock-forming minerals in normal etching time, which allows a nondestructive study of fossil tracks in thin-section mounts. The study of fossil cosmic-ray tracks in olivine is particularly valuable for investigations of very, very heavy cosmic-ray nuclei and for highly irradiated samples such as those found in the lunar regolith. PMID:17778062

  17. Charged particle radiation exposure of geocentric satellites

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1989-01-01

    The near-earth radiation environment is characterized, summarizing published data on trapped and transient charged particles and their potential effects on hardware systems and the crews of manned missions. Topics examined include the role of the magnetosphere, the five radiation domains, cyclic and sporadic variations in the radiation environment, the potential effect of a high-altitude nuclear explosion, NASA empirical models for predicting trapped proton and electron fluxes, and the South Atlantic anomaly and the estimation of flux-free periods. Consideration is given to solar cosmic rays and heavy ions, Galactic cosmic rays, geomagnetic shielding, secondary radiation, the design of shielding systems, variables affecting dose evaluations, and ionizing-radiation doses. Extensive diagrams, graphs, and tables of numerical data are provided.

  18. (Interaction of charged particles with matter)

    SciTech Connect

    Crawford, O.H.

    1990-12-05

    This report covers the activity of the traveler participating in a workshop entitled The 13th Werner Brandt Workshop on the Interaction of Charged Particles with Solids and conducting collaborative research with two physicists at Tokyo University. The Werner Brandt Workshops are organized by members of the traveler's group, led by Dr. R. H. Ritchie, with advice from an international committee. The traveler participated in planning for the next in the series of workshops, which will be held in or near the traveler's home base. Oak Ridge, Tennessee, in early 1992. He interacted with scientists from Japan, Spain, USSR, Israel, and other countries, initiated plans for a new collaboration with a Japanese scientist, and renewed existing collaborations, At Tokyo University, the traveler performed collaborative research with Professors Y. Yamazaki and K. Komaki on two topics of importance to the traveler's programs with the Department of Energy (DOE).

  19. Radiation reaction for a massless charged particle

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.; Sharapov, A. A.

    2003-07-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  20. Lateral distribution on charged particles in EAS

    NASA Technical Reports Server (NTRS)

    Dedenko, L. G.; Sulakov, V. F.; Kulikov, G. V.; Solovjeva, V. I.

    1985-01-01

    Lateral distribution of charged particles which allow for the finiteness of energy gamma-quanta, the inhomogeneity of the atmosphere and the experimental selection of EAS are needed to interpret experimental data. The effects of finiteness of energy of gamma-quanta which produce the partial electron-photon cascades were considered by substituting K R sub m instead of R sub m in NKG approximation where K was found to be 0.56 from comparison with the experimental data. New results on the lateral distribution of electrons in the partial cascades from gamma-quanta were obtained. It is shown that the coefficient K can be regarded as a constant. The last approximation of K was found to be most adequate when compared with the experimental data. The inhomogeneity of the atmosphere, muons and experimental selection are considered. The calculation of Ne are extended from 100,000 to 10 million for sea level and for Akeno level.

  1. Spallation nucleosynthesis by accelerated charged-particles

    SciTech Connect

    Goriely, S.

    2008-05-12

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84{<=}Z{<=}99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38charged-particles, mainly protons and {alpha}-particles, that in turn can by interaction with the stellar material modify the surface content.The present contribution explores to what extent the spallation processes resulting from the interaction of the stellar material with stellar energetic particle can by themselves only explain the abundances determined by observation at the surface of HD101065. We show that specific parametric simulations can explain many different observational aspects, and in particular that a significant production of Z>30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements.

  2. Physical sputtering of metallic systems by charged-particle impact

    SciTech Connect

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  3. Development of a WDM platform for charged-particle stopping experiments

    SciTech Connect

    Zylstra, A. B.; Frenje, J. A.; Grabowski, P. E.; Li, C. K.; Collins, G. W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S. B.; Hu, S. X.; Johnson, M. Gatu; Keiter, P.; Reynolds, H.; Rygg, J. R.; Seguin, F. H.; Petrasso, R. D.

    2016-01-01

    A platform has been developed for generating large and relatively quiescent plasmas in the warm-dense matter (WDM) regime on the OMEGA laser facility. A cylindrical geometry is used to allow charged-particle probing along the axis. The plasma heating is radiative by L-shell emission generated on the outside of the cylinder. The cylinder drive is characterized with x-ray diagnostics. Possibilities for direct characterization of the plasma temperature are discussed. Lastly, the unimportance of electromagnetic fields around the target is demonstrated with proton radiography. We expect this platform to be used extensively in future experiments studying charged-particle stopping in this regime.

  4. Development of a WDM platform for charged-particle stopping experiments

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Grabowski, P. E.; Li, C. K.; Collins, G. W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S. B.; Hu, S. X.; Gatu Johnson, M.; Keiter, P.; Reynolds, H.; Rygg, J. R.; Séguin, F. H.; Petrasso, R. D.

    2016-05-01

    A platform has been developed for generating large and relatively quiescent plasmas in the warm-dense matter (WDM) regime on the OMEGA laser facility. A cylindrical geometry is used to allow charged-particle probing along the axis. The plasma heating is radiative by L-shell emission generated on the outside of the cylinder. The cylinder drive is characterized with x-ray diagnostics. Possibilities for direct characterization of the plasma temperature are discussed. Finally, the unimportance of electromagnetic fields around the target is demonstrated with proton radiography. We expect this platform to be used extensively in future experiments studying charged-particle stopping in this regime.

  5. Boundary effects of electromagnetic vacuum fluctuations on charged particles

    SciTech Connect

    Hsiang, J.-T.; Wu, T.-H.; Leet, D.-S.

    2008-10-10

    The nature of electromagnetic vacuum fluctuations in the presence of the boundary is investigated from their effects on the dynamics of charged particles. These effects may be observable via the velocity fluctuations of the charge particles near the conducting plate, where the effects of vacuum fluctuations are found to be anisotrpoic. The corresponding stochastic equation of motion for the charged particle is also derived under the semiclassical approximation.

  6. Electrostatic wire for stabilizing a charged particle beam

    DOEpatents

    Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  7. Experimental study of the beta-delayed proton decays of {sup 145,147}Er

    SciTech Connect

    Ma, F.; Zhou, X. H.; Zheng, Y.; Xu, S. W.; Xie, Y. X.; Chen, L.; Lei, X. G.; Guo, Y. X.; Zhang, Y. H.; Li, Z. K.; Qiang, Y. H.; Guo, S.; Wang, H. X.; Zhou, H. B.; Ding, B.; Li, G. S.; Zhang, N. T.

    2010-04-15

    The beta-delayed proton decays of {sup 145,147}Er have been studied experimentally using the {sup 58}Ni+{sup 92}Mo reaction at beam energy of 383 MeV. On the basis of a He-jet apparatus coupled with a tape transport system, the beta-delayed proton radioactivities both from the nus{sub 1/2} ground state and the nuh{sub 11/2} isomer in {sup 145,147}Er were observed by proton-gamma coincidence measurements. By analyzing the time distributions of the 4{sup +}->2{sup +}gamma transitions in the granddaughter nuclei {sup 144,146}Dy, the half-lives of 1.0+-0.3 s and 1.6+-0.2 s have been deduced for the nuh{sub 11/2} isomers in {sup 145,147}Er, respectively.

  8. A detection system for very low-energy protons from {beta}-delayed proton decay

    SciTech Connect

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M.

    2012-11-20

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from {beta}-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the {beta}-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to {approx}80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  9. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  10. Beta-delayed proton activities: /sup 147/Dy and /sup 149/Er

    SciTech Connect

    Toth, K.S.; Moltz, D.M.; Schloemer, E.C.; Cable, M.D.; Avignone, F.T. III; Ellis-Akovali, Y.A.

    1984-01-01

    The present paper discusses mainly the ..beta..-delayed proton spectra of /sup 147/Dy and of the hitherto unknown isotope, /sup 149/Er. However, following the submittal of the abstract for this conference we have now observed delayed protons following the decay of /sup 145/Dy. Additionally, we have identified a 0.5-s delayed-proton emitter and tentatively assign it to the new isotope, /sup 151/Yb.

  11. DNA fragmentation by charged particle tracks

    NASA Astrophysics Data System (ADS)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  12. Energetic Charged Particle Injections at Saturn

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.; Mauk, B. H.; Brandt, P. C.; Carbary, J. F.; Rymer, A. M.

    2008-12-01

    The Cassini spacecraft has been in Saturn orbit for over 4 years. The Magnetospheric Imaging Instrument (MIMI) is a charged and neutral particle instrument with three separate sensors. On every perigee pass to date, data taken by MIMI reveal the presence of very recent and/or older charged particle injections. For our purposes, injections are spatially confined populations whose fluxes are recognizably greater than the fluxes of the ambient population. These populations are transient in nature and our previous work and the work of others has shown that they evolve essentially through the usual corotation and gradient-curvature drifts. However, it is not completely understood whether all of the injections observed by MIMI, in the few keV to MeV energy range, are associated with the same physical mechanism. Injections can, in principle, be caused by local accelerations of a fraction of the denser, lower energy particles. On the other hand, injections may also be associated with processes that transport particles radially, such as in magnetospheric flux tube interchange or large scale magnetospheric reconfigurations. In this paper, we will present a survey of the data set, an organization of the injections by their properties, and some hypotheses about how these properties reveal information about the underlying physical generation mechanisms.

  13. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  14. Peculiarities of propagation of charged particles in solar corona

    NASA Technical Reports Server (NTRS)

    Pisarenko, N. F.; Mikryukova, N. A.; Shafer, Y. G.; Morozova, E. I.; Klimenko, V. V.; Timofeev, V. E.

    1985-01-01

    The influence of boundaries of the large scale unipolar magnetic regions (UMR) on the Sun upon the charged particle propagation in the solar corona and interplanetary space is investigated. Increases of the charged particle fluxes from solar flares on November 4 and 20, 1978 detected by Venera-11 and Prognoz-1 and on December 7, 1982 by Venera-13 and "GMS-2" were analyzed.

  15. Determination of time zero from a charged particle detector

    DOEpatents

    Green, Jesse Andrew

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  16. Characterization and separation of charged particles

    SciTech Connect

    Mukherjee, A.

    1987-01-01

    An investigation into the removal of electrically charged particles by using an electric field was carried out in both liquid and gaseous media. The systems studied in liquid media were clay particles suspended in synthetic fuels such as tar sand extracts and shale oils, whereas in gaseous media, the electrostatic removal of pyrites from coal was the objective. For proper design of separation equipment the charge of the particles was characterized as a function of the system variables. For the systems studied in the liquid media, the charge of the particles arises due to the adsorption of asphaltenes present in the synthetic fuel. The magnitude of the charge is strongly dependent on the amount of adsorbed asphaltenes. Small quantities of water have a drastic effect on the charge of the particles. As a result of the particle charge, a crossflow electrofilter can be used to completely remove these particles from the synthetic fuels. In gaseous media, the particles get charged by triboelectrification. The charge of pyrites and coal was measured in a continuous recirculating pneumatic conveyor using a ball probe as well as a Faraday cage. The charge of both coal and pyrites depends on the solid velocity, humidity, particle size, solids concentration, and surface oxidation. In most cases there is a sufficient charge difference between coal and pyrites to provide a driving force for electrostatic separation. Based on the charge difference a novel electrostatic separator was constructed. An improvement in the separator was made using a hydrodynamic model for two phase flow. Good agreement between the predictions of the model and experimental results were obtained.

  17. Charged particle acceleration in nonuniform plasmas

    SciTech Connect

    Bulanov, S.V.; Naumova, N.M.; Dudnikova, G.I.; Vshivkov, V.A.; Pegoraro, F.; Pogorelsky, I.V.

    1996-11-01

    The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a {much_gt} 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order {lambda}{sub p}. The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations.

  18. Guiding of charged particles through capillaries in insulating materials

    NASA Astrophysics Data System (ADS)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  19. Quantum interface to charged particles in a vacuum

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroshi

    2015-11-01

    A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [Okamoto and Nagatani, Appl. Phys. Lett. 104, 062604 (2014), 10.1063/1.4865244]. Either a clockwise or counterclockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the device's properties, sources of errors, and possible applications are studied in detail. In particular, applications include detection of a charged particle essentially without applying a classical force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.

  20. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    SciTech Connect

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  1. Proton-Induced X-ray Emission (PIXE) from the Galilean Satellites: Modeling charged-particle interactions on the satellite surfaces and the prospect for direct measurement of the elemental compositions

    NASA Astrophysics Data System (ADS)

    Kraft, R.; Nulsen, S.; Germain, G.; Kenter, A.

    2015-12-01

    Energetic particles in the Jovian magnetosphere impact the surface of the Galilean moons andgenerate characteristic X-ray lines from the elemental constituents due to the proton-inducedX-ray emission (PIXE) process. The X-ray spectra of these satellites provide direct measurementsof their elemental surface compositions. Chandra X-ray Observatory (CXO) observationsof Jupiter detected oxygen emission from Io and Europa (Elsner et al. 2005). We presentcalculations of the expected PIXE from each of the Galilean satellites for various models oftheir surface constituents. We discuss the viability of detecting emission lines fromelements other than oxygen with deep observations from the current generation of Earth-orbiting X-ray observatories,and describe the implications to our understanding of the surface processes from suchdetections. Finally, we outline the potential discovery space for a dedicated X-ray imagingspectrometer flown on a mission to the Jovian system.

  2. Charged particle beam scanning using deformed high gradient insulator

    SciTech Connect

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  3. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  4. Multipole radiation in charged-particle scattering

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1990-01-01

    This paper formulates the general problem of photon emission in particle scattering using a classical and quantum mechanical approach. The connection between the classical short collision time (SCT) and Born results is examined for various special classifications of problems. In the dipole case the two formulations yield results that can be expressed in the same form and for arbitrary scattering potential. For quadrupole emission the SCT and Born results are the same only for a short-range potential, however. The quadrupole problem is more sensitive to details in the process because the calculation requires an expansion of the total amplitude for the process to lowest order in the photon wave number or momentum. The special case of photon emission associated with spin-flip transitions during scattering is considered for spin-1/2 particles. Like classical magnetic dipole radiation, there is no infrared divergence feature for this type of emission.

  5. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  6. PIG charged particle source with hydrogen supply from a metal-hydride cathode

    NASA Astrophysics Data System (ADS)

    Borgun, Ie V.; Ryabchikov, D. L.; Sereda, I. N.; Tseluyko, A. F.

    2014-05-01

    We present the results of an experimental investigation of a Penning-type charged-particles source with a metal-hydride cathode. The main characteristic of the experiment is internal hydrogen supply from the metal-hydride cathode under the conditions of ion-stimulated desorption; we studied its influence on the source's emissive characteristics. An additional mode of source operation was observed involving axial electron emission; the decisive effect was revealed of the desorbed hydrogen on the axial electron emission. The ion energy distribution function was measured and its dependence on the external discharge parameters was determined.

  7. 950809 Charged particle transport updated multi-group diffusion

    SciTech Connect

    Corman, E.G.; Perkins, S.T.; Dairiki, N.T.

    1995-09-01

    In 1974, a charged particle transport scheme was introduced which utilized a multi-group diffusion method for the spatial transport and slowing down of energetic ions in a hot plasma. In this treatment a diffusion coefficient was used which was flux-limited to provide, hopefully, some degree of accuracy when the slowing down of an energetic charged particle is dominated by Coulomb collisions with thermal ions and electrons in a plasma medium. An advantage of this method was a very fast, memory-contained program for calculating the behavior of energetic charged particles which resulted in smoothly varying particle number densities and energy depositions. The main limitation of the original multi-group charged particle diffusion scheme is its constraint to a basic ten group structure; the same ten group structure for each of the five energetic ions tracked. This is regarded as a severe limitation, inasmuch as more groups would be desired to simulate more accurately the corresponding Monte Carlo results of energies deposited over spatial zones from a charged particle source. More generally, it seems preferable to have a different group structure for each particle type since they are created at inherently different energies. In this paper, the basic theory and multi-group description will be given. This is followed by the specific techniques that were used to solve the resultant equations. Finally, the modifications that were made to the cross section data as well as the methods used for energy and momentum deposition are described.

  8. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  9. Systems for detecting charged particles in object inspection

    SciTech Connect

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  10. Charged particles on the Earth-Jupiter-Europa spacecraft trajectory

    NASA Astrophysics Data System (ADS)

    Podzolko, M. V.; Getselev, I. V.; Gubar, Yu. I.; Veselovsky, I. S.; Sukhanov, A. A.

    2011-08-01

    Charged particle fluxes on the trajectory of future Russian space research mission to Jupiter and its satellite Europa are investigated. The existing experimental data and models of Jupiter's main magnetic field and radiation belts are summarized. Preliminary results of computations of energetic particle fluxes and radiation doses for each stage of the flight are given. Special attention is paid to estimation of radiation conditions in Europa's orbit and on its surface; influence of the satellite on spatial distribution of the fluxes of charged particles of various energies is studied.

  11. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  12. Magnetospheric vortex formation: self-organized confinement of charged particles.

    PubMed

    Yoshida, Z; Saitoh, H; Morikawa, J; Yano, Y; Watanabe, S; Ogawa, Y

    2010-06-11

    A magnetospheric configuration gives rise to various peculiar plasma phenomena that pose conundrums to astrophysical studies; at the same time, innovative technologies may draw on the rich physics of magnetospheric plasmas. We have created a "laboratory magnetosphere" with a levitating superconducting ring magnet. Here we show that charged particles (electrons) self-organize a stable vortex, in which particles diffuse inward to steepen the density gradient. The rotating electron cloud is sustained for more than 300 s. Because of its simple geometry and self-organization, this system will have wide applications in confining single- and multispecies charged particles. PMID:20867249

  13. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  14. Ion beam enhanced emission of charged particles from hot graphite

    NASA Astrophysics Data System (ADS)

    Lozano, J.; Kessel, Q. C.; Pollack, E.; Smith, W. W.

    2001-07-01

    Thermal desorption spectroscopy of ions from positively biased graphite (grafoil) has been investigated by measuring the energies of the emitted ions with a hemispherical electrostatic analyzer and the masses with a residual gas analyzer under ultra-high vacuum conditions. Potassium is one of the ions emitted at temperatures above 800 °C. The present data show that under near threshold conditions (4V), ions appear with well-defined energies equal approximately to the bias voltage minus 4V. This phenomenon can be greatly enhanced by prior bombardment with an ion beam. It is not clear whether these energies are the result of resonant process on the hot surface or simply due to a process attributable to surface chemistry. At higher biases the peaks broaden in energy and the energy deficit increases.

  15. Electromagnetic field of fractal distribution of charged particles

    SciTech Connect

    Tarasov, Vasily E.

    2005-08-15

    Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous fractal distribution are considered. The electric dipole and quadrupole moments for fractal distribution are derived.

  16. EFFECTS OF CHARGED PARTICLES ON CASCADE IMPACTOR CALIBRATIONS

    EPA Science Inventory

    The report gives results of a determination of collection characteristics for charged and uncharged particles in cascade impactors. Impaction collection efficiency was shown to be as much as 20 percent greater for charged particles than for uncharged particles with certain substr...

  17. Apparatus for Suspension of Charged Particles and Droplets

    ERIC Educational Resources Information Center

    Berg, T. G. Owe

    1969-01-01

    Describes an apparatus designed to study the properties of charged particles suspended in an electric field. The apparatus consists of a suspension chamber, an optical system and power supplies and controls. Experiments conducted include determination of particle size, charge-to-mass ratio and particle collisions and exchange. (LC)

  18. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  19. Nondestructive diagnostics of charged particle beams in accelerators

    NASA Astrophysics Data System (ADS)

    Logachev, P. V.; Meshkov, O. I.; Starostenko, A. A.; Nikiforov, D. A.; Andrianov, A. V.; Maltseva, Yu. I.; Levichev, A. E.; Emanov, F. A.

    2016-03-01

    The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

  20. Diffusion of charged particles in a random magnetic field

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1972-01-01

    When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

  1. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  2. Silicon PIN diode array hybrids for charged particle detection

    SciTech Connect

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab.

  3. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  4. The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Simmons, E.; Trache, L.; Banu, A.; McCleskey, M.; Roeder, B.; Spiridon, A.; Tribble, R. E.; Davinson, T.; Woods, P. J.; Lotay, G. J.; Wallace, J.; Doherty, D.; Saastamoinen, A.

    2013-03-01

    The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the beta-decay of 27P. A clean and abundant source of 27P was produced for the first time and separated with MARS. A new implantation-decay station which allows increased efficiency for low energy protons and for high-energy gamma-rays was used. We measured gamma-rays and beta-delayed protons emitted from states above the proton threshold in the daughter nucleus 27Si to identify and characterize the resonances. The lifetime of 27P was also measured with accuracy under 2%.

  5. Proof-of-principle measurement of beta-delayed neutron precursor 89Br using VANDLE

    NASA Astrophysics Data System (ADS)

    Paulauskas, Stanley; Grzywacz, R.; Madurga, M.; Padgett, S.; Vandle Collaboration

    2011-10-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) uses the time of flight technique to measure the energy of neutrons from various nuclear processes. Beta delayed neutrons from fission fragments typically have an energy below 1 MeV, making measurements of their energy challenging. This has led to the use of a reliable off-the-shelf digital electronics system to instrument VANDLE. However, the timing resolution and neutron-energy threshold of the system required investigation. Timing resolutions better than 1 ns have been obtained. The digital system can be operated with low thresholds to obtain high detection efficiency for low energy neutrons (E >150 keV). A proof-of-principle experiment using 89Br was conducted at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). 89Br is produced in proton induced fission of 238U and was chosen because its neutron energy spectrum has been measured by G. Ewan et al. (Z. Phys. A. 318, 309-314, (1984)). This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Co- operative Agreement No. DE-FG52-08NA28552.

  6. A dedicated ion trap at CARIBU for beta-delayed neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Barbara; Scielzo, N. D.; Norman, E. B.; Savard, G.; Clark, J. A.; Levand, A. F.; Aprahamian, A.; Burkey, M.; Caldwell, S.; Czeszumska, A.; Marley, S. T.; Morgan, G. E.; Nystrom, A.; Orford, R.; Padgett, S. W.; Perez Galvan, A.; Sharma, K. S.; Siegl, K.; Strauss, S.

    2015-10-01

    Trapped radioactive ions suspended in vacuum allow for a new way to perform beta-delayed neutron spectroscopy. Decay branching ratios and energy spectra of the emitted neutrons are inferred from a measurement of the nuclear recoil, thereby circumventing the many limitations associated with direct neutron detection. Plans for the development of a dedicated ion trap for experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory are summarized. The trap design has been guided by experience gained from recent ion-trap experiments measuring 137 - 138 , 140I, 134-136Sb, and 144-145Cs. The improved nuclear data that can be collected are needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship. Supported by NSF under Grant Number PHY-1419765 and by U.S. DOE under the Nuclear Energy University Program Project Number 13-5485, Contract Numbers DE-AC02-06CH11357 (ANL) and DE-AC52-07NA27344 (LLNL), and Award Number DE-NA0000979 (NNSA).

  7. Charged-particle probing of x-ray-driven inertial-fusion implosions.

    PubMed

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M; Petrasso, R D; Amendt, P A; Koch, J A; Landen, O L; Park, H S; Robey, H F; Town, R P J; Casner, A; Philippe, F; Betti, R; Knauer, J P; Meyerhofer, D D; Back, C A; Kilkenny, J D; Nikroo, A

    2010-03-01

    Measurements of x-ray-driven implosions with charged particles have resulted in the quantitative characterization of critical aspects of indirect-drive inertial fusion. Three types of spontaneous electric fields differing in strength by two orders of magnitude, the largest being nearly one-tenth of the Bohr field, were discovered with time-gated proton radiographic imaging and spectrally resolved proton self-emission. The views of the spatial structure and temporal evolution of both the laser drive in a hohlraum and implosion properties provide essential insight into, and modeling validation of, x-ray-driven implosions. PMID:20110464

  8. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  9. Brownian dynamics of charged particles in a constant magnetic field

    SciTech Connect

    Hou, L. J.; Piel, A.; Miskovic, Z. L.; Shukla, P. K.

    2009-05-15

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect, and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions, and, particularly, complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  10. ELECTRO-OPTICAL DETECTION OF CHARGED PARTICLE BEAMS.

    SciTech Connect

    SEMERTZIDIS,Y.K.CASTILLO,V.LARSEN,R.C.LAZARUS,D.M.MAGURNO,B.SRINIVASAN-RAO,T.TSANG,T.USACK,V.,ET AL.

    2003-03-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO{sub 3} crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10 ps bunches of 1 mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45 GHz bandwidth. The fastest rise time measured, 120 ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.

  11. First- and second-order charged particle optics

    SciTech Connect

    Brown, K.L.; Servranckx, R.V.

    1984-07-01

    Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures.

  12. Production of carbon monoxide by charged particle deposition.

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Sawada, T.; Edgar, B. C.; Uman, M. A.

    1973-01-01

    Recent studies of electron energy deposition in CO2 and CO based upon a large set of electron impact cross sections are utilized to estimate the telluric CO directly produced by various charged-particle deposition mechanisms. The mechanisms considered are (1) lightning, (2) cloud coronal discharges, (3) background radioactivity, (4) natural electrostatic discharges, (5) photoelectrons in the ionosphere, (6) auroral electrons, (7) auroral protons, (8) cosmic rays, and (9) solar wind. 'Ball park' estimates of the global CO production by each of these mechanisms are given. Apart from mechanisms 1, 2, and 5, all CO production mechanisms are estimated to be small compared to artificial sources. If, as appears to be the case, the hot oxygen atoms and ions and other atomic species immediately produced by these three charged-particle deposition mechanisms react rapidly with CO2 to produce CO, these mechanisms can readily lead to CO production levels in the multimegaton-per-year range.

  13. Universal behavior of charged particle production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  14. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  15. Paul trapping of charged particles in aqueous solution

    PubMed Central

    Guan, Weihua; Joseph, Sony; Park, Jae Hyun; Krstić, Predrag S.; Reed, Mark A.

    2011-01-01

    We experimentally demonstrate the feasibility of an aqueous Paul trap using a proof-of-principle planar device. Radio frequency voltages are used to generate an alternating focusing/defocusing potential well in two orthogonal directions. Individual charged particles are dynamically confined into nanometer scale in space. Compared with conventional Paul traps working in frictionless vacuum, the aqueous environment associated with damping forces and thermally induced fluctuations (Brownian noise) exerts a fundamental influence on the underlying physics. We investigate the impact of these two effects on the confining dynamics, with the aim to reduce the rms value of the positional fluctuations. We find that the rms fluctuations can be modulated by adjusting the voltages and frequencies. This technique provides an alternative for the localization and control of charged particles in an aqueous environment. PMID:21606331

  16. An update on (n,charged particle) research at WNR

    SciTech Connect

    Haight, R.C.; Bateman, F.B.; Sterbenz, S.M.; Grimes, S.M.; Wasson, O.A.; Maier-Komor, P.; Vonach, H.

    1995-12-31

    Neutron-induced reactions producing light charged particles continue to be investigated at the spallation fast-neutron source at the Los Alamos Neutron Science Center (LANSCE). New data on the cross sections for alpha-particle production for neutrons on {sup 58}Ni and {sup 60}Ni are presented from threshold to 50 MeV. Recent changes in the experiment now allow protons, deuterons, tritons, {sup 3}He and alpha particles to be identified.

  17. Searches for Fractionally Charged Particles: What Should Be Done Next?

    SciTech Connect

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  18. Charged particle detectors made from thin layers of amorphous silicon

    SciTech Connect

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (..cap alpha..-Si:H) as solid state thin film charged particle detectors. /sup 241/Am alphas were successfully detected with ..cap alpha..-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed.

  19. The formation of negatively charged particles in thermoemission plasmas

    SciTech Connect

    Vishnyakov, V. I. Dragan, G. S.; Florko, A. V.

    2008-01-15

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  20. The formation of negatively charged particles in thermoemission plasmas

    NASA Astrophysics Data System (ADS)

    Vishnyakov, V. I.; Dragan, G. S.; Florko, A. V.

    2008-01-01

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  1. Spatiotemporal analysis of DNA repair using charged particle radiation.

    PubMed

    Tobias, F; Durante, M; Taucher-Scholz, G; Jakob, B

    2010-01-01

    Approaches to visualise the dynamics of the DNA lesion processing substantially contributes to the understanding of the hierarchical organisation of the DNA damage response pathways. Charged particle irradiation has recently emerged as a tool to generate discrete sites of subnuclear damage by its means of extremely localised dose deposition at low energies, thus facilitating the spatiotemporal analysis of repair events. In addition, they are of high interest for risk estimations of human space exploration (e.g. mars mission) in the high energy regime (HZE). In this short review we will give examples for the application of charged particle irradiation to study spatiotemporal aspects of DNA damage recognition and repair in the context of recent achievements in this field. Beamline microscopy allows determining the exact kinetics of repair-related proteins after irradiation with different charged particles that induce different lesion densities. The classification into fast recruited proteins like DNA-PK or XRCC1 or slower recruited ones like 53BP1 or MDC1 helps to establish the hierarchical organisation of damage recognition and subsequent repair events. Additionally, motional analysis of DNA lesions induced by traversing particles proved information about the mobility of DSBs. Increased mobility or the absence of large scale motion has direct consequences on the formation of chromosomal translocations and, thus, on mechanisms of cancer formation. Charged particle microbeams offer the interesting perspective of precise nuclear or subnuclear targeting with a defined number of ions, avoiding the Poisson distribution of traversals inherent to broad beam experiments. With the help of the microbeam, geometrical patterns of traversing ions can be applied facilitating the analysis of spatial organisation of repair. PMID:19944777

  2. Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Hill, T. W.; Wolf, R. A.

    1988-01-01

    Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.

  3. Nonlinear dynamics of inhomogeneous mismatched charged particle beams

    SciTech Connect

    Nunes, R. P.; Rizzato, F. B.

    2012-08-13

    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.

  4. Sausage mode of a pinched charged particle beam

    SciTech Connect

    Lee, E.P.

    1981-02-10

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion.

  5. Glass transition of charged particles in two-dimensional confinement.

    PubMed

    Yazdi, Anoosheh; Heinen, Marco; Ivlev, Alexei; Löwen, Hartmut; Sperl, Matthias

    2015-05-01

    The glass transition of mesoscopic charged particles in two-dimensional confinement is studied by mode-coupling theory. We consider two types of effective interactions between the particles, corresponding to two different models for the distribution of surrounding ions that are integrated out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-Hückel (Yukawa)-type effective interaction. The second, experimentally more relevant system is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma current toward the electrode gives rise to an anisotropic effective interaction potential between the particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that covers the typical range of experimentally accessible plasma conditions, we calculate and compare the mode-coupling predictions for the glass transition in both kinds of systems. PMID:26066171

  6. Search for Fractional-Charge Particles in Meteoritic Material

    SciTech Connect

    Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Halyo, Valerie; Loomba, Dinesh

    2007-10-19

    We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5 {mu}m with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth's surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3x10{sup -21} particles per nucleon in the meteoritic material and less than 1.9x10{sup -23} particles per nucleon in the mineral oil.

  7. Determining Charged Particle Flux Direction in MSL/RAD

    NASA Astrophysics Data System (ADS)

    Appel, J. K.; Kohler, J.; Guo, J.; Ehresmann, B.; Zeitlin, C. J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Rafkin, S. C.; Boehm, E.; Böttcher, S. I.; Martin-Garcia, C.; Brinza, D. E.; Weigle, E.; Lohf, H.; Burmeister, S.; Reitz, G.; Matthiae, D.; Posner, A.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Radiation Assessment Detector (RAD) is an instrument onboard the Mars Science Laboratory (MSL) rover Curiosity, currently characterizing the radiation environment on the surface of Mars. The radiation entering the instrument from above consists mostly of Galactic Cosmic Rays (GCRs) modulated by the Martian atmosphere. From below, the instrument is exposed to secondary radiation produced by the interactions of the GCR with the soil. This secondary radiation gets further modulated going through the rover body before entering RAD. We developed a method of determining the direction of the charged particles measured by RAD. This method also extends the energy range possible for measurements with RAD beyond the intruments design limit. Using a combination of GEANT4 and Planetocosmics simulations, we reconstructed the expected charged particle spectra and intensities for upward and downward directed radiation which can be compared with observations. With the developed method, we are able to, for the first time, measure the upward charged particle flux with RAD both during the cruise phase and the surface science phase. Comparing the results of the simulations with the instrument data sets enables us to evaluate the simulation tools used to predict the Martian radiation envronment.

  8. Neutron-Induced Charged Particle Studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  9. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  10. Charged particle LET-spectra measurements aboard LDEF

    NASA Technical Reports Server (NTRS)

    Csige, I.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Benton, E. R.; Parnell, T. A.; Watts, J. W., Jr.

    1992-01-01

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack.

  11. Charged Particle Environment Definition for NGST: Model Development

    NASA Technical Reports Server (NTRS)

    Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.

    2000-01-01

    NGST will operate in a halo orbit about the L2 point, 1.5 million km from the Earth, where the spacecraft will periodically travel through the magnetotail region. There are a number of tools available to calculate the high energy, ionizing radiation particle environment from galactic cosmic rays and from solar disturbances. However, space environment tools are not generally available to provide assessments of charged particle environment and its variations in the solar wind, magnetosheath, and magnetotail at L2 distances. An engineering-level phenomenology code (LRAD) was therefore developed to facilitate the definition of charged particle environments in the vicinity of the L2 point in support of the NGST program. LRAD contains models tied to satellite measurement data of the solar wind and magnetotail regions. The model provides particle flux and fluence calculations necessary to predict spacecraft charging conditions and the degradation of materials used in the construction of NGST. This paper describes the LRAD environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.

  12. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines. PMID:3383341

  13. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  14. Physical interactions of charged particles for radiotherapy and space applications.

    PubMed

    Zeitlin, Cary

    2012-11-01

    In this paper, the basic physics by which energetic charged particles deposit energy in matter is reviewed. Energetic charged particles are used for radiotherapy and are encountered in spaceflight, where they pose a health risk to astronauts. They interact with matter through nuclear and electromagnetic forces. Deposition of energy occurs mostly along the trajectory of the incoming particle, but depending on the type of incident particle and its energy, there is some nonzero probability for energy deposition relatively far from the nominal trajectory, either due to long-ranged knock-on electrons (sometimes called delta rays) or from the products of nuclear fragmentation, including neutrons. In the therapy setting, dose localization is of paramount importance, and the deposition of energy outside nominal treatment volumes complicates planning and increases the risk of secondary cancers as well as noncancer effects in normal tissue. Statistical effects are also important and will be discussed. In contrast to radiation therapy patients, astronauts in space receive comparatively small whole-body radiation doses from energetic charged particles and associated secondary radiation. A unique aspect of space radiation exposures is the high-energy heavy-ion component of the dose. This is not present in terrestrial exposures except in carbon-ion radiotherapy. Designers of space missions must limit exposures to keep risk within acceptable limits. These limits are, at present, defined for low-Earth orbit, but not for deep-space missions outside the geomagnetosphere. Most of the uncertainty in risk assessment for such missions comes from the lack of understanding of the biological effectiveness of the heavy-ion component, with a smaller component due to uncertainties in transport physics and dosimetry. These same uncertainties are also critical in the therapy setting. PMID:23032883

  15. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    PubMed

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  16. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    PubMed Central

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  17. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  18. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  19. Channeling problem for charged particles produced by confining environment

    SciTech Connect

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  20. QUADOS intercomparison: a summary of photon and charged particle problems.

    PubMed

    Gualdrini, G; Agosteo, S; Ménard, S; Price, R A; Chartier, J-L; Grosswendt, B; Kodeli, I; Leuthold, G P; Siebert, B R L; Tagziria, H; Tanner, R J; Terrissol, M; Zankl, M

    2005-01-01

    QUADOS, a Concerted Action of the European Commission, has promoted an intercomparison aimed at evaluating the use of computational codes for dosimetry in radiation protection and medical physics. This intercomparison was open to all users of radiation transport codes. Eight problems were selected for their relevance to the radiation dosimetry community, five of which involved photon and proton transport. This paper focuses on the analysis of the photon and charged particle problems. The neutron problems were presented in a paper at the NEUDOS9 conference. PMID:16381790

  1. The theory of charged particle temperatures in the upper atmosphere.

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Walker, J. C. G.

    1973-01-01

    The thermal structure of the earth's upper atmosphere is examined in detail, with emphasis on the physical processes that govern the behavior of charged-particle temperatures. The characteristic features of and competition between the heating, cooling, and thermal conduction processes that govern electron and ion temperatures in the mid-latitude and auroral ionospheric regions are theoretically analyzed, and appropriate comparisons are made with experimental data. The proposed elaborate theory is considered qualitatively successful in accounting for the thermal structure of the ionosphere, and points requiring quantitative verification are delineated.

  2. Trajectories of charged particles trapped in Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Öztürk, M. Kaan

    2012-05-01

    This article presents the theory of relativistic charged-particle motion in Earth's magnetosphere, at a level suitable for undergraduate courses. I discuss particle and guiding center motion and derive the three adiabatic invariants associated with the three periodic motions in a dipolar field. I provide 12 computational exercises that can be used as classroom assignments or for self-study. Two of the exercises, drift-shell bifurcation and Speiser orbits, are adapted from active magnetospheric research. The PYTHON code provided in the supplement can be used to replicate the trajectories and can be easily extended for different field geometries.

  3. On the energy losses of fast charged particles

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2010-09-01

    The energy losses of fast charged particles colliding with atoms have been considered in the eikonal approximation. It has been shown that the nonperturbative contribution to the effective stopping from the region of the intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target) not only can be significant as compared to shell corrections to the Bethe-Bloch formula (usually considered in the first order of perturbation theory), but also can provide significant (up to 50%) corrections to this formula.

  4. Energy loss of charged particles colliding with an oscillator

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.

    2015-04-01

    Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state | m> = |0> is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

  5. DART: a simulation code for charged particle beams

    SciTech Connect

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-05-16

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs.

  6. The one charged particle decay modes of the tau

    SciTech Connect

    Perl, M.L.

    1987-11-01

    Tables of measurements of the total branching fraction of tau lepton decays to modes with one charged particle are given along with the major individual branching fractions. The reason a combination of measurements and calculations is needed to display the discrepancy is described briefly. It is argued that uncertainties in measurements of the branching fractions for multiple photon decay modes prevent complete reliance on experiment. The multiple photon modes are discussed in more detail. Present research on experimental technique problems relative to the apparent discrepancy is summarized. (LEW)

  7. On charged particle tracks in cellulose nitrate and Lexan

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1972-01-01

    Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.

  8. Charged particle and magnetic field research in space

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.

  9. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  10. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  11. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  12. First Results from the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Semones, Edward; Zeitland, Cary

    2016-01-01

    The Charged Particle Detector (CPD) subsystem of the ISS-RAD detector has been making measurements of high-energy charged and neutral particles since the unit was deployed on Feb. 1, 2016. The CPD is nearly identical to the MSL-RAD instrument, but onboard data processing has been significantly modified to meet ISS requirements. We will present dose rates and LET spectra obtained over the first six months of operations, as well as preliminary results obtained from the limited sample of pulse-height analyzed raw data that has been telemetered to Earth.

  13. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas; Byer, Robert L.

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  14. A new look at reaction mechanisms with 4. pi. charged-particle and neutron multiplicity measurements

    SciTech Connect

    Sarantites, D.G.; Semkow, T.M.; Sobotka, L.G.; Abenante, V.; Li, Z.; Majka, Z.; Nicolis, N.G.; Stracener, D.W.; Hensley, D.C.; Beene, J.R.

    1987-01-01

    We have studied the excitation of target-like fragments produced in the reactions of 331.9 MeV /sup 28/Si + /sup 181/Ta. The light charged particles and intermediate mass fragments were detected in a small, highly segmented 4..pi.. phoswich detector system placed inside the spin spectrometer, a 4..pi.. NaI array which served as a neutron and ..gamma..-ray detector. All target emissions indicate that excitation ceases to increase with decreasing projectile-like fragment energy, as it should if the primary reaction is binary. Non-equilibrium neutron, proton and ..cap alpha..-particle emission and projectile fragmentation conspire and limit the conversion of kinetic energy into target excitation. This effect is more pronounced for PLF away from the injection point and for the largest kinetic energy losses. 8 refs., 10 figs.

  15. A detection system for charged-particle decay studies with a continuous-implantation method

    NASA Astrophysics Data System (ADS)

    Sun, L. J.; Xu, X. X.; Lin, C. J.; Wang, J. S.; Fang, D. Q.; Li, Z. H.; Wang, Y. T.; Li, J.; Yang, L.; Ma, N. R.; Wang, K.; Zang, H. L.; Wang, H. W.; Li, C.; Shi, C. Z.; Nie, M. W.; Li, X. F.; Li, H.; Ma, J. B.; Ma, P.; Jin, S. L.; Huang, M. R.; Bai, Z.; Wang, J. G.; Yang, F.; Jia, H. M.; Zhang, H. Q.; Liu, Z. H.; Bao, P. F.; Wang, D. X.; Yang, Y. Y.; Zhou, Y. J.; Ma, W. H.; Chen, J.

    2015-12-01

    A new detection system with high detection efficiency and low detection threshold has been developed for charged-particle decay studies, including β-delayed proton, α decay or direct proton emission from proton-rich nuclei. The performance was evaluated by using the β-delayed proton emitter 24Si produced by projectile fragmentation at the First Radioactive Ion Beam Line in Lanzhou. Under a continuous-beam mode, the isotopes of interest were implanted into two double-sided silicon strip detectors, where the subsequent decays were measured and correlated to the preceding implantations by using position and time information. The system allows us to measure protons with energies down to about 200 keV without obvious β background in the proton spectrum. Further application of the detection system can be extended to the measurements of β-delayed proton decay and the direct proton emission of more exotic proton-rich nuclei.

  16. Charged particle decay of hot and rotating 88Mo nuclei in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Piantelli, S.; Casini, G.; Barlini, S.; Carboni, S.; Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Cinausero, M.; Gramegna, F.; Kravchuk, V. L.; Morelli, L.; Marchi, T.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Chbihi, A.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Fornal, B.; Giaz, A.; Krzysiek, M.; Leoni, S.; Matejska-Minda, M.; Mazumdar, I.; MÈ©czyński, W.; Million, B.; Montanari, D.; Myalski, S.; Nicolini, R.; Olmi, A.; Pasquali, G.; Prete, G.; Roberts, O. J.; Styczeń, J.; Szpak, B.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; ZiÈ©bliński, M.

    2016-03-01

    A study of fusion-evaporation and (partly) fusion-fission channels for the 88Mo compound nucleus, produced at different excitation energies in the reaction 48Ti+40Ca at 300, 450, and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α particles; they may be due both to pre-equilibrium emission and to reaction channels (such as deep inelastic collisions or quasifission/quasifusion) different from the compound nucleus formation.

  17. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Barlini, S.; Casini, G.; Pasquali, G.; Piantelli, S.; Carboni, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Corsi, A.; Crespi, F.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Leoni, S.; Million, B.; Montanari, D.; Morelli, L.; Nannini, A.; Nicolini, R.; Poggi, G.; Vannini, G.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Dudek, J.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Męczyński, W. M.; Myalski, S.; Styczeń, J.; Ziębliński, M.

    2014-03-01

    The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A ~ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  18. Optimization of monolithic charged-particle sensor arrays

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart; Li, Shengdong; Chen, Yandong

    2007-09-01

    Direct-detection CMOS image sensors optimized for charged-particle imaging applications, such as electron microscopy and particle physics, have been designed, fabricated and characterized. These devices directly image charged particles without reliance on image-degrading hybrid technologies such as the use of scintillating materials. Based on standard CMOS Active Pixel Sensor (APS) technology, the sensor arrays use an 8-20 μm thick epitaxial layer that acts as a sensitive region for the generation and collection of ionization electrons resulting from impinging high-energy particles. A range of optimizations to this technology have been developed via simulation and experimental device design. These include the simulation and measurement of charge-collection efficiency vs. recombination, effect of diode area and stray capacitance vs. signal gain and noise, and the effect of different epitaxial silicon depths. Several experimental devices and full-scale prototypes are presented, including two prototypes that systematically and independently vary pixel pitch and diode area, and a complete high-resolution camera for electron microscopy optimized through experiment and simulation. The electron microscope camera has 1×1 k 2 pixels with a 5 μm pixel pitch and an 8 μm epitaxial silicon thickness.

  19. METHOD AND APPARATUS FOR DETERMINING CHARGED PARTICLE MOTION

    DOEpatents

    Kerns, Q.A.

    1959-08-01

    An analog system for determining the motion of charged particles in three dimensional electrical fields is described. A model electrode structure is formed and potentials are applied to the electrodes to provide an analog of the field which is to be studied. To simulate charged particles within the model, conducting spheres are placed at points from which particle motion is to be traced. To free the spheres from gravitational attraction in order that they will be electrostatically accelerated through the model, the apparatus is suspended and dropped. During the pericd that the model is dropping the spheres move through the electrcde structure with a motion corresponding to that of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data which frequently can otherwise be obtained only with a digital computer.

  20. Analysis of LEAM experiment response to charged particles

    NASA Technical Reports Server (NTRS)

    Perkins, D.

    1976-01-01

    The objectives of the Lunar Ejecta and Meteorites Experiment (LEAM) were to measure the long-term variations in cosmic dust influx rates and the extent and nature of the lunar ejecta. While analyzing these characteristics in the data, it was discovered that a majority of the events could not be associated with hypervelocity particle impacts of the type usually identified with cosmic dust, but could only be correlated with the lunar surface and local sun angle. The possibility that charged particles could be incident on the sensors led to an analysis of the electronics to determine if such signals could cause the large pulse height analysis (PHA) signals. A qualitative analysis of the PHA circuit showed that an alternative mode of operation existed if the input signal were composed of pulses with pulse durations very long compared to the durations for which it was designed. This alternative mode would give large PHA outputs even though the actual input amplitudes were small. This revelation led to the examination of the sensor and its response to charged particles to determine the type of signals that could be expected.

  1. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  2. Radial distribution of charged particles in a magnetic field.

    PubMed

    Sjue, S K L; Broussard, L J; Makela, M; McGaughey, P L; Young, A R; Zeck, B A

    2015-02-01

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle's helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112-119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a (207)Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed. PMID:25725818

  3. Radial distribution of charged particles in a magnetic field

    SciTech Connect

    Sjue, S. K. L. Broussard, L. J.; Makela, M.; McGaughey, P. L.; Young, A. R.; Zeck, B. A.

    2015-02-15

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle’s helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112–119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a {sup 207}Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed.

  4. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  5. Charged particle LET-spectra measurements aboard LDEF

    NASA Technical Reports Server (NTRS)

    Csige, I.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Benton, E. R.; Parnell, T. A.; Watts, John W., Jr.

    1991-01-01

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 250 to 1000 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The Short Range (SR) and Galactic Cosmic Ray (GCR) components were measured separately. The integral dose and dose rate spectra of charged particles are also given. The high LET portion of the LET spectra was measured with high statistical accuracy. This is a unique result of this experiment due to the low flux of this type of particle under typical shielding conditions.

  6. Microscopic visualization of a biological response to charged particle traversal

    NASA Astrophysics Data System (ADS)

    Taucher-Scholz, G.; Jakob, B.; Becker, G.; Scholz, M.

    2003-08-01

    Understanding the molecular mechanisms underlying biological effects of charged particle radiation has become increasingly important in view of the use of ion beams in tumor therapy. Elucidating how the enhanced efficiency of densely ionizing radiation in cell killing is related to the initial causative lesions, namely DNA double-strand breaks, constitutes a major task in radiobiology. The inhomogeneous spatial distribution of energy deposition leading to the induction of more complex and less reparable DNA lesions is the basis for high-LET effects. But the cellular response to radiation damage also involves the interplay between repair and signal transduction proteins with the aim of coordinating the processing of DNA damage and cell cycle progression to allow time for repair. Charged particles are used as a probe for the production of localized subcellular damage to study these aspects of the biological response to ionizing radiation. Immunocytochemical techniques applied in combination with confocal laser microscopy allow to monitor the relocalization of DNA damage response proteins within individual nuclei following irradiation. In particular, the rapid accumulation of the signalling protein p21 at sites of heavy ion-induced DNA damage reflects the microscopic distribution of dose deposited within nuclei of irradiated human fibroblasts. The biological response pattern for p21 is presented for high and low energy ion beams, involving different particle species and representing a wide range of radiation qualities.

  7. Electromagnetic radiation of charged particles in stochastic motion

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Mocanu, Gabriela

    2016-03-01

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency.

  8. The dynamics of charged particles in turbulent astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Dung, Rudiger; Petrosian, Vahe

    1994-01-01

    We consider the resonant interaction of energetic charged particles and transverse plasma wave propagating parallel and/or antiparallel to the uniform magnetic field B(sub 0) in an underlying background plasma of density n. The coupling of the plasma waves and the energetic particles will be controlled by the ratio n/(the absolute value of B(sub 0)(exp 2). A variation of this ratio leads to a strong variation of the dynamics of the energetic particles. By taking into account the whole transverse plasma branch for the resonant interaction we discuss the influence of the background plasma density, the background magnetic field, the cross helicity, and the magnetic helicities on the dynamics of charged particles in astrophysical plasmas. It is shown that low-energy electrons can be accelerated efficiently by the higher electromagnetic waves and short-wavelength whistlers for low values of the ratio n/(the absolute value of B(sub 0)(exp 2), which means for low values of the ratio of plasma frequency to gyrofrequency.

  9. A simple charged particle spectrometer for a pion production experiment

    NASA Astrophysics Data System (ADS)

    Borozdin, Konstantin; Brockwell, Michael; Chung, Kiwhan; Green, Andrew; Hogan, Gary; Jason, Andy; Mariam, Fesseha; Miyadera, Haruo; Morris, Christopher; Spaulding, Randy; Wang, Zhehui

    2010-02-01

    Measurement of a charged particle energy is not a new task, but inexpensive ways of such measurement are of interest, in particular as they open new opportunities for advanced charged particle radiography. We describe a magnetic spectrometer we have recently built for pion production measurement experiments at LANSCE (Los Alamos). The spectrometer consists of four modules of drift tubes and a bending magnet. A maximum magnetic field in the bending magnet was about 7500 Gauss. Drift tubes of 2 inches in diameter were made of thin carbon fiber to minimize multiple scattering in their walls. The spectrometer was used in the scattering experiment with primary beam of 800 MeV protons and C or Al target. We present measurements of secondary protons, pions and muons scattered in the reverse direction. Energy deposited in 1 cm thick plastic scintillator and 4" CsI was compared to the energy measured from the particle bending in the magnetic field. Experimental data are compared to GEANT4 modeling. We discuss, how this technology may be applied to the particle identification and to the energy loss measurements. )

  10. [Galactic heavy charged particles damaging effect on biological structures].

    PubMed

    Grigor'ev, A I; Krasavin, E A; Ostrovskiĭ, M A

    2013-03-01

    A concept of the radiation risk of the manned interplanetary flights is proposed and substantiated. Heavy charged particles that are a component of the galactic cosmic rays (GCR) have a high damaging effect on the biological structures as great amount of energy is deposited in heavy particle tracks. The high biological effectiveness of heavy ions is observed in their action on cell genetic structures and the whole organism, including the brain structures. The hippocampus is the part of the central nervous system that is the most sensitive to radiation--first of all, to heavy charged particles. Irradiation of animals with accelerated iron ions at doses corresponding to the real fluxes of GCR heavy nuclei, to which Mars mission crews can be exposed, leads to marked behavioral function disorders in the post-irradiation period. To evaluate the radiation risk for the interplanetary flight crews, the concept of successful mission accomplishment is introduced. In these conditions, the central nervous system structures can be the critical target of GCR heavy nuclei. Their damage can modify the higher integrative functions of the brain and cause disorders in the crew members' operator performances. PMID:23789432

  11. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Bellini, F.; Bini, F.; Collamati, F.; Collini, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Frallicciardi, P. M.; La Tessa, C.; Marafini, M.; Mattei, I.; Miraglia, F.; Morganti, S.; Ortega, P. G.; Patera, V.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Schuy, C.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Vanstalle, M.; Voena, C.

    2015-02-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevance for PT applications: 12C beam of 80 MeV/u at LNS, 12C beam 220 MeV/u at GSI, and 12C, 4He, 16O beams with energy in the 50-300 MeV/u range at HIT. Finally, a project for a multimodal dose-monitor device exploiting the prompt photons and charged particles emission will be presented.

  12. beta. -delayed fission from /sup 256/Es/sup m/ and the level scheme of /sup 256/Fm

    SciTech Connect

    Hall, H.L.; Gregorich, K.E.; Henderson, R.A.; Lee, D.M.; Hoffman, D.C.; Bunker, M.E.; Fowler, M.M.; Lysaght, P.; Starner, J.W.; Wilhelmy, J.B.; and others

    1989-05-01

    The 7.6-h isotope /sup 256/Es/sup m/ was produced from a 2.5-..mu..g/cm/sup 2/ target of /sup 254/Es by the (t,p) reaction. The reaction products were separated radiochemically, and the decay properties of /sup 256/Es/sup m/ were determined via ..beta..-..gamma.., ..gamma..-..gamma.., and ..beta..-fission correlation techniques. From these measurements we were able to assign 57 ..gamma.. rays to 26 levels in the daughter /sup 256/Fm. An isomeric level was observed at 1425 keV and assigned a spin and parity of 7/sup -/. This level has a t/sub 1/2/ of (70 +- 5) ns and we observed two ..beta..-delayed fissions with delay times in the proper time range to be associated with fission from this level. This gives a ..beta..-delayed fission probability of 2 x 10/sup -5/ for this level and a partial fission half-life of 0.8/sub -0.7//sup +8.8/ ms at the 95% confidence level.

  13. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  14. Early experiments in charged particle beams from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Banks, P. M.; Williamson, P. R.; Baker, K. D.; Obayashi, T.; Burch, J. L.

    1982-01-01

    Characteristics of studies on board the Shuttle involving the interaction of particle beams with the atmosphere and the ionosphere, and the effects of the beams on the electrical potential of the platform, are discussed. Noting that the Shuttle allows greater weight and power demands by scientific payloads than previous satellite launches, the OSS-1 Vehicle Charging and Potential experiment and the Spacelab 1 Particle Accelerator and Phenomena Induced by Charged Particle Beams are described. Instrumentation details are provided, including charge and current probes, the Spherical Retarding Potential Analyzer, the Fast Pulse Electron Generator, and digital control and interface units. The SEPAC equipment, which comprises an electron beam accelerator, and MPD plasma jet, and diagnostic units are detailed, and operating procedures and experiment objectives are outlined.

  15. Anisotropy-driven collective instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-12-01

    The classical electrostatic Harris instability is generalized to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space charge. For a long, coasting beam, the eigenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A simple theoretical model is developed which describes the essential features of the linear stage of the instability. Both the simulations and the analytical theory clearly show that moderately intense beams are linearly unstable to short-wavelength perturbations provided the ratio of the longitudinal temperature to the transverse temperature is smaller than some threshold value. The delta-f particle-in-cell code BEST has been used to study the detailed nonlinear evolution and saturation of the instability.

  16. Charged-particle cross section data for fusion plasma applications

    SciTech Connect

    Miley, G.H.

    1980-01-01

    Cross-section data for fusion plasma calculations are reviewed for three categories: fusion reactions, nuclear elastic and inelastic scattering. While the data base for the basic D-T fuel cycle seems adequate for present purposes, continued refinement appears warranted. Further, increasing emphasis on advanced-fuel fusion introduces requirements for new reaction rate and charged-particle scattering data over a wider range of reacting species (light elements through /sup 11/B) and over a larger energy range (to several MeV). These new needs are discussed along with suggestions for increased emphasis on providing the user with more convenient compilations. In particular, the extension of reactivities (< sigma V) to non-Maxwellian distributions, scattering matrix data, and development of computer based files are noted.

  17. Early and late mammalian responses to heavy charged particles

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.

    1986-01-01

    This overview summarizes murine results on acute lethality responses, inactivation of marrow CFU-S and intestinal microcolonies, testes weight loss, life span shortening, and posterior lens opacification in mice irradiated with heavy charged particles. RBE-LET relationships for these mammalian responses are compared with results from in vitro studies. The trend is that the maximum RBE for in vivo responses tends to be lower and occurs at a lower LET than for inactivation of V79 and T-1 cells in culture. Based on inactivation cross sections, the response of CFU-S in vivo conforms to expectations from earlier studies with prokaryotic systems and mammalian cells in culture. Effects of heavy ions are compared with fission spectrum neutrons, and the results are consistent with the interpretation that RBEs are lower than for fission neutrons at about the same LET, probably due to differences in track structure.

  18. Measurement of charged-particle stopping in warm dense plasma.

    PubMed

    Zylstra, A B; Frenje, J A; Grabowski, P E; Li, C K; Collins, G W; Fitzsimmons, P; Glenzer, S; Graziani, F; Hansen, S B; Hu, S X; Johnson, M Gatu; Keiter, P; Reynolds, H; Rygg, J R; Séguin, F H; Petrasso, R D

    2015-05-29

    We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ∼32  eV, corresponding to moderately coupled [(e^{2}/a)/(k_{B}T_{e}+E_{F})∼0.3] and moderately degenerate [k_{B}T_{e}/E_{F}∼2] "warm-dense matter" (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma. PMID:26066441

  19. Electron optics of spheroid charged particle energy analyzers

    NASA Astrophysics Data System (ADS)

    Cubric, D.; Kholine, N.; Konishi, I.

    2011-07-01

    A new class of charged particle energy analyzers, spheroid energy analyzers (SEA) that are characterized with very high energy resolution and transmission, is presented. A prototype analyzer was built that has achieved a relative energy resolution of 0.05% at a transmission of 21% out of a 2π steradian. A very high order of focusing of these analyzers is presented via simulation that indicates the existence of 13th order focusing in one of our models. This promises further improvements in energy resolution in future practical analyzer embodiments. A novel geometrical framework is presented, which describes SEA analyzers in general terms within which well known types of analyzers CMA and CHA appear to be only particular examples.

  20. Designing of electrode for high energy charged particle acceleration

    NASA Astrophysics Data System (ADS)

    Das, Basanta Kumar; Shyam, A.

    2010-02-01

    Vacuum insulation plays an important role in charged particle acceleration. We are making one compact size neutron generator in our lab. For this purpose the deuterium ions are formed in a penning ion source and extracted along the axis of the electrode arrangement. For neutron generation from D-T reaction, the deuterium ions are to be accelerated up to ~ 100KeV to the tritium target. After extraction of the ions from the ion source, the ions pass through the acceleration electrode. For high acceleration voltage, selecting the shape of the electrode is important. The plane geometry leads to high electric field at the edge whereas a curved geometry reduces this effect. The study of the physical processes at the electrode surface due to ion interaction is crucial. In this presentation, we will present the designing of the electrode for our purpose and discuss the issues related to the physical process at the surface of the electrode

  1. Multiple scattering and charged-particle - hydrogen-atom collisions

    NASA Technical Reports Server (NTRS)

    Franco, V.; Thomas, B. K.

    1979-01-01

    Glauber-approximation scattering amplitudes for charged-particle - hydrogen-atom elastic and inelastic collisions are derived directly in terms of the known particle-electron and particle-proton Coulomb scattering amplitudes and the known hydrogen-atom form factors. It is shown that the particle-hydrogen amplitude contains no single-scattering term. The double-scattering term is obtained as a two-dimensional integral in momentum space. It is demonstrated how the result can be used as the starting point for an alternative and relatively simple derivation, in closed form, of the Glauber particle-hydrogen scattering amplitude for transitions from the ground state to an arbitrary (nlm) state.

  2. Nonequatorial charged particle confinement around Kerr black holes

    SciTech Connect

    Preti, Giovanni

    2010-01-15

    We analyze the nonequatorial charged particle dynamics around a rotating black hole in the presence of an external magnetic field, the latter being given by Wald's exact analytical solution to the Maxwell's equations in the Kerr background. At variance with the corresponding Schwarzschild case, the behavior of the particle becomes here markedly charge-sign dependent, and the more so the more the Kerr parameter increases. The interplay between the rotating black hole and the magnetic field is shown to provide a mechanism both for selective charge ejection in axially collimated jetlike trajectories, and for selective charge confinement into nonequatorial bound orbits around the hole; the possibility of such a confinement allows the fate of an accreting particle to not necessarily be doomed: infall into the hole can be prevented, and the neutrality of the Kerr source could therefore be preserved, while the charge is safely parked into bound cross-equatorial orbits all around it.

  3. Energetic charged particle beams for disablement of mines

    SciTech Connect

    Wuest, C.R.

    1995-03-27

    LLNL has an ongoing program of weapons disablement using energetic charged particle beams; this program combines theoretical and experimental expertise in accelerators, high-energy and nuclear physics, plasma physics and hydrodynamics to simulate/measure effects of electron and proton beams on weapons. This paper reviews work by LLNL, LANL and NSWC on detonating sensitive and insensitive high explosives and land mines using high-current electron beams. Computer simulations are given. 20--160 MeV electron beams incident on wet/dry soils are being studied, along with electron beam propagation in air. Compact high current, high energy accelerators are being developed for mine clearing. Countermine missions of interest are discussed. 25 refs., 9 figs.

  4. Energetic charged particles in Saturn's magnetosphere: Voyager 2 results

    SciTech Connect

    Vogt, R.E.; Chenette, D.L.; Cummings, A.C.; Garrard, T.L.; Stone, E.C.; Schardt, A.W.; Trainor, J.H.; Lal, N.; McDonald, F.B.

    1982-01-29

    Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the greater than or equal to 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more varible, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0-million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approx. 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

  5. Hybrid finite element and Brownian dynamics method for charged particles

    NASA Astrophysics Data System (ADS)

    Huber, Gary A.; Miao, Yinglong; Zhou, Shenggao; Li, Bo; McCammon, J. Andrew

    2016-04-01

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  6. DART: A simulation code for charged particle beams: Revision 1

    SciTech Connect

    White, R.C.; Barr, W.L.; Moir, R.W.

    1989-07-31

    This paper presents a recently modified version of the 2-D code, DART, which can simulate the behavior of a beam of charged particles whose trajectories are determined by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation includes space charge, secondary electrons, and the ionization of neutral gas. A beam can contain up to nine superimposed beamlets of different energy and species. The calculation of energy conversion efficiency and the method of specifying the electrode geometry are described. Basic procedures for using the code are given, and sample input and output fields are shown. 7 refs., 18 figs.

  7. Accelerators for charged particle therapy: PAMELA and related issues

    NASA Astrophysics Data System (ADS)

    Peach, Ken

    2014-05-01

    Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaLApplications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

  8. Study of space charge compensation phenomena in charged particle beams

    SciTech Connect

    Veltri, P.; Serianni, G.; Cavenago, M.

    2012-02-15

    The propagation of a charged particle beam is accompanied by the production of secondary particles created in the interaction of the beam itself with the background gas flowing in the accelerator tube. In the drift region, where the electric field of the electrodes is negligible, secondary particles may accumulate giving a plasma which shields the self-induced potential of the charged beam. This phenomenon, known as space charge compensation is a typical issue in accelerator physics, where it is usually addressed by means of 1D radial transport codes or Monte Carlo codes. The present paper describes some theoretical studies on this phenomenon, presenting a Particle in Cell-Monte Carlo (PIC-MC) Code developed ad hoc where both radial and axial confinements of secondary particles are calculated. The features of the model, offering a new insight on the problem, are described and some results discussed.

  9. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  10. Systems and methods of varying charged particle beam spot size

    SciTech Connect

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  11. Cataract production in mice by heavy charged particles

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.; Jose, U.; Yang, V. V.; Barker, M. E.

    1981-01-01

    The cataractogenic effects of heavy charged particles are evaluated in mice in relation to dose and ionization density. The relative biological effectiveness in relation to linear energy transfer for various particles is considered. Results indicated that low single doses (5 to 20 rad) of Fe 56 or Ar 40 particles are cataractogenic at 11 to 18 months after irradiation; onset and density of the opacification are dose related and cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial linear energy transfer dependence. The severity of cataracts is reduced significantly when 417 rad of Co 60 gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of C12 doses over 24 weeks.

  12. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    NASA Astrophysics Data System (ADS)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-11-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.

  13. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.

    2012-10-20

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  14. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  15. Charged particles produced in neutron reactions on nuclei from beryllium to gold

    SciTech Connect

    Haight, R.C.

    1997-08-01

    Charged-particle production in reactions of neutrons with nuclei has been studied over the past several years with the spallation source of neutrons from 1 to 50 MeV at the Los Alamos Neutron Science Center (LANSCE). Target nuclides include 9Be, C, 27Al, Si, 56Fe, 59Co, 58,60Ni, 93Nb and 197Au. Proton, deuteron, triton, 3He and 4He emission spectra, angular distributions and production cross sections have been measured. Transitions from the compound nuclear reaction mechanism to precompound reactions are clearly seen in the data. The data are compared with data from the literature where available, with evaluated nuclear data libraries, and with calculations where the selection of the nuclear level density prescription is of great importance. Calculations normalized at En = 14 MeV can differ from the present data by a factor of 2 for neutron energies between 5 and 10 MeV.

  16. Commissioning of the DIAMANT 'Chessboard' Light-Charged-Particle CsI Detector Array with AFRODITE

    SciTech Connect

    Komati, F.S.; Bark, R.A.; Gueorguieva, E.; Lawrie, J.J.; Mullins, S.M.; Murray, S.H.T.; Sharpey-Schafer, J.F.; Gal, J.; Kalinka, G.; Krasznahorkay, A.; Molnar, J.; Nyako, B.M.; Timar, J.; Zolnai, L.; Juhasz, K.; Lipoglavsek, M.; Maliage, M.; Ramashidza, M.; Vymers, P.; Scheurer, J. N.

    2005-11-21

    In a commissioning measurement, the 'Chessboard' section of the DIAMANT charged-particle array has been coupled with the AFRODITE {gamma}-ray spectrometer at the iThemba Laboratory for Accelerator Based Sciences. Two data-sets were obtained following the bombardment of a 170Er target with a 13C beam at energies of 80 and 70 MeV, respectively. Offline analysis has thus far enabled the extension of a number of rotational bands associated with high-K intrinsic states in 176Hf. Also, the A = 172, 173 and 174 stable isotopes of ytterbium were populated via 2{alpha}xn channels with strengths of {approx}30-to-40% of the {alpha}xn yields. This, together with the comparative weakness of the pxn channels, is consistent with incomplete fusion as the dominant reaction mechanism responsible for the {alpha}-particle emission.

  17. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been

  18. Chaotic motion of charged particles in toroidal magnetic configurations

    SciTech Connect

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  19. MOS Circuitry Would Detect Low-Energy Charged Particles

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva; Wadsworth, Mark

    2003-01-01

    Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.

  20. Local phase transformation in alloys during charged-particle irradiation

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.

    1984-10-01

    Among the various mechanisms and processes by which energetic irradiation can alter the phase stability of alloys, radiation-induced segregation is one of the most important phenomena. Radiation-induced segregation in alloys occurs as a consequence of preferential coupling between persistent fluxes of excess defects and solute atoms, leading to local enrichment or depletion of alloying elements. Thus, this phenomenon tends to drive alloy systems away from thermodynamic equilibrium, on a local scale. During charged-particle irradiations, the spatial nonuniformity in the defect production gives rise to a combination of persistent defect fluxes, near the irradiated surface and in the peak-damage region. This defect-flux combination can modify the alloy composition in a complex fashion, i.e., it can destabilize pre-existing phases, causing spatially- and temporally-dependent precipitation of new metastable phases. The effects of radiation-induced segregation on local phase transformations in Ni-based alloys during proton bombardment and high-voltage electron-microscope irradiation at elevated temperatures are discussed.

  1. New description of charged particle propagation in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, James A.

    1994-01-01

    When charged particles spiral along a large constant magnetic field, their trajectories are scattered by random components that are superposed on the guiding field. In the simplest analysis of this situation, scattering causes the particles to diffuse parallel to the guiding field. At the next level of approximation, moving pulses that correspond to a coherent mode of propagation are present, but they are represented by delta-functions whose infinitely narrow width makes no sense physically and is inconsistent with the finite duration of coherent pulses observed in solar energetic particle events. To derive a more realistic description, the transport problem is formulated in terms of 4 x 4 matrices, which derive from a representation of the particle distribution function in terms of eigenfunctions of the scattering operator, and which lead to useful approximations that give explicit predictions of the detailed evolution not only of the coherent pulses, but also of the diffusive wake. More specifically, the new description embodies a simple convolution of a narrow Gaussian with the solutions above that involve delta-functions, but with a slightly reduced coherent velocity. The validity of these approximations, which can easily be calculated on a desktop computer, has been exhaustively confirmed by comparison with results of Monte Carlo simulations which kept track of 50 million particles and which were carried out on the Maspar computer at Goddard Space Flight Center.

  2. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  3. Charged Particle Effects on Solar Sails - An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Minow, Joseph I.

    2004-01-01

    The NASA In-Space Propulsion Program is currently sponsoring a comprehensive look at the effects of the charged particle environment on the first generation of Solar Sail propulsion systems. As part of this, a joint NASA MSFC/JPL team is investigating the effects of spacecraft charging on the preliminary ISP Solar Sail mission designs. This paper will begin by reviewing the plasma environments being proposed for such missions-these range from the ambient solar wind at approximately 1 AU in the ecliptic plane, approximately 0.5 AU solar-polar orbit, and geosynchronous orbit. Following a discussion of the critical design issues associated with Solar Sails from a charging standpoint, a simple Sail configuration for modeling purposes will be presented. Results for the various environments will be illustrated in terms of the estimated surface potentials for the Solar Sail using the NASCAP-2K charging analysis program. Based on these potentials, representative plasma flow fields and potential contours surrounding the Solar Sail will then be presented. The implications of these results--the surface potentials and plasma flow--will be discussed in the context of their effects on Solar Sail operations and structural configurations.

  4. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  5. Accelerators for heavy-charged-particle radiation therapy.

    PubMed

    Coutrakon, George B

    2007-08-01

    This paper focuses on current and future designs of medical hadron accelerators for treating cancers and other diseases. Presently, five vendors and several national laboratories have produced heavy-particle medical accelerators for accelerating nuclei from hydrogen (protons) up through carbon and oxygen. Particle energies are varied to control the beam penetration depth in the patient. As of the end of 2006, four hospitals and one clinic in the United States offer proton treatments; there are five more such facilities in Japan. In most cases, these facilities use accelerators designed explicitly for cancer treatments. The accelerator types are a combination of synchrotrons, cyclotrons, and linear accelerators; some carry advanced features such as respiration gating, intensity modulation, and rapid energy changes, which contribute to better dose conformity on the tumor when using heavy charged particles. Recent interest in carbon nuclei for cancer treatment has led some vendors to offer carbon-ion and proton capability in their accelerator systems, so that either ion can be used. These features are now being incorporated for medical accelerators in new facilities. PMID:17668952

  6. O the Penetration of Fast-Charged Particles.

    NASA Astrophysics Data System (ADS)

    Perry, David John

    The work presented here is intended to provide theoretical support for medical physicists who are interested in improving radiotherapy treatment plans involving charged particle beams. These plans still rely heavily on empirical behavior rather than theory as a basis for making predictions. In the most frequent therapy applications, electron beams, typically with initial energies between 5-20 MeV, penetrate materials of low atomic number. Energy loss is predominately by ionization and the effects of multiple scattering by repeated Coulomb deflections from nuclei are of primary interest. Our development is strongly influenced by these applications and so we begin our work with a review of Fermi-Eyges theory. This theory and ideas which were equivalent to it have dramatically improved electron beam treatment plans over the last several years, as is now generally recognized. This theory also has significant limitations due to the approximations or assumptions that it makes. Since we can improve and extend these results by relaxing some of the key assumptions, we continue by considering some generalizations of this basic theory and we discuss those which were given by Snyder-Scott, Lewis and Yang in some detail. Yang's theory had significant potential for applications but this theory will not work properly unless its time development is handled differently. This leads us to present a wave solution to the penetration problem in our final chapter. Sample calculations of the most important distributions are given there as well.

  7. Heavy charged-particle induced lesions in rabbit cerebral cortex

    SciTech Connect

    Woodruff, K.H.; Lyman, J.T.; Fabrikant, J.I.

    1988-02-01

    Fourteen male rabbits received single doses of 20, 40, and 80 Gy of neon irradiation with an extended Bragg peak. They were sacrificed at 1 day, 1 week, and 6 months post-irradiation. The tissue changes which showed a significant time-dose relationship were leakage of carbon particles from blood vessels, focal arachnoiditis, hemorrhage, cystic necrosis, and a total histopathologic score using a point system of grading. The focal nature of the lesions was clearly demonstrated with 2 mm thick macrotome sections. The transition zone between damaged brain and microscopically normal appearing brain was less than 1 mm and the tissue damage induced was morphologically similar to that of other radiation modalities. These findings may have important therapeutic implications for patients. The sharply demarcated boundaries of heavy charged-particle induced lesions suggest these beams will be useful for obliterating tissue in areas where it is critical that a transition from undamaged to severely damaged tissue must occur over a short distance, such as in the central nervous system.

  8. Harmonic Ratcheting for Ferrite Tuned RF Acceleration of Charged Particles

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Brennan, Mike

    2013-04-01

    One of the most persistent difficulties in the design of RF cavities for acceleration of charged particles is the rapid and efficient acceleration of particles over a large range of frequencies. From medical synchrotrons to accelerator driven systems, there is a strong need for fast acceleration of protons and light ions over hundreds of MeV. Conventionally, this is a costly undertaking, requiring specially designed ferrite loaded cavities to be tuned over a large range of frequencies. Ferromagnetic materials allow for the precise adjustment of cavity resonant frequency, but rapid changes in the frequency as well as operation outside material specific frequency ranges result in significant Q-loss to the cavity. This leads to a considerable increase in power required and is thus undesirable for regular operation. We introduce an acceleration scheme known as harmonic ratcheting which can be used to reduce the cavity frequency range needed for accelerating an ion beam in a synchrotron. In particular, this scheme addresses the need for high rep. rate machines for applications such as radiation therapy in which low beam intensity is needed. We demonstrate with simulations the type of ramps achievable using this technique and consider its advantages over h=1 acceleration schemes.

  9. Coherent Light induced in Optical Fiber by a Charged Particle

    NASA Astrophysics Data System (ADS)

    Artru, Xavier; Ray, Cédric

    2016-07-01

    Coherent light production in an optical fiber by a charged particle (named PIGL, for particle-induced guided, light) is reviewed. From the microscopic point of view, light is emitted by transient electric dipoles induced in the fiber medium by the Coulomb field of the particle. The phenomenon can also considered as the capture of virtual photons of the particle field by the fiber. Two types of captures are distinguished. Type-I takes place in a uniform part of the fiber; then the photon keeps its longitudinal momentum pz . Type-II takes place near an end or in a non-uniform part of the fiber; then pz is not conserved. Type-I PIGL is not affected by background lights external to the fiber. At grazing incidence it becomes nearly monochromatic. Its circular polarization depends on the angular momentum of the particle about the fiber and on the relative velocity between the particle and the guided wave. A general formula for the yield of Type-II radiation, based on the reciprocity theorem, is proposed. This radiation can be assisted by metallic objects stuck to the fiber, via plasmon excitation. A periodic structure leads to a guided Smith-Purcell radiation. Applications of PIGL in beam diagnostics are considered.

  10. Kinetic phenomena in charged particle transport in gases and plasmas

    SciTech Connect

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.