Science.gov

Sample records for beta-plus decay radioisotopes

  1. High-statistics beta-plus/EC decay study of Xe-122

    NASA Astrophysics Data System (ADS)

    Jigmeddorj, B.; Garrett, P. E.; Hadinia, B.; Radich, A. J.; Rand, E. T.; Svensson, C. E.; Andreoiu, C. A.; Cross, D. S.; Pore, J.; Rizman, U.; Voss, P.; Ball, G. C.; Bruhn, T.; Garnsworthy, A. B.; Hackman, G.; Moukaddam, M.; Park, J.; Rajabali, M. M.; Wang, Z.; Wood, J. L.; Yates, S. W.

    2015-10-01

    The isotopes of Xe are centrally located with respect to the evolution of collectivity in the Z > 50 , N < 82 region, which exhibits an extraordinarily smooth evolution of simple collective signatures. Excited 0+ states in 124-132Xe are very strongly populated, suggesting that there are important proton subshell gaps influencing the low-lying structure of these isotopes and possibly shape-coexistence that would lead to strong E 0 transitions. However, collectivity in this region is very poorly characterized because of a lack of spectroscopic data for low-spin states. A high-statistics 122Cs β+ / EC decay experiment to obtain detailed spectroscopic data for low spin states was performed at the TRIUMF-ISAC facility using the 8 π γ-ray spectrometer and PACES array of five Si(Li) detectors, for conversion electrons spectroscopy. Preliminary results will be presented. This work supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  2. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works. PMID:24814719

  3. Neutron induced radio-isotopes and background for Ge double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Chu, Pinghan; Majorana Collaboration

    2015-10-01

    Environmental neutrons, mostly produced by muons in the cosmic rays, might contribute backgrounds to the search for neutrinoless double beta decays. These neutrons can interact with materials and generate radio-isotopes, which can decay and produce radioactive backgrounds. Some of these neutron-induced isotopes have a signature of a time-delayed coincidence, allowing us to study these infrequent events. For example, such isotopes can decay by beta decay to metastable states and then decay by gamma decay to the ground state. Considering the time-delayed coincidence of these two processes, we can determine candidates for these neutron-induced isotopes in the data and estimate the flux of neutrons in the deep underground environment. In this report, we will list possible neutron-induced isotopes and the methodology to detect them, especially those that can affect the search for neutrinoless double beta decays in 76Ge. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  4. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  5. Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective

    PubMed Central

    Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Robertson, K. A.

    2012-01-01

    Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations. PMID:22924061

  6. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  7. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    SciTech Connect

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-02-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ``neutron rich`` and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail.

  8. Radioisotopes: Today's Applications.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radioisotopes are useful because of their three unique characteristics: (1) radiation emission; (2) predictable radioactive lives; and (3) the same chemical properties as the nonradioactive atoms of that element. Researchers are able to "order" a radioisotope with the right radiation, half-life, and chemical property to perform a given task with…

  9. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  10. Miniature Radioisotope Thermoelectric Power Cubes

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry

    2004-01-01

    Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

  11. Radioisotopes as Political Instruments, 1946–1953

    PubMed Central

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  12. Radioisotopes as Political Instruments, 1946-1953.

    PubMed

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War. PMID:20725612

  13. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  14. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  15. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  16. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  17. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  18. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  19. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  20. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  1. A facility to remotely assemble radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Engstrom, John W.; Goldmann, Louis H.; Truitt, Ross W.

    1993-01-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  2. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  3. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    PubMed

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs. PMID:25973916

  4. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  5. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    SciTech Connect

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.; Lin, W.-Y.; Pinkert, J.; Wang, S.-Y.

    1999-01-18

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo) for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.

  6. Some geophysical considerations in radioisotope dating applications

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    2016-03-01

    Radioisotope dating only assumes radioactive decay laws are taking place allowing closed form solutions to be obtained in generating a sample date estimate. To be discussed in this work is the isotopic distribution expected in geological samples due to mass diffusion superimposed on that from simple radioactive decay. By taking into consideration the isotope effect (differential mass diffusion rates) when measuring isotopic ratios from very old samples, the distribution dependency will cause a bias if isotopic diffusion rates are not identical throughout a material (or at least across the boundaries of all samples measured). The isotope effect being that isotopes having a smaller atomic mass will diffuse faster in a medium than will their heavier counterparts causing concentration gradients of their ratios even when there are no contributions from radioactive decay which will tend to bias all sample ages (slopes of the isochron) to have a more linear distribution. The application to Sr/Rb dating is evaluated and shown to result in expected age overestimates. Suggested methods to test for this effect along with sample preparation techniques to minimize it are discussed. Special thanks the NCSU Nuclear Engineering Department.

  7. Radioisotopes for radioimmunodetection (RAID) and radioimmunotherapy (RAIT)---current and new perspectives

    SciTech Connect

    Knapp, F.F. Jr.

    1991-01-01

    In this paper the availability and properties of radioisotopes for both radioimmunodiagnosis (RAID) and radioimmunotherapy (RAIT) are discussed. Examples are provided for radioisotopes available via direct production in nuclear reactors and accelerators or as daughters obtained from radionuclide generator systems whose parents are either reactor or accelerator produced. Important factors which must be considered for the use of a particular radioisotope include availability, the physical half-life and decay properties, and chemical versatility for protein attachment. Although both direct'' and indirect'' methods are available for attachment of radioisotopes to antibodies, this broad field of research is not reviewed in detail. Practical issues related to the availability and use of a variety of radionuclides are described. 47 refs., 5 tabs.

  8. How to Handle Radioisotopes Safely.

    ERIC Educational Resources Information Center

    Sulcoski, John W.

    This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. The various units and forms of radioactive materials used by teachers are first considered. Then, the quantities of radioisotopes that a person may possess without a license from the Atomic Energy Commission (AEC) are…

  9. Advanced Subcritical Assistance Radioisotope Thermoelectric Generator: An Imperative Solution for the Future of NASA Exploration

    NASA Astrophysics Data System (ADS)

    Arias, F. J.

    A new generation of radioisotope thermoelectrical generator is proposed for very long space exploration missions. The Advanced Subcritical Assistance Radioisotope Thermoelectric Generator (ASA-RTG) amplify the power from natural decay of pu-238 by a small subcritical multiplication produced from the small neutron background generated from (α, n) reactions between the α particles from Pu-238 and beryllium, lithium or other low-Z isotope, extracting the maximum advantage and performance from the precious α disintegration, and then of the very scarce pu-238. The process is self controlled by the natural decay of Pu-238 with the progressive reduction of the power output (RTG) and additionally and simultaneously compensate by the natural decay of a neutronic poisson which increase simultaneously the subcritical multiplication resulting in a contrary effect, i.e., causing an increase in the power. ASA-RTG is not in conflict with previous RTG, and could fit within the type of Radioisotope Thermoelectric Generator developed for NASA space missions as the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and the Advanced Stirling Radioisotope Generator (ASRG).

  10. Development of a radioisotope heat source for the two-watt radioisotope thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Howell, Edwin I.; McNeil, Dennis C.; Amos, Wayne R.

    1992-01-01

    Described is a radioisotope heat source for the Two-Watt Radioisotope Thermoelectric Generator (RTG) which is being considered for possible application by the U.S. Navy and for other Department of Defense applications. The heat source thermal energy (75 Wt) is produced from the alpha decay of plutonium-238 which is in the form of high-fired plutonium dioxide. The capsule is non-vented and consists of three domed cylindrical components each closed with a corresponding sealed end cap. Surrounding the fuel is the liner component, which is fabricated from a tantalum-based alloy, T-111. Also fabricated from T-111 is the next component, the strength member, which serves to meet pressure and impact criteria. The outermost component, or clad, is the oxidation- and corrosion-resistant nickel-based alloy, Hastelloy S. This paper defines the design considerations, details the hardware fabrication and welding processes, discusses the addition of yttrium to the fuel to reduce liner embrittlement, and describes the testing that has been conducted or is planned to assure that there is fuel containment not only during the heat source operational life, but also in case of an accident environment.

  11. HFIR-produced medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Knapp, F.F. Jr.; Beets, A.L.; Alexander, C.W.

    1997-12-01

    We have experimentally determined the yields of a number of medical radioisotopes produced in the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR) Hydraulic Tube (HT) facility. The HT facility is located in the very high flux region in the flux trap of the reactor, providing on-line access capability while the reactor is operating. The HT facility consists of nine vertically stacked capsules centered just adjacent to the core horizontal midplane. HFIR operates at a nominal power level of 85 MW. The capabilities of the HFIR-HT facilities offer increased efficiency, greater availability, and optimization of radioisotope production, and, as a result, the conservation of rare or expensive target isotopes.

  12. Radioisotope Power: A Key Technology for Deep Space Explorations

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  13. Radioisotope Power: A Key Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, George; Sutliff, Tom; Dudzinski, Leonard

    2008-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  14. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    SciTech Connect

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985.

  15. A liquid xenon radioisotope camera.

    NASA Technical Reports Server (NTRS)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  16. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect

    McCoy, J.C.; Becker, D.L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  17. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    NASA Astrophysics Data System (ADS)

    McCoy, John C.; Becker, David L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration's Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined.

  18. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  19. Cosmogenic radioisotopes on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.

    1992-01-01

    The radioisotope Be-7 was discovered in early 1990 on the front surface, and the front surface only, of the LDEF. A working hypothesis is that the isotope, which is known to be mainly produced in the stratosphere by spallation of nitrogen and oxygen nuclei with cosmic ray protons or secondary neutrons, diffuses upward and is absorbed onto metal surfaces of spacecraft. The upward transport must be rapid, that is, its characteristic time scale is similar to, or shorter than, the 53 day half-life of the isotope. It is probably by analogy with meteoritic metal atmospheric chemistry, that the form of the Be at a few 100 km altitude is as the positive ion Be(+) which is efficiently incorporated into the ionic lattice of oxides, such as Al2O3, Cr2O3, Fe2O3, etc., naturally occurring on surfaces of Al and stainless steel. Other radioisotopes of Be, Cl, and C are also produced in the atmosphere, and a search was begun to discover these. Of interest are Be-10 and C-14 for which the production cross sections are well known. The method of analysis is accelerator mass spectrometry. Samples from LDEF clamp plates are being chemically extracted, purified, and prepared for an accelerator run.

  20. Radioisotope penogram in diagnosis of vasculogenic impotence

    SciTech Connect

    Fanous, H.N.; Jevtich, M.J.; Chen, D.C.; Edson, M.

    1982-11-01

    A radioisotope technique to estimate penile blood flow is described. The radioisotope penogram is noninvasive and gives a dynamic evaluation of the arterial supply, venous drainage, and blood flow in the corporeal bodies. The penogram is a valuable adjunct in evaluation of patients with vasculogenic impotence.

  1. Power from Radioisotopes, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Mead, Robert L.

    This 1971 revision deals with radioisotopes and their use in power generators. Early developments and applications for the Systems for Nuclear Auxiliary Power (SNAP) and Radioisotope Thermoelectric Generators (RTGs) are reviewed. Present uses in space and on earth are included. Uses in space are as power sources in various satellites and space…

  2. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  3. Radioisotope scanning in osseous sarcoidosis

    SciTech Connect

    Rohatgi, P.K.

    1980-01-01

    Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, but there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.

  4. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  5. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  6. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    SciTech Connect

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987.

  7. Biodistribution of 225Ra citrate in mice: retention of daughter radioisotopes in bone.

    PubMed

    Kennel, Stephen J; Lankford, Trish; Garland, Marc; Sundberg, John P; Mirzadeh, Saed

    2005-11-01

    Alpha-particle-emitting radionuclides have potential for therapy of localized disease due to their high linear energy transformation and short pathlengths. Radiometals that home naturally to bone can be exploited for this purpose, and 223Ra (t(1/2)=11.4 days) recently has been studied for therapy of bone tumors in mice and rats. Actinium-225 (t(1/2)=10 days) is also an attractive radioisotope for endoradiotherapy. In a single decay of a 225Ac nucleus and its subsequent decay daughters, over 27 MeV ( approximately 90% of total energy) is released by sequential emission of four alpha particles, ranging in energy from 5.7 to 8.4 MeV. Although Ac3+ does not home naturally to bone, its parent radioisotope 225Ra (beta(-), t(1/2)=15 days) can be used as an in vivo source for 225Ac. Thus, injection of 225Ra takes advantage of the bone-homing properties of radium coupled with the significant amount of energy released from the 225Ac decay chain. Our data confirm that a large fraction of radium citrate injected intravenously into mice localizes rapidly in bone. Injected doses per gram (ID/g) for 225Ra range from 25% in skull to about 10% in sternum. Once deposited, the 225Ra remains in the bone with a biological half life of >40 days. Furthermore, >95% of the daughter radioisotope, 225Ac, is retained in the bone. However, a significant fraction of one of the daughter radioisotopes, 213Bi, is found in kidney. The biodistribution data indicate that 225Ra injection should be a powerful agent for killing cells associated with bone; however, the toxicity of this radioisotope which is similar to that of other alpha emitters limits the dose that can be tolerated. PMID:16253811

  8. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    SciTech Connect

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983.

  9. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    SciTech Connect

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984.

  10. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  11. Retention of Radium-225 and Its Daughter Radioisotopes in Bone

    SciTech Connect

    Mirzadeh, Saed; Garland, Marc A; Kennel, Steve J

    2008-01-01

    The natural bone seeking tendency of Ra+2, similar to the other alkali metal ions, coupled with the short range high LET of -particle emissions are an ideal combination for localized therapy, and recently 11.4 d 223Ra has been studied for therapy of bone tumors in rats and humans [1,2]. Actinium-225 is also an attractive radioisotope for endo-radiotherapy in a single decay chain from 225Ac, over 26 MeV (~70% of total) is carried by four - particles ranging in energy from 5.7 to 8.4 MeV [3,4]. Although Ac+3 does not home naturally to bone (rather to liver) [5,6], its parent, 225Ra ( -, t1/2 = 15 d), can be used as an in vivo source for 225Ac. A pivotal question for the 225Ra/225Ac in vivo generator system is whether translocation of the daughter nuclei occurs prior to or following the uptake of 225Ra by the bone. In order to assess potential collateral damage to soft tissue organs it is essential to quantitate the extent to which 225Ac is retained in organs following the uptake of 225Ra. We have attempted to answer these questions by investigating the extent of translocation of 225Ac and 213Bi, two daughter radioisotopes of 225Ra, following retention of initially pure 225Ra in bone in normal mice.

  12. End-on radioisotope thermoelectric generator impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  13. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.; Hinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  14. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-15

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  15. Radioisotope thermoelectric generator/thin fragment impact test

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  16. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  17. RTGs - The powering of Ulysses. [Radio-isotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Mastal, E. F.; Campbell, R. W.

    1990-01-01

    The radio-isotope thermoelectric generator (RTG) for Ulysses' electronic supply is described noting that lack of sufficient sunlight renders usual solar cell power generation ineffective due to increased distance from sun. The history of the RTG in the U.S.A. is reviewed citing the first RTG launch in 1961 with an electrical output of 2.7 W and the improved Ulysses RTG, which provides 285 W at mission beginning and 250 W at mission end. The RTG concept is discussed including the most recent RTG technology developed by the DOE, the General Purpose Heat Source RTG (GPHS-RTG). The system relies upon heat generated by radioactive decay using radioactive plutonium-238, which is converted directly to energy using the Seebeck method.

  18. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  19. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  20. Evaluation of the β+-decay log ft value with inclusion of the neutron-proton pairing and particle-number projection

    NASA Astrophysics Data System (ADS)

    Kerrouchi, S.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2016-01-01

    The neutron-proton isovector pairing effect on the beta-plus decay log ft values is studied in typical mirror N≃Z nuclei. The log ft values are calculated by including or not the isovector pairing before and after a particle-number projection using the Sharp-Bardeen-Cooper-Schrieffer (SBCS) method. It is shown that the values obtained after projection in the isovector pairing case are the closest ones to experimental data. The effect of the deformation of the mother and daughter nuclei on the log ft is also studied.

  1. Radioisotope Production for Medical and Physics Applications

    NASA Astrophysics Data System (ADS)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  2. NASA's Radioisotope Power Systems Program Status

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard A.; Hamley, John A.; McCallum, Peter W.; Sutliff, Thomas J.; Zakrajsek, June F.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans.

  3. RADIOISOTOPE INVENTORY FOR TSPA-SR

    SciTech Connect

    C. Leigh; R. Rechard

    2001-01-30

    The total system performance assessment for site recommendation (TSPA-SR), on Yucca Mountain, as a site (if suitable) for disposal of radioactive waste, consists of several models. The Waste Form Degradation Model (i.e, source term) of the TSPA-SR, in turn, consists of several components. The Inventory Component, discussed here, defines the inventory of 26 radioisotopes for three representative waste categories: (1) commercial spent nuclear fuel (CSNF), (2) US Department of Energy (DOE) spent nuclear fuel (DSNF), and (3) high-level waste (HLW). These three categories are contained and disposed of in two types of waste packages (WPs)--CSNF WPs and co-disposal WPs, with the latter containing both DSNF and HLW. Three topics are summarized in this paper: first, the transport of radioisotopes evaluated in the past; second, the development of the inventory for the two WP types; and third, the selection of the most important radioisotopes to track in TSPA-SR.

  4. Self-reciprocating radioisotope-powered cantilever

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lal, Amit; Blanchard, James; Henderson, Douglass

    2002-07-01

    A reciprocating cantilever utilizing emitted charges from a millicurie radioisotope thin film is presented. The actuator realizes a direct collected-charge-to-motion conversion. The reciprocation is obtained by self-timed contact between the cantilever and the radioisotope source. A static model balancing the electrostatic and mechanical forces from an equivalent circuit leads to an analytical solution useful for device characterization. Measured reciprocating periods agree with predicted values from the analytical model. A scaling analysis shows that microscale arrays of such cantilevers provide an integrated sensor and actuator platform.

  5. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    SciTech Connect

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979.

  6. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    SciTech Connect

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  7. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    SciTech Connect

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  8. Safety monitoring system for radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Zoltan, A.

    1973-01-01

    System alerts personnel of hazards which may develop while they are performing tests on radioisotope thermoelectric generator (RTG). Remedial action is initiated to minimize damage. Five operating conditions are monitored: hot junction temperature, cold junction temperature, thermal shroud coolant flow, vacuum in test chamber, and alpha radiation.

  9. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  10. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  11. ILLUSTRATIONS OF RADIOISOTOPES--DEFINITIONS AND APPLICATIONS.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    THIS PUBLICATION IS COMPOSED OF OVER 150 PAGES OF BLACK AND WHITE ILLUSTRATIONS DEALING WITH RADIOISOTOPES AND THEIR USES. THESE ILLUSTRATIONS CONSIST OF CHARTS, GRAPHS, AND PICTORIAL REPRESENTATIONS WHICH COULD BE PREPARED AS HANDOUTS, TRANSPARENCIES FOR OVERHEAD PROJECTION, OR WHICH COULD BE USED IN A NUMBER OF OTHER WAYS FOR PRESENTING SUCH…

  12. Specific radioactivity of neutron induced radioisotopes: assessment methods and application for medically useful 177Lu production as a case.

    PubMed

    Le, Van So

    2011-01-01

    The conventional reaction yield evaluation for radioisotope production is not sufficient to set up the optimal conditions for producing radionuclide products of the desired radiochemical quality. Alternatively, the specific radioactivity (SA) assessment, dealing with the relationship between the affecting factors and the inherent properties of the target and impurities, offers a way to optimally perform the irradiation for production of the best quality radioisotopes for various applications, especially for targeting radiopharmaceutical preparation. Neutron-capture characteristics, target impurity, side nuclear reactions, target burn-up and post-irradiation processing/cooling time are the main parameters affecting the SA of the radioisotope product. These parameters have been incorporated into the format of mathematical equations for the reaction yield and SA assessment. As a method demonstration, the SA assessment of 177Lu produced based on two different reactions, 176Lu (n,γ)177Lu and 176Yb (n,γ) 177Yb (β- decay) 177Lu, were performed. The irradiation time required for achieving a maximum yield and maximum SA value was evaluated for production based on the 176Lu (n,γ)177Lu reaction. The effect of several factors (such as elemental Lu and isotopic impurities) on the 177Lu SA degradation was evaluated for production based on the 176Yb (n,γ) 177Yb (β- decay) 177Lu reaction. The method of SA assessment of a mixture of several radioactive sources was developed for the radioisotope produced in a reactor from different targets. PMID:21248665

  13. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  14. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  15. Quantitation of renal function using radioisotopic techniques.

    PubMed

    O'Malley, J P; Ziessman, H A

    1993-03-01

    Radioisotopic methods are practical for clinical use because they do not require continuous intravenous infusion or urine collection. This obviously is of great advantage in infants and small children, in whom accurate urine collection is difficult, but the techniques apply to adults as well. The ability to determine individual kidney function is a major benefit. Accuracies of the radioisotopic techniques vary but generally are within clinically acceptable ranges. The need for accuracy and reproducibility can be balanced with the desire for speed and convenience when choosing among the different techniques. Methods that use plasma sampling provide greater accuracy and are recommended in cases of severe dysfunction, whereas methods such as Gates' camera method, which eliminates plasma samples, can be completed in minutes. Radioisotopic techniques are most useful in the ranges of mild to moderately decreased function, in which serum creatinine concentration is nondiagnostic, and although they are much less accurate at markedly low renal function levels, so is 24-hour creatinine clearance. In conclusion, radiopharmaceutical agents offer a wide array of possible techniques for simple, accurate, and noninvasive measurement of global as well as individual GFR and ERPF. PMID:8462269

  16. NEW DIRECTIONS IN RADIOISOTOPE SPECTRUM IDENTIFICATION

    SciTech Connect

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  17. Tooth Decay

    MedlinePlus

    ... decay starts in the outer layer, called the enamel. Without a filling, the decay can get deep into the tooth and its nerves and cause a toothache or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  18. Nuclear and Radioisotope Propulsion and Power in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Widdicombe, T.

    A brief history of the use of nuclear fuelled powerplant in space is given along with some working principles of the technology, and recent proposals for spacecraft for the exploration of Titan utilising radioisotope generators are surveyed. Nuclear reaction engines are studied with specific consideration given to their use in Titan's atmosphere, and speculative modifications to one particular spacecraft concept originally conceived of for the exploration of Mars are proposed. A hybrid device producing mechanical power from nuclear decay heat is also suggested for future investigation.

  19. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  20. Markets for reactor-produced non-fission radioisotopes

    SciTech Connect

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included.

  1. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOEpatents

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  2. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  3. Radioisotope thermoelectric generator transport trailer system

    NASA Astrophysics Data System (ADS)

    Ard, Kevin E.; King, David A.; Leigh, Harley; Satoh, Juli A.

    1995-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware.

  4. Performance tuned radioisotope thermophotovoltaic space power system

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, M. D.; Saban, S. B.

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The

  5. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  6. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  7. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  8. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  9. Cooling radioisotope thermoelectric generators in the Shuttle

    NASA Technical Reports Server (NTRS)

    Norman, R. M.

    1978-01-01

    Radioisotope thermoelectric generators (RTG) to be used on future spacecraft and launched by the Shuttle must be cooled from the time they are installed and enclosed until the spacecraft is deployed from the Shuttle. A special Cooling Kit maintains their temperature well below critical by circulating water through the coils soldered to them and through a heat exchanger that boils water and externally discharges the resulting steam. The RTG Cooling Kit, including its support frame, if fully charged with about 64 kg of evaporation water, will increase the Shuttle launch mass by about 200 kg.

  10. Preparing for Harvesting Radioisotopes from FRIB

    SciTech Connect

    Peaslee, Graham F.; Lapi, Suzanne E.

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In the standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.

  11. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.

    2004-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  12. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  13. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  14. Thermophotovoltaic Converter Performance for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Chubb, Donald L.

    2005-02-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion for Radioisotope Power Systems (RPS) for spacecraft. TPV power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than Si solar cells. Spectral control, through choices of selective radiant emitters, TPV modules, and filters, is key to high-efficiency operation. This paper describes performance tests of an array of TPV cells with boundary conditions prototypical of an RPS. TPV performance tests were conducted at prototypical array size (≅100 cm2), emitter temperature (1350 K), and heat rejection temperature (300 K). Test hardware included InGaAs TPV cells at 0.60 eV band-gap, with tandem plasma/interference filters for spectral control. At the target emitter temperature of 1350 K, a conversion efficiency of 19% has been demonstrated for the TPV module. Results are consistent with measured cell efficiency (28%), calculated spectral control efficiency (80%), and calculated thermal efficiency in the optical cavity (90%).

  15. Safe radioisotope thermoelectric generators and heat sources for space applications

    NASA Astrophysics Data System (ADS)

    O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V.

    2008-07-01

    Several isotopes are examined as alternatives to 238Pu that is traditionally used in radioisotope thermoelectric generators (RTGs) and heating units (RHUs). The radioisotopes discussed include 241Am, 208Po, 210Po, and 90Sr. The aim of this study is to facilitate the design of an RTG with a minimal radiation dose rate and mass including any required shielding. Applications of interest are primarily space and planetary exploration. In order to evaluate the properties of the alternative radioisotopes a Monte Carlo model was developed to examine the radiation protection aspect of the study. The thermodynamics of the power generation process is examined and possible materials for the housing and encapsulation of the radioisotopes are proposed. In this study we also present a historical review of radioisotope thermoelectric generators (RTGs) and the thermoelectric conversion mechanism in order to provide a direct comparison with the performance of our proposed alternative isotope systems.

  16. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  17. Improved Techniques Used at Brookhaven National Laboratory to Package and Dispose of Radioisotope Production Waste Lowers Worker Exposure

    SciTech Connect

    Sullivan, P.

    2003-02-24

    This paper describes the operations that generate Radioisotope Production Waste at Brookhaven National Laboratory (BNL) and the improved techniques used to handle and dispose of this waste. Historically, these wastes have produced high worker exposure during processing, packaging and disposal. The waste is made up of accelerator-produced nuclides of short to mid-length half-lives with a few longer-lived nuclides. However, because radiopharmaceutical research and treatment requires a constant supply of radioisotopes, the waste must be processed and disposed of in a timely manner. Since the waste cannot be stored for long periods of time to allow for adequate decay, engineering processes were implemented to safely handle the waste routinely and with ALARA principles in mind.

  18. Induced radioisotopes in a linac treatment hall.

    PubMed

    Vega-Carrillo, Héctor René; de Leon-Martinez, Héctor Asael; Rivera-Perez, Esteban; Luis Benites-Rengifo, Jorge; Gallego, Eduardo; Lorente, Alfredo

    2015-08-01

    When linacs operate above 8MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect. The third category of spectrum has mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation in the linac components, the concrete walls and in the patient body. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer. PMID:25989748

  19. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  20. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect

    Campbell, R.; Klein, J.

    1989-01-01

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  1. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    SciTech Connect

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Murray, Christopher

    2004-02-04

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than solar cells. Spectral control, including selective emitters, TPV module, and filters, are key to high-efficiency operation. This paper outlines the mechanical, thermal, and optical designs for the converter, including the heat source, the selective emitter, filters, photovoltaic (PV) cells, and optical cavity components. Focus is on the emitter type and the band-gap of InGaAs PV cells in developing the design. Any component and converter data available at the time of publication will also be presented.

  2. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  3. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Murray, Christopher S.; Crowley, Christopher J.; Murray, Susan; Elkouh, Nabil A.; Hill, Roger W.; Chubb, Donald E.

    2004-11-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in the possibility of combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths. Spectral control, including the combination of emitter, TPV module, and filter, is key to high-efficiency operation. This paper summarizes the performance characteristics of monolithic integrated module (MIM) PV cells and arrays, tandem filters, and tungsten emitters fabricated for the present studies. The current, voltage, quantum efficiency, and diode efficiency of multi-junction 0.60 eV bandgap devices are presented for individual PV cells and strings of several cells. This paper discusses the design considerations for mechanical layout of PV cell arrays and integration with filters. The vacuum facility to be used to test these PV cell arrays is also described.

  4. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  5. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well. PMID:24374071

  6. Status of the NASA Stirling Radioisotope Project

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.

  7. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  8. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect

    Veca, Anthony R.; Whittemore, William L.

    1994-07-01

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  9. Power characteristics of a Stirling radioisotope power system over the life of the mission

    NASA Astrophysics Data System (ADS)

    Schreiber, Jeffrey G.

    2001-02-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays. .

  10. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.

  11. Report on audit of funding for advanced radioisotope power systems

    SciTech Connect

    1997-10-17

    The U.S. Department of Energy`s (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. Projects are conducted with these agencies in accordance with written agreements and are dependent on cost sharing by the user agencies. For the past seven years the program emphasis has been on providing power systems for NASA`s Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the Department received proper reimbursement from NASA for the radioisotope power systems produced.

  12. Seal Out Tooth Decay

    MedlinePlus

    ... Topics > Tooth Decay (Caries) > Seal Out Tooth Decay Seal Out Tooth Decay Main Content What are dental ... back teeth decay so easily? Who should get seal​ants? Should sealants be put on baby teeth? ...

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  14. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  15. Determining Molar Combining Ratios Using Radioisotopes--A Student Experiment

    ERIC Educational Resources Information Center

    Sears, Jerry A.

    1976-01-01

    Outlines an experimental procedure in which an iodine radioisotope is used to determine molar combining ratios of lead and silver with the iodine. Tables and graphs show the definitive results that should be attainable. (CP)

  16. Alpha-emitting radioisotopes for switchable neutron generators

    NASA Astrophysics Data System (ADS)

    Hertz, K. L.; Hilton, N. R.; Lund, J. C.; Van Scyoc, J. M.

    2003-06-01

    Traditionally, radioisotopic neutron generators mix an alpha-emitting radioisotope with beryllium. The disadvantage of such an alpha-Be source is that they emit neutrons at a steady rate even when stored. These conventional generators are extremely awkward to use in many applications because of the neutron shielding required to prevent exposure to personnel and sensitive electronics. Recently, at our laboratory and others, the possibility of using switchable radioactive neutron sources has been investigated. These sources rely on a mechanical operation to separate the alpha-emitting radioisotope from the Be target, thus allowing the source to be switched on and off. The utility of these new switchable sources is critically dependent on the selection of the alpha-emitting radioisotope. In this paper we discuss issues that determine the desirability of an alpha-emitting source for a switchable neutron generator, and select alpha emitters that are best suited for use in this application.

  17. Effect of inert cover gas on performance of radioisotope Stirling space power system

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Kumar, V.; Or, C.; Schock, A.

    2001-02-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .

  18. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  19. Light-weight radioisotope heater impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-12-31

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  20. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  1. Implanted artificial heart with radioisotope power source.

    PubMed

    Shumakov, V I; Griaznov, G M; Zhemchuzhnikov, G N; Kiselev, I M; Osipov, A P

    1983-02-01

    An atomic artificial heart for orthotopic implantation was developed with the following characteristics: volume, 1.2 L; weight, 1.5 kg; radioisotope power, 45 W; operating life, up to 5 years; hemodynamics, similar to natural hemodynamics. The artificial heart includes a thermal drive with systems for regulating power, feeding steam into the cylinders, return of the condensate to the steam generator, and delivery of power to the ventricles and heat container. The artificial heart is placed in an artificial pericardium partially filled with physiologic solution. It uses a steam engine with two operating cylinders that separately drive the left and right ventricles. There is no electronic control system in the proposed design. The operation of the heat engine is controlled, with preservation of autoregulation by the vascular system of the body. The separate drives for the ventricles is of primary importance as it provides for operation of the artificial heart through control of cardiac activity by venous return. Experimental testing on a hydromechanical bench demonstrated effective autoregulation. PMID:6838394

  2. Accidental radioisotope burns - Management of late sequelae.

    PubMed

    Varghese, Bipin T; Thomas, Shaji; Nair, Balakrishnan; Mathew, P C; Sebastian, Paul

    2010-09-01

    Accidental radioisotope burns are rare. The major components of radiation injury are burns, interstitial pneumonitis, acute bone marrow suppression, acute renal failure and adult respiratory distress syndrome. Radiation burns, though localized in distribution, have systemic effects, and can be extremely difficult to heal, even after multiple surgeries. In a 25 year old male who sustained such trauma by accidental industrial exposure to Iridium192 the early presentation involved recurrent haematemesis, pancytopenia and bone marrow suppression. After three weeks he developed burns in contact areas in the left hand, left side of the chest, abdomen and right inguinal region. All except the inguinal wound healed spontaneously but the former became a non-healing ulcer. Pancytopenia and bone marrow depression followed. He was treated with morphine and NSAIDs, epidural buprinorphine and bupivicaine for pain relief, steroids, antibiotics followed by wound excision and reconstruction with tensor fascia lata(TFL) flap. Patient had breakdown of abdominal scar later and it was excised with 0.5 cm margins up to the underlying muscle and the wound was covered by a latissimis dorsi flap. Further scar break down and recurrent ulcers occurred at different sites including left wrist, left thumb and right heel in the next two years which needed multiple surgical interventions. PMID:21321664

  3. Reliability of Radioisotope Stirling Convertor Linear Alternator

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin; Korovaichuk, Igor; Geng, Steven M.; Schreiber, Jeffrey G.

    2006-01-01

    Onboard radioisotope power systems being developed and planned for NASA s deep-space missions would require reliable design lifetimes of up to 14 years. Critical components and materials of Stirling convertors have been undergoing extensive testing and evaluation in support of a reliable performance for the specified life span. Of significant importance to the successful development of the Stirling convertor is the design of a lightweight and highly efficient linear alternator. Alternator performance could vary due to small deviations in the permanent magnet properties, operating temperature, and component geometries. Durability prediction and reliability of the alternator may be affected by these deviations from nominal design conditions. Therefore, it is important to evaluate the effect of these uncertainties in predicting the reliability of the linear alternator performance. This paper presents a study in which a reliability-based methodology is used to assess alternator performance. The response surface characterizing the induced open-circuit voltage performance is constructed using 3-D finite element magnetic analysis. Fast probability integration method is used to determine the probability of the desired performance and its sensitivity to the alternator design parameters.

  4. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  5. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    SciTech Connect

    Becker, D.L.; McCoy, J.C.

    1996-03-01

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

  6. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  7. Light-Weight Radioisotope Heater Unit

    SciTech Connect

    Schock, Alfred

    1981-04-01

    DOE is developing a new generation of radioisotope-fueled 1-watt heaters, for initial use on NASA's upcoming Galileo and International Solar-Polar Missions. Each heater must contain passive safety provisions to ensure fuel retention under all credible accident conditions. Initial design reviews raised some concern about the accuracy of the predicted peak reenetry temperature, and about the adequacy of the safety margin under certain unlikely - but not impossible-reentry modes. Of particular concern was the possile release of the accumulated helium inventory from the fuel during the reentry heat pulse, and the potential effect of enhanced heat conduction due to helium buildup in gaps. The latter problem had not been addressed in previous studies. Fairchild carried out a large number of reentry thermal analyses to resolve the analytical uncertainties, and proposed design changes to reduce the thermal coupling between the aeroshell and the fuel capsule. For the computed reentry temperature history of the modified design, the rate of helium buildup in the gaps was analyzed. The analysis accounted for temperature-dependent helium diffusion through the fuel pellet and for leakage to space through the permeable aeroshell. It showed that most of the helium inventory leaves the fuel during reentry, but that it never reaches a continuum pressure in the gaps, and therefore has no significant thermal effect. Under these conditions, the Fairchild-modified design provides ample safety margin against clad failure, even for very unlikely reenty trajectories. The modified design was successfully vibration-tested and was subsequently adopted by the project. Cross Reference CID #8517. There are two copies in the file.

  8. Radioisotopic splenoportography in patients with portal hypertension.

    PubMed

    Samejima, N; Ikeda, K; Yokoyama, Y; Hirata, S

    1989-05-01

    Radio-isotopic splenoportography was performed by injecting 99mTcO4- into the spleens of 46 patients with portal hypertension and 14 patients with various disorders not having portal hypertension. No collateral circulation was demonstrated in the 14 patients without portal hypertension whereas some RI-images of portosystemic collaterals were found in 40 (87.0 per cent) of the 46 patients with portal hypertension. Collaterals were divided into an ascending group and a descending group, the appearance rate of ascending collaterals being 80.4 per cent and that of descending collaterals, 41.3 per cent. There were 3 image patterns in the ascending group, namely, an AZ-pattern in which the azygos vein was demonstrated; a SC-pattern in which the RI-bolus ascended along the esophagus to the neck and the subclavian vein; and an EG-pattern which showed stagnation of the RI-bolus in the esophagogastric region. There were 4 patterns in the descending group, namely; a pattern of gastro-renal caval shunt (GR-pattern); reverse flow patterns into the umbilical or paraumbilical veins (UV-pattern); into the superior mesenteric vein (SMV-pattern); and into the inferior mesenteric vein (IMV-pattern). The appearance of the EG-pattern was seen most frequently (74.4 per cent). The usefulness of this method for surveying the collateral circulation in portal hypertension, estimating the risk of esophageal variceal bleeding and evaluating its treatments, was suggested by the results of this study. PMID:2674500

  9. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  10. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  11. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  12. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  13. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  14. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    SciTech Connect

    Steven D. Howe; Robert C. O'Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  15. Dental Caries (Tooth Decay)

    MedlinePlus

    ... Find Data by Topic > Dental Caries (Tooth Decay) Dental Caries (Tooth Decay) Main Content Dental caries (tooth decay) remains the most prevalent chronic ... important source of information on oral health and dental care in the United States since the early ...

  16. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  17. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  18. Hair radioactivity as a measure of exposure to radioisotopes

    NASA Technical Reports Server (NTRS)

    Strain, W. H.; Pories, W. J.; Fratianne, R. B.; Flynn, A.

    1972-01-01

    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle.

  19. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  20. Radioisotopes for research on and control of mosquitos

    PubMed Central

    Bruce-Chwatt, Leonard J.

    1956-01-01

    Practical applications of radioactive isotopes in medicine, science, and industry have multiplied enormously during the past five years. In this paper, the author attempts to gather what is known about the use of radioactive isotopes in the research on malaria control. The development of the uranium pile for large-scale production of radioisotopes and technical progress in the making of reliable electronic equipment have greatly contributed to the application of radioactive tracers in biological research. The present knowledge of radioisotopes in mosquito and in insecticide research is discussed. ImagesFIG. 1 PMID:13404435

  1. Efficiency of Pm-147 direct charge radioisotope battery.

    PubMed

    Kavetskiy, A; Yakubova, G; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A

    2011-05-01

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries. PMID:21295487

  2. Opportunities for Decay Counting of Environmental Radioisotopes Using Ultra-low-background Detection Systems

    SciTech Connect

    Runkle, Robert C.; Aalseth, Craig E.; Bailey, Vanessa L.; Bonicalzi, Ricco; Moran, James J.; Seifert, Allen; Warren, Glen A.

    2012-08-01

    Executive Summary We present results from a scoping study whose intent was to define challenge measurements to be pursued on the Ultra-Sensitive Nuclear Measurements Initiative. Potential challenge measurements using new radiation detection technology in the shallow underground laboratory that would have substantial impact in environmental science were the focus of this study.

  3. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect

    Becker, D.L.

    1997-05-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  4. A time like our own? Radioisotopic calibration of the Ordovician greenhouse to icehouse transition

    NASA Astrophysics Data System (ADS)

    Smith, M. Elliot; Singer, Brad S.; Simo, Toni

    2011-11-01

    Tiered interpolation, a new timescale methodology, was used to construct the first radioisotopically-calibrated composite δ 13C curve for the Ordovician period using sanidine 40Ar/ 39Ar age determinations and existing U-Pb geochronology and biostratigraphic zonation. Tiered interpolation intercalates and temporally scales the numerical age of lithostratigraphic horizons by conducting a series of nested projections between hierarchical temporal control points. For primary control points, new 40Ar/ 39Ar ages and legacy U-Pb geochronology were screened to avoid analyses affected by inheritance and daughter loss and calibrated to reflect modern decay constants and standard values. Ages for secondary, tertiary, etc.… control points are obtained via linear interpolation of between higher order control points. In scaling the Ordovician δ 13C composite, the following control point order was applied: (1) radioisotopic ages (2) graptolite Zones, (3) index taxa-based on speciation events (North Atlantic conodont Zones), (4) North American Mid-continent conodont zones, and (5) stratal thicknesses at δ 13C sampled sections. The resulting timescale utilizes the highest resolution of each component, is internally consistent, and is re-scalable as more precise radioisotopic ages become available. It provides a robust framework for independently assessing the accuracy of biostratigraphic composite timescales because it does not rely an assumption of quasi-continuous sediment accumulation and/or speciation. To better calibrate the Late Ordovician and resolve a discrepancy between U-Pb and 40Ar/ 39Ar ages, three new 40Ar/ 39Ar ages were determined via the laser fusion of multiple single sanidine phenocrysts from three bentonitic ash beds from the Late Ordovician marine strata of the upper Mississippi valley where the record of Taconic volcanism is most complete. Fusions of 275 individual sanidine crystals from the Millbrig, Dygerts, and Rifle Hill bentonites yield largely

  5. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  6. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  7. Targets for the production of radioisotopes and method of assembly

    DOEpatents

    Quinby, Thomas C.

    1976-01-01

    A target for preparation of radioisotopes by nuclear bombardment, and a method for its assembly are provided. A metallic sample to be bombarded is enclosed within a metallic support structure and the resulting target subjected to heat and pressure to effect diffusion bonds therebetween. The bonded target is capable of withstanding prolonged exposure to nuclear bombardment without thermal damage to the sample.

  8. Radioisotope production and management at Oak Ridge National Laboratory

    SciTech Connect

    Collins, E.D.; Aaron, W.S.; Alexander, C.W.; Bigelow, J.E.; Parks, J.T.; Tracy, J.G.; Wham, R.M.

    1994-09-01

    The production of radioisotopes has been one of the basic activities at Oak Ridge since the end of World War II. The importance of this work was best described by Alvin Weinberg, former Laboratory Director, when he wrote ``... If God has a golden book and writes down what it is that Oak Ridge National Laboratory did that had the biggest influence on science, I would guess that was the production and distribution of isotopes.`` Radioisotopes production continues to be an important aspect of Oak Ridge programs today and of those planned for the future. Past activities, current projects, and future plans and potentials will be described briefly in this paper. Also, some of the major issues facing the continued production of radioisotopes will be described. The scope of the program has always been primarily that of process development, followed by special batch-type productions, where no other supply exists. The technology developed has been available for adoption by US commercial corporations, and in cases where this has occurred, Oak Ridge has withdrawn as a supplier of the particular isotopes involved. One method of production that will not be described is that of target bombardment with an accelerator. This method was used at Oak Ridge prior to 1978 in the 86-inch Cyclotron. However, this method has not been used at Oak Ridge since then for radioisotope production, except as a research tool.

  9. Optimization of commercial scale photonuclear production of radioisotopes

    SciTech Connect

    Bindu, K. C.; Harmon, Frank; Starovoitova, Valeriia N.; Stoner, Jon; Wells, Douglas P.

    2013-04-19

    Photonuclear production of radioisotopes driven by bremsstrahlung photons using a linear electron accelerator in the suitable energy range is a promising method for producing radioisotopes. The photonuclear production method is capable of making radioisotopes more conveniently, cheaply and with much less radioactive waste compared to existing methods. Historically, photo-nuclear reactions have not been exploited for isotope production because of the low specific activity that is generally associated with this production process, although the technique is well-known to be capable of producing large quantities of certain radioisotopes. We describe an optimization technique for a set of parameters to maximize specific activity of the final product. This set includes the electron beam energy and current, the end station design (an integrated converter and target as well as cooling system), the purity of materials used, and the activation time. These parameters are mutually dependent and thus their optimization is not trivial. {sup 67}Cu photonuclear production via {sup 68}Zn({gamma}p){sup 67}Cu reaction was used as an example of such an optimization process.

  10. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  11. Radioisotopic Tie Points of the Quaternary Geomagnetic Instability Time Scale (GITS): How Accurate and Precise?

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2014-12-01

    Reversals and excursions of the geomagnetic field are recorded globally by sedimentary and volcanic rocks. These geodynamo instabilities provide a rich set of chronostratigraphic tie points for the Quaternary period that can provide tests of age models central to paleoclimate studies. Radioisotopic dating of volcanic rocks, mainly 40Ar/39Ar dating of lava flows, coupled with astronomically-dated deep sea sediments, reveals 10 polarity reversals and 27 field excursions during the Quaternary (Singer, 2014). A key question concerns the uncertainties associated with radioisotopic dates of those geodynamo instabilities that have been identified both in terrestrial volcanic rocks and in deep sea sediments. These particular features offer the highest confidence in linking 40Ar/39Ar dates to the global marine climate record. Geological issues aside, for rocks in which the build-up of 40Ar by decay of 40K may be overwhelmed by atmospheric 40Ar at the time of eruption, the uncertainty in 40Ar/39Ar dates derives from three sources: (1) analytical uncertainty associated with measurement of the isotopes; this is straightforward to estimate; (2) systematic uncertainties stemming from the age of standard minerals, such as the Fish Canyon sanidine, and in the 40K decay constant; and (3) systematic uncertainty introduced during analysis, mainly the size and reproducibility of procedural blanks. Whereas 1 and 2 control the precision of an age determination, 2 and 3 also control accuracy. In parallel with an astronomical calibration of 28.201 Ma for the Fish Canyon sanidine standard, awareness of the importance of procedural blanks, and a new generation multi-collector mass spectrometer capable of exceptionally low-blank and isobar-free analysis, are improving both accuracy and precision of 40Ar/39Ar dates. Results from lavas recording the Matuyama-Brunhes reversal, the Santa Rosa excursion, and the reversal at the top of the Cobb Mtn subchron demonstrate these advances. Current best

  12. Investigation of Insulation Materials for Future Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  13. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  14. Safety status of space radioisotope and reactor power sources

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The current overall safety criterion for both radioisotope and reactor power sources is containment or immobilization in the case of a reentry accident. In addition, reactors are designed to remain subcritical under conditions of land impact or water immersion. A very extensive safety test and analysis program was completed on the radioisotope thermoelectric generators (RTGs) in use on the Galileo spacecraft and planned for use on the Ulysses spacecraft. The results of this work show that the RTGs will pose little or no risk for any credible accident. The SP-100 space nuclear reactor program has begun addressing its safety criteria, and the design is planned to be such as to ensure meeting the various safety criteria. Preliminary mission risk analyses on SP-100 show the expected value population dose from postulated accidents on the reference mission to be very small. It is concluded that the current US nuclear power sources are the safest flown.

  15. A radioisotope-powered surface acoustic wave transponder

    NASA Astrophysics Data System (ADS)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  16. Emitted radiation characteristics of plutonium dioxide radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.; Steyn, J. J.

    1971-01-01

    The nuclear and emitted radiation characteristics of the radioisotope elements and impurities in commercial grade plutonium dioxide are presented in detail. The development of the methods of analysis are presented. Radioisotope thermoelectric generators (RTG) of 1575, 3468 and 5679 thermal watts are characterized with respect to neutron and gamma photon source strength as well as spatial and number flux distribution. The results are presented as a function of detector position and light element contamination concentration for fuel age ranging from 'fresh' to 18 years. The data may be used to obtain results for given O-18 and Pu-236 concentrations. The neutron and gamma photon flux and dose calculations compare favorably with reported experimental values for SNAP-27.

  17. Radioisotope power system options for future planetary missions

    NASA Astrophysics Data System (ADS)

    Cockfield, Robert D.

    2001-02-01

    Like previous missions to the outer planets, future spacecraft missions such as Pluto/Kuiper Express, Europa Orbiter, and Solar Probe will require radioisotope power systems for their long voyages away from the Sun. Several candidate advanced power conversion technologies have been proposed that have been proposed that have higher power conversion efficiencies than the traditional thermoelectric generators, with the potential for reduced mass and reduced quantities of nuclear fuel required. Studies conducted by Lockheed Martin under the direction of the Department of Energy have included the development of system conceptual designs utilizing Alkali Metal to Electric Conversion (AMTEC) and Stirling power conversion. Generator concepts based on these conversion technologies are compared in this paper with an alternative Small RTG, based on the General Purpose Heat Source-Radioisotope Thermoelectric Generator (GPHS-RTG). .

  18. Radioisotope Electric Propulsion (REP) Spacecraft Design Concept Considerations

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.; Fiehler, Douglas I.

    2005-01-01

    Radioisotopic Electric Propulsion (REP) has the potential to provide certain advantages for outer planetary exploration involving small bodies and long term investigation s for medium class missions requiring power comparable to past outer planetary exploration missions. This paper describes a preliminary conceptual design of a REP-based spacecraft where the mission of interest involves a spacecraft with a radioisotope power supply less than one kilowatt while operating at a minimum of 10-years. A key element of the REP spacecraft is to insure sustained science return by orbiting or flying in formation with selected targets. Utilizing current/impending technological advances, REP orbiter/explorer missions may provide a valuable tool for extended scientific investigations of small bodies in the outer solar system.

  19. Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey

    2002-01-01

    Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.

  20. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  1. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  2. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  3. Metal matrix composite fuel for space radioisotope energy sources

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Ning, H.; Reece, M. J.; Ambrosi, R. M.; Bannister, N. P.; Stephenson, K.

    2013-02-01

    Radioisotope fuels produce heat that can be used for spacecraft thermal control or converted to electricity. They must retain integrity in the event of destruction or atmospheric entry of the parent spacecraft. Addition of a metal matrix to the actinide oxide could yield a more robust fuel form. Neodymium (III) oxide (Nd2O3) - niobium metal matrix composites were produced using Spark Plasma Sintering; Nd2O3 is a non-radioactive surrogate for americium (III) oxide (Am2O3). Two compositions, 70 and 50 wt% Nd2O3, were mechanically tested under equibiaxial (ring-on-ring) flexure according to ASTM C1499. The addition of the niobium matrix increased the mean flexural strength by a factor of about 2 compared to typical ceramic nuclear fuels, and significantly increased the Weibull modulus to over 20. These improved mechanical properties could result in reduced fuel dispersion in severe accidents and improved safety of space radioisotope power systems.

  4. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  5. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  6. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    NASA Astrophysics Data System (ADS)

    King, D. A.

    1994-11-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  7. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  8. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect

    S. Mukhopadhyay

    2003-06-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  9. Radioisotope Concentration in Lake Sediments of Maracaibo, Venezuela

    SciTech Connect

    Salas, A. Rangel; Viloria, T.; Sajo-Bohus, L.; Barros, H.; Greaves, E. D.; Palacios, D.

    2007-10-26

    Maracaibo Lake is one of the most important water basing and oil producing regions in Venezuela. Changes in the local environment have been monitored for chemical pollution in the past. For this study we selected a set of sediment samples collected in the shore and analyzed for its radioisotope content. Results show the gamma emitting isotopes distribution. Isotopes concentrations have been determined within the natural K, Th and U families.

  10. Moduli Decays and Gravitinos

    SciTech Connect

    Dine, Michael; Kitano, Ryuichiro; Morisse, Alexander; Shirman, Yuri

    2006-04-21

    One proposed solution of the moduli problem of string cosmology requires that the moduli are quite heavy, their decays reheating the universe to temperatures above the scale of nucleosynthesis. In many of these scenarios, the moduli are approximately supersymmetric; it is then crucial that the decays to gravitinos are helicity suppressed. In this paper, we discuss situations where these decays are, and are not, suppressed. We also comment on a possible gravitino problem from inaton decay.

  11. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  12. Stimulus sensitive gel with radioisotope and methods of making

    SciTech Connect

    Weller, Richard E.; Lind, Michael A.; Fisher, Darrell R.; Gutowska, Anna; Campbell, Allison A.

    2005-03-22

    The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.

  13. Stimulus sensitive gel with radioisotope and methods of making

    DOEpatents

    Weller, Richard E [Selah, WA; Lind, Michael A [Kent, WA; Fisher, Darrell R [Richland, WA; Gutowska, Anna [Richland, WA; Campbell, Allison A [Kennewick, WA

    2001-10-02

    The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.

  14. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  15. Radioisotope requirements and usage in the radiopharmaceutical industry

    SciTech Connect

    Langton, M.A.

    1995-12-31

    Radioisotopes are used extensively in many different productive and beneficial human endeavors. Amersham International, a U.K.-based company originating in the British Scientific Civil Service during World War II, has been actively involved in many of these activities for more than 50 yr. Today they are one of the world`s largest suppliers of radioactive compounds and scaled radiation sources for use in industrial quality and safety assurance, life science research, and medicine. This paper outlines one of these applications: the use of radioisotopes as radiopharmaceuticals. Radiopharmaceuticals are radioactive nuclides and labeled compounds that have been developed for the diagnosis and treatment of (human) disease. They are manufactured via highly controlled processes and have gone through regulatory scrutiny and approval far in excess of other radioisotopes used in other applications. Radiopharmaceuticals can be conveniently split into two categories. One type is simply an active analog that mimics the physiological behavior of its inactive counterpart in the body. The other involves an actual pharmacological compound that exhibits the desired physiological behavior, which is then labeled with a radionuclide suitable for either imaging or the delivery of a therapeutic radiation dose as appropriate but which plays no part in the mechanism of action of the drug. The latter type, which is the more common of the two, can be supplied either as an active compounded product or as a {open_quotes}cold kit,{close_quotes} which is then labeled with the appropriate radiopharmaceutical-grade radionuclide to yield the final product.

  16. Advanced radioisotope power source options for Pluto Express

    SciTech Connect

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  17. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview

    NASA Technical Reports Server (NTRS)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; Colozza, Tony; Packard, Tom; Nguyen, Thahn; Schmitz, Paul; Ostdiek, Paul; Gold, Rob; Lisse, Carey; Hibbits, Karl

    2009-01-01

    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  18. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect

    Pugh, B.K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  19. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    NASA Astrophysics Data System (ADS)

    Pugh, Barry K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  20. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect

    Pugh, Barry K.

    1997-01-10

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  1. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  2. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  3. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology

    PubMed Central

    Creager, Angela N.H.

    2009-01-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These ‘suicide experiments’, a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  4. Stirling Convertor for the Stirling Radioisotope Generator Tested as a Prelude to Transition to Flight

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2004-01-01

    The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (Valley Forge, PA) under contract to the Department of Energy (Germantown, MD). In support of this project, the NASA Glenn Research Center has established a near-term technology effort to provide some of the critical data to ensure a successful transition to flight for what will be the first dynamic power system to be used in space. The generator will be a high-efficiency electric power source for potential use on NASA space science missions. The generator will be able to operate in the vacuum of deep space or in an atmosphere such as on the surface of Mars. High system efficiency is obtained through the use of free-piston Stirling power-conversion technology. The power output of the generator will be greater than 100 W at the beginning of life, with the slow decline in power being largely due to decay of the plutonium heat source. Previously, Glenn's supporting technology efforts focused only on the most critical technical issues.

  5. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology.

    PubMed

    Creager, Angela N H

    2009-03-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These 'suicide experiments', a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  6. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    NASA Astrophysics Data System (ADS)

    Schock, Alfred

    1994-07-01

    The preceding paper (Schock 1994) described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-Watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to -110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 Watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its two engines fails. In fact, the latter system could deliver as much as 115 Watts(e) if desired by the mission planners.

  7. A radioisotope powered cryobot for penetrating the Europan ice shell

    NASA Astrophysics Data System (ADS)

    Zimmerman, Wayne; Bryant, Scott; Zitzelberger, John; Nesmith, Bill

    2001-02-01

    The Cryobot team at JPL has been working on the design of a Cryo-Hydro Integrated Robotic Penetrator System (CHIRPS), which can be used to penetrate the Mars North Polar Cap or the thick sheet ice surrounding Jupiter's moon, Europa. The science for either one of these missions is compelling. For both Mars and Europa the major scientific interest is to reach regions where there is a reservoir of water that may yield signs of past or extant life. Additionally, a Mars polar cap penetration would help us understand both climatic and depositional histories for perhaps as far back as 20 million years. Similarly, penetration of the Europa ice sheet would allow scientists to unravel the mysteries surrounding the thick ice crust, its chemical composition, and subsurface ocean properties. Extreme mass and power constraints make deep drilling/coring impractical. The best way to explore either one of these environments is a cryobot mole penetrator vehicle, which carries a suite of instruments suitable for sampling and analyzing the ice or ocean environments. This paper concentrates on a Europa deep ice (i.e., kilometers thick) application of the CHIRPS, and introduces the reader to the vehicle design with focus on the use of radioisotope thermoelectric generator (RTG) technology as the primary heat (1 kW total) and power source for the robotic vehicle. Radioisotope heater unit (RHU) milli-watt power systems (120 mW total) are also employed to power the mini-radiowave ice transceivers, which are used to relay data through the ice up to the surface lander. The results of modeling and design work for both of these areas are discussed in this paper. Although radioisotope power is baselined for the Europa flight version of the cyrobot, no decision on the final design of the cryobot will be made until the environmental review process is complete. Any use of the cryobot for Mars or Europa will conform to all environmental and planetary protection requirements. .

  8. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  9. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  10. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Astrophysics Data System (ADS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  11. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  12. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  13. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  14. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    2012-01-19

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  15. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  16. Electronic structure of polycrystalline Cd metal using 241Am radioisotope

    NASA Astrophysics Data System (ADS)

    Dhaka, M. S.; Sharma, G.; Mishra, M. C.; Sharma, B. K.

    2014-04-01

    Electronic structure study of the polycrystalline cadmium metal is reported. The experimental measurement is undertaken on a polycrystalline sheet sample using 59.54 keV radioisotope of 241Am. These results are compared with the ab initio calculations. The theoretical calculations are performed using linear combination of atomic orbitals (LCAO) method employing the density functional theories (DFT) and Hartree-Fock (HF) and augmented plane wave (APW) methods. The spherically averaged APW and LCAO based theoretical Compton profiles are in good agreement with the experimental measurement however the APW based theoretical calculations show best agreement.

  17. Radioisotope bone scanning in a case of sarcoidosis

    SciTech Connect

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions in the calvarium.

  18. Radioisotope measurement of the velocity of tracheal mucus.

    PubMed

    Russo, K J; Palmer, D W; Beste, D J; Carl, G A; Belson, T P; Pelc, L R; Toohill, R J

    1985-04-01

    A radioisotope scanning technique for measuring the velocity of tracheal mucus has been developed utilizing a canine model. A solution of stannous phytate labeled with 99mTc is introduced percutaneously into the lower trachea and the upward movement of the leading edge of the radioactivity is followed by repeat scanning at 2-minute intervals using a modified rectilinear scanner, thus allowing calculation of the velocity of the mucus. It is believed that this technique may be of value in studying the effect of experimentally induced tracheal injuries on mucus velocity. Possible applications of the technique for the study of the velocity of mucus in the human trachea are discussed. PMID:3921912

  19. Analytical predictions of RTG power degradation. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Noon, E. L.; Raag, V.

    1979-01-01

    The DEGRA computer code that is based on a mathematical model which predicts performance and time-temperature dependent degradation of a radioisotope thermoelectric generator is discussed. The computer code has been used to predict performance and generator degradation for the selenide Ground Demonstration Unit (GDS-1) and the generator used in the Galileo Project. Results of parametric studies of load voltage vs generator output are examined as well as the I-V curve and the resulting predicted power vs voltage. The paper also discusses the increased capability features contained in DEGRA2 and future plans for expanding the computer code performance.

  20. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  1. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  2. Rhenium-188--a generator-derived radioisotope for cancer therapy.

    PubMed

    Knapp, F F

    1998-10-01

    Rhenium-188 (188Re) is an important therapeutic radioisotope which is obtained on demand as carrier-free sodium perrhenate by saline elution of the tungsten-188/rhenium-188 generator system. With a half-life of 16.9 hours and emission of a high energy beta particle (maximal energy of 2.12 MeV) and a gamma photon (155 keV, 15%) for imaging, 188Re can be provided at reasonable costs for routine preparation of radiopharmaceuticals for cancer treatment. PMID:10851424

  3. Axions from string decay

    SciTech Connect

    Hagmann, C., LLNL

    1998-07-09

    We have studied numerically the evolution and decay of axion strings. These global defects decay mainly by axion emission and thus contribute to the cosmological axion energy density. The relative importance of this source relative to misalignment production of axions depends on the spectrum. Radiation spectra for various string loop configurations are presented. They support the contention that the string decay contribution is of the same order of magnitude as the contribution from misalignment.

  4. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  5. [Radioisotope decontamination of X-ray detector (photostimulable phosphor plate)].

    PubMed

    Onuma, Yoji; Hayashi, Michiko; Hayashi, Hiroaki; Nishihara, Sadamitsu

    2012-01-01

    We tried to remove contamination of radioisotope (RI) for an X-ray detector (photostimulable phosphor plate; IP) and verified that our procedure suggested by Nishihara et al. was effective for decontamination. The procedure was as follows. First, the IP was kept for approximately twelve hours, and then it was processed [image (A)] as well as a clinical processing mode. Second, using a wet-type chemical wiper, we scavenged the IP to remove the adhered RI on its surface. Then, once again, the IP was kept for approximately fifteen hours and processed [image (B)] in order to check an effect of decontamination. Finally, the two images of (A) and (B) were analyzed using ImageJ, which can be downloaded as a free software, and a percentage of removal was calculated. The procedure was applied to two IPs using the FCR 5501 plus. In the present case, the percentage of removal was approximately 96%. The removed radioisotopes in the chemical wipers were analyzed by Ge detector. Then, (134)Cs and (137)Cs were found with activities of 2.9 4.3 Bq and 3.5 5.2 Bq, respectively. For three months after that, we cannot see black spots on the IPs owing to the contamination of the RI and there are no defects caused by decontamination using a wet-type chemical wiper. PMID:22449904

  6. Multi-Watt Small Radioisotope Thermoelectric Generator Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Determan, William R.; Otting, William; Frye, Patrick; Abelson, Robert; Ewell, Richard; Miyake, Bob; Synder, Jeff

    2007-01-01

    A need has been identified for a small, light-weight, reliable power source using a radioisotope heat source, to power the next generation of NASA's small surface rovers and exploration probes. Unit performance, development costs, and technical risk are key criteria to be used to select the best design approach. Because safety can be a major program cost and schedule driver, RTG designs should utilize the DOE radioisotope safety program's data base to the maximum extent possible. Other aspects important to the conceptual design include: 1) a multi-mission capable design for atmospheric and vacuum environments, 2) a module size based on one GPHS Step 2 module, 3) use of flight proven thermoelectric converter technologies, 4) a long service lifetime of up to 14 years, 5) maximize unit specific power consistent with all other requirements, and 6) be ready by 2013. Another critical aspect of the design is the thermal integration of the RTG with the rover or probe's heat rejection subsystem and the descent vehicle's heat rejection subsystem. This paper describes two multi-watt RTG design concepts and their integration with a MER-class rover.

  7. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  8. [Clinical study of radioisotopic splenoportography in portal hypertension].

    PubMed

    Yokoyama, Y

    1990-02-01

    Radioisotopic splenoportography was performed in 55 patients with portal hypertension, in whom 52 had various degrees of esophagogastric varices, and in 20 patients without portal hypertension. In the patients with varices, collateral images were obtained in 50 patients (96%) by this method and no image was obtained in the patients without varices. The rate of positively imaged collaterals was as follows: Esophageal varices 69%, the left gastric vein 85%, the short gastric veins 48%, RI stasis in esophagogastric region 65%, the azygos vein 46%, the subclavian vein 25%, the para-umbilical veins 46%, splenorenal /gastrorenal shunts 19%, the inferior mesenteric vein 17%, the left intercostal veins 6%, and Arantius's duct 4%. These rates were superior to that obtained from the conventional transarterial portography. There were some correlations between RI-images by this method and clinical and laboratory findings; patients with ascending collaterals alone tended to have extensive and severe varices and higher rate of bleeding, on the other hand, variceal bleeding was not found and episodes of portosystemic encephalopathy frequently occurred in patients with descending collaterals alone. After successful sclerotherapy, RI-images of esophageal varices disappeared in 92% of the patients. Radioisotopic splenoportography appears to be a useful diagnostic and follow-up modality for patients with portal hypertension and esophagogastric varices. PMID:2325608

  9. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  10. Strontium Iodide Instrument Development for Gamma Spectroscopy and Radioisotope Identification

    SciTech Connect

    Beck, P; Cherepy, Nerine; Payne, Stephen A.; Swanberg, E.; Nelson, K.; Thelin, P; Fisher, S E; Hunter, Steve; Wihl, B; Shah, Kanai; Hawrami, Rastgo; Burger, Arnold; Boatner, Lynn A; Momayezi, M; Stevens, K; Randles, M H; Solodovnikov, D

    2014-01-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu), has progressed significantly in recent years. SrI2(Eu) has excellent material properties for gamma ray spectroscopy: high light yield (>80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z=49) for high photoelectric cross-section. High quality 1.5 and 2 diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  11. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect

    Noble, Robert J.; /SLAC

    2009-07-14

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  12. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  13. Characterization of the Advanced Stirling Radioisotope Generator EU2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  14. Radio-isotope production using laser Wakefield accelerators

    SciTech Connect

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-07-27

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu{sup 61} was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator.

  15. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  16. Strontium iodide instrument development for gamma spectroscopy and radioisotope identification

    NASA Astrophysics Data System (ADS)

    Beck, P. R.; Cherepy, N. J.; Payne, S. A.; Swanberg, E. L.; Nelson, K. E.; Thelin, P. A.; Fisher, S. E.; Hunter, S.; Wihl, B. M.; Shah, K. S.; Hawrami, R.; Burger, A.; Boatner, L. A.; Momayezi, M.; Stevens, K. T.; Randles, M. H.; Solodovnikov, D.

    2014-09-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu2+), has progressed significantly in recent years. SrI2(Eu2+) has excellent material properties for gamma ray spectroscopy: high light yield (<80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z = 49) for high photoelectric cross-section. High quality 1.5" and 2" diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  17. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  18. Technology Development for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions.

  19. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Content,'' for the Production of Radioisotopes and NUREG-1537, part 2, ``Guidelines for Preparing and... a construction and operating license for a radioisotope production facility and the Research and..., Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...

  20. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  1. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  2. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  3. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  4. Space radioisotope power source requirements update and technology status

    SciTech Connect

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decision will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime

  5. Axions from wall decay

    SciTech Connect

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  6. Modulated curvaton decay

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2013-03-01

    We study primordial density perturbations generated by the late decay of a curvaton field whose decay rate may be modulated by the local value of another isocurvature field, analogous to models of modulated reheating at the end of inflation. We calculate the primordial density perturbation and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field, recovering standard curvaton and modulated reheating results as limiting cases. We verify the Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial density field generated by multiple field fluctuations, and find conditions for the bound to be saturated.

  7. Combinedatomic-nuclear decay

    NASA Astrophysics Data System (ADS)

    Dzyublik, A. Ya.

    2016-05-01

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2+ level of 63 153 Eu and K hole, formed in the K capture by 153Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2 p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10-13, that is much less than the recent experimental findings.

  8. Reliability Demonstration Approach for Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Ha, CHuong; Zampino, Edward; Penswick, Barry; Spronz, Michael

    2010-01-01

    Developed for future space missions as a high-efficiency power system, the Advanced Stirling Radioisotope Generator (ASRG) has a design life requirement of 14 yr in space following a potential storage of 3 yr after fueling. In general, the demonstration of long-life dynamic systems remains difficult in part due to the perception that the wearout of moving parts cannot be minimized, and associated failures are unpredictable. This paper shows a combination of systematic analytical methods, extensive experience gained from technology development, and well-planned tests can be used to ensure a high level reliability of ASRG. With this approach, all potential risks from each life phase of the system are evaluated and the mitigation adequately addressed. This paper also provides a summary of important test results obtained to date for ASRG and the planned effort for system-level extended operation.

  9. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  10. Computer program for the transient analysis of radioisotope thermoelectric generators.

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.; Ridihalgh, J. L.

    1972-01-01

    A computer program is described which represents a comprehensive analytical tool providing the capability for predicting the output power and temperature profile of an arbitrary radioisotope thermoelectric generator (RTG) design in the presence of time-dependent operating conditions. The approach taken involves the merging of three existing computer programs - namely, an RTG weight optimization design program, a thermoelectric analysis program, and a nodal heat-transfer computer program. A total of seven transient conditions are included in the computer program as the principal transients affecting long- and short-term performance characteristics of RTGs. This computer program is unique in that it designs an optimum RTG, generates a thermal model or analog and performs heat-transfer analysis of the RTG under user-specified transient conditions.

  11. Radioisotope thermoelectric generator cooling in the Shuttle bay

    NASA Technical Reports Server (NTRS)

    Stimpson, L. D.; Levine, D. I.

    1979-01-01

    The paper describes a Shuttle-integrated radioisotope thermoelectric generator (RTG) that consists primarily of a pump package and plumbing connected directly to the Shuttle payload heat exchanger. The RTG utilizes on-board water evaporative cooling capability, which is normally used for ascent, entry, and for supplementing the radiators. Attention is given to the RTG cooling concepts which include: (1) an active thermal cooling system (ATCS), where two Freon-21 loops operate simultaneously to transport heat from the Orbiter subsystem and payloads through liquid-to-liquid heat exchangers and pin-fin coldplates to four heat sinks, and (2) an atmosphere revitalization system (ARS) which provides for thermal, pressure, and contaminate control of the crew cabin and its equipment. The use of a payload heat exchanger to reduce weight, cost and complexity associated with an independent cooling system was investigated in detail.

  12. Development and Buildup of a Stirling Radioisotope Generator Electrical Simulator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.; Spina, Dan C.

    2008-01-01

    This paper describes the development of a Stirling Radioisotope Generator (SRG) Simulator for use in a prototype lunar robotic rover. The SRG developed at NASA Glenn Research Center (GRC) is a promising power source for the robotic exploration of the sunless areas of the moon. The simulator designed provides a power output similar to the SRG output of 5.7 A at 28 Vdc, while using ac wall power as the input power source. The designed electrical simulator provides rover developers the physical and electrical constraints of the SRG supporting parallel development of the SRG and rover. Parallel development allows the rover design team to embrace the SRG s unique constraints while development of the SRG is continued to a flight qualified version.

  13. AMTEC radioisotope power system for the Pluto Express mission

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.

    1995-12-31

    The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency to very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.

  14. .sup.82 Sr-.sup.82 Rb Radioisotope generator

    DOEpatents

    Grant, Patrick M.; Erdal, Bruce R.; O'Brien, Harold A.

    1976-01-01

    An improved .sup.82 Sr-.sup.82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be > 10.sup.7. Approximately 80 percent of the .sup.82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH.sub.4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be > 10.sup.5, and no unusual strontium breakthrough behavior was seen in the system over nearly three .sup.82 Sr half lives.

  15. Multimodality Therapy: Bone-Targeted Radioisotope Therapy of Prostate Cancer

    PubMed Central

    Tu, Shi-Ming; Lin, Sue-Hwa; Podoloff, Donald A.; Logothetis, Christopher J.

    2016-01-01

    Accumulating data suggest that bone-seeking radiopharmaceuticals can be used to treat prostate cancer bone metastasis and improve the clinical outcome of patients with advanced prostate cancer. It remains to be elucidated whether radiopharmaceuticals enhance the disruption of the onco-niche or the eradication of micrometastatic cells in the bone marrow. The purpose of this review is to investigate the role of bone-targeted radioisotope therapy in the setting of multimodality therapy for advanced prostate cancer. We examine available data and evaluate whether dose escalation, newer generations, or repeated dosing of radiopharmaceuticals enhance their antitumor effects and whether their combination with hormone ablative therapy, chemotherapy, or novel targeted therapy can improve clinical efficacy. PMID:20551894

  16. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    SciTech Connect

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-30

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm ({approx}700 deg. C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  17. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-20

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  18. Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry

    NASA Astrophysics Data System (ADS)

    Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim

    2010-01-01

    Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.

  19. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt & Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around ``all possible missions''. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  20. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-01

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm (˜700 °C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  1. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART

    PubMed Central

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200°F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12°C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 × 10−3 watt/cm2°C in the abdomen compared to a value of 14.9 × 10−3 watt/cm2°C from the heat exchanger plenum into the diaphragm. Images PMID:15215968

  2. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    PubMed

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm. PMID:15215968

  3. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  4. Pathway of radioisotopes from land surface to sewage sludge

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Yokoo, Yoshiyuki

    2014-05-01

    Radioactive surface contaminations will only partially remain at the original location - a fraction of the inventory will take part in (mainly terrestrial and aquatic) environmental transport processes. The probably best known and most important process comprises the food chain. Besides, the translocation of dissolved and particle-bound radioisotopes with surface waters plays an important role. These processes can have the effect of displacing large radioisotope amounts over considerable distances and of creating new sinks and hot spots, as it is already known for sewage sludge. We are reporting on a combined modeling and experimental project concerning the transport of I-131 and Cs-134/Cs-137 FDNPP 2011 depositions in the Fukushima Prefecture. Well-documented experimental data sets are available for surface deposition and sewage sludge concentrations. The goal is to model the pathway in between, involving surface runoff, transport in the sewer system and processes in the sewage treatment plant. Watershed runoff and sewer transport will be treated with models developed recently by us in other projects. For sewage treatment processes a new model is currently being constructed. For comparison and further validation, historical data from Chernobyl depositions and tracer data from natural and artificial, e.g. medical, isotopes will be used. First results for 2011 data from Fukushima Prefecture will be presented. The benefits of the study are expected to be two-fold: on one hand, the abundant recent and historical data will help to develop and improve environmental transport models; on the other hand, both data and models will help in identifying the most critical points in the envisaged transport pathways in terms of radiation protection and waste management.

  5. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  6. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  7. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140° C while the heat losses caused by the addition of the VCHP are 1.8 W.

  8. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  9. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  10. Tooth decay - early childhood

    MedlinePlus

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... chap 304. Ribeiro NM, Ribeiro MA. Breastfeeding and early childhood caries: a critical review. J Pediatr (Rio J) . ...

  11. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  12. SU-E-CAMPUS-I-03: Dosimetric Comparison of the Hypoxia Agent Iodoazomycin Arabinoside (IAZA) Labeled with the Radioisotopes I-123, I-131 and I-124

    SciTech Connect

    Jans, H-S; Stypinski, D; Mcquarrie, S; Kumar, P; Mercer, J; McEwan, S; Wiebe, L

    2014-06-15

    Purpose: To compare the radiation dose to normal organs from the radio-iodinated, hypoxia-binding radiosensitizer iodoazomycin arabinoside (IAZA) for three different isotopes of iodine. Methods: Dosimety studies with normal volunteers had been carried out with [{sup 123}I]IAZA, a drug binding selectively to hypoxic sites. Two other isotopes of iodine, {sup 131}I and {sup 124}I, offer the opportunity to use IAZA as an agent for radioisotope therapy and as an imaging tracer for Positron Emission Tomography. Radioisotope dosimetry for {sup 131}I and {sup 124}I was performed by first deriving from the [{sup 123}I]IAZA studies biological uptake and excretion data. The cumulated activities for {sup 131}I or {sup 124}I where obtained by including their half-lives when integrating the biological data and then extrapolating to infinite time points considering a) physical decay only or b) physical and biological excretion. Doses were calculated using the Medical Internal Radiation Dose (MIRD) schema (OLINDA1.1 code, Vanderbilt 2007). Results: Compared to {sup 123}I, organ doses were elevated on average by a factor 6 and 9 for {sup 131}I and {sup 124}I, respectively, if both physical decay and biological excretion were modeled. If only physical decay is considered, doses increase by a factor 18 ({sup 131}I) and 19 ({sup 124}I). Highest organ doses were observed in intestinal walls, urinary bladder and thyroid. Effective doses increased by a factor 11 and 14 for {sup 131}I and {sup 124}I, respectively, if biological and physical decay are present. Purely physical decay yields a 23-fold increase over {sup 123}I for both, {sup 131}I and {sup 124}I. Conclusion: Owing to the significant dose increase, caused by their longer half life and the approximately 10 times larger electronic dose deposited in tissue per nuclear decay, normal tissue doses of IAZA labeled with {sup 131}I and {sup 124}I need to be carefully considered when designing imaging and therapy protocols for clinical

  13. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    SciTech Connect

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.

  14. Decay of metastable topological defects

    SciTech Connect

    Preskill, J. ); Vilenkin, A. Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 )

    1993-03-15

    We systematically analyze the decay of metastable topological defects that arise from the spontaneous breakdown of gauge or global symmetries. Quantum-mechanical tunneling rates are estimated for a variety of decay processes. The decay rate for a global string, vortex, domain wall, or kink is typically suppressed compared to the decay rate for its gauged counterpart. We also discuss the decay of global texture, and of semilocal and electroweak strings.

  15. Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure - Nuclear Physics facility

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bobeica, Mariana; Gheorghe, Ioana; Filipescu, Dan M.; Niculae, Dana; Balabanski, Dimiter L.

    2016-01-01

    We report Monte Carlo simulations of the production of radioisotopes of medical interest through photoneutron reactions using the high-brilliance γ-beam of the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility. The specific activity for three benchmark radioisotopes, 99Mo/99Tc, 225Ra/225Ac and 186Re, was obtained as a function of target geometry, irradiation time and γ-beam energy. Optimized conditions for the generation of these radioisotopes of medical interest with the ELI-NP γ-beams were discussed. We estimated that a saturation specific activity of the order of 1-2 mCi/g can be achieved for thin targets with about one gram of mass considering a γ-beam flux of 10^{11} photons/s. Based on these results, we suggest that the ELI-NP facility can provide a unique possibility for the production of radioisotopes in sufficient quantities for nuclear medicine research.

  16. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  17. Knowledge is Power: Radioisotope Power Systems Education and Public Outreach at NASA

    NASA Astrophysics Data System (ADS)

    Dyches, P.; Zimmerman-Brachman, R.; Spear, K.; Simon, M.; Bechtel, R.

    2012-03-01

    The education and public outreach effort for NASA’s Radioisotope Power Systems Program raises awareness of the long, safe history of exploration enabled by space nuclear power technologies and emphasizes their importance for future exploration.

  18. Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2010-02-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  19. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  20. Advanced radioisotope power sources for future deep space missions

    NASA Astrophysics Data System (ADS)

    Nilsen, Erik N.

    2001-02-01

    The use of Radioisotope Thermoelectric Generators (RTGs) has been well established for deep space mission applications. The success of the Voyager, Galileo, Cassini and numerous other missions proved the efficacy of these technologies in deep space. Future deep space missions may also require Advanced Radioisotope Power System (ARPS) technologies to accomplish their goals. In the Exploration of the Solar System (ESS) theme, several missions are in the planning stages or under study that would be enabled by ARPS technology. Two ESS missions in the planning stage may employ ARPS. Currently planned for launch in 2006, the Europa Orbiter mission (EO) will perform a detailed orbital exploration of Jupiter's moon Europa to determine the presence of liquid water under the icy surface. An ARPS based upon Stirling engine technology is currently baselined for this mission. The Pluto Kuiper Express mission (PKE), planned for launch in 2004 to study Pluto, its moon Charon, and the Kuiper belt, is baselined to use a new RTG (F-8) assembled from parts remaining from the Cassini spare RTG. However, if this unit is unavailable, the Cassini spare RTG (F-5) or ARPS technologies would be required. Future missions under study may also require ARPS technologies. Mission studies are now underway for a detailed exploration program for Europa, with multiple mission concepts for landers and future surface and subsurface explorers. For the orbital phase of these missions, ARPS technologies may provide the necessary power for the spacecraft and orbital telecommunications relay capability for landed assets. For extended surface and subsurface operations, ARPS may provide the power for lander operations and for drilling. Saturn Ring Observer (SRO) will perform a detailed study of Saturn's rings and ring dynamics. The Neptune Orbiter (NO) mission will perform a detailed multi disciplinary study of Neptune. Titan Explorer (TE) will perform in-situ exploration of Saturn's moon Titan, with both

  1. RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM RDD MATERIALS

    SciTech Connect

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17

    Sonar and speech techniques have been investigated to improve functionality and enable handheld and other man-portable, mobile, and portal systems to positively detect and identify illicit nuclear materials, with minimal data and with minimal false positives and false negatives. RadSonar isotope detection and identification is an algorithm development project funded by NA-22 and employing the resources of Savannah River National Laboratory and three University Laboratories (JHU-APL, UT-ARL, and UW-APL). Algorithms have been developed that improve the probability of detection and decrease the number of false positives and negatives. Two algorithms have been developed and tested. The first algorithm uses support vector machine (SVM) classifiers to determine the most prevalent nuclide(s) in a spectrum. It then uses a constrained weighted least squares fit to estimate and remove the contribution of these nuclide(s) to the spectrum, iterating classification and fitting until there is nothing of significance left. If any Special Nuclear Materials (SNMs) were detected in this process, a second tier of more stringent classifiers are used to make the final SNM alert decision. The second algorithm is looking at identifying existing feature sets that would be relevant in the radioisotope identification context. The underlying philosophy here is to identify parallels between the physics and/or the structures present in the data for the two applications (speech analysis and gamma spectroscopy). The expectation is that similar approaches may work in both cases. The mel-frequency cepstral representation of spectra is widely used in speech, particularly for two reasons: approximation of the response of the human ear, and simplicity of channel effect separation (in this context, a 'channel' is a method of signal transport that affects the signal, examples being vocal tract shape, room echoes, and microphone response). Measured and simulated gamma-ray spectra from a hand

  2. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cremonesi, Oliviero

    2016-05-01

    After more than 3/4 of century from its proposal, Neutrinoless Double Beta Decay (NLDBD) is still missing observation and continues to represent the only practical method for investigating the Dirac/Majorana nature of neutrinos. In case neutrinos would be Majorana particles, NLDBD would provide unique informations on their properties (absolute mass scale and Majorana phases). Boosted by the discovery of neutrino oscillations, a number of experiments with improved sensitivity have been proposed in the past decade. Some of them have recently started operation and others are ready to start. They will push the experimental sensitivity on the decay halflife beyond 1026 year, starting to analyze the region of the inverted mass hierarchy. The status and perspectives of the ongoing experimental effort are reviewed. Uncertainties coming from the calculation othe decay nuclear matrix elements (NME) as well as the recently suggested possibility of a relevant quenching of the axial coupling constant are also discussed.

  3. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  4. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  5. Personal reflections on the highlights and changes in radiation and radioisotope measurement applications

    NASA Astrophysics Data System (ADS)

    Gardner, Robin P.; Lee, Kyoung O.

    2015-11-01

    This paper describes the recent changes that the authors have perceived in the use of radiation and radioisotope measurement applications. The first change is that due to the increased use of Monte Carlo simulation which has occurred from a normal evolutionary process. This is due in large part to the increased accuracy that is being obtained by the use of detector response functions (DRFs) and the simultaneous increased computational efficiency that has become available with these DRFs, the availability of a greatly improved weight windows variance reduction method, and the availability of inexpensive computer clusters. This first change is a happy one. The other change that is occurring is in response to recent terrorist activities. That change is the replacement or major change in the use of long-lived radioisotopes in radioisotope measurement and other radioisotope source applications. In general this can be done by improving the security of these radioisotope sources or by replacing them altogether by using machine sources of radiation. In either case one would like to preclude altogether or at least minimize the possibility of terrorists being able to obtain radioisotopes and use them for clandestine purposes.

  6. Weak decay of hypernuclei

    SciTech Connect

    Grace, R.

    1983-01-01

    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  7. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  8. Decay of relativistic hypernuclei

    SciTech Connect

    Majlingova, Olga

    2008-05-12

    The contribution is focused on the analysis of the hypernuclei decay. Hypernuclei, nuclei composed of nucleons and hyperon, enable us to more precise study baryon-baryon interaction, both weak and strong. Several experiments for study new hypernuclear objects are presently taking data or are planned in several laboratories in Italy, Germany, Russia, Japan and USA. The aim of the contribution is the introduction the catalogue of all possible decays of light hypernuclei (A{<=}12). Created catalogue could be exploited for planning next experiments.

  9. Thermal vacuum life test facility for radioisotope thermoelectric generators

    SciTech Connect

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  10. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect

    Lin, E.I.

    1997-12-31

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  11. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  12. Thermal vacuum life test facility for radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  13. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  14. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  15. Accelerator mass spectrometry for measurement of long-lived radioisotopes

    SciTech Connect

    Elmore, D.; Phillips, F.M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes /sup 10/Be, /sup 14/C, /sup 26/Al, /sup 36/Cl, and /sup 129/I can now be measured in small natural samples having isotopic abundances in the range 10/sup -12/ to 10/sup -15/ and as few as 10/sup 5/ atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archaeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences. 98 references, 4 figures, 2 tables.

  16. Radioisotope Power Systems Reference Book for Mission Designers and Planners

    NASA Technical Reports Server (NTRS)

    Lee, Young; Bairstow, Brian

    2015-01-01

    The RPS Program's Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices. A progress summary from the major branches of RPS technology research provides mission analysis teams with a vital tool for assessing the RPS trade space, and provides concurrent engineering centers with a consistent set of guidelines for RPS performance characteristics. This book will be iterated when substantial new information becomes available to ensure continued relevance, serving as one of the cornerstone products of the RPS PPA Office. This book updates the original 2011 internal document, using data from the relevant publicly released RPS technology references and consultations with RPS technologists. Each performance parameter and RPS product subsection has been reviewed and cleared by at least one subject matter representative. A virtual workshop was held to reach consensus on the scope and contents of the book, and the definitions and assumptions that should be used. The subject matter experts then reviewed and updated the appropriate sections of the book. The RPS Mission Analysis Team then performed further updates and crosschecked the book for consistency. Finally, a second virtual workshop was held to ensure all subject matter experts and stakeholders concurred on the contents.

  17. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  18. Assessment of dynamic energy conversion systems for radioisotope heat sources

    NASA Astrophysics Data System (ADS)

    Thayer, G. R.; Mangeng, C. A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were: Stirling; Brayton cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos multiattribute decision theory code. Three different heat source designs were used: case 1 with a beginning of life (BOL) source temperature of 640 C, case 2 with a BOL source temperature of 745 C, and case 3 with a BOL source temperature of 945 C. The Stirling engine system was the top-ranked system of case 1 and 2, closely followed by the ORC systems in case 1 and ORC plus thermoelectrics in case 2. The Brayton cycle system was top-ranked for case 3, with the Stirling engine system a close second. The use of (238) Pu in heat source sizes of 7500 W(t) is examined and it is found to be questionable because of cost and material availability and because of additional requirements for anlaysis of safeguards and critical mass.

  19. Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.

  20. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; Oleson, Steven R.

    2004-01-01

    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  1. Radioisotope tracer study in a sludge hygienization research irradiator (SHRI).

    PubMed

    Pant, H J; Thýn, J; Zitný, R; Bhatt, B C

    2001-01-01

    A radioisotope tracer study has been carried out in a batch type sludge hygienization research irradiator with flow from top to bottom, the objective being to measure flow rate, circulation and mixing times and to investigate the hydrodynamic behaviour of the irradiator for identifying the cause(s) of malfunction. A stimulus-response technique with NH4(82)Br as a tracer was used to measure the above parameters. Experiments were carried out at three different flow rates, i.e 1.0, 0.64 and 0.33 m3/min. Three combined models based on a set of differential equations are proposed and used to simulate the measured tracer concentration curves. The obtained parameters were used to estimate dead volume and analyse hydrodynamic behaviour of the irradiator. The nonlinear regression problem of model parameter estimation was solved using the Marquardt-Levenberg method. The measured flow rate was found to be in good agreement with the values shown by the flow meter. The circulation times were found to be half of the mixing times. A simple approach for estimation of dose based on a known vertical dose-rate profile inside the irradiator is presented. About one-fourth of the volume of the irradiator was found to be dead at lower flow rates and this decreased with increase in flow rate. At higher flow rates, a semi stagnant volume was found with slow exchange of flow between the active and dead volumes. PMID:11144238

  2. Novel production techniques of radioisotopes using electron accelerators

    NASA Astrophysics Data System (ADS)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  3. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect

    Schmidt, George R.; Houts, Michael G.

    2006-01-20

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  4. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and

  5. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  6. Chiral quirkonium decays

    NASA Astrophysics Data System (ADS)

    Fok, R.; Kribs, Graham D.

    2011-08-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between “chiral quirkonia” versus “vectorlike quirkonia” are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt¯, tb¯/bt¯, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  7. Chiral Quirkonium Decays

    SciTech Connect

    Fok, R.; Kribs, Graham D.; /Fermilab

    2011-06-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N){sub ic} infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t{bar t}, t{bar b}/b{bar t}, and {gamma}H, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and W{gamma}, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  8. Decaying radiolabelled lymphocytes and method of using same background of the invention

    SciTech Connect

    Chambers, G.P.

    1994-12-30

    Decaying radiolabelled lymphocytes and a method of using same are disclosed. A radiolabelled T-cell lymphocyte including a T-cell containing a Beta-emitting isotope which decays to an alpha-emitting isotope is provided. Alternatively, the T-cell may contain a Beta-emitting isotope which decays one of an x-ray and gamma-emitting isotope. A therapeutic radioisotope treatment method includes the steps of removing a cancerous nodule containing T-cells from a mammal, introducing into the T-cells a Beta-emitting isotope which decays to an alpha-emitting isotope and infusing the T-cells containing the Beta-emitting isotope which decays to an alpha-emitting isotope into the mammal. As an alternative, the treatment method may introduce into the T-cells a Beta-emitting isotope which decays to an x-ray or gamma-emitting isotope. Then, according to the alternative method, after the radioactive T- cells are infused into the mammal, the patient is monitored with a radiation detector to determine the location of T-cells containing the isotopes.

  9. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  10. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  11. The design of a source to simulate the gamma-ray spectrum emitted by a radioisotope thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Reier, M.

    1972-01-01

    A simulated source was designed to duplicate the gamma spectrum of a uniform cylindrical 2200-watt Pu02 radioisotope thermoelectric generator containing 81% Pu-238 and 1.2 ppm Pu-236. Gamma rays from the decay of Pu-238, Am-241, Pu-239, and the 0-18(alpha,n)Ne-21 reaction were catalogued in broad energy groups. Two 46- and one 22-mc Th-228 sources provided simulation at various times in the life of the fuel capsule up to 18 years, which covers the time span of an outer planet mission. Emission from Th-228 represents the overwhelming contribution of the gamma spectrum after the first few years. The sources, in the form of 13-inch rods, were placed in a concentric hole in a cylinder of depleted uranium, which provided shielding equivalent to the self-shielding of the fuel capsule. The thickness of the U-238 cylinder (0.55cm) was determined by Monte Carlo calculations to insure that the spectrum emerging from the simulated source matched that of the fuel capsule.

  12. Reentry response of the light weight radioisotope heater unit resulting from a Venus-Earth-Earth Gravity Assist maneuver accident

    SciTech Connect

    Hagan, J.C.

    1988-10-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Light Weight Radioisotope Heater Unit for Galileo/VEEGA reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, the fuel clad, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is assumed to be recession corresponding to 50% of the wall thickness (the design criterion recommended in the DOE Overall Safety Manual). Although the analyses have been carried far beyond this limit (as presented and discussed herein), JHU/APL endorses the position that failure may occur at the time that this recession is achieved or at lower altitudes within the heat pulse considering the uncertainties in the aerodynamic, thermodynamic, and thermo-structural analyses and modeling. These uncertainties result mainly because of the high energies involved in the VEEGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact until it impacts with a clad that had been molten. 80 refs., 46 figs., 16 tabs.

  13. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  14. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    SciTech Connect

    Noble, R.J.

    1999-11-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions.

  15. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  16. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  17. Interplanetary Sample Return Missions Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R.; Gao, Y.; Kluever, C. A.; Capples, M.; Belcher, J.

    2005-01-01

    Solar electric propulsion (SEP) is being used for a variety of planetary missions sponsored by ESA, JAXA, and NASA and nuclear electric propulsion (NEP) is being considered for future, flagship-class interplanetary missions. Radioisotope electric propulsion (REP) has recently been shown to effectively complement SEP and NEP for missions to high-AU targets with modest payload requirements. This paper investigates the application of an advanced REP for a sample return from the comet Tempel 1. A set of mission and system parameters are varied with the goal of quantifying their impact on total mission payload. Mission parameters considered include trip-time and Earth return entry interface speed of the sample return system. System parameters considered include launch vehicle, power level of spacecraft at beginning of mission, and thruster specific impulse. For the baseline case of Atlas 401 and REP power level of 750 W, the mission time was 12 years, the payload was 144 kg, and the missions optimized to a single specific impulse generally within Hall ion thruster range. Other cases were investigated in support of graduate studies, and include the larger Atlas 551 launch vehicle and extended power level to 1 kW. The Atlas 551 cases tended to optimize dual specific impulses generally in the Hall ion thruster range for both legs of the mission. A power level of at least 1-kW and trip-time of approximately 11 years was required to obtain a total science payload close to 320 kg for the Atlas 401 launch vehicle. An Atlas 551 launch vehicle yielded a science payload of approximately 540 kg for the case of 1-kW of power and an 11-year trip time, and nearly 250 kg of science payload for the case of 1-kW of power and a 6-year trip time. Results are also reported indicating the performance ramifications of meeting a reduced Earth entry interface velocity constraint.

  18. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  19. Rare Down Quark Decays

    NASA Astrophysics Data System (ADS)

    Tung, Kwong-Kwai Humphrey

    1992-01-01

    The rare decays bto sX are sensitive to strong interaction corrections. The effects can be estimated by a renormalization group technique which requires the evaluation of QCD mixing among effective operators. In the dimensional reduction and the naive dimensional regularization methods, there are discrepancies in evaluating the QCD mixing of the four-quark operators with the bto sgamma and bto s+gluon dipole operators. In this thesis, the problem is investigated by considering the contributions of the epsilon -scalar field and the epsilon -dimensional operators that distinguish between the two methods. The discrepancies are shown to come from the epsilon-dimensional four-quark operators in dimensional reduction and not from the epsilon -scalar field. In the decay bto sl^+l^ -, the intermediate of cc pairs in the charm-penguin diagram can form the resonance states J/psi and psi^'. In the published literature, there is a sign discrepancy in the Breit-Wigner amplitude for the resonance effects. Here, the sign difference is settled by considering the unitarity limit of the amplitude in the Argand diagram. The effects of the resonances are quite substantial on the invariant mass spectrum for this decay. However, they are shown to be negligible on the dilepton energy spectrum below 0.95 GeV. The energy spectrum is, thus, more useful than the invariant mass spectrum for measurements of the top -quark mass. The decays Bto K^*X are well modeled by the quark-level decays bto sX. In the quark model, the hadronization is done using a nonrelativistic wave function. In the decay B to K^*gamma, the large K ^* recoil creates an uncertainty in calculating the branching ratio using the quark model. The problem is explored by considering other meson processes where data exist. The data on the pi form factor and the omegapi^0 transition form factor suggest the necessity to retain relativistic spinor and meson normalizations in the quark -model; however, the data do not resolve the

  20. Radioisotopes in sedimentary study of the Black Sea and Caspian Sea

    NASA Astrophysics Data System (ADS)

    Laptev, Gennady; Voitsekhovych, Oleg V.

    2013-04-01

    Natural archives, such as lake or marine sediment, are widely used in erosion/sedimentation, water quality, climate change and eutrophication study alongside with the retrospective reanalysis of contaminants fluxes (trace metals, organic pollutants or radionuclides). In order to "read" information stored in sediment sequences a chronostatigraphic method have been developed and used since 1950s which is based upon variation of activity of 210Pb over the sediment profile, natural radioisotope of Uranium decay series with half-life 22 years, and hence valid for the last 100-150 years of recent sedimentation history. The 210Pb chronology is prone to be validated by other time-markers, such as artificial radionuclides globally dispersed after the nuclear weapons tests of 1960s or major accidents on NPP (the Chernobyl accident of 1986 or latest on the Fukushima Daiichi in 2011). In the last decade an intensive study using sediment cores collected from shelf and deep-sea areas in the Black Sea and the Caspian Sea have been undertaken within the framework of a number of international research projects organized by IAEA and UNOPS-GEF and devoted to environmental problems of this enclosed, and therefore sensitive to environmental impact, marine systems. Elaborative analysis of the experimental data and sediment age calculation have been done by application of CRS and CIC dating models to unsupported 210Pb activity over the sediment profile. Measured in sediment 137Cs and 241Am clearly showed well resolved Bomb test and Chernobyl fallout peaks and were used as markers in order to corroborate radiometrically determined age of sediment. Geochronological reconstruction of the fallout radionuclides inventory, fluxes and accumulation rate in the sediment of the Black Sea and Caspian Sea by application of combined radiometric dating technique proved to be very consistent with the historical data of atmospheric fallout observations of that artificial radionuclides recorded worldwide

  1. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  2. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  3. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Astrophysics Data System (ADS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  4. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  5. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    SciTech Connect

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2013-02-01

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would be that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.

  6. The U.S. Department of Energy advanced radioisotope power system program

    SciTech Connect

    Herrera, L.

    1998-07-01

    Radioisotope power systems for spacecraft are and will continue to be an enabling power technology for deep space exploration. The US Department of Energy (DOE) is responsible for the Nation's development of Advanced Radioisotope Power Systems (ARPS) to meet harsh environments and long life requirements. The DOE has provided radioisotope power systems for space missions since 1961. The radioisotope power system used for the recent Cassini mission included three Radioisotope Thermoelectric Generators (RTGs) which provided a total of 888 Watts electric at 6.7% conversion efficiency. The DOE's goal is to develop a higher efficiency and lower mass ARPS for future deep space missions. The ARPS program involves the design, development, fabrication, and qualification, and safety analysis of the ARPS units. Organizations that support the development, fabrication and testing of the ARPS include the Lockheed Martin Astronautics (LMA), Advanced Modular Power Systems (AMPS), Mound, Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL). The Europa Orbiter and Pluto/Kuiper Express missions represent the near term programs targeted for the application of ARPS in addressing the issues and questions existing for deep space exploration.

  7. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  8. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  9. The Kinetics of Radioisotope Exchange Between Brine and Rock in a Geothermal System

    NASA Astrophysics Data System (ADS)

    Hammond, Douglas E.; Zukin, Jeffrey G.; Ku, Teh-Lung

    1988-11-01

    A wide range of isotopes in the 238U, 235U, and 232Th decay chains was measured in geothermal brines collected from two production zones at 1898 and 3220 m in the Salton Sea Scientific Drilling Project well. High concentrations of radium, radon, and lead isotopes are generated and maintained by the input of these isotopes from solid phases into brine by both recoil and leaching processes, by the high chloride content of the brine which complexes radium and lead, and by the apparent absence of suitable unoccupied adsorption sites. In contrast, uranium, thorium, actinium, bismuth, and polonium isotopes all have low concentrations due to their efficient sorption from brine to rock. Measurements of short-lived isotopes in these decay series yield insights regarding the mechanisms controlling radioisotope exchange, and they permit estimation of rates of brine-rock interaction. For example, the 228Ac/228Ra activity ratio of 0.2 in brines indicates that the mean residence time of actinium in solution before sorption onto solid surfaces is less than 2.5 hours. If molecular diffusion to fracture walls limits the rate of actinium sorption, the maximum width of the larger fractures in which sampled brine resides is 1-2 cm. However, the mean width of fractures must be only 1-2 µm, in order to account for the recoil input of 223Ra. The ratios of radium isotopes in the brine provide information about the mechanisms of recoil and leaching in transferring radium from rock to brine. Brine/rock concentration ratios [(dpm/g)b/(dpm/g)r] of radium isotopes increase with increasing half-life, so that 223Ra (11 days) = 0.05-0.09, 228Ra (5.8 years) = 0.26-0.40, 226Ra (1600 years) = 0.45-0.97. Two mechanisms could explain this dependence on half-life: (1) input of radium by the alpha recoil process occurs in microfractures and pore spaces, but the rate of diffusion down microfractures is so slow that it diminishes the effect of recoil input of the shorter-lived isotopes to the larger

  10. Specification for strontium-90 500-watt(e) radioisotopic thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Hammel, T.; Himes, J.; Lieberman, A.; McGrew, J. W.; Owings, D.; Schumann, F.

    1983-04-01

    A conceptual design for a demonstration 500-watt(e) radioisotopic thermoelectric generator (RTG) was created. The design effort was divided into two tasks, viz., create a design specification for a capsule strenth member that utilizes a standard Strontium 90 fluoride filled WESF inner liner, and create a conceptual design for a 500-watt(e) RTG. The strength member specification was designed to survive an external pressure of 24,500 psi and meet the requirements of special form radioisotope heat sources. Therefore the capsule is if desired, licensed for domestic and international transport. The design for the RTG features a radioisotopic heat source, an array of nine capsules in a tungsten biological shield, four current technology series connected thermoelectric conversion modules, low conductivity thermal insulation, and a passive finned housing radiator for waste heat dissipation. The preliminary RTG specification formulated previous to contract award was met or exceeded.

  11. [Application of radioisotopes for theranostics, a combination of diagnostics and therapy].

    PubMed

    Saji, Hideo

    2015-01-01

    Radioisotopes emit radiation with various characteristics. These characteristics have been used for various applications of radioisotopes in clinical fields. For example, diagnostic nuclear medicine is a technique that uses gamma-emitted radionuclides with high permeability into the body and can visualize changes in physiological and biochemical processes throughout the distributed and interrelated systems of living tissues and organs. Therapeutic nuclear medicine is a technique that uses beta-emitted radionuclides with high radiation damage to the cell and can be used for internal radiation therapy. Therefore, a strategy in which the same ligand is labeled with beta-emitted or gamma-emitted radioisotopes, i.e., a theranostics approach, is useful because an extensive availability of diagnostics and therapeutics is possible. In this presentation, some examples of a theranostics approach for radiolabeled compounds will be reported, including the results of our recent research. PMID:25832834

  12. Development of Advanced Radioisotope Power Systems for NASA's Future Science Missions

    NASA Astrophysics Data System (ADS)

    Misra, A. K.

    2005-12-01

    This presentation will provide an overview of NASA's current efforts on development of advanced radioisotope power systems (RPS) for future science missions. The current efforts include development of flight qualified Multimission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG) systems with nominal 100 watts power level and capability to operate in both deep space and planetary environments. In addition, advanced technology development efforts are being conducted to increase the specific power of both RTG and SRG systems to enable future science missions. The efforts also include new technologies that have the potential to provide significant increases in specific power of RPS system. A notional RPS technology development roadmap will be presented and various potential mission opportunities identified.

  13. Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.

    2001-01-01

    The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.

  14. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy

    PubMed Central

    Zhang, Longjiang; Chen, Hongwei; Wang, Liya; Liu, Tian; Yeh, Julie; Lu, Guangming; Yang, Lily; Mao, Hui

    2010-01-01

    Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented. PMID:24198480

  15. {beta}{sup +} Decay Partial Half-Life of {sup 54}Mn and Cosmic Ray Chronometry

    SciTech Connect

    Wuosmaa, A.H.; Ahmad, I.; Fischer, S.M.; Greene, J.P.; Hackman, G.; Nanal, V.; Savard, G.; Schiffer, J.P.; Wilt, P.; Austin, S.M.; Brown, B.A.; Freedman, S.J.; Connell, J.J.

    1998-03-01

    The weak {beta}{sup +} decay of the astrophysically significant radioisotope {sup 54}Mn has been observed. The energies of positrons from a chemically purified {sup 54}Mn source were measured using the APEX spectrometer at Argonne National Laboratory. We deduce a {beta}{sup +} decay branch of (1.20{plus_minus}0.26){times}10{sup {minus}9} , corresponding to a partial half-life of (7.1{plus_minus}1.5){times}10{sup 8} yr . The implications of this value for cosmic-ray confinement times are discussed in light of recent satellite measurements of the cosmic-ray abundance of {sup 54}Mn . {copyright} {ital 1998} {ital The American Physical Society}

  16. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Application to the Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-01-16

    This paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator. Instead of conducting a generic study, it was decided to focus the design by directing it at a specific space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a one-year post-encounter cruise. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. The chief advantage of Radioisotope Thermophotovoltaic (RTPV) power systems over current Radioisotope Thermoelectric Generators (RTGs) is their much higher conversion efficiency, which greatly reduces the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which - like all NASA missions under current consideration - is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It briefly summarizes the RTPV system's current technology status, and lists a number of factors that my greatly reduce the need for long-term tests to demonstrate generator lifetime. Our analytical results show very substantial performance improvements over an RTG designed for the same mission, and suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the PFF mission but also for other future missions requiring small, long-lived, low

  17. Contributions and Future of Radioisotopes in Medical, Industrial and Space Applications

    DOE R&D Accomplishments Database

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  18. Radioisotope Thermoelectric Power Systems: Enabling Technology for European Space Exploration Missions

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Ambrosi, R. M.; Bannister, N. P.; Samara-Ratna, P.; Tinsley, T. P.; Rice, T.; Sarsfield, M. J.; Cordingley, L.; Slade, R.; Deacon, T.; Jorden, A.; Johnson, W.; Stephenson, K.

    2012-09-01

    Radioisotope power systems (RPS) have proved critical enablers for many of the most demanding space and planetary science missions. US systems, fuelled by 238Pu, have returned extraordinary science from missions such as the Pioneer and Voyager probes, Galileo (Jupiter) and Cassini (Saturn). At the time of writing, New Horizons and Mars Science Laboratory are en route to Pluto and Mars respectively and are equipped with Radioisotope Thermoelectric Generators (RTG). RPSs can provide electrical power to spacecraft systems independently of solar energy, permitting more capable and productive spacecraft and missions. Europe is focused on developing 241Am powered RPSs.

  19. Standardized annular assay of dual radioisotopes on a well type sodium iodide crystal

    PubMed Central

    Bell, T. K.

    1970-01-01

    A procedure is described for the determination of the separate amounts of two gamma-emitting radioisotopes present simultaneously in large liquid volumes using an annular cell placed over a standard well-type crystal of sodium iodide and a reference source of 137Cs. This sensitive technique is illustrated with particular reference to the double radioisotope urinary excretion test, using orally administered 57CoB12 bound to human gastric juice and 58CoB12 simultaneously, for the differentiation between patients with intrinsic factor deficiency and other causes of vitamin B12 malabsorption. PMID:5430423

  20. Contributions and future of radioisotopes in medical, industrial and space applications

    SciTech Connect

    Tingey, G.L.; Dix, G.P.; Wahlquist, E.J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  1. Parametric Study of Radiator Concepts for a Stirling Radioisotope Power System Applicable to Deep Space Mission

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Thieme, Lanny G.

    2000-01-01

    The Department of Energy (DOE) and the NASA Glenn Research Center are developing a Stirling converter for an advanced radioisotope power system to provide spacecraft onboard electric power for NASA deep space missions. This high-efficiency converter is being evaluated as an alternative to replace the much lower efficiency radioisotope thermoelectric generator (RTG). The current power requirement (six years after beginning of mission (BOM) for a mission to Jupiter) is 210 W(sub e) (watts electric) to be generated by two separate power systems, one on each side of the spacecraft. Both two-converter and four-converter system designs are being considered, depending on the amount of required redundancy.

  2. An Adjunct Galilean Satellite Orbiter Using a Small Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Abelson, Robert Dean; Randolph, J.; Alkalai, L.; Collins, D.; Moore, W.

    2005-01-01

    This is a conceptual mission study intended to demonstrate the range of possible missions and applications that could be enabled were a new generation of Small Radioisotope Power Systems to be developed by NASA and DOE. While such systems are currently being considered by NASA and DOE, they do not currently exist. This study is one of several small RPS-enabled mission concepts that were studied and presented in the NASA/JPL document "Enabling Exploration with Small Radioisotope Power Systems" available at: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

  3. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  4. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  5. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  6. Alpha decay in electron surrounding

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2013-12-15

    The influence of atomic electron shells on the constant of alpha decay of heavy and mediummass nuclei was considered in detail. A method for simultaneously taking into account the change in the potential-barrier shape and the effect of reflection of a diverging Coulomb wave in the classically allowed region was developed. The ratios of decay probabilities per unit time for a bare nucleus and the respective neutral atom were found for some alpha-decaying isotopes.

  7. Search for rare B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutyin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1995-02-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we have searched for decays b → sgluon through full reconstruction of a whole event. Two B overlineB decays were found with one of B meson decaying into a final state without charmed particles. We also obtained an upper limit of Br(B + → τ+ντ) of 1.04% at 90% CL.

  8. CP violation in K decays and rare decays

    SciTech Connect

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs.

  9. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  10. Pyroshock Testing of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)

    NASA Technical Reports Server (NTRS)

    Woerner, David; Fleurial, Jean-Pierre; Bennett, Russell; Hammel, Tom; Otting, William

    2013-01-01

    The Mars Science Laboratory (MSL) Multi-Mission Radioisotope Thermoelectric Generator, or MMRTG, was developed by the Department Of Energy to a set of requirements from multiple NASA mission concepts. Those concepts included deep space missions to the outer planets as well as missions to Mars. The synthesis of that diverse set of requirements addressed functional as well as environmental requirements.

  11. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    SciTech Connect

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun ({ge} 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe`s energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade.

  12. Method for detection of long-lived radioisotopes in small biochemical samples

    DOEpatents

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.

    1994-01-01

    Disclosed is a method for detection of long-lived radioisotopes in small bio-chemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biologist host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  13. The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M.

    2015-12-01

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes 82Sr and 223,224Ra are also presented.

  14. Clouds, airplanes, trucks and people: carrying radioisotopes to and across Mexico.

    PubMed

    Mateos, Gisela; Suárez-Díaz, Edna

    2015-01-01

    The aim of this paper is to describe the early stages of Mexican nuclearization that took place in contact with radioisotopes. This history requires a multilayered narrative with an emphasis in North-South asymmetric relations, and in the value of education and training in the creation of international asymmetrical networks. Radioisotopes were involved in exchanges with the United States since the late 1940s, but also with Canada. We also describe the context of implementation of Eisenhower's Atoms for Peace initiative in Mexico that opened the door to training programs at both the Comisión Nacional de Energía Nuclear and the Universidad Nacional Autónoma de México. Radioisotopes became the best example of the peaceful applications of atomic energy, and as such they fitted the Mexican nuclearization process that was and still is defined by its commitment to pacifism. In 1955 Mexico became one of the 16 members of the atomic fallout network established by the United Nations. As part of this network, the first generation of Mexican (women) radio-chemists was trained. By the end of the 1960s, radioisotopes and biological markers were being produced in a research reactor, prepared and distributed by the CNEN within Mexico. We end up this paper with a brief reflection on North-South nuclear exchanges and the particularities of the Mexican case. PMID:26775430

  15. Fractal Dimensions for Radioisotope Pollution Patterns by Nuclear Power Plant Accidents

    NASA Astrophysics Data System (ADS)

    Saito, K.; Ogawa, S.

    2015-04-01

    The radioisotope pollution shows two types of patterns: dry and wet deposits for nuclear power plant accidents. Two surface pollution patterns were analysed by fractal. In Fukushima nuclear power plant accident, surface pollution by wet deposits was estimated to occur. However, actually it was no rain and white crystals were observed on the surface. Then, fractal analysis was carried out for the spatial distribution patterns of radio isotopes on the surface to judge the types of deposits. As a reference, Chernobyl nuclear power plant accident was checked for the spatial distribution patterns of radioisotopes on the surface. The objective patterns by fractal analysis were the surface pollution maps in Fukushima and Chernobyl, Abukuma river watershed map, and NOAA/AVHRR. The calculation of fractal dimensions was carried out with the box counting for binarized images. Fractal analysis results suggested the next conclusions. The radioisotope pollution in Fukushima might occur in both dry and wet deposits. The dry deposit might make the pollution pattern similar to the watershed, while the wet deposit might make the pollution pattern similar to cloud images. Moreover, most radioisotope contaminants might flow on the road in the forest valley and deposit on forest with and without rainfall in Fukushima.

  16. [Radioisotope thermoelectric generators and ancillary activities]. Monthly technical progress report, 1 April--28 April 1996

    SciTech Connect

    1996-06-01

    Tehnical progress achieved during this period on radioisotope thermoelectric generators is described under the following tasks: engineering support, safety analysis, qualified unicouple fabrication, ETG fabrication/assembly/test, RTG shipping/launch support, design/review/mission applications, and project management/quality assurance/reliability.

  17. Radioisotope imaging for the evaluation of thyroid neoplasia and hypothyroidism in a dog

    SciTech Connect

    Branam, J.E.; Leighton, R.L.; Hornof, W.J.

    1982-05-01

    An 11-year-old dog was diagnosed as having concurrent unilateral follicular thyroid carcinoma and hypothyroidism. Radioisotope imaging with /SUP 99m/Tc as sodium pertechnatate identified the extent of thyroid tissue involvement. A combination of surgical resection and hormonal supplementation resulted in a favorable clinical response.

  18. RADIOISOTOPE TECHNIQUES FOR INSTRUCTION IN THE BIOLOGICAL SCIENCES, A LIST OF ANNOTATED REFERENCES.

    ERIC Educational Resources Information Center

    HURLBURT, EVELYN M.

    REFERENCES TO BIOLOGICAL EXPERIMENTS THAT EMPHASIZE THE USE OF RADIOISOTOPES AS TRACERS ARE INCLUDED IN THIS ANNOTATED BIBLIOGRAPHY. MATERIALS INCLUDED ARE CONSIDERED TO BE READILY AVAILABLE AND WERE PUBLISHED AFTER 1960. SECTION I IS COMPOSED OF SELECTED SOURCES. ENTRIES INCLUDE (1) COMPLETE CITATIONS, (2) A BRIEF ANNOTATION, AND (3) LISTS OF…

  19. Method for detection of long-lived radioisotopes in small biochemical samples

    DOEpatents

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

    1994-11-22

    Disclosed is a method for detection of long-lived radioisotopes in small biochemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biologist host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figs.

  20. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    NASA Technical Reports Server (NTRS)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  1. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    SciTech Connect

    Panteleev, V. N. Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M.

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.

  2. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  3. Radioisotope thermophotovoltaic system design and its application to an illustrative space mission

    SciTech Connect

    Schock, A.; Kumar, V.

    1995-01-05

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year. Because of Pluto`s long distance from the sun (30--50 A.U.) and the mission`s large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. TRGs have been tentatively selected, because they have been successfully flown on many space missions, and have demonstrated exceptional reliability and durability. The only reason for exploring the applicability of the far less mature RTPV systems is their potential for much higher conversion efficiencies, which would greatly reduce the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which---like all NASA missions under current consideration---is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and depicts its integration with the PFF spacecraft.

  4. A multi-functional electronic program for the management of radioisotopes.

    PubMed

    Ritchot, Nathalie; Santary, William

    2008-05-01

    Everyone will agree that specialized computer programs have done away with the many tedious tasks associated with manually keeping track of radioisotopes. Enhanced electronic programs have virtually cut the time of managing radioisotopes. Agriculture and Agri-Food, Canada's (AAFC) program for the management of radioisotopes, is somewhat different from most electronic programs. It is divided into three levels of management that are dependent on the roles that a user might have when applying the application. These roles include the Departmental Radiation Safety Officer (DRSO), Radiation Safety Officer (RSO), and authorized user, which meets the requirements of the Canadian Nuclear Safety Commission. The DRSO and authorized AAFC Radiation Safety Committee members have access to the first level of management. This is the highest level of control, and only the DRSO has permission to add a nuclear substance to the system with the approval of the Canadian Nuclear Safety Commission (CNSC). This level of management is also responsible for adding authorized users, locations, and managing the Internal Use Permits. The second level of management is for site-specific RSOs. They have access to all information regarding their center of activity, but they cannot change Internal Use Permit data. The RSOs can reset passwords, authorize new users, control the maximum activity limit, etc., but are limited to viewing only the information that relates to their internal use permit. However, they retain significant control within the permit. The third and last level of management is for authorized users who can access the radioisotope order-distribution-disposal section, waste or storage containers creation file, and leak/wipe test procedures. As in the case of the DRSO and RSO, they also have access to all reports and inventories for their center of activity but they cannot change Internal Use Permit or inventories data. This program has proven to be a valuable tool for scientific staff

  5. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    SciTech Connect

    Barklay, C.D.

    1995-01-20

    The exploration of space will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  6. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.

    1995-01-01

    Mankind must continue to explore the universe in order to gain a better understanding of how we relate to it and how we can best use its resources to our benefit. This exploration will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F.

  7. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ``new physics`` searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  8. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  9. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  10. Counterflow driven by swirl decay

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-06-01

    The global meridional circulation of a viscous fluid, caused by swirl decay in a cylindrical container, is studied. To this end, a new solution to the Navier-Stokes equations is obtained, and simple experiments are performed to verify the predictions of the theory. The swirl decay mechanism explains elongated counterflows in hydrocyclones and vortex tubes sometimes extending over a hundred diameters.

  11. Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: Historic use of 137Cs

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. Scott

    2013-06-01

    Wind erosion is increasingly scrutinized as a causative factor in soil degradation and fugitive dust emissions. Although models have been developed to predict wind erosion and dust emissions, they are not accurate in all locations. The temporal and spatial variability of aeolian processes makes local estimates of long-term average erosion costly and time consuming. Atmospheric testing of nuclear weapons during the 1950s and 1960s resulted in anthropogenic radioisotopes that had not previously existed being injected into stratospheric global circulation and subsequently deposited on the Earth's surface. Many of these radioisotopes are strongly adsorbed to soil particles and their movement on the landscape is a powerful method for investigating soil redistribution by wind, water, and tillage. 137Cs is the most commonly used anthropogenic radioisotope used to assess soil redistribution rates. Models have been developed to equate differences of radioisotope inventories with rates of soil redistribution and these models have been employed globally to assess soil redistribution on agricultural and natural landscapes. The radioisotope method for assessing soil redistribution rates has many advantages, but also a few limitations. One of the major limitations occurs when local sources of radioisotope contamination, particularly 137Cs, mask the pulse from global fallout, making temporal estimates of redistribution difficult or impossible. In this paper, I explore the importance, history, and applications of the radioisotopic technique using 137Cs, particularly as it applies to soil redistribution by wind.

  12. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  13. Logarithmic decays of unstable states

    NASA Astrophysics Data System (ADS)

    Giraldi, Filippo

    2015-01-01

    It is known that the survival amplitude of unstable quantum states deviates from exponential relaxations and exhibits decays that depend on the integral and analytic properties of the energy distribution density. In the same scenario, model independent dominant logarithmic decays t -1- α0log t of the survival amplitude are induced over long times by special conditions on the energy distribution density. While the instantaneous decay rate exhibits the dominant long time relaxation 1 / t, the instantaneous energy tends to the minimum value of the energy spectrum with the dominant logarithmic decay 1/( tlog 2 t) over long times. Similar logarithmic relaxations have already been found in the dynamics of short range potential systems with even dimensional space or in the Weisskopf-Wigner model of spontaneous emission from a two-level atom. Here, logarithmic decays are obtained as a pure model independent quantum effect in general unstable states.

  14. a Small Low-Energy Cyclotron for Radioisotope Measurements.

    NASA Astrophysics Data System (ADS)

    Bertsche, Kirk Joseph

    Direct detection of ^{14} C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the "cyclotron") was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of ^{14 }C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat -field, electrostatically-focused cyclotron to comprise a system capable of measuring ^{14 }C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-gated output. In its present form the system is capable of improving the sensitivity of detecting ^{14} C in some biomedical experiments by a factor of 10^4. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as ^3H, and ^{10}Be, and ^{26}Al, are discussed.

  15. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  16. Experience with a commercial kit for the radioisotopic assay of vitamin B12 in serum: the Phadebas B12 Test

    PubMed Central

    Raven, J. L.; Robson, M. B.

    1974-01-01

    The first commercial kit for the radioisotopic assay of vitamin B12 in serum—the Phadebas B12 Test produced higher values than the radioisotopic method of Raven, Robson, Walker, and Barkham (1969) and the Lactobacillus leichmannii microbiological assay. Its normal range was 300-1100 pg/ml and its reproducibility was similar to that of the other radioisotopic method. It should be possible to lower the results obtained by the Phadebas method by modifying its standard curve and to reduce the time taken for the assay by shortening its incubation period. PMID:4821096

  17. Beauty meson decays to charmonium

    NASA Astrophysics Data System (ADS)

    Ershov, Alexey Valerievich

    2001-10-01

    We study decays of beauty (B) mesons into the final states containing charmonium mesons. The data were collected by the CLEO experiment at the Cornell Electron Storage Ring from 1990 to 1999. First, we describe a technique that significantly improves the reconstruction efficiency for decays of J/ y and y (2S) mesons into a pair of leptons. This reconstruction method is used in all the analyses presented in this dissertation. Then we present a study of B decays to the χc 1 and χc2 charmonium states and compare our results with the predictions of different theoretical models of charmonium production. After that we report the first observation of the decay B --> J/ y φK, which is the first B meson decay requiring a creation of an additional ss¯ quark pair. Then we measure the B0 and B+ meson masses from B0 --> y (') K0S and B+ --> y (') K+ decays. The method employed eliminates the dominant systematic uncertainty associated with the previous B meson mass measurements at the e+e- colliders and results in a significant improvement in precision. After that we present a study of three B0 decay modes useful for time-dependent CP asymmetry measurements. In this study we reconstruct B0 --> J/ y K0S , B0 --> χc 1 K0S , and B0 --> J/ y π0 decays. The latter two decay modes are observed for the first time. We describe a K0S --> π0π0 detection technique and its application to the reconstruction of the decay B 0 --> J/ y K0S . Then we present a sensitivity study for the measurement of the mixing-induced CP violation in the neutral B meson system (parameter sin 2β) at CLEO using the method that requires a measurement of the decay time of only one meson in a B0overline B0 pair. Finally, we search for direct CP violation in decays B+/- --> J/ y K+/- and B +/- --> y (2S) K+/- . The results of this search are consistent with the Standard Model expectations and provide the first experimental test of the assumption that direct CP violation is negligible in B --> y (') K decays.

  18. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  19. Charm counting in b decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The inclusive production of charmed particles in Z → b overlineb decays has been measured from the yield of D0, D+, Ds+ and Λc+ decays in a sample of q overlineq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be nc = 1.230 ± 0.036 ± 0.038 ± 0.053, where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.

  20. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  1. Optimizing VANDLE for Decay Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brewer, N. T.; Taylor, S. Z.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Cizewski, J. A.; Peters, W. A.; Vandle Collaboration

    2013-10-01

    Understanding the decay properties of neutron rich isotopes has well established importance to the path of the r-process and to the total decay heat for reactor physics. Specifically, the half-life, branching ratio and spectra for β-n decay is of particular interest. With that in mind, we have continued attempts to improve upon the Versatile Array of Neutron Detectors at Low Energy (VANDLE) in terms of efficiency and TOF resolution through the use of new and larger scintillators. Details of the new implementation, design and characterization of the array will be shown and compared to previous results.

  2. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  3. A Simple Model for Radioisotope Power System Performance in the Titan Environment

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    Like other energy conversion devices, the performance of Radioisotope Power Systems (RPSs) for spacecraft depend on the heat transfer boundary conditions. In planetary environments, the heat transfer, and thus the RPS operating conditions and performance may be different from those in free space. In particular, we develop a simple model (based on an endoreversible heat engine with a specified heat sink) for the performance of an Advanced Stirling Radioisotope Generator (ASRG) in the dense, cold atmosphere of Titan. We find the power output of an ideal RPS in the Titan environment could be considerably superior to that in space vacuum, although an internal heat leak of the present ASRG design may somewhat compromise this improvement, resulting in an output close to, or up to 15% smaller than, predicted vacuum output. Since the model suggests significant variation due to two competing effects, performance testing in representative conditions is urgently recommended.

  4. Leg scanning with radioisotope-labeled fibrinogen in patients undergoing hip surgery

    SciTech Connect

    LeMoine, J.R.; Moser, K.M.

    1980-05-01

    To establish whether radioisotope-labeled fibrinogen leg scanning is of value in the context of hip surgery, we propsectively studied 21 consectuvie patients undergoing either total hip replacement (14) or open repair of a hip fracture (seven) with leg scans, contrast phlebography, and ventilation and perfusion lung scans. We found that in eight patients (38%), venous thromboembolism developed postoperatively. Agreement between phlebographic and leg scanning results was excellent. In no patient as venous thrombosis limited to the thigh on the operated-on side, a vital consideration in application of fibrinogen leg scanning to this patient population. Two patients had lung scan changes indicative of embolism; both had thrombi extending into thigh veins. Leg scanning with radioisotope-labeled fibrinogen appears to be a useful method for monitoring patients undergoing hip surgery, if the upper three counting points on the operated-on side are excluded.

  5. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    SciTech Connect

    Kiebel, G.R.

    1991-09-01

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

  6. Terrestrial radioisotopes in black shale hosted Mn-carbonate deposit (Úrkút, Hungary)

    NASA Astrophysics Data System (ADS)

    Vigh, Tamás; Kovács, Tibor; Somlai, János; Kávási, Norbert; Polgári, Márta; Bíró, Lóránt

    2013-08-01

    Previously, little attention has been paid to terrestrial radioisotopes (U, Th, 40K) occurring in manganese ores, despite the fact that the biogeochemical relationship between Mn and U is versatile. Occurrence of terrestrial radioisotopes in great amounts during mining on a long-term causes significant radiation exposure. It is important to inspect black shale-hosted manganese ores from this aspect, as black shales are typically potential U-rich formations. Despite the increased radon concentration in the mine, based on the detailed major elements, trace elements and gamma spectroscopy inspection of the rock types of deposit, the U, Th enrichment was undetectable. However, the U and Th content of about average terrestrial abundance of the great ore amount may be in the background of the increased radon concentration level. This Mn-carbonate ore deposit in spite of the low U content exhibit potential radon danger for miners, which can be eliminated with intensive air change only.

  7. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Applicability to an Illustrative Space Mission

    SciTech Connect

    Schock, A.; Mukunda, M.; Or, T.; Kumar, V.; Summers, G.

    1994-02-14

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year.

  8. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  9. Research and development of a radioisotope dose calibrator with background alarm used in nuclear medical laboratories.

    PubMed

    Uşakli, Ali Bülent; Akdurak, Serdar

    2002-04-01

    In this study, research and development of a prototype background alarm levelled radioisotope dose calibrator for nuclear medical laboratories was emphasized. The aim was to develop a standard performance, economical dose calibrator (self-made) from the ion-chamber to the microcomputer. Dose calibrators are used in nuclear medical laboratories for treatment and diagnosis purposes. The device is developed using an ion chamber filled with 2 atm pressure argon gas, 3N201 dual gate mosfet for the extremely high impedance preamplifier, an Intel 8052AH microcontroller for the microcomputer, ADC0804 for the A/D conversion, a Phillips 2 x 16 character display, and other components. Correction factors are used for each radioisotope after the activity measurements, that can be updated and kept in the Ni-Cd rechargeable battery-powered RAM memory. To provide safety in nuclear medical laboratories, background activity values are measured. PMID:11993576

  10. Radioisotope thermal photovoltaic application of the GaSb solar cell

    NASA Technical Reports Server (NTRS)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  11. Novel Decapeptides that Bind Avidly and Deliver Radioisotope to Colon Cancer Cells

    PubMed Central

    Abraham, John M.; Sato, Fumiaki; Cheng, Yulan; Paun, Bogdan; Kan, Takatsugu; Olaru, Alexandru; Jin, Zhe; Yang, Jian; Agarwal, Rachana; David, Stefan; Hamilton, James P.; Ito, Tetsuo; Mori, Yuriko; Meltzer, Stephen J.

    2007-01-01

    Background The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor-ablating material such as radioisotope, directed against a specific molecule. Methodology/Principal Findings This report describes the discovery of nine novel decapeptides which can be radioactively labeled, bind to, and deliver 32P to colon cancer cells. The decapeptides vary from one another by one to three amino acids and demonstrate vastly different binding abilities. The most avidly binding decapeptide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other types of cancer or from normal tissue. Conclusions/Significance This experimental approach represents a new example of a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas. PMID:17912343

  12. Short-lived radioisotopes scaling with energy in plasma focus device

    NASA Astrophysics Data System (ADS)

    Kakavandi, Javad A.; Roshan, Mahmood V.; Habibi, Morteza

    2016-03-01

    The computational investigation of the correlation between the achievable reaction yield and discharge energy for a plasma focus device (PFD) is presented. Radioisotope production in PFDs with applicable activities is highly dependent on establishing the related scaling law. Carbon target is bombarded by high energy deuterons and short-lived radioisotope of 13N is produced through 12C(d,n)13N in which the threshold energy is not very high. Both computed and measured ion energy spectra are used to estimate and optimize the scaling law. It is shown that the number of ions emitted from the pinch region for a device operating under optimized conditions is linearly proportional to the discharge energy of the PFD.

  13. Light weight radioisotope heater unit (LWRHU): a technical description of the reference design

    SciTech Connect

    Tate, R.E.

    1982-01-01

    The Light Weight Radioisotope Heater Unit (LWRHU), a new radioisotope heater unit for use in space missions, is a /sup 238/PuO/sub 2/-fueled unit designed to provide a thermal watt in dispersed locations on a spacecraft. The LWRHU is required to maintain the temperature of a component at a level where the component will function reliably in space. Two major constraints are placed on the unit's design; it must be as light as possible and must provide enough protection to immobilize the plutonium fuel to the maximum extent in all phases of the unit's lifetime. The four components are pelletized fuel, platinum-alloy encapsulation, pyrolytic graphite thermal insulation, and high-technology graphite ablation shell. The LWRHU is a cylinder 32 mm (1.26 in.) high and 26 mm (1.02 in.) in diameter. It weighs slightly less than 40 g(.09 lb).

  14. The decay of hot nuclei

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  15. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  16. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  17. Overview of rare K decays

    SciTech Connect

    Littenberg, L.

    1995-05-01

    The status and future prospects of searches for and studies of forbidden and highly suppressed K decays are reviewed. Here the author discusses three areas of recent activity in rare K decay. These are lepton-flavor violating decays, which are entirely forbidden in the Standard Model, K{sub S} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0}, which is of interest from the point of view of CP-violation, and `one loop` decays of the form K{sup 0,{+-}} {yields} ({pi}{sup 0,{+-}})l{bar l}, that can throw light on Standard Model CP-violation and determine parameters such as V{sub td}.

  18. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  19. Proton decay and nuclear dynamics

    SciTech Connect

    Alvioli, M.; Strikman, M.; Benhar, O.; Ericson, M.

    2010-04-15

    The kinematics of the decay of a bound proton is governed by the proton spectral function. We evaluate this quantity in {sup 16}O using the information from nuclear physics experiments. It also includes a correlated part. The reliability of this evaluation is sufficient to open the possibility of correlated cuts in the missing mass and momentum variables to identify the decay events from the bound protons with a possible increase of the signal-to-noise ratio.

  20. Thermal corrections to Electroweak Decays

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2016-03-01

    We study the electroweak processes at finite temperatures. This includes the decay rates of electroweak gauge bosons and beta decays. Major thermal corrections come from QED type radiative corrections. Heavy mass of the electroweak gauge bosons helps to suppress the radiative corrections due to the electroweak gauge boson loops. Therefore, dominant thermal corrections are due to the photon loops. We also discuss the relevance of our results to astrophysics and cosmology.

  1. Semileptonic B-Meson Decays

    SciTech Connect

    Volk, Alexei; /Dresden, Tech. U.

    2010-08-26

    The study of the semileptonic B-meson decays is the most accessible and cleanest way to determine the CKM matrix elements |V{sub cb}| and V{sub ub}. These decays also provide experimental access to study the QCD form-factors, heavy quark masses, and HQE parameters. The theoretical description of semileptonic B-meson decays at the parton level is very simple because there is no interaction between leptonic and hadronic currents. At the hadron level one needs to introduce corrections due to the strong interaction between quarks. Especially in the description of the inclusive B-meson decays the motion of the b-quark inside the B-meson plays a crucial role. All these effects are described in the frameworks of Heavy Quark Effective Theory (HQET) and Lattice QCD (LQCD). We give an overview about results of studies of semileptonic B-meson decays collected with the BABAR and Belle detectors at the PEP-II and the KEKB e{sup +}e{sup -}-storage rings. We present recent results on hadronic moments measured in inclusive B {yields} X{sub c}lv and B {yields} X{sub u}lv decays and extracted heavy quark masses m{sub b} and m{sub c} and dominant non-perturbative Heavy Quark Expansion (HQE) parameters. We also report the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| in inclusive and in exclusive semileptonic B-meson decays. We describe the studies of the form-factor parameters for the decay B{sup 0} {yields} D*{sup -}l{sup +}v and present the measurement of the B{sup 0} {yields} {pi}{sup -}l{sup +}v form-factor shape.

  2. 77 FR 21592 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is requesting public comment on Chapters 7-18 of Draft Interim Staff Guidance (ISG) NPR-ISG-2011-002, augmenting NUREG-1537, Part 1, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Format and Content,'' for the production of radioisotopes and NUREG-1537, Part 2, ``Guidelines for......

  3. Better, faster, cheaper radioisotope thermoelectric generator for Pluto fast flyby mission

    NASA Astrophysics Data System (ADS)

    Darooka, Dilip K.; Vicente, Francis A.

    1995-01-01

    The authors apply the philosophy of better, faster, cheaper to the selection of a radioisotope power system. Presented are definitions of `Better' and `Faster' capable of evaluation. A cost model, based on Cassini program data, aids in defining `Cheaper'. The study assesses a number of power conversion designs. A systematic approach evaluates these power conversion alternatives. A modified and repacked Cassini—type RTG results as the best choice for mission success.

  4. Milliwatt-Power Radioisotope Thermoelectric Generator (RTG) Based on Plutonium-238

    NASA Astrophysics Data System (ADS)

    Gusev, V. V.; Pustovalov, A. A.; Rybkin, N. N.; Anatychuk, L. I.; Demchuk, B. N.; Ludchak, I. Yu.

    2011-05-01

    Results of design and experimental studies aimed at developing a milliwatt-power radioisotope thermoelectric generator (RTG) based on plutonium-238 for space power are considered and analyzed. Milliwatt-power RTGs based on plutonium-238 are completely self-contained electric power sources offering a long proven service lifetime (>15 years) and high reliability. Such electric power sources find application both for space exploration and in terrestrial equipment, especially with the advance of microsystem technologies.

  5. Test and evaluation of the Navy half-watt RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Rosell, F. E., Jr.; Lane, S. D.; Eggers, P. E.; Gawthrop, W. E.; Rouklove, P. G.; Truscello, V. C.

    1976-01-01

    The radioisotope thermoelectric generator (RTG) considered is to provide a continuous minimum power output of 0.5 watt at 6.0 to 8.5 volts for a minimum period of 15 years. The mechanical-electrical evaluation phase discussed involved the conduction of shock and vibration tests. The thermochemical-physical evaluation phase consisted of an analysis of the materials and the development of a thermal model. The thermoelectric evaluation phase included the accelerated testing of the thermoelectric modules.

  6. Confirmatory tests in the diagnosis of brain death: the role of the radioisotope brain scan.

    PubMed

    Cranford, R E; Patrick, B K

    1981-01-01

    Brain death can be determined by clinical examination and the diagnosis confirmed by a variety of laboratory studies. While the most widely used has been the EEG, newer tests are playing an increasingly important role in confirming brain death. The authors discuss the role of one of these tests, the radioisotope brain scan (RIBS), which measures cerebral blood flow. Advantages and limitations of this procedure are outlined and compared with those of the EEG. PMID:10254051

  7. COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage

  8. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  9. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  10. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    SciTech Connect

    Charles D. Griffin

    2006-06-01

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  11. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  12. The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu

    PubMed Central

    Niccoli Asabella, Artor; Cascini, Giuseppe Lucio; Altini, Corinna; Paparella, Domenico; Notaristefano, Antonio

    2014-01-01

    Copper (Cu) is an important trace element in humans; it plays a role as a cofactor for numerous enzymes and other proteins crucial for respiration, iron transport, metabolism, cell growth, and hemostasis. Natural copper comprises two stable isotopes, 63Cu and 65Cu, and 5 principal radioisotopes for molecular imaging applications (60Cu, 61Cu, 62Cu, and 64Cu) and in vivo targeted radiation therapy (64Cu and 67Cu). The two potential ways to produce Cu radioisotopes concern the use of the cyclotron or the reactor. A noncopper target is used to produce noncarrier-added Cu thanks to a chemical separation from the target material using ion exchange chromatography achieving a high amount of radioactivity with the lowest possible amount of nonradioactive isotopes. In recent years, Cu isotopes have been linked to antibodies, proteins, peptides, and nanoparticles for preclinical and clinical research; pathological conditions that influence Cu metabolism such as Menkes syndrome, Wilson disease, inflammation, tumor growth, metastasis, angiogenesis, and drug resistance have been studied. We aim to discuss all Cu radioisotopes application focusing on 64Cu and in particular its form 64CuCl2 that seems to be the most promising for its half-life, radiation emissions, and stability with chelators, allowing several applications in oncological and nononcological fields. PMID:24895611

  13. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2014-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  14. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  15. Accelerator mass spectrometry and radioisotope detection at the Argonne FN tandem facility

    SciTech Connect

    Henning, W.; Kutschera, W.; Paul, M.; Smither, R.K.; Stephenson, E.J.; Yntema, J.L.

    1980-01-01

    The Argonne FN tandem accelerator and standard components of its experimental heavy-ion research facility, have been used as a highly-sensitive mass spectrometer to detect several long-lived radioisotopes and measure their concentration by counting of accelerated ions. Background beams from isobaric nuclei have been eliminated by combining the dispersion from the energy loss in a uniform Al foil stack with the momentum resolution of an Enge split-pole magnetic spectrograph. Radioisotope concentrations in the following ranges have been measured: /sup 14/C//sup 12/C = 10/sup -12/ to 10/sup -13/, /sup 26/Al//sup 27/Al = 10/sup -10/ to 10/sup -12/, /sup 32/Si/Si = 10/sup -8/ to 10/sup -14/, /sup 36/Cl/Cl = 10/sup -10/ to 10/sup -11/. Particular emphasis was put on exploring to what extent the technique of identifying and counting individual ions in an accelerator beam can be conveniently used to determine nuclear quantities of interest when their measurement involves very low radioisotope concentrations. The usefulness of this method can be demonstrated by measuring the /sup 26/Mg(p,n)/sup 26/Al(7.2 x 10/sup 5/ yr) cross section at proton energies in the astrophysically interesting range just above threshold, and by determining the previously poorly known half life of /sup 32/Si.

  16. The advanced neutron source (ANS) - A proposed national resource for medical radioisotope production

    SciTech Connect

    Mirzadeh, S.; Knapp, F.F. Jr.; Alexander, C.W.

    1994-05-01

    The ANS will be a state-of-the-art 330-MWt research reactor which is under design for construction at ORNL. The ANS is heavy water cooled/moderated with a 21-day fuel cycle, scheduled for full power in year 2002. Radioisotope production facilities of the ANS include 3 hydraulic tubes (HT1, 2 and 4) and 4 vertical holes. The projected average thermal neutron flux at HT4 is 4.6 x 10E15 n/cm{sup 2}/sec., 2.3 times greater and more than doubling the capabilities of the ORNL-HFIR. The HT1 and HT3 have peak thermal fluxes {approximately}50% of that in the HFIR, with {theta}{sub n}(th){approx}1 x 10E15 n/cm{sup 2}/sec. The on-line access capability of the ANS vertical hole Facilities is unique and should offset the larger sample capacity of the HFIR reflector positions. The capabilities of the ANS facilities will offer increased availability and efficiency of radioisotope production, and a conservation of expensive target isotopes. To further illustrate the unique capabilities of the ANS, a comparison for the production of several key medical radioisotopes is given below. Because of the greatly increased flux, the ANS may also be an important facility for production of high specific activity [n,{gamma}] Mo-99, thus overcoming the major difficulties associated with the radioactive waste from fission-produced Mo-99.

  17. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    SciTech Connect

    Srivastava, S.C.; Mausner, L.F.

    1994-03-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

  18. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    NASA Astrophysics Data System (ADS)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich; Nares, Chankow; Hao, Quang Nguyen

    2016-01-01

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baseline determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.

  19. Specification for strontium-90 500-watt(e) radioisotopic thermoelectric generator. Final report

    SciTech Connect

    Hammel, T.; Himes, J.; Lieberman, A.; McGrew, J.; Owings, D.; Schumann, F.

    1983-04-01

    A conceptual design for a demonstration 500-watt(e) radioisotopic thermoelectric generator has been created for the Department of Energy. The design effort was divided into two tasks, viz., create a design specification for a capsule strength member that utilizes a standard Strontium-90 fluoride-filled WESF inner liner, and create a conceptual design for a 500-watt(e) RTG. Both tasks have been accomplished. The strength-member specification was designed to survive an external pressure of 24,500 psi and meet the requirements of special-form radioisotope heat sources. Therefore the capsule can, if desired, be licensed for domestic and international transport. The design for the RTG features a radioisotopic heat source, an array of nine capsules in a tungsten biological shield, four current-technology series-connected thermoelectric-conversion modules, low-conductivity thermal insulation, and a passive finned-housing radiator for waste-heat dissipation. The preliminary RTG specification formulated previous to contract award has been met or exceeded. The power source will generate the required power for the required service period at 28 volts dc with a conversion efficiency of 8%, provided the existing in-pool capsules at WESF meet the assumed thermal-inventory requirements.

  20. Adaptive Vibration Reduction System Shown to Effectively Eliminate Vibrations for the Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2000-01-01

    Stirling Technology Company (STC), as part of a Small Business Innovation Research contract Phase II with the NASA Glenn Research Center at Lewis Field, is developing an Adaptive Vibration Reduction System (AVRS) that will effectively eliminate vibrations for the Stirling radioisotope power system. The AVRS will reduce vibration levels for two synchronized, opposed Stirling converters by a factor of 10 or more under normal operating conditions. Even more importantly, the AVRS will be adaptive and will be able to adjust to any changing converter conditions over the course of a mission. The Stirling converter is being developed by NASA and the Department of Energy (DOE) as a high-efficiency option for a radioisotope power system to provide onboard electric power for NASA deep space missions. The high Stirling efficiency of over 25 percent for this application will reduce the required amount of isotope by more than a factor of 3 in comparison to the current radioisotope thermoelectric generators (RTG s). Stirling is the most developed converter option of the advanced power technologies under consideration.

  1. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method.

    PubMed

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is (252)Cf or (241)Am-Be. In this study, (252)Cf with a neutron flux of 6.3x10(6)n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with (3)He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of approximately 0.947g/cc and area of 40cmx25cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei. PMID:19285419

  2. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  3. Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy.

    PubMed

    Chao, Yu; Wang, Guanglin; Liang, Chao; Yi, Xuan; Zhong, Xiaoyan; Liu, Jingjing; Gao, Min; Yang, Kai; Cheng, Liang; Liu, Zhuang

    2016-08-01

    Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2 ) nanoflakes can be easily labeled by (188) Re, a widely used radioisotope for RIT, upon simple mixing. Like other high-Z elements acting as radiosensitizers, tungsten in the obtained (188) Re-WS2 -PEG would be able to absorb ionization radiation generated from (188) Re, enabling ''self-sensitization'' to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2 -PEG could be utilized for NIR light-induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia-associated radioresistance of tumors. Therefore, with (188) Re-WS2 -PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self-sensitized, NIR-enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self-sensitizing the irradiation-induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes. PMID:27345460

  4. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods

    SciTech Connect

    Guerra Liberal, Francisco D. C. E-mail: adriana-tavares@msn.com; Tavares, Adriana Alexandre S. E-mail: adriana-tavares@msn.com; Tavares, João Manuel R. S.

    2014-11-01

    Purpose: Throughout the years, the palliative treatment of bone metastases using bone seeking radiotracers has been part of the therapeutic resources used in oncology, but the choice of which bone seeking agent to use is not consensual across sites and limited data are available comparing the characteristics of each radioisotope. Computational simulation is a simple and practical method to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aims to evaluate and compare 11 different radioisotopes currently in use or under research for the palliative treatment of bone metastases using computational methods. Methods: Computational models were used to estimate the percentage of deoxyribonucleic acid (DNA) damage (fast Monte Carlo damage algorithm), the probability of correct DNA repair (Monte Carlo excision repair algorithm), and the radiation-induced cellular effects (virtual cell radiobiology algorithm) post-irradiation with selected particles emitted by phosphorus-32 ({sup 32}P), strontium-89 ({sup 89}Sr), yttrium-90 ({sup 90}Y ), tin-117 ({sup 117m}Sn), samarium-153 ({sup 153}Sm), holmium-166 ({sup 166}Ho), thulium-170 ({sup 170}Tm), lutetium-177 ({sup 177}Lu), rhenium-186 ({sup 186}Re), rhenium-188 ({sup 188}Re), and radium-223 ({sup 223}Ra). Results: {sup 223}Ra alpha particles, {sup 177}Lu beta minus particles, and {sup 170}Tm beta minus particles induced the highest cell death of all investigated particles and radioisotopes. The cell survival fraction measured post-irradiation with beta minus particles emitted by {sup 89}Sr and {sup 153}Sm, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice, was higher than {sup 177}Lu beta minus particles and {sup 223}Ra alpha particles. Conclusions: {sup 223}Ra and {sup 177}Lu hold the highest potential for palliative treatment of bone metastases of all

  5. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.898 Section 51.898 Agriculture Regulations... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means.... Slight surface development of green mold (Cladosporium) shall not be considered decay....

  6. Unsolved problems in hadronic charm decay

    SciTech Connect

    Browder, T.E.

    1989-08-01

    This paper describes several outstanding problems in the study of hadronic decays of charmed mesons where further experimental work and theoretical understanding is needed. Four topics are stressed: double Cabibbo suppressed decays (DCSD) of D/sup +/ mesons, hadronic D/sub s/ decays, weak hadronic quasi-two-body decays to pairs of vector mesons, and penguin decays of D mesons. 24 refs., 10 figs., 5 tabs.

  7. Decay curve study in a standard electron capture decay

    SciTech Connect

    Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.

    2010-05-12

    We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.

  8. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident

    SciTech Connect

    1996-12-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation.

  9. The search for proton decay

    SciTech Connect

    Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.

    1994-12-31

    The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-{bar n} oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade.

  10. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  11. Observable signatures of inflaton decays

    SciTech Connect

    Battefeld, Diana; Battefeld, Thorsten; Giblin, John T. Jr.; Pease, Evan K. E-mail: tbattefe@astro.physik.uni-goettingen.de E-mail: peasee@kenyon.edu

    2011-02-01

    We numerically compute features in the power-spectrum that originate from the decay of fields during inflation. Using a simple, phenomenological, multi-field setup, we increase the number of fields from a few to thousands. Whenever a field decays, its associated potential energy is transferred into radiation, causing a jump in the equation of state parameter and mode mixing at the perturbed level. We observe discrete steps in the power-spectrum if the number of fields is low, in agreement with analytic arguments in the literature. These features become increasingly smeared out once many fields decay within a given Hubble time. In this regime we confirm the validity of the analytic approach to staggered inflation, which is based on a coarse-graining procedure. Our numerical approach bridges the aforementioned analytic treatments, and can be used in more complicated scenarios.

  12. Free radical decay in adamantane

    SciTech Connect

    Tegowski, A.T.; Pratt, D.W.

    1984-01-11

    Kinetic electron paramagnetic resonance (EPR) techniques have been used to characterize the decay behavior of the ''stable'' free radical 2-cyclohexanonyl in the plastic crystal phase f an adamantane matrix over the temperature range 257-313 K. Typical plots of the EPR signal intensity as a function of time are biexponential in nature, suggesting the existence of at least two channels for free radical decay. The activation parameters for both processes have been measured in both protonated and deuterated samples. A comparison of these results with those in other systems suggests that the host does, as expected, considerably reduce the pre-exponential factors for decay of the radical by bimolecular processes but has relatively little influence on the corresponding activation energies. 3 figures.

  13. EC decay of 244Bk

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Pujari, P. K.; Palit, R.; Mukhopadhyay, S.

    2014-12-01

    Berkelium isotopes have been produced in 11B-induced reaction on 238U. The EC decay of 244Bk → 244Cm has been studied by carrying out the single and coincidence measurements of the γ-rays emitted during the de-excitation of the 244Cm levels. Radiochemical separations have been carried out to minimize the contribution from the fission products and target. The new half-life of 244Bk is obtained as 5.02 ± 0.03 h, which is close to the theoretically calculated value. The relative intensities of the decay γ-rays have been re-evaluated. Based on the coincidence measurements, a tentative partial level scheme for 244Bk → 244Cm decay has been proposed.

  14. Heavy quark spectroscopy and decay

    SciTech Connect

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  15. A roadmap for the development and validation of coated particle fuel for future space radioisotope heater units (RHUs) and radioisotope power systems (RPSs)

    NASA Astrophysics Data System (ADS)

    Sholtis, Joseph A.

    2001-02-01

    In early 1999, coated particle fuel was identified as offering promising advancements in design flexibility, performance, specific mass and volume, as well as safety for future space radioisotope heater units (RHUs) and radioisotope power systems (RPSs). Subsequent study, conducted during Fiscal Year 1999, provided confidence that these potential benefits were substantial and demonstrable if a modest follow-on investigative test effort was pursued. This paper lays out a roadmap for both immediate and near-term decision making, as well as any full-scale development and validation of coated particle fuel undertaken for future space RHUs, and RPSs. In an effort to obtain adequate and timely information at a reasonable cost for immediate and near-term decision making, as well as any subsequent development, production, and application decisions, a four-phased regimen of testing is identified. The four phases of testing are: (1) Pre-Decisional Testing: (2) Pre-Production Analytical Verification Testing: (3) Production Quality Assurance Testing: and (4) Post-Production Safety Verification Testing. Although all four of these phases of testing are considered essential, the first two phases are especially important for immediate and near-term decisions to advance and pursue coated particle fuel for space RHUs and RPSs. The third and fourth phases of testing are primarily identified and included for completeness at this early stage. It is concluded that there is every reason to believe that the potential benefits of coated particle fuel can be readily demonstrated through a modest investigative test effort. If such an effort is pursued and proves successful, coated particle fuel could then be developed with assurance that its ultimate benefits would revolutionize the design and space use of future RHUs and RPSs. It is hoped that this paper will serve as a starting point for further discussions and more specific planning activities aimed at advancing coated particle fuel for

  16. Too Much of a Good Thing ? Radioisotope Power Conversion Technology and `Waste' Heat in the Titan Environment

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system

  17. The study of rare decays

    NASA Astrophysics Data System (ADS)

    Ju, Wan-Li; Wang, Guo-Li; Fu, Hui-Feng; Wang, Tian-Hong; Jiang, Yue

    2014-04-01

    In this paper, we study rare decays within the Standard Model. The penguin, box, annihilation, color-favored cascade and color-suppressed cascade contributions are included. Based on our calculation, the annihilation and color-favored cascade diagrams play important roles in the differential branching fractions, forward-backward asymmetries, longitudinal polarizations of the final vector mesons and leptonic longitudinal polarization asymmetries. More importantly, color-favored cascade decays largely enhance the resonance cascade contributions. To avoid the resonance cascade contribution pollution, new cutting regions are put forward.

  18. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  19. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005. PMID:16574422

  20. A review of the use of radio-isotopes in medicine and medical research in Australia (1947-73).

    PubMed

    Korszniak, N

    1997-05-01

    Recent reports in the Australian media have claimed that after the Second World War 'hundreds of (Australians) were injected with radioactive materials in medical experiments that continued in Australian hospitals until the 1960s'. These claims prompted a review of archival records of the Australian Radiation Laboratory (ARL) that are held by the Australian Archives pertaining to the medical uses of radio-isotopes during the period 1947-73. The material examined indicates that the procurement, distribution, and therapeutic and diagnostic uses of radio-isotopes were stringently controlled by the Radio-isotopes Standing committee (RSC) until 1973, when the responsibility of regulation of medical uses of radio-isotopes passed to the Therapeutic Goods Administration. On the basis of available information it appears that the claims made by the media that many Australians were subjected to unconscionable medical experiments are unjustified. A full report has been released by the Commonwealth Minister for Human Services and Health. The following is an abridged version of that report, detailing some of the more contentious uses of radio-isotopes for medical purposes in Australia during the period 1947-73. PMID:9153830

  1. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    SciTech Connect

    Warner, Jacob A.; Timmers, Heiko; Smith, Paul N.; Scarvell, Jennifer M.; Gladkis, Laura

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

  2. Determination of {sup 125}I and {sup 131}I in radioisotope wastes

    SciTech Connect

    Sang Hoon Kang; Ke Chon Choi; Lee, Heung N.; Sun Ho Han; Kwang Yong Jee

    2007-07-01

    In order to measure a low activity of {sup 125}I and {sup 131}I in radioisotope wastes, we took into consideration various sample preparation and separation methods, such as an acid decomposition, an acid leaching and a combustion method. In a previous study, the maximum chemical yield of iodine by an acid leaching was found to be 78.0 %. However, in this study, the maximum chemical yield of the acid decomposition method and the combustion method with a radioiodine reference solution was found to be 99.1 % and 84.5 %, respectively. We selected the acid decomposition method for the analysis of radioisotope waste samples due to its high chemical yield and short preparation and separation time. The chemical yield of the acid decomposition method depends on the reaction time at each experimental stage, added amount of H{sub 3}PO{sub 3} and H{sub 2}O{sub 2}, and the pH of the condensed solution and the condition of the AgI precipitation. The important point for the highest recovery rate from a acid decomposition method is to maintain enough reaction time and pour 10 ml of 30 % H{sub 3}PO{sub 3} before a distillation, and drop 1 ml of H{sub 2}O{sub 2} when the condensed solution is trapped in the Florence flask. Through a study of the acid decomposition method we found an optimal preparation and separation method of {sup 125}I and {sup 131}I in radioisotope wastes due to the merits of a short reaction time and high recovery rate, and a counting system was applied to LEPS for the {sup 125}I and HP Ge gamma-ray spectrometer for {sup 131}I. (authors)

  3. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    NASA Astrophysics Data System (ADS)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G.

    1995-01-01

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that—when fully developed—they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 °C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators.

  4. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    SciTech Connect

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-20

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power ({>=}330 We at beginning of life) during the 10-year cruise and 1-year science mission ({approx}11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  5. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    SciTech Connect

    Schock, A.; Mukunda, M.; Or, C.; Summers, G.

    1995-01-05

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that---when fully developed---they could result in a 60% reduction of the heat source`s mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system`s specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV`s current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 {degree}C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Analysis, Optimization, and Assessment of Radioisotope Thermophotovoltaic System Design for an Illustrative Space Mission

    SciTech Connect

    Schock, Alfred; Mukunda, Meera; Summers, G.

    1994-06-28

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPV's are of course much less mature than RTGs, but our results indicate that - when fully developed - they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g. RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 degrees C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low mass generators. Another copy is in the Energy Systems files.

  7. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-01

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to ``hop'' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power (>=330 We at beginning of life) during the 10-year cruise and 1-year science mission (~11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  8. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  9. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    SciTech Connect

    Liem, Peng Hong; Tran, Hoai Nam; Sembiring, Tagor Malem; Arbie, Bakri

    2014-09-30

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  10. Cosmogenic and primordial radioisotopes in copper bricks shortly exposed to cosmic rays

    NASA Astrophysics Data System (ADS)

    Coarasa, I.; Amaré, J.; Cebrián, S.; Cuestá, C.; García, E.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortíz de Solórzano, A.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2016-05-01

    Cosmogenic activation is the most common source of radioactivity in copper, being 60 Co the most significant because of its long half-life (5.27 y) and saturation activity at sea level of 1 mBq/kg. Copper bricks, which had been exposed to cosmic rays for 41 days after their casting, were used to replace the internal 10 cm of the lead shielding of a HPGe detector placed at the Canfranc Underground Laboratory. We describe the outcome of the new shielding and the cosmogenic and primordial radioisotopes observed.

  11. Environmental, health and safety assessment of decommissioning radioisotope thermoelectric generators (RTGs) in northwest Russia.

    PubMed

    Standring, W J F; Dowdall, M; Sneve, M; Selnaes, Ø G; Amundsen, I

    2007-09-01

    This paper presents findings from public health and environmental assessment work that has been conducted as part of a joint Norwegian-Russian project to decommission radioisotope thermoelectric generators (RTG) in northwest Russia. RTGs utilise heat energy from radioactive isotopes, in this case 90Sr and its daughter nuclide 90Y, to generate electricity as a power source. Different accident scenarios based on the decommissioning process for RTGs are assessed in terms of possible radiation effects to humans and the environment. Doses to humans and biota under the worst-case scenario were lower than threshold limits given in ICRP and IAEA literature. PMID:17768331

  12. Environmental assessment of decommissioning radioisotope thermoelectric generators (RTG) in northwest Russia

    SciTech Connect

    Hosseini, A.; Standring, W.J.F.; Brown, J.E.; Dowdall, M.; Amundsen, I.B.

    2007-07-01

    This article presents some results from assessment work conducted as part of a joint Norwegian-Russian project to decommission radioisotope thermoelectric generators (RTG) in Northwest Russia. Potential worst case accident scenarios, based on the decommissioning procedures for RTGs, were assessed to study possible radiation effects to the environment. Close contact with exposed RTG sources will result in detrimental health effects. However, doses to marine biota from ingestion of radioactivity under the worst-case marine scenario studied were lower than threshold limits given in IAEA literature. (authors)

  13. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect

    Satoh, J.A.

    1994-11-09

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  14. Extraction of serum vitamin B12 for radio-isotopic and Lactobacillus leichmannii assay.

    PubMed Central

    Raven, J L; Robson, M B

    1975-01-01

    The protein precipitates discarded during the extraction process of the Lactobacillus leichmannii vitamin B12 assay have been shown to contain significant amounts of vitamin B12. This loss of vitamin B12 provide a satisfactory explanation for many of the descrepancies between the serum vitamin B12 values obtained by the L. leichmannii method and the radio-isotopic method of Raven et al (1969). It is possible to produce lower results by the method of Raven et al (1969)by incorporating into that method the L. leichmannii extraction process; it is also possible to produce higher results by the L. leichmannii method using a papain extraction process. Images PMID:1150894

  15. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  16. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  17. Methods for producing Cu-67 radioisotope with use of a ceramic capsule for medical applications

    DOEpatents

    Ehst, David A.; Willit, James L.

    2016-04-12

    The present invention provides a method for producing Cu67 radioisotope suitable for use in medical applications. The method comprises irradiating a metallic zinc-68 (Zn68) target within a sealed ceramic capsule with a high energy gamma ray beam. After irradiation, the Cu67 is isolated from the Zn68 by any suitable method (e.g. chemical and or physical separation). In a preferred embodiment, the Cu67 is isolated by sublimation of the zinc in a ceramic sublimation tube to afford a copper residue containing Cu67. The Cu67 can be further purified by chemical means.

  18. Electronic structure of polycrystalline Cd metal using {sup 241}Am radioisotope

    SciTech Connect

    Dhaka, M. S.; Sharma, G.; Mishra, M. C.; Sharma, B. K.

    2014-04-24

    Electronic structure study of the polycrystalline cadmium metal is reported. The experimental measurement is undertaken on a polycrystalline sheet sample using 59.54 keV radioisotope of {sup 241}Am. These results are compared with the ab initio calculations. The theoretical calculations are performed using linear combination of atomic orbitals (LCAO) method employing the density functional theories (DFT) and Hartree-Fock (HF) and augmented plane wave (APW) methods. The spherically averaged APW and LCAO based theoretical Compton profiles are in good agreement with the experimental measurement however the APW based theoretical calculations show best agreement.

  19. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  20. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes.

    PubMed

    Sevcenco, Ana-Maria; Paravidino, Monica; Vrouwenvelder, Johannes S; Wolterbeek, Hubert Th; van Loosdrecht, Mark C M; Hagen, Wilfred R

    2015-06-01

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes (32)P and (76)As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water. PMID:25817554

  1. Enabling Future Low-Cost Small Spacecraft Mission Concepts Using Small Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven R.; Cataldo, Robert L.

    2014-01-01

    For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.

  2. Development of the data base for a degradation model of a selenide RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1977-01-01

    The paper is concerned with the evaluation of the materials used in a selenide radioisotope thermoelectric generator (RTG). These materials are composed of n-type gadolinium selenide and n-type copper selenide. A three-fold evaluation approach is being used: (1) the study of the rate of change of the thermal conductivity of the material, (2) the investigation of the long-term stability of the material's Seebeck voltage and electrical resistivity under current and temperature gradient conditions, and (3) determination of the physical behavior and compatibility of the material with surrounding insulation at elevated temperatures. Programmatically, the third category of characteristic evaluation is being emphasized.

  3. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    SciTech Connect

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.; Farmer, O.T.; Greenwood, L.R.; Hoppe, E.W.; Hoopes, F.V.; Lumetta, G.J.; Mong, G.M.; Ratner, R.T.; Soderquist, C.Z.; Steele, M.J.; Swoboda, R.G.; Urie, M.W.; Wagner, J.J.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  4. Rare B decays at CDF

    SciTech Connect

    Farrington, Sinead M.; /Liverpool U.

    2006-10-01

    The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

  5. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  6. Review of tau lepton decays

    SciTech Connect

    Stoker, D.P.

    1991-07-01

    Measurements of the {tau} decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the 1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the {tau} lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs.

  7. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  8. Entanglement entropy in particle decay

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2013-11-01

    The decay of a parent particle into two or more daughter particles results in an entangled quantum state as a consequence of conservation laws in the decay process. Recent experiments at Belle and BaBar take advantage of quantum entanglement and the correlations in the time evolution of the product particles to study CP and T violations. If one (or more) of the product particles are not observed, their degrees of freedom are traced out of the pure state density matrix resulting from the decay, leading to a mixed state density matrix and an entanglement entropy. This entropy is a measure of the loss of information present in the original quantum correlations of the entangled state. We use the Wigner-Weisskopf method to construct an approximation to this state that evolves in time in a manifestly unitary way. We then obtain the entanglement entropy from the reduced density matrix of one of the daughter particles obtained by tracing out the unobserved states, and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states. The method is generalized to the case in which the parent particle is described by a wave packet localized in space. Possible experimental avenues to measure the entanglement entropy in the decay of mesons at rest are discussed.

  9. Peace propaganda and biomedical experimentation: influential uses of radioisotopes in endocrinology and molecular genetics in Spain (1947-1971).

    PubMed

    Santesmases, María Jesús

    2006-01-01

    A political discourse of peace marked the distribution and use of radioisotopes in biomedical research and in medical diagnosis and therapy in the post-World War II period. This occurred during the era of expansion and strengthening of the United States' influence on the promotion of sciences and technologies in Europe as a collaborative effort, initially encouraged by the policies and budgetary distribution of the Marshall Plan. This article follows the importation of radioisotopes by two Spanish research groups, one in experimental endocrinology and one in molecular biology. For both groups foreign funds were instrumental in the early establishment of their laboratories. The combination of funding and access to previously scarce radioisotopes helped position these groups at the forefront of research in Spain. PMID:17575958

  10. Formation of medical radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu in photonuclear reactions

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-01

    The possibility of the photonuclear production of radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes 112, 118Sn and Te and HfO2 of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes 111In and 117 mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO2 of natural isotopic composition and leading to the formation of 124Sb and 177Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  11. Neutron Beta Decay Studies with Nab

    SciTech Connect

    Baessler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barron-Palos, L.; Bowman, James David; Bychkov, M. A.; Byrne, J.; Calarco, J; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlez, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttila, Seppo I; Pocanic, Dinko; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  12. Nuclear energy in the service of biomedicine: the U.S. Atomic Energy Commission's radioisotope program, 1946-1950.

    PubMed

    Creager, Angela N H

    2006-01-01

    The widespread adoption of radioisotopes as tools in biomedical research and therapy became one of the major consequences of the "physicists' war" for postwar life science. Scientists in the Manhattan Project, as part of their efforts to advocate for civilian uses of atomic energy after the war, proposed using infrastructure from the wartime bomb project to develop a government-run radioisotope distribution program. After the Atomic Energy Bill was passed and before the Atomic Energy Commission (AEC) was formally established, the Manhattan Project began shipping isotopes from Oak Ridge. Scientists and physicians put these reactor-produced isotopes to many of the same uses that had been pioneered with cyclotron-generated radioisotopes in the 1930s and early 1940s. The majority of early AEC shipments were radioiodine and radiophosphorus, employed to evaluate thyroid function, diagnose medical disorders, and irradiate tumors. Both researchers and politicians lauded radioisotopes publicly for their potential in curing diseases, particularly cancer. However, isotopes proved less successful than anticipated in treating cancer and more successful in medical diagnostics. On the research side, reactor-generated radioisotopes equipped biologists with new tools to trace molecular transformations from metabolic pathways to ecosystems. The U.S. government's production and promotion of isotopes stimulated their consumption by scientists and physicians (both domestic and abroad), such that in the postwar period isotopes became routine elements of laboratory and clinical use. In the early postwar years, radioisotopes signified the government's commitment to harness the atom for peace, particularly through contributions to biology, medicine, and agriculture. PMID:17575955

  13. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  14. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  15. Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.

  16. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments Database

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  17. ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes

    DOE PAGESBeta

    Dooraghi, Alex A.; Carroll, Lewis; Collins, Jeffrey; van Dam, R. Michael; Chatziioannou, Arion F.

    2016-03-09

    Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 (18F). The key to the system is the combination of a radiation detector measuring radioactivity concentration, in line with a peristaltic pump dispensing known volumes. Results show the combined system demonstrates volume variation to be within 5 % for dispensing volumes of 20 μLmore » or greater. When considering volumes of 20 μL or greater, the delivered radioactivity is in agreement with the requested amount as measured independently with a dose calibrator to within 2 % on average. In conclusion, the integration of the detector and pump in an in-line system leads to a flexible and compact approach that can accurately dispense solutions containing radioactivity concentrations ranging from the high values typical of [18F]fluoride directly produced from a cyclotron (~0.1-1 mCi μL-1) to the low values typical of batches of [18F]fluoride-labeled radiotracers intended for preclinical mouse scans (~1-10 μCi μL-1).« less

  18. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    NASA Astrophysics Data System (ADS)

    Sherrell, Dennis L.

    1993-01-01

    A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  19. Computational modeling of Radioisotope Thermoelectric Generators (RTG) for interplanetary and deep space travel

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus; Nejat, Narsis; Nejat, Najmeh

    2014-06-01

    This research project is part of Narsis Nejat Master of Science thesis project that it is done at Shiraz University. The goals of this research are to make a computer model to evaluate the thermal power, electrical power, amount of emitted/absorbed dose, and amount of emitted/absorbed dose rate for static Radioisotope Thermoelectric Generators (RTG)s that is include a comprehensive study of the types of RTG systems and in particular RTG’s fuel resulting from both natural and artificial isotopes, calculation of the permissible dose radioisotope selected from the above, and conceptual design modeling and comparison between several NASA made RTGs with the project computer model pointing out the strong and weakness points for using this model in nuclear industries for simulation. The heat is being converted to electricity by two major methods in RTGs: static conversion and dynamic conversion. The model that is created for this project is for RTGs that heat is being converted to electricity statically. The model approximates good results as being compared with SNAP-3, SNAP-19, MHW, and GPHS RTGs in terms of electrical power, efficiency, specific power, and types of the mission and amount of fuel mass that is required to accomplish the mission.

  20. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect

    Noble, Robert J.; Amini, Rashied; Beauchamp, Patricia M.; Bennett, Gary L.; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; Fernandez, Yan R.; Grundy, Will; Khan, Mohammed Omair; King, David Q.; Lang, Jared; Meech, Karen J.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; Spilker, Thomas; West, John L.; /Caltech, JPL

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  1. Safety analysis for the Galileo Light-Weight Radioisotope Heater Unit

    SciTech Connect

    Johnson, E.W.

    1990-01-01

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope {sup 238}Pu in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events. 4 refs., 4 figs., 1 tab.

  2. ULTRASONIC AND RADIOGRAPHIC IMAGING OF NIOBIUM TARGET CAPSULES FOR RADIOISOTOPE PRODUCTION

    SciTech Connect

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Dozier, B. E.; Nortier, F. M.; Smith, D. M.; Lenz, J. W.; Moddrell, C.; Smith, P. A.

    2009-03-03

    In the case of proton-irradiated radioisotope production, niobium target capsules containing gallium are exposed to intense radiation, thermally induced stress, for extended periods. The structural integrity of the target capsules is of crucial importance for containing the accelerator-produced radioisotopes and target material. The capsule window should be as thin and transparent to the proton beam as possible, and preferably should not become significantly activated under proton irradiation. In addition, the material for the capsule needs to be as defect-free as possible. Niobium encapsulated gallium targets have a history of unpredictable failure under intense irradiation with 100 MeV protons. This study illustrates the utility of non-destructive testing in order to detect defects that may result in mechanical failure of the capsules during irradiation. Prior to this work, it was not known if the gallium initially wets the niobium capsule that encapsulates it, and if it does, it is not known to what degree. However, the imaging techniques used in this work show that local areas of wetting do occur. We used ultrasonic images from various lots of niobium capsule material to assess the integrity of the capsules. Digital radiography is also used to detect any voids in the gallium that will tend to cause local heating in the capsules.

  3. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By

    SciTech Connect

    Hendricks, T.J.; Huang, C.; Sievers, R.K.

    1997-12-31

    The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS produces 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.

  4. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect

    Sherrell, D.L.

    1992-06-01

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  5. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect

    Sherrell, D.L.

    1992-06-01

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

  6. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  7. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  8. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    SciTech Connect

    Schwartz, A.N.; Graham, M.M.; Ferency, G.F.; Miura, R.S.

    1989-04-01

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlated well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction.

  9. Radioisotope radiotherapy research and achievements at the University of Missouri Research Reactor

    NASA Astrophysics Data System (ADS)

    Ehrhardt, G. J.; Ketring, A. R.; Cutler, C. S.

    2003-01-01

    The University of Missouri Research Reactor (MURR) in collaboration with faculty in other departments at the University of Missouri has been involved in developing new means of internal radioisotopic therapy for cancer for many years. These efforts have centered on methods of targeting radioisotopes such as brachytherapy, embolisation of liver tumors with radioactive microspheres, small-molecule-labelled chelates for the treatment of bone cancer, and various means of radioimmunotherapy or labelled receptor agent targeting. This work has produced two radioactive agents, Sm-153 Quadramet™ and Y-90 TheraSphere™, which have U.S. Food and Drug Administration approval for the palliation of bone cancer pain and treatment of inoperable liver cancer, respectively. MURR has also pioneered development of other beta-emitting isotopes for internal radiotherapy such as Re-186, Re-188, Rh-105, Ho-166, Lu-177, and Pm-149, many of which are in research and clinical trials throughout the U.S. and the world. This important work has been made possible by the very high neutron flux available at MURR combined with MURR's outstanding reliability of operation and flexibility in meeting the needs of researchers and the radiopharmaceutical industry.

  10. Decays of near BPS heterotic strings

    SciTech Connect

    Gutperle, Michael; Krym, Darya

    2006-10-15

    The decay of highly excited massive string states in compactified heterotic string theories is discussed. We calculate the decay rate and spectrum of states carrying momentum and winding in the compactified direction. The longest lived states in the spectrum are near Bogomol'nyi-Prasad-Sommerfield (BPS) states whose decay is dominated by a single decay channel of massless radiation which brings the state closer to being BPS.

  11. Considerations in the fabrication, assembly, and testing of radioisotopic thermo-photovoltaic (RTPV) generators for future space missions

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Miller, Roger G.; Frazier, Timothy A.

    1996-03-01

    To increase energy output with a smaller size and mass than the radioisotopic thermoelectric generators (RTGs) that were previously used on deep space missions, a radioisotopic thermophotovoltaic (RTPV) system is being developed for the ``Pluto Express'' flyby mission. To minimize cost and development time, some facilities and components currently used for RTG production can be used to produce RTPVs. Production options also include out-sourcing and use of off-the-shelf hardware. Necessary modifications to tooling, production equipment, testing and shipping methods can be achieved in a timely manner so that the RTPV will be ready well before the planned launch of ``Pluto Express.''

  12. Radio-isotopic calibration of the Late Eocene - Early Oligocene geomagnetic polarity time scale

    NASA Astrophysics Data System (ADS)

    Sahy, Diana; Fischer, Anne U.; Condon, Daniel J.; Terry, Dennis O.; Hiess, Joe; Abels, Hemmo; Huesing, Silja K.; Kuiper, Klaudia F.

    2013-04-01

    The Geomagnetic Polarity Time Scale (GPTS) has been the subject of several revisions over the last few decades, with a trend toward increasing reliance on astronomically tuned age models over traditional radio-isotopic calibration. In the 2012 Geological Time Scale (GTS12) a comparison between radio-isotopic and astronomical age models for the GPTS yielded partially divergent results, with discrepancies of up to 0.4 Myr in the age of magnetic reversals around the Eocene - Oligocene transition (Vandenberghe et al., 2012). Radio-isotopic constraints on the age of Late Eocene - Early Oligocene magnetic reversals are available from two key sedimentary successions which host datable volcanic tuffs: the marine record of the Umbria-Marche basin in Italy, and the terrestrial White River Group of North America, however concerns have been raised regarding both the accuracy of dates obtained from these successions, and the reliability of their magnetic polarity records (Hilgen and Kuiper, 2009). Here we present a fully integrated radio-isotopic and magnetostratigraphic dataset from the Late Eocene - Early Oligocene North American terrestrial succession with the aim of assessing the accuracy and precision of numerical ages derived from the GPTS. We developed a magnetic polarity record for two partially overlapping sections: Flagstaff Rim in Wyoming and Toadstool Geologic Park in Nebraska, which together provide coverage for the time interval between 36-31 Myr (C16n.2n - C12n) and calibrated this record using an age model based on 14 Pb/U weighted mean ID-TIMS dates obtained on zircons from primary air fall tuffs. The uncertainty of our age model includes random and systematic components for all radio-isotopic tie-points, as well as estimated uncertainties in the stratigraphic position of both the magnetic reversals and the dated tuffs. Our Pb/U dates are 0.4 - 0.8 Myr younger than previously published Ar/Ar data (Swisher and Prothero,1990, recalculated to 28.201 Myr for Fish

  13. Comparison of the radioisotope dilution-coated charcoal method and a microbiological method (L. leichmannii) for measuring vitamin B12 in serum

    PubMed Central

    Raven, J. L.; Walker, P. L.; Barkhan, P.

    1966-01-01

    A comparison has been made of the radioisotope dilution-coated charcoal method and a microbiological assay (with L. leichmannii as test organism) for determining the concentration of vitamin B12 in serum. A satisfactory correlation was found between the results of the two methods. Under appropriate conditions the reproducibility of the radioisotope method compared favourably with that of the microbiological method. PMID:5333257

  14. Penguin and rare decays in BABAR

    NASA Astrophysics Data System (ADS)

    Akar, Simon; Babar Collaboration

    2014-11-01

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ-π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xsl+l- inclusive decays.

  15. Weak radiative baryonic decays of B mesons

    SciTech Connect

    Kohara, Yoji

    2004-11-01

    Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.

  16. Review of B and Bs decays

    NASA Astrophysics Data System (ADS)

    Bozzi, Concezio

    2014-05-01

    A review of B and Bs decays is presented. Emphasis is given to processes most sensitive to physics beyond the Standard Model, such as radiative, electroweak and "Higgs" penguin decays, and tree-level decays involving tau leptons in the final state. An outlook on future perspectives is also given.

  17. Beauty baryon decays: a theoretical overview

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming

    2014-11-01

    I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.

  18. 7 CFR 51.2087 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2087 Section 51.2087 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2087 Decay. Decay means that part or all...

  19. 7 CFR 51.2962 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2962 Section 51.2962 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2962 Decay. Decay means that any portion...

  20. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.490 Section 51.490 Agriculture Regulations... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type...

  1. 7 CFR 51.2962 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2962 Section 51.2962 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2962 Decay. Decay means that any portion...

  2. 7 CFR 51.2120 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2120 Section 51.2120 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2120 Decay. Decay means that part or all of...

  3. 7 CFR 51.2120 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2120 Section 51.2120 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2120 Decay. Decay means that part or all of...

  4. 7 CFR 51.2087 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2087 Section 51.2087 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2087 Decay. Decay means that part or all...

  5. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.490 Section 51.490 Agriculture Regulations... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type...

  6. Lyapunov decay in quantum irreversibility.

    PubMed

    García-Mata, Ignacio; Roncaglia, Augusto J; Wisniacki, Diego A

    2016-06-13

    The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime. PMID:27140966

  7. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  8. Decay of /sup 150/Er

    SciTech Connect

    Moltz, D.M.; Toth, K.S.; Ellis-Akovali, Y.A.; Cole, J.D.

    1982-09-01

    A new activity, T/sub 1/2/ = 20 +- 2 sec, was observed in /sup 12/C bombardments of /sup 144/Sm. Only one ..gamma.. ray, 476.0 +- 0.1 keV, was found to be associated with this nuclide. We identify the new isotope as /sup 150/Er and propose that it decays mainly to one level in /sup 150/Ho at an excitation energy of approx.476 keV by an allowed ..beta.. transition which connects states with the following configurations: O/sup +/(..pi..h/sub 11/2/, ..pi..h/sub 11/2/)..-->..1/sup +/(..pi..h/sub 11/2/,..nu..h/sub 9/2/). As part of the investigation, the decay properties of the high- and low-spin /sup 150/Ho isomers were reexamined.

  9. Flavor mixing and quark decay

    NASA Astrophysics Data System (ADS)

    Chu Wang, Ling-Lie

    1981-01-01

    Since this is an experimental conference I shall begin my talk with that spirit. We can view that the subject of my talk as a result of ''the ORY Collaboration'' with more than fifty theorists involved. The topics covered are the results of four task forces: I. The mixing Matrix Task Force, II.. The D-decay Task Force, III. the Boredom-Escaping Group and IV. the Far-and-Beyond Group.

  10. Optical spectroscopy and tooth decay

    NASA Astrophysics Data System (ADS)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  11. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  12. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    NASA Astrophysics Data System (ADS)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  13. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  14. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  15. Radiative decay of nonstationary system.

    PubMed

    Banerjee, Sumana; Gangopadhyay, Gautam

    2004-04-01

    When a finite quantum system, say a fluorescent molecule is attached to a bulk surface and excited by a short laser pulse, the decay dynamics of the system is modulated by the surface and the signal is enhanced due to the bulk surface. We have considered the decay dynamics of a model of displaced distorted molecule whose excited potential surface is coupled to a continuum and then this first continuum is in turn coupled to a second continuum. In the short time scale there is a coherent exchange of energy between the system molecule and the first continuum states. In the long time scale the energy of the whole system plus first continuum drains out to the final continuum states. A dendrimer nanocomposite with the gold surface shows an enhanced light emission. This can be qualitatively understood from the model we proposed here. We have numerically studied the various potential parameters of the molecule which can affect the signal. When the potential surfaces are flat, the band structure of the first continuum states along with its initial excitation has some nontrivial effect on the profile of the radiative decay. PMID:15267501

  16. Nuclear Decay Data: On-going Studies to Address and Improve Radionuclide Decay Characteristics

    NASA Astrophysics Data System (ADS)

    Nichols, Alan L.

    2005-05-01

    Representative decay data studies are described and reviewed, ranging from various measurement programmes to the maintenance of evaluated decay-data libraries. Gross beta-decay measurements are essential to address the decay-data requirements for short-lived fission products, well-defined half-lives are required in assessments of the storage of long-lived radionuclides in waste depositories, and improved decay data continue to be demanded in safeguards, to improve detector-calibration standards, and for medical and analytical applications. Such needs require the measurement of good quality decay data, along with multinational evaluations of decay schemes by means of agreed procedures.

  17. Constraints on hadronically decaying dark matter

    SciTech Connect

    Garny, Mathias; Ibarra, Alejandro; Tran, David E-mail: alejandro.ibarra@ph.tum.de

    2012-08-01

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons. We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  18. Doubly charmful baryonic B decays

    SciTech Connect

    Cheng, H.-Y.; Chua, C.-K.; Tsai, S.-Y.

    2006-04-01

    There are two apparent puzzles connected with the two-body and three-body doubly charmed baryonic B decays. First, earlier calculations based on QCD sum rules or the diquark model predict B(B{sup 0}{yields}{xi}{sub c}{sup +}{lambda}{sub c}{sup -}){approx_equal}B(B{sup 0}{yields}B{sub c}N), while experimentally the former has a rate 2 orders of magnitude larger than the latter. Second, a naive estimate of the branching ratio O(10{sup -9}) for the color-suppressed three-body decay B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K, which is highly suppressed by phase space, is too small by 5 to 6 orders of magnitude compared to the experiment. We show that the great suppression for the {lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K production can be alleviated provided that there exists a narrow hidden charm bound state with a mass near the {lambda}{sub c}{lambda}{sub c} threshold. This new state that couples strongly to the charmed baryon pair can be searched for in B decays and in pp collisions by studying the mass spectrum of D{sup (*)}D{sup (*)} or {lambda}{sub c}{lambda}{sub c}. The doubly charmful decay B{yields}{xi}{sub c}{lambda}{sub c} has a configuration more favorable than the singly charmful one such as B{sup 0}{yields}{lambda}{sub c}p since no hard gluon is needed to produce the energetic {xi}{sub c}{lambda}{sub c} pair in the former decay, while two hard gluons are needed for the latter process. Assuming that a soft qq quark pair is produced through the {sigma} and {pi} meson exchanges in the configuration for B{yields}{xi}{sub c}{lambda}{sub c}, it is found that its branching ratio is of order 10{sup -3}, in agreement with the experiment.

  19. Lifetime constraints for late dark matter decay

    SciTech Connect

    Bell, Nicole F.; Galea, Ahmad J.; Petraki, Kalliopi

    2010-07-15

    We consider a class of late-decaying dark matter models, in which a dark matter particle decays to a heavy stable daughter of approximately the same mass, together with one or more relativistic particles which carry away only a small fraction of the parent rest mass. Such decays can affect galactic halo structure and evolution, and have been invoked as a remedy to some of the small-scale structure formation problems of cold dark matter. There are existing stringent limits on the dark matter lifetime if the decays produce photons. By considering examples in which the relativistic decay products instead consist of neutrinos or electron-position pairs, we derive stringent limits on these scenarios for a wide range of dark matter masses. We thus eliminate a sizable portion of the parameter space for these late-decay models if the dominant decay channel involves standard model final states.

  20. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    SciTech Connect

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that the generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system