Science.gov

Sample records for beta-plus decay radioisotopes

  1. High-statistics beta-plus/EC decay study of Xe-122

    NASA Astrophysics Data System (ADS)

    Jigmeddorj, B.; Garrett, P. E.; Hadinia, B.; Radich, A. J.; Rand, E. T.; Svensson, C. E.; Andreoiu, C. A.; Cross, D. S.; Pore, J.; Rizman, U.; Voss, P.; Ball, G. C.; Bruhn, T.; Garnsworthy, A. B.; Hackman, G.; Moukaddam, M.; Park, J.; Rajabali, M. M.; Wang, Z.; Wood, J. L.; Yates, S. W.

    2015-10-01

    The isotopes of Xe are centrally located with respect to the evolution of collectivity in the Z > 50 , N < 82 region, which exhibits an extraordinarily smooth evolution of simple collective signatures. Excited 0+ states in 124-132Xe are very strongly populated, suggesting that there are important proton subshell gaps influencing the low-lying structure of these isotopes and possibly shape-coexistence that would lead to strong E 0 transitions. However, collectivity in this region is very poorly characterized because of a lack of spectroscopic data for low-spin states. A high-statistics 122Cs β+ / EC decay experiment to obtain detailed spectroscopic data for low spin states was performed at the TRIUMF-ISAC facility using the 8 π γ-ray spectrometer and PACES array of five Si(Li) detectors, for conversion electrons spectroscopy. Preliminary results will be presented. This work supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  2. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works. PMID:24814719

  3. Neutron induced radio-isotopes and background for Ge double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Chu, Pinghan; Majorana Collaboration

    2015-10-01

    Environmental neutrons, mostly produced by muons in the cosmic rays, might contribute backgrounds to the search for neutrinoless double beta decays. These neutrons can interact with materials and generate radio-isotopes, which can decay and produce radioactive backgrounds. Some of these neutron-induced isotopes have a signature of a time-delayed coincidence, allowing us to study these infrequent events. For example, such isotopes can decay by beta decay to metastable states and then decay by gamma decay to the ground state. Considering the time-delayed coincidence of these two processes, we can determine candidates for these neutron-induced isotopes in the data and estimate the flux of neutrons in the deep underground environment. In this report, we will list possible neutron-induced isotopes and the methodology to detect them, especially those that can affect the search for neutrinoless double beta decays in 76Ge. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  4. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  5. Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective

    PubMed Central

    Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Robertson, K. A.

    2012-01-01

    Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations. PMID:22924061

  6. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  7. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    SciTech Connect

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-02-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ``neutron rich`` and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail.

  8. Radioisotopes: Today's Applications.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radioisotopes are useful because of their three unique characteristics: (1) radiation emission; (2) predictable radioactive lives; and (3) the same chemical properties as the nonradioactive atoms of that element. Researchers are able to "order" a radioisotope with the right radiation, half-life, and chemical property to perform a given task with…

  9. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  10. Miniature Radioisotope Thermoelectric Power Cubes

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry

    2004-01-01

    Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

  11. Radioisotopes as Political Instruments, 1946–1953

    PubMed Central

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  12. Radioisotopes as Political Instruments, 1946-1953.

    PubMed

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War. PMID:20725612

  13. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  14. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  15. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  16. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  17. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  18. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  19. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  20. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  1. A facility to remotely assemble radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Engstrom, John W.; Goldmann, Louis H.; Truitt, Ross W.

    1993-01-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  2. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  3. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    PubMed

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs. PMID:25973916

  4. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  5. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    SciTech Connect

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.; Lin, W.-Y.; Pinkert, J.; Wang, S.-Y.

    1999-01-18

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo) for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.

  6. Some geophysical considerations in radioisotope dating applications

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    2016-03-01

    Radioisotope dating only assumes radioactive decay laws are taking place allowing closed form solutions to be obtained in generating a sample date estimate. To be discussed in this work is the isotopic distribution expected in geological samples due to mass diffusion superimposed on that from simple radioactive decay. By taking into consideration the isotope effect (differential mass diffusion rates) when measuring isotopic ratios from very old samples, the distribution dependency will cause a bias if isotopic diffusion rates are not identical throughout a material (or at least across the boundaries of all samples measured). The isotope effect being that isotopes having a smaller atomic mass will diffuse faster in a medium than will their heavier counterparts causing concentration gradients of their ratios even when there are no contributions from radioactive decay which will tend to bias all sample ages (slopes of the isochron) to have a more linear distribution. The application to Sr/Rb dating is evaluated and shown to result in expected age overestimates. Suggested methods to test for this effect along with sample preparation techniques to minimize it are discussed. Special thanks the NCSU Nuclear Engineering Department.

  7. Radioisotopes for radioimmunodetection (RAID) and radioimmunotherapy (RAIT)---current and new perspectives

    SciTech Connect

    Knapp, F.F. Jr.

    1991-01-01

    In this paper the availability and properties of radioisotopes for both radioimmunodiagnosis (RAID) and radioimmunotherapy (RAIT) are discussed. Examples are provided for radioisotopes available via direct production in nuclear reactors and accelerators or as daughters obtained from radionuclide generator systems whose parents are either reactor or accelerator produced. Important factors which must be considered for the use of a particular radioisotope include availability, the physical half-life and decay properties, and chemical versatility for protein attachment. Although both direct'' and indirect'' methods are available for attachment of radioisotopes to antibodies, this broad field of research is not reviewed in detail. Practical issues related to the availability and use of a variety of radionuclides are described. 47 refs., 5 tabs.

  8. How to Handle Radioisotopes Safely.

    ERIC Educational Resources Information Center

    Sulcoski, John W.

    This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. The various units and forms of radioactive materials used by teachers are first considered. Then, the quantities of radioisotopes that a person may possess without a license from the Atomic Energy Commission (AEC) are…

  9. Advanced Subcritical Assistance Radioisotope Thermoelectric Generator: An Imperative Solution for the Future of NASA Exploration

    NASA Astrophysics Data System (ADS)

    Arias, F. J.

    A new generation of radioisotope thermoelectrical generator is proposed for very long space exploration missions. The Advanced Subcritical Assistance Radioisotope Thermoelectric Generator (ASA-RTG) amplify the power from natural decay of pu-238 by a small subcritical multiplication produced from the small neutron background generated from (α, n) reactions between the α particles from Pu-238 and beryllium, lithium or other low-Z isotope, extracting the maximum advantage and performance from the precious α disintegration, and then of the very scarce pu-238. The process is self controlled by the natural decay of Pu-238 with the progressive reduction of the power output (RTG) and additionally and simultaneously compensate by the natural decay of a neutronic poisson which increase simultaneously the subcritical multiplication resulting in a contrary effect, i.e., causing an increase in the power. ASA-RTG is not in conflict with previous RTG, and could fit within the type of Radioisotope Thermoelectric Generator developed for NASA space missions as the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and the Advanced Stirling Radioisotope Generator (ASRG).

  10. Development of a radioisotope heat source for the two-watt radioisotope thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Howell, Edwin I.; McNeil, Dennis C.; Amos, Wayne R.

    1992-01-01

    Described is a radioisotope heat source for the Two-Watt Radioisotope Thermoelectric Generator (RTG) which is being considered for possible application by the U.S. Navy and for other Department of Defense applications. The heat source thermal energy (75 Wt) is produced from the alpha decay of plutonium-238 which is in the form of high-fired plutonium dioxide. The capsule is non-vented and consists of three domed cylindrical components each closed with a corresponding sealed end cap. Surrounding the fuel is the liner component, which is fabricated from a tantalum-based alloy, T-111. Also fabricated from T-111 is the next component, the strength member, which serves to meet pressure and impact criteria. The outermost component, or clad, is the oxidation- and corrosion-resistant nickel-based alloy, Hastelloy S. This paper defines the design considerations, details the hardware fabrication and welding processes, discusses the addition of yttrium to the fuel to reduce liner embrittlement, and describes the testing that has been conducted or is planned to assure that there is fuel containment not only during the heat source operational life, but also in case of an accident environment.

  11. HFIR-produced medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Knapp, F.F. Jr.; Beets, A.L.; Alexander, C.W.

    1997-12-01

    We have experimentally determined the yields of a number of medical radioisotopes produced in the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR) Hydraulic Tube (HT) facility. The HT facility is located in the very high flux region in the flux trap of the reactor, providing on-line access capability while the reactor is operating. The HT facility consists of nine vertically stacked capsules centered just adjacent to the core horizontal midplane. HFIR operates at a nominal power level of 85 MW. The capabilities of the HFIR-HT facilities offer increased efficiency, greater availability, and optimization of radioisotope production, and, as a result, the conservation of rare or expensive target isotopes.

  12. Radioisotope Power: A Key Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, George; Sutliff, Tom; Dudzinski, Leonard

    2008-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  13. Radioisotope Power: A Key Technology for Deep Space Explorations

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  14. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    SciTech Connect

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985.

  15. A liquid xenon radioisotope camera.

    NASA Technical Reports Server (NTRS)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  16. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect

    McCoy, J.C.; Becker, D.L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  17. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    NASA Astrophysics Data System (ADS)

    McCoy, John C.; Becker, David L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration's Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined.

  18. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  19. Cosmogenic radioisotopes on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.

    1992-01-01

    The radioisotope Be-7 was discovered in early 1990 on the front surface, and the front surface only, of the LDEF. A working hypothesis is that the isotope, which is known to be mainly produced in the stratosphere by spallation of nitrogen and oxygen nuclei with cosmic ray protons or secondary neutrons, diffuses upward and is absorbed onto metal surfaces of spacecraft. The upward transport must be rapid, that is, its characteristic time scale is similar to, or shorter than, the 53 day half-life of the isotope. It is probably by analogy with meteoritic metal atmospheric chemistry, that the form of the Be at a few 100 km altitude is as the positive ion Be(+) which is efficiently incorporated into the ionic lattice of oxides, such as Al2O3, Cr2O3, Fe2O3, etc., naturally occurring on surfaces of Al and stainless steel. Other radioisotopes of Be, Cl, and C are also produced in the atmosphere, and a search was begun to discover these. Of interest are Be-10 and C-14 for which the production cross sections are well known. The method of analysis is accelerator mass spectrometry. Samples from LDEF clamp plates are being chemically extracted, purified, and prepared for an accelerator run.

  20. Power from Radioisotopes, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Mead, Robert L.

    This 1971 revision deals with radioisotopes and their use in power generators. Early developments and applications for the Systems for Nuclear Auxiliary Power (SNAP) and Radioisotope Thermoelectric Generators (RTGs) are reviewed. Present uses in space and on earth are included. Uses in space are as power sources in various satellites and space…

  1. Radioisotope penogram in diagnosis of vasculogenic impotence

    SciTech Connect

    Fanous, H.N.; Jevtich, M.J.; Chen, D.C.; Edson, M.

    1982-11-01

    A radioisotope technique to estimate penile blood flow is described. The radioisotope penogram is noninvasive and gives a dynamic evaluation of the arterial supply, venous drainage, and blood flow in the corporeal bodies. The penogram is a valuable adjunct in evaluation of patients with vasculogenic impotence.

  2. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  3. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  4. Radioisotope scanning in osseous sarcoidosis

    SciTech Connect

    Rohatgi, P.K.

    1980-01-01

    Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, but there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.

  5. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  6. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    SciTech Connect

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987.

  7. Biodistribution of 225Ra citrate in mice: retention of daughter radioisotopes in bone.

    PubMed

    Kennel, Stephen J; Lankford, Trish; Garland, Marc; Sundberg, John P; Mirzadeh, Saed

    2005-11-01

    Alpha-particle-emitting radionuclides have potential for therapy of localized disease due to their high linear energy transformation and short pathlengths. Radiometals that home naturally to bone can be exploited for this purpose, and 223Ra (t(1/2)=11.4 days) recently has been studied for therapy of bone tumors in mice and rats. Actinium-225 (t(1/2)=10 days) is also an attractive radioisotope for endoradiotherapy. In a single decay of a 225Ac nucleus and its subsequent decay daughters, over 27 MeV ( approximately 90% of total energy) is released by sequential emission of four alpha particles, ranging in energy from 5.7 to 8.4 MeV. Although Ac3+ does not home naturally to bone, its parent radioisotope 225Ra (beta(-), t(1/2)=15 days) can be used as an in vivo source for 225Ac. Thus, injection of 225Ra takes advantage of the bone-homing properties of radium coupled with the significant amount of energy released from the 225Ac decay chain. Our data confirm that a large fraction of radium citrate injected intravenously into mice localizes rapidly in bone. Injected doses per gram (ID/g) for 225Ra range from 25% in skull to about 10% in sternum. Once deposited, the 225Ra remains in the bone with a biological half life of >40 days. Furthermore, >95% of the daughter radioisotope, 225Ac, is retained in the bone. However, a significant fraction of one of the daughter radioisotopes, 213Bi, is found in kidney. The biodistribution data indicate that 225Ra injection should be a powerful agent for killing cells associated with bone; however, the toxicity of this radioisotope which is similar to that of other alpha emitters limits the dose that can be tolerated. PMID:16253811

  8. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    SciTech Connect

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983.

  9. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    SciTech Connect

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984.

  10. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  11. Retention of Radium-225 and Its Daughter Radioisotopes in Bone

    SciTech Connect

    Mirzadeh, Saed; Garland, Marc A; Kennel, Steve J

    2008-01-01

    The natural bone seeking tendency of Ra+2, similar to the other alkali metal ions, coupled with the short range high LET of -particle emissions are an ideal combination for localized therapy, and recently 11.4 d 223Ra has been studied for therapy of bone tumors in rats and humans [1,2]. Actinium-225 is also an attractive radioisotope for endo-radiotherapy in a single decay chain from 225Ac, over 26 MeV (~70% of total) is carried by four - particles ranging in energy from 5.7 to 8.4 MeV [3,4]. Although Ac+3 does not home naturally to bone (rather to liver) [5,6], its parent, 225Ra ( -, t1/2 = 15 d), can be used as an in vivo source for 225Ac. A pivotal question for the 225Ra/225Ac in vivo generator system is whether translocation of the daughter nuclei occurs prior to or following the uptake of 225Ra by the bone. In order to assess potential collateral damage to soft tissue organs it is essential to quantitate the extent to which 225Ac is retained in organs following the uptake of 225Ra. We have attempted to answer these questions by investigating the extent of translocation of 225Ac and 213Bi, two daughter radioisotopes of 225Ra, following retention of initially pure 225Ra in bone in normal mice.

  12. Evaluation of the β+-decay log ft value with inclusion of the neutron-proton pairing and particle-number projection

    NASA Astrophysics Data System (ADS)

    Kerrouchi, S.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2016-01-01

    The neutron-proton isovector pairing effect on the beta-plus decay log ft values is studied in typical mirror N≃Z nuclei. The log ft values are calculated by including or not the isovector pairing before and after a particle-number projection using the Sharp-Bardeen-Cooper-Schrieffer (SBCS) method. It is shown that the values obtained after projection in the isovector pairing case are the closest ones to experimental data. The effect of the deformation of the mother and daughter nuclei on the log ft is also studied.

  13. End-on radioisotope thermoelectric generator impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  14. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.; Hinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  15. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-15

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  16. Radioisotope thermoelectric generator/thin fragment impact test

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  17. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  18. RTGs - The powering of Ulysses. [Radio-isotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Mastal, E. F.; Campbell, R. W.

    1990-01-01

    The radio-isotope thermoelectric generator (RTG) for Ulysses' electronic supply is described noting that lack of sufficient sunlight renders usual solar cell power generation ineffective due to increased distance from sun. The history of the RTG in the U.S.A. is reviewed citing the first RTG launch in 1961 with an electrical output of 2.7 W and the improved Ulysses RTG, which provides 285 W at mission beginning and 250 W at mission end. The RTG concept is discussed including the most recent RTG technology developed by the DOE, the General Purpose Heat Source RTG (GPHS-RTG). The system relies upon heat generated by radioactive decay using radioactive plutonium-238, which is converted directly to energy using the Seebeck method.

  19. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  20. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  1. Radioisotope Production for Medical and Physics Applications

    NASA Astrophysics Data System (ADS)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  2. RADIOISOTOPE INVENTORY FOR TSPA-SR

    SciTech Connect

    C. Leigh; R. Rechard

    2001-01-30

    The total system performance assessment for site recommendation (TSPA-SR), on Yucca Mountain, as a site (if suitable) for disposal of radioactive waste, consists of several models. The Waste Form Degradation Model (i.e, source term) of the TSPA-SR, in turn, consists of several components. The Inventory Component, discussed here, defines the inventory of 26 radioisotopes for three representative waste categories: (1) commercial spent nuclear fuel (CSNF), (2) US Department of Energy (DOE) spent nuclear fuel (DSNF), and (3) high-level waste (HLW). These three categories are contained and disposed of in two types of waste packages (WPs)--CSNF WPs and co-disposal WPs, with the latter containing both DSNF and HLW. Three topics are summarized in this paper: first, the transport of radioisotopes evaluated in the past; second, the development of the inventory for the two WP types; and third, the selection of the most important radioisotopes to track in TSPA-SR.

  3. NASA's Radioisotope Power Systems Program Status

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard A.; Hamley, John A.; McCallum, Peter W.; Sutliff, Thomas J.; Zakrajsek, June F.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans.

  4. Self-reciprocating radioisotope-powered cantilever

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lal, Amit; Blanchard, James; Henderson, Douglass

    2002-07-01

    A reciprocating cantilever utilizing emitted charges from a millicurie radioisotope thin film is presented. The actuator realizes a direct collected-charge-to-motion conversion. The reciprocation is obtained by self-timed contact between the cantilever and the radioisotope source. A static model balancing the electrostatic and mechanical forces from an equivalent circuit leads to an analytical solution useful for device characterization. Measured reciprocating periods agree with predicted values from the analytical model. A scaling analysis shows that microscale arrays of such cantilevers provide an integrated sensor and actuator platform.

  5. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    SciTech Connect

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979.

  6. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    SciTech Connect

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  7. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    SciTech Connect

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  8. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  9. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  10. ILLUSTRATIONS OF RADIOISOTOPES--DEFINITIONS AND APPLICATIONS.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    THIS PUBLICATION IS COMPOSED OF OVER 150 PAGES OF BLACK AND WHITE ILLUSTRATIONS DEALING WITH RADIOISOTOPES AND THEIR USES. THESE ILLUSTRATIONS CONSIST OF CHARTS, GRAPHS, AND PICTORIAL REPRESENTATIONS WHICH COULD BE PREPARED AS HANDOUTS, TRANSPARENCIES FOR OVERHEAD PROJECTION, OR WHICH COULD BE USED IN A NUMBER OF OTHER WAYS FOR PRESENTING SUCH…

  11. Safety monitoring system for radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Zoltan, A.

    1973-01-01

    System alerts personnel of hazards which may develop while they are performing tests on radioisotope thermoelectric generator (RTG). Remedial action is initiated to minimize damage. Five operating conditions are monitored: hot junction temperature, cold junction temperature, thermal shroud coolant flow, vacuum in test chamber, and alpha radiation.

  12. Specific radioactivity of neutron induced radioisotopes: assessment methods and application for medically useful 177Lu production as a case.

    PubMed

    Le, Van So

    2011-01-01

    The conventional reaction yield evaluation for radioisotope production is not sufficient to set up the optimal conditions for producing radionuclide products of the desired radiochemical quality. Alternatively, the specific radioactivity (SA) assessment, dealing with the relationship between the affecting factors and the inherent properties of the target and impurities, offers a way to optimally perform the irradiation for production of the best quality radioisotopes for various applications, especially for targeting radiopharmaceutical preparation. Neutron-capture characteristics, target impurity, side nuclear reactions, target burn-up and post-irradiation processing/cooling time are the main parameters affecting the SA of the radioisotope product. These parameters have been incorporated into the format of mathematical equations for the reaction yield and SA assessment. As a method demonstration, the SA assessment of 177Lu produced based on two different reactions, 176Lu (n,γ)177Lu and 176Yb (n,γ) 177Yb (β- decay) 177Lu, were performed. The irradiation time required for achieving a maximum yield and maximum SA value was evaluated for production based on the 176Lu (n,γ)177Lu reaction. The effect of several factors (such as elemental Lu and isotopic impurities) on the 177Lu SA degradation was evaluated for production based on the 176Yb (n,γ) 177Yb (β- decay) 177Lu reaction. The method of SA assessment of a mixture of several radioactive sources was developed for the radioisotope produced in a reactor from different targets. PMID:21248665

  13. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  14. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  15. Quantitation of renal function using radioisotopic techniques.

    PubMed

    O'Malley, J P; Ziessman, H A

    1993-03-01

    Radioisotopic methods are practical for clinical use because they do not require continuous intravenous infusion or urine collection. This obviously is of great advantage in infants and small children, in whom accurate urine collection is difficult, but the techniques apply to adults as well. The ability to determine individual kidney function is a major benefit. Accuracies of the radioisotopic techniques vary but generally are within clinically acceptable ranges. The need for accuracy and reproducibility can be balanced with the desire for speed and convenience when choosing among the different techniques. Methods that use plasma sampling provide greater accuracy and are recommended in cases of severe dysfunction, whereas methods such as Gates' camera method, which eliminates plasma samples, can be completed in minutes. Radioisotopic techniques are most useful in the ranges of mild to moderately decreased function, in which serum creatinine concentration is nondiagnostic, and although they are much less accurate at markedly low renal function levels, so is 24-hour creatinine clearance. In conclusion, radiopharmaceutical agents offer a wide array of possible techniques for simple, accurate, and noninvasive measurement of global as well as individual GFR and ERPF. PMID:8462269

  16. NEW DIRECTIONS IN RADIOISOTOPE SPECTRUM IDENTIFICATION

    SciTech Connect

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  17. Tooth Decay

    MedlinePlus

    ... decay starts in the outer layer, called the enamel. Without a filling, the decay can get deep into the tooth and its nerves and cause a toothache or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  18. Nuclear and Radioisotope Propulsion and Power in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Widdicombe, T.

    A brief history of the use of nuclear fuelled powerplant in space is given along with some working principles of the technology, and recent proposals for spacecraft for the exploration of Titan utilising radioisotope generators are surveyed. Nuclear reaction engines are studied with specific consideration given to their use in Titan's atmosphere, and speculative modifications to one particular spacecraft concept originally conceived of for the exploration of Mars are proposed. A hybrid device producing mechanical power from nuclear decay heat is also suggested for future investigation.

  19. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  20. Markets for reactor-produced non-fission radioisotopes

    SciTech Connect

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included.

  1. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOEpatents

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  2. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  3. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  4. Radioisotope thermoelectric generator transport trailer system

    NASA Astrophysics Data System (ADS)

    Ard, Kevin E.; King, David A.; Leigh, Harley; Satoh, Juli A.

    1995-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware.

  5. Performance tuned radioisotope thermophotovoltaic space power system

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, M. D.; Saban, S. B.

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The

  6. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  7. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  8. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  9. Cooling radioisotope thermoelectric generators in the Shuttle

    NASA Technical Reports Server (NTRS)

    Norman, R. M.

    1978-01-01

    Radioisotope thermoelectric generators (RTG) to be used on future spacecraft and launched by the Shuttle must be cooled from the time they are installed and enclosed until the spacecraft is deployed from the Shuttle. A special Cooling Kit maintains their temperature well below critical by circulating water through the coils soldered to them and through a heat exchanger that boils water and externally discharges the resulting steam. The RTG Cooling Kit, including its support frame, if fully charged with about 64 kg of evaporation water, will increase the Shuttle launch mass by about 200 kg.

  10. Thermophotovoltaic Converter Performance for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Chubb, Donald L.

    2005-02-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion for Radioisotope Power Systems (RPS) for spacecraft. TPV power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than Si solar cells. Spectral control, through choices of selective radiant emitters, TPV modules, and filters, is key to high-efficiency operation. This paper describes performance tests of an array of TPV cells with boundary conditions prototypical of an RPS. TPV performance tests were conducted at prototypical array size (≅100 cm2), emitter temperature (1350 K), and heat rejection temperature (300 K). Test hardware included InGaAs TPV cells at 0.60 eV band-gap, with tandem plasma/interference filters for spectral control. At the target emitter temperature of 1350 K, a conversion efficiency of 19% has been demonstrated for the TPV module. Results are consistent with measured cell efficiency (28%), calculated spectral control efficiency (80%), and calculated thermal efficiency in the optical cavity (90%).

  11. Preparing for Harvesting Radioisotopes from FRIB

    SciTech Connect

    Peaslee, Graham F.; Lapi, Suzanne E.

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In the standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.

  12. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.

    2004-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  13. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  14. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  15. Safe radioisotope thermoelectric generators and heat sources for space applications

    NASA Astrophysics Data System (ADS)

    O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V.

    2008-07-01

    Several isotopes are examined as alternatives to 238Pu that is traditionally used in radioisotope thermoelectric generators (RTGs) and heating units (RHUs). The radioisotopes discussed include 241Am, 208Po, 210Po, and 90Sr. The aim of this study is to facilitate the design of an RTG with a minimal radiation dose rate and mass including any required shielding. Applications of interest are primarily space and planetary exploration. In order to evaluate the properties of the alternative radioisotopes a Monte Carlo model was developed to examine the radiation protection aspect of the study. The thermodynamics of the power generation process is examined and possible materials for the housing and encapsulation of the radioisotopes are proposed. In this study we also present a historical review of radioisotope thermoelectric generators (RTGs) and the thermoelectric conversion mechanism in order to provide a direct comparison with the performance of our proposed alternative isotope systems.

  16. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  17. Improved Techniques Used at Brookhaven National Laboratory to Package and Dispose of Radioisotope Production Waste Lowers Worker Exposure

    SciTech Connect

    Sullivan, P.

    2003-02-24

    This paper describes the operations that generate Radioisotope Production Waste at Brookhaven National Laboratory (BNL) and the improved techniques used to handle and dispose of this waste. Historically, these wastes have produced high worker exposure during processing, packaging and disposal. The waste is made up of accelerator-produced nuclides of short to mid-length half-lives with a few longer-lived nuclides. However, because radiopharmaceutical research and treatment requires a constant supply of radioisotopes, the waste must be processed and disposed of in a timely manner. Since the waste cannot be stored for long periods of time to allow for adequate decay, engineering processes were implemented to safely handle the waste routinely and with ALARA principles in mind.

  18. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    SciTech Connect

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Murray, Christopher

    2004-02-04

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than solar cells. Spectral control, including selective emitters, TPV module, and filters, are key to high-efficiency operation. This paper outlines the mechanical, thermal, and optical designs for the converter, including the heat source, the selective emitter, filters, photovoltaic (PV) cells, and optical cavity components. Focus is on the emitter type and the band-gap of InGaAs PV cells in developing the design. Any component and converter data available at the time of publication will also be presented.

  19. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  20. Induced radioisotopes in a linac treatment hall.

    PubMed

    Vega-Carrillo, Héctor René; de Leon-Martinez, Héctor Asael; Rivera-Perez, Esteban; Luis Benites-Rengifo, Jorge; Gallego, Eduardo; Lorente, Alfredo

    2015-08-01

    When linacs operate above 8MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect. The third category of spectrum has mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation in the linac components, the concrete walls and in the patient body. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer. PMID:25989748

  1. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  2. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect

    Campbell, R.; Klein, J.

    1989-01-01

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  3. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Murray, Christopher S.; Crowley, Christopher J.; Murray, Susan; Elkouh, Nabil A.; Hill, Roger W.; Chubb, Donald E.

    2004-11-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in the possibility of combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths. Spectral control, including the combination of emitter, TPV module, and filter, is key to high-efficiency operation. This paper summarizes the performance characteristics of monolithic integrated module (MIM) PV cells and arrays, tandem filters, and tungsten emitters fabricated for the present studies. The current, voltage, quantum efficiency, and diode efficiency of multi-junction 0.60 eV bandgap devices are presented for individual PV cells and strings of several cells. This paper discusses the design considerations for mechanical layout of PV cell arrays and integration with filters. The vacuum facility to be used to test these PV cell arrays is also described.

  4. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  5. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well. PMID:24374071

  6. Status of the NASA Stirling Radioisotope Project

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.

  7. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  8. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect

    Veca, Anthony R.; Whittemore, William L.

    1994-07-01

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  9. Power characteristics of a Stirling radioisotope power system over the life of the mission

    NASA Astrophysics Data System (ADS)

    Schreiber, Jeffrey G.

    2001-02-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays. .

  10. Report on audit of funding for advanced radioisotope power systems

    SciTech Connect

    1997-10-17

    The U.S. Department of Energy`s (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. Projects are conducted with these agencies in accordance with written agreements and are dependent on cost sharing by the user agencies. For the past seven years the program emphasis has been on providing power systems for NASA`s Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the Department received proper reimbursement from NASA for the radioisotope power systems produced.

  11. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.

  12. Seal Out Tooth Decay

    MedlinePlus

    ... Topics > Tooth Decay (Caries) > Seal Out Tooth Decay Seal Out Tooth Decay Main Content What are dental ... back teeth decay so easily? Who should get seal​ants? Should sealants be put on baby teeth? ...

  13. Determining Molar Combining Ratios Using Radioisotopes--A Student Experiment

    ERIC Educational Resources Information Center

    Sears, Jerry A.

    1976-01-01

    Outlines an experimental procedure in which an iodine radioisotope is used to determine molar combining ratios of lead and silver with the iodine. Tables and graphs show the definitive results that should be attainable. (CP)

  14. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  15. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  16. Alpha-emitting radioisotopes for switchable neutron generators

    NASA Astrophysics Data System (ADS)

    Hertz, K. L.; Hilton, N. R.; Lund, J. C.; Van Scyoc, J. M.

    2003-06-01

    Traditionally, radioisotopic neutron generators mix an alpha-emitting radioisotope with beryllium. The disadvantage of such an alpha-Be source is that they emit neutrons at a steady rate even when stored. These conventional generators are extremely awkward to use in many applications because of the neutron shielding required to prevent exposure to personnel and sensitive electronics. Recently, at our laboratory and others, the possibility of using switchable radioactive neutron sources has been investigated. These sources rely on a mechanical operation to separate the alpha-emitting radioisotope from the Be target, thus allowing the source to be switched on and off. The utility of these new switchable sources is critically dependent on the selection of the alpha-emitting radioisotope. In this paper we discuss issues that determine the desirability of an alpha-emitting source for a switchable neutron generator, and select alpha emitters that are best suited for use in this application.

  17. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  18. Effect of inert cover gas on performance of radioisotope Stirling space power system

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Kumar, V.; Or, C.; Schock, A.

    2001-02-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .

  19. Reliability of Radioisotope Stirling Convertor Linear Alternator

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin; Korovaichuk, Igor; Geng, Steven M.; Schreiber, Jeffrey G.

    2006-01-01

    Onboard radioisotope power systems being developed and planned for NASA s deep-space missions would require reliable design lifetimes of up to 14 years. Critical components and materials of Stirling convertors have been undergoing extensive testing and evaluation in support of a reliable performance for the specified life span. Of significant importance to the successful development of the Stirling convertor is the design of a lightweight and highly efficient linear alternator. Alternator performance could vary due to small deviations in the permanent magnet properties, operating temperature, and component geometries. Durability prediction and reliability of the alternator may be affected by these deviations from nominal design conditions. Therefore, it is important to evaluate the effect of these uncertainties in predicting the reliability of the linear alternator performance. This paper presents a study in which a reliability-based methodology is used to assess alternator performance. The response surface characterizing the induced open-circuit voltage performance is constructed using 3-D finite element magnetic analysis. Fast probability integration method is used to determine the probability of the desired performance and its sensitivity to the alternator design parameters.

  20. Light-weight radioisotope heater impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-12-31

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  1. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  2. Implanted artificial heart with radioisotope power source.

    PubMed

    Shumakov, V I; Griaznov, G M; Zhemchuzhnikov, G N; Kiselev, I M; Osipov, A P

    1983-02-01

    An atomic artificial heart for orthotopic implantation was developed with the following characteristics: volume, 1.2 L; weight, 1.5 kg; radioisotope power, 45 W; operating life, up to 5 years; hemodynamics, similar to natural hemodynamics. The artificial heart includes a thermal drive with systems for regulating power, feeding steam into the cylinders, return of the condensate to the steam generator, and delivery of power to the ventricles and heat container. The artificial heart is placed in an artificial pericardium partially filled with physiologic solution. It uses a steam engine with two operating cylinders that separately drive the left and right ventricles. There is no electronic control system in the proposed design. The operation of the heat engine is controlled, with preservation of autoregulation by the vascular system of the body. The separate drives for the ventricles is of primary importance as it provides for operation of the artificial heart through control of cardiac activity by venous return. Experimental testing on a hydromechanical bench demonstrated effective autoregulation. PMID:6838394

  3. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  4. Accidental radioisotope burns - Management of late sequelae.

    PubMed

    Varghese, Bipin T; Thomas, Shaji; Nair, Balakrishnan; Mathew, P C; Sebastian, Paul

    2010-09-01

    Accidental radioisotope burns are rare. The major components of radiation injury are burns, interstitial pneumonitis, acute bone marrow suppression, acute renal failure and adult respiratory distress syndrome. Radiation burns, though localized in distribution, have systemic effects, and can be extremely difficult to heal, even after multiple surgeries. In a 25 year old male who sustained such trauma by accidental industrial exposure to Iridium192 the early presentation involved recurrent haematemesis, pancytopenia and bone marrow suppression. After three weeks he developed burns in contact areas in the left hand, left side of the chest, abdomen and right inguinal region. All except the inguinal wound healed spontaneously but the former became a non-healing ulcer. Pancytopenia and bone marrow depression followed. He was treated with morphine and NSAIDs, epidural buprinorphine and bupivicaine for pain relief, steroids, antibiotics followed by wound excision and reconstruction with tensor fascia lata(TFL) flap. Patient had breakdown of abdominal scar later and it was excised with 0.5 cm margins up to the underlying muscle and the wound was covered by a latissimis dorsi flap. Further scar break down and recurrent ulcers occurred at different sites including left wrist, left thumb and right heel in the next two years which needed multiple surgical interventions. PMID:21321664

  5. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    SciTech Connect

    Becker, D.L.; McCoy, J.C.

    1996-03-01

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

  6. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  7. Radioisotopic splenoportography in patients with portal hypertension.

    PubMed

    Samejima, N; Ikeda, K; Yokoyama, Y; Hirata, S

    1989-05-01

    Radio-isotopic splenoportography was performed by injecting 99mTcO4- into the spleens of 46 patients with portal hypertension and 14 patients with various disorders not having portal hypertension. No collateral circulation was demonstrated in the 14 patients without portal hypertension whereas some RI-images of portosystemic collaterals were found in 40 (87.0 per cent) of the 46 patients with portal hypertension. Collaterals were divided into an ascending group and a descending group, the appearance rate of ascending collaterals being 80.4 per cent and that of descending collaterals, 41.3 per cent. There were 3 image patterns in the ascending group, namely, an AZ-pattern in which the azygos vein was demonstrated; a SC-pattern in which the RI-bolus ascended along the esophagus to the neck and the subclavian vein; and an EG-pattern which showed stagnation of the RI-bolus in the esophagogastric region. There were 4 patterns in the descending group, namely; a pattern of gastro-renal caval shunt (GR-pattern); reverse flow patterns into the umbilical or paraumbilical veins (UV-pattern); into the superior mesenteric vein (SMV-pattern); and into the inferior mesenteric vein (IMV-pattern). The appearance of the EG-pattern was seen most frequently (74.4 per cent). The usefulness of this method for surveying the collateral circulation in portal hypertension, estimating the risk of esophageal variceal bleeding and evaluating its treatments, was suggested by the results of this study. PMID:2674500

  8. Light-Weight Radioisotope Heater Unit

    SciTech Connect

    Schock, Alfred

    1981-04-01

    DOE is developing a new generation of radioisotope-fueled 1-watt heaters, for initial use on NASA's upcoming Galileo and International Solar-Polar Missions. Each heater must contain passive safety provisions to ensure fuel retention under all credible accident conditions. Initial design reviews raised some concern about the accuracy of the predicted peak reenetry temperature, and about the adequacy of the safety margin under certain unlikely - but not impossible-reentry modes. Of particular concern was the possile release of the accumulated helium inventory from the fuel during the reentry heat pulse, and the potential effect of enhanced heat conduction due to helium buildup in gaps. The latter problem had not been addressed in previous studies. Fairchild carried out a large number of reentry thermal analyses to resolve the analytical uncertainties, and proposed design changes to reduce the thermal coupling between the aeroshell and the fuel capsule. For the computed reentry temperature history of the modified design, the rate of helium buildup in the gaps was analyzed. The analysis accounted for temperature-dependent helium diffusion through the fuel pellet and for leakage to space through the permeable aeroshell. It showed that most of the helium inventory leaves the fuel during reentry, but that it never reaches a continuum pressure in the gaps, and therefore has no significant thermal effect. Under these conditions, the Fairchild-modified design provides ample safety margin against clad failure, even for very unlikely reenty trajectories. The modified design was successfully vibration-tested and was subsequently adopted by the project. Cross Reference CID #8517. There are two copies in the file.

  9. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  10. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  11. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  12. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  13. Dental Caries (Tooth Decay)

    MedlinePlus

    ... Find Data by Topic > Dental Caries (Tooth Decay) Dental Caries (Tooth Decay) Main Content Dental caries (tooth decay) remains the most prevalent chronic ... important source of information on oral health and dental care in the United States since the early ...

  14. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  15. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    SciTech Connect

    Steven D. Howe; Robert C. O'Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  16. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  17. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  18. Hair radioactivity as a measure of exposure to radioisotopes

    NASA Technical Reports Server (NTRS)

    Strain, W. H.; Pories, W. J.; Fratianne, R. B.; Flynn, A.

    1972-01-01

    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle.

  19. Radioisotopes for research on and control of mosquitos

    PubMed Central

    Bruce-Chwatt, Leonard J.

    1956-01-01

    Practical applications of radioactive isotopes in medicine, science, and industry have multiplied enormously during the past five years. In this paper, the author attempts to gather what is known about the use of radioactive isotopes in the research on malaria control. The development of the uranium pile for large-scale production of radioisotopes and technical progress in the making of reliable electronic equipment have greatly contributed to the application of radioactive tracers in biological research. The present knowledge of radioisotopes in mosquito and in insecticide research is discussed. ImagesFIG. 1 PMID:13404435

  20. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  1. Efficiency of Pm-147 direct charge radioisotope battery.

    PubMed

    Kavetskiy, A; Yakubova, G; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A

    2011-05-01

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries. PMID:21295487

  2. Opportunities for Decay Counting of Environmental Radioisotopes Using Ultra-low-background Detection Systems

    SciTech Connect

    Runkle, Robert C.; Aalseth, Craig E.; Bailey, Vanessa L.; Bonicalzi, Ricco; Moran, James J.; Seifert, Allen; Warren, Glen A.

    2012-08-01

    Executive Summary We present results from a scoping study whose intent was to define challenge measurements to be pursued on the Ultra-Sensitive Nuclear Measurements Initiative. Potential challenge measurements using new radiation detection technology in the shallow underground laboratory that would have substantial impact in environmental science were the focus of this study.

  3. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect

    Becker, D.L.

    1997-05-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  4. A time like our own? Radioisotopic calibration of the Ordovician greenhouse to icehouse transition

    NASA Astrophysics Data System (ADS)

    Smith, M. Elliot; Singer, Brad S.; Simo, Toni

    2011-11-01

    Tiered interpolation, a new timescale methodology, was used to construct the first radioisotopically-calibrated composite δ 13C curve for the Ordovician period using sanidine 40Ar/ 39Ar age determinations and existing U-Pb geochronology and biostratigraphic zonation. Tiered interpolation intercalates and temporally scales the numerical age of lithostratigraphic horizons by conducting a series of nested projections between hierarchical temporal control points. For primary control points, new 40Ar/ 39Ar ages and legacy U-Pb geochronology were screened to avoid analyses affected by inheritance and daughter loss and calibrated to reflect modern decay constants and standard values. Ages for secondary, tertiary, etc.… control points are obtained via linear interpolation of between higher order control points. In scaling the Ordovician δ 13C composite, the following control point order was applied: (1) radioisotopic ages (2) graptolite Zones, (3) index taxa-based on speciation events (North Atlantic conodont Zones), (4) North American Mid-continent conodont zones, and (5) stratal thicknesses at δ 13C sampled sections. The resulting timescale utilizes the highest resolution of each component, is internally consistent, and is re-scalable as more precise radioisotopic ages become available. It provides a robust framework for independently assessing the accuracy of biostratigraphic composite timescales because it does not rely an assumption of quasi-continuous sediment accumulation and/or speciation. To better calibrate the Late Ordovician and resolve a discrepancy between U-Pb and 40Ar/ 39Ar ages, three new 40Ar/ 39Ar ages were determined via the laser fusion of multiple single sanidine phenocrysts from three bentonitic ash beds from the Late Ordovician marine strata of the upper Mississippi valley where the record of Taconic volcanism is most complete. Fusions of 275 individual sanidine crystals from the Millbrig, Dygerts, and Rifle Hill bentonites yield largely

  5. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  6. Targets for the production of radioisotopes and method of assembly

    DOEpatents

    Quinby, Thomas C.

    1976-01-01

    A target for preparation of radioisotopes by nuclear bombardment, and a method for its assembly are provided. A metallic sample to be bombarded is enclosed within a metallic support structure and the resulting target subjected to heat and pressure to effect diffusion bonds therebetween. The bonded target is capable of withstanding prolonged exposure to nuclear bombardment without thermal damage to the sample.

  7. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  8. Optimization of commercial scale photonuclear production of radioisotopes

    SciTech Connect

    Bindu, K. C.; Harmon, Frank; Starovoitova, Valeriia N.; Stoner, Jon; Wells, Douglas P.

    2013-04-19

    Photonuclear production of radioisotopes driven by bremsstrahlung photons using a linear electron accelerator in the suitable energy range is a promising method for producing radioisotopes. The photonuclear production method is capable of making radioisotopes more conveniently, cheaply and with much less radioactive waste compared to existing methods. Historically, photo-nuclear reactions have not been exploited for isotope production because of the low specific activity that is generally associated with this production process, although the technique is well-known to be capable of producing large quantities of certain radioisotopes. We describe an optimization technique for a set of parameters to maximize specific activity of the final product. This set includes the electron beam energy and current, the end station design (an integrated converter and target as well as cooling system), the purity of materials used, and the activation time. These parameters are mutually dependent and thus their optimization is not trivial. {sup 67}Cu photonuclear production via {sup 68}Zn({gamma}p){sup 67}Cu reaction was used as an example of such an optimization process.

  9. Radioisotope production and management at Oak Ridge National Laboratory

    SciTech Connect

    Collins, E.D.; Aaron, W.S.; Alexander, C.W.; Bigelow, J.E.; Parks, J.T.; Tracy, J.G.; Wham, R.M.

    1994-09-01

    The production of radioisotopes has been one of the basic activities at Oak Ridge since the end of World War II. The importance of this work was best described by Alvin Weinberg, former Laboratory Director, when he wrote ``... If God has a golden book and writes down what it is that Oak Ridge National Laboratory did that had the biggest influence on science, I would guess that was the production and distribution of isotopes.`` Radioisotopes production continues to be an important aspect of Oak Ridge programs today and of those planned for the future. Past activities, current projects, and future plans and potentials will be described briefly in this paper. Also, some of the major issues facing the continued production of radioisotopes will be described. The scope of the program has always been primarily that of process development, followed by special batch-type productions, where no other supply exists. The technology developed has been available for adoption by US commercial corporations, and in cases where this has occurred, Oak Ridge has withdrawn as a supplier of the particular isotopes involved. One method of production that will not be described is that of target bombardment with an accelerator. This method was used at Oak Ridge prior to 1978 in the 86-inch Cyclotron. However, this method has not been used at Oak Ridge since then for radioisotope production, except as a research tool.

  10. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  11. Radioisotopic Tie Points of the Quaternary Geomagnetic Instability Time Scale (GITS): How Accurate and Precise?

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2014-12-01

    Reversals and excursions of the geomagnetic field are recorded globally by sedimentary and volcanic rocks. These geodynamo instabilities provide a rich set of chronostratigraphic tie points for the Quaternary period that can provide tests of age models central to paleoclimate studies. Radioisotopic dating of volcanic rocks, mainly 40Ar/39Ar dating of lava flows, coupled with astronomically-dated deep sea sediments, reveals 10 polarity reversals and 27 field excursions during the Quaternary (Singer, 2014). A key question concerns the uncertainties associated with radioisotopic dates of those geodynamo instabilities that have been identified both in terrestrial volcanic rocks and in deep sea sediments. These particular features offer the highest confidence in linking 40Ar/39Ar dates to the global marine climate record. Geological issues aside, for rocks in which the build-up of 40Ar by decay of 40K may be overwhelmed by atmospheric 40Ar at the time of eruption, the uncertainty in 40Ar/39Ar dates derives from three sources: (1) analytical uncertainty associated with measurement of the isotopes; this is straightforward to estimate; (2) systematic uncertainties stemming from the age of standard minerals, such as the Fish Canyon sanidine, and in the 40K decay constant; and (3) systematic uncertainty introduced during analysis, mainly the size and reproducibility of procedural blanks. Whereas 1 and 2 control the precision of an age determination, 2 and 3 also control accuracy. In parallel with an astronomical calibration of 28.201 Ma for the Fish Canyon sanidine standard, awareness of the importance of procedural blanks, and a new generation multi-collector mass spectrometer capable of exceptionally low-blank and isobar-free analysis, are improving both accuracy and precision of 40Ar/39Ar dates. Results from lavas recording the Matuyama-Brunhes reversal, the Santa Rosa excursion, and the reversal at the top of the Cobb Mtn subchron demonstrate these advances. Current best

  12. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  13. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  14. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  15. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  16. Investigation of Insulation Materials for Future Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  17. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  18. Safety status of space radioisotope and reactor power sources

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The current overall safety criterion for both radioisotope and reactor power sources is containment or immobilization in the case of a reentry accident. In addition, reactors are designed to remain subcritical under conditions of land impact or water immersion. A very extensive safety test and analysis program was completed on the radioisotope thermoelectric generators (RTGs) in use on the Galileo spacecraft and planned for use on the Ulysses spacecraft. The results of this work show that the RTGs will pose little or no risk for any credible accident. The SP-100 space nuclear reactor program has begun addressing its safety criteria, and the design is planned to be such as to ensure meeting the various safety criteria. Preliminary mission risk analyses on SP-100 show the expected value population dose from postulated accidents on the reference mission to be very small. It is concluded that the current US nuclear power sources are the safest flown.

  19. A radioisotope-powered surface acoustic wave transponder

    NASA Astrophysics Data System (ADS)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  20. Emitted radiation characteristics of plutonium dioxide radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.; Steyn, J. J.

    1971-01-01

    The nuclear and emitted radiation characteristics of the radioisotope elements and impurities in commercial grade plutonium dioxide are presented in detail. The development of the methods of analysis are presented. Radioisotope thermoelectric generators (RTG) of 1575, 3468 and 5679 thermal watts are characterized with respect to neutron and gamma photon source strength as well as spatial and number flux distribution. The results are presented as a function of detector position and light element contamination concentration for fuel age ranging from 'fresh' to 18 years. The data may be used to obtain results for given O-18 and Pu-236 concentrations. The neutron and gamma photon flux and dose calculations compare favorably with reported experimental values for SNAP-27.

  1. Radioisotope power system options for future planetary missions

    NASA Astrophysics Data System (ADS)

    Cockfield, Robert D.

    2001-02-01

    Like previous missions to the outer planets, future spacecraft missions such as Pluto/Kuiper Express, Europa Orbiter, and Solar Probe will require radioisotope power systems for their long voyages away from the Sun. Several candidate advanced power conversion technologies have been proposed that have been proposed that have higher power conversion efficiencies than the traditional thermoelectric generators, with the potential for reduced mass and reduced quantities of nuclear fuel required. Studies conducted by Lockheed Martin under the direction of the Department of Energy have included the development of system conceptual designs utilizing Alkali Metal to Electric Conversion (AMTEC) and Stirling power conversion. Generator concepts based on these conversion technologies are compared in this paper with an alternative Small RTG, based on the General Purpose Heat Source-Radioisotope Thermoelectric Generator (GPHS-RTG). .

  2. Radioisotope Electric Propulsion (REP) Spacecraft Design Concept Considerations

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.; Fiehler, Douglas I.

    2005-01-01

    Radioisotopic Electric Propulsion (REP) has the potential to provide certain advantages for outer planetary exploration involving small bodies and long term investigation s for medium class missions requiring power comparable to past outer planetary exploration missions. This paper describes a preliminary conceptual design of a REP-based spacecraft where the mission of interest involves a spacecraft with a radioisotope power supply less than one kilowatt while operating at a minimum of 10-years. A key element of the REP spacecraft is to insure sustained science return by orbiting or flying in formation with selected targets. Utilizing current/impending technological advances, REP orbiter/explorer missions may provide a valuable tool for extended scientific investigations of small bodies in the outer solar system.

  3. Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey

    2002-01-01

    Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.

  4. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  5. Metal matrix composite fuel for space radioisotope energy sources

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Ning, H.; Reece, M. J.; Ambrosi, R. M.; Bannister, N. P.; Stephenson, K.

    2013-02-01

    Radioisotope fuels produce heat that can be used for spacecraft thermal control or converted to electricity. They must retain integrity in the event of destruction or atmospheric entry of the parent spacecraft. Addition of a metal matrix to the actinide oxide could yield a more robust fuel form. Neodymium (III) oxide (Nd2O3) - niobium metal matrix composites were produced using Spark Plasma Sintering; Nd2O3 is a non-radioactive surrogate for americium (III) oxide (Am2O3). Two compositions, 70 and 50 wt% Nd2O3, were mechanically tested under equibiaxial (ring-on-ring) flexure according to ASTM C1499. The addition of the niobium matrix increased the mean flexural strength by a factor of about 2 compared to typical ceramic nuclear fuels, and significantly increased the Weibull modulus to over 20. These improved mechanical properties could result in reduced fuel dispersion in severe accidents and improved safety of space radioisotope power systems.

  6. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect

    S. Mukhopadhyay

    2003-06-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  7. Radioisotope Concentration in Lake Sediments of Maracaibo, Venezuela

    SciTech Connect

    Salas, A. Rangel; Viloria, T.; Sajo-Bohus, L.; Barros, H.; Greaves, E. D.; Palacios, D.

    2007-10-26

    Maracaibo Lake is one of the most important water basing and oil producing regions in Venezuela. Changes in the local environment have been monitored for chemical pollution in the past. For this study we selected a set of sediment samples collected in the shore and analyzed for its radioisotope content. Results show the gamma emitting isotopes distribution. Isotopes concentrations have been determined within the natural K, Th and U families.

  8. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    NASA Astrophysics Data System (ADS)

    King, D. A.

    1994-11-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  9. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  10. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  11. Moduli Decays and Gravitinos

    SciTech Connect

    Dine, Michael; Kitano, Ryuichiro; Morisse, Alexander; Shirman, Yuri

    2006-04-21

    One proposed solution of the moduli problem of string cosmology requires that the moduli are quite heavy, their decays reheating the universe to temperatures above the scale of nucleosynthesis. In many of these scenarios, the moduli are approximately supersymmetric; it is then crucial that the decays to gravitinos are helicity suppressed. In this paper, we discuss situations where these decays are, and are not, suppressed. We also comment on a possible gravitino problem from inaton decay.

  12. Advanced radioisotope power source options for Pluto Express

    SciTech Connect

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  13. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  14. Stimulus sensitive gel with radioisotope and methods of making

    SciTech Connect

    Weller, Richard E.; Lind, Michael A.; Fisher, Darrell R.; Gutowska, Anna; Campbell, Allison A.

    2005-03-22

    The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.

  15. Stimulus sensitive gel with radioisotope and methods of making

    DOEpatents

    Weller, Richard E [Selah, WA; Lind, Michael A [Kent, WA; Fisher, Darrell R [Richland, WA; Gutowska, Anna [Richland, WA; Campbell, Allison A [Kennewick, WA

    2001-10-02

    The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.

  16. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview

    NASA Technical Reports Server (NTRS)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; Colozza, Tony; Packard, Tom; Nguyen, Thahn; Schmitz, Paul; Ostdiek, Paul; Gold, Rob; Lisse, Carey; Hibbits, Karl

    2009-01-01

    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  17. Radioisotope requirements and usage in the radiopharmaceutical industry

    SciTech Connect

    Langton, M.A.

    1995-12-31

    Radioisotopes are used extensively in many different productive and beneficial human endeavors. Amersham International, a U.K.-based company originating in the British Scientific Civil Service during World War II, has been actively involved in many of these activities for more than 50 yr. Today they are one of the world`s largest suppliers of radioactive compounds and scaled radiation sources for use in industrial quality and safety assurance, life science research, and medicine. This paper outlines one of these applications: the use of radioisotopes as radiopharmaceuticals. Radiopharmaceuticals are radioactive nuclides and labeled compounds that have been developed for the diagnosis and treatment of (human) disease. They are manufactured via highly controlled processes and have gone through regulatory scrutiny and approval far in excess of other radioisotopes used in other applications. Radiopharmaceuticals can be conveniently split into two categories. One type is simply an active analog that mimics the physiological behavior of its inactive counterpart in the body. The other involves an actual pharmacological compound that exhibits the desired physiological behavior, which is then labeled with a radionuclide suitable for either imaging or the delivery of a therapeutic radiation dose as appropriate but which plays no part in the mechanism of action of the drug. The latter type, which is the more common of the two, can be supplied either as an active compounded product or as a {open_quotes}cold kit,{close_quotes} which is then labeled with the appropriate radiopharmaceutical-grade radionuclide to yield the final product.

  18. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect

    Pugh, B.K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  19. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    NASA Astrophysics Data System (ADS)

    Pugh, Barry K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  20. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect

    Pugh, Barry K.

    1997-01-10

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  1. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  2. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  3. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology

    PubMed Central

    Creager, Angela N.H.

    2009-01-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These ‘suicide experiments’, a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  4. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology.

    PubMed

    Creager, Angela N H

    2009-03-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These 'suicide experiments', a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  5. Stirling Convertor for the Stirling Radioisotope Generator Tested as a Prelude to Transition to Flight

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2004-01-01

    The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (Valley Forge, PA) under contract to the Department of Energy (Germantown, MD). In support of this project, the NASA Glenn Research Center has established a near-term technology effort to provide some of the critical data to ensure a successful transition to flight for what will be the first dynamic power system to be used in space. The generator will be a high-efficiency electric power source for potential use on NASA space science missions. The generator will be able to operate in the vacuum of deep space or in an atmosphere such as on the surface of Mars. High system efficiency is obtained through the use of free-piston Stirling power-conversion technology. The power output of the generator will be greater than 100 W at the beginning of life, with the slow decline in power being largely due to decay of the plutonium heat source. Previously, Glenn's supporting technology efforts focused only on the most critical technical issues.

  6. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  7. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  8. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Astrophysics Data System (ADS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  9. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    NASA Astrophysics Data System (ADS)

    Schock, Alfred

    1994-07-01

    The preceding paper (Schock 1994) described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-Watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to -110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 Watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its two engines fails. In fact, the latter system could deliver as much as 115 Watts(e) if desired by the mission planners.

  10. A radioisotope powered cryobot for penetrating the Europan ice shell

    NASA Astrophysics Data System (ADS)

    Zimmerman, Wayne; Bryant, Scott; Zitzelberger, John; Nesmith, Bill

    2001-02-01

    The Cryobot team at JPL has been working on the design of a Cryo-Hydro Integrated Robotic Penetrator System (CHIRPS), which can be used to penetrate the Mars North Polar Cap or the thick sheet ice surrounding Jupiter's moon, Europa. The science for either one of these missions is compelling. For both Mars and Europa the major scientific interest is to reach regions where there is a reservoir of water that may yield signs of past or extant life. Additionally, a Mars polar cap penetration would help us understand both climatic and depositional histories for perhaps as far back as 20 million years. Similarly, penetration of the Europa ice sheet would allow scientists to unravel the mysteries surrounding the thick ice crust, its chemical composition, and subsurface ocean properties. Extreme mass and power constraints make deep drilling/coring impractical. The best way to explore either one of these environments is a cryobot mole penetrator vehicle, which carries a suite of instruments suitable for sampling and analyzing the ice or ocean environments. This paper concentrates on a Europa deep ice (i.e., kilometers thick) application of the CHIRPS, and introduces the reader to the vehicle design with focus on the use of radioisotope thermoelectric generator (RTG) technology as the primary heat (1 kW total) and power source for the robotic vehicle. Radioisotope heater unit (RHU) milli-watt power systems (120 mW total) are also employed to power the mini-radiowave ice transceivers, which are used to relay data through the ice up to the surface lander. The results of modeling and design work for both of these areas are discussed in this paper. Although radioisotope power is baselined for the Europa flight version of the cyrobot, no decision on the final design of the cryobot will be made until the environmental review process is complete. Any use of the cryobot for Mars or Europa will conform to all environmental and planetary protection requirements. .

  11. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  12. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    2012-01-19

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  13. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  14. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  15. Radioisotope measurement of the velocity of tracheal mucus.

    PubMed

    Russo, K J; Palmer, D W; Beste, D J; Carl, G A; Belson, T P; Pelc, L R; Toohill, R J

    1985-04-01

    A radioisotope scanning technique for measuring the velocity of tracheal mucus has been developed utilizing a canine model. A solution of stannous phytate labeled with 99mTc is introduced percutaneously into the lower trachea and the upward movement of the leading edge of the radioactivity is followed by repeat scanning at 2-minute intervals using a modified rectilinear scanner, thus allowing calculation of the velocity of the mucus. It is believed that this technique may be of value in studying the effect of experimentally induced tracheal injuries on mucus velocity. Possible applications of the technique for the study of the velocity of mucus in the human trachea are discussed. PMID:3921912

  16. Analytical predictions of RTG power degradation. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Noon, E. L.; Raag, V.

    1979-01-01

    The DEGRA computer code that is based on a mathematical model which predicts performance and time-temperature dependent degradation of a radioisotope thermoelectric generator is discussed. The computer code has been used to predict performance and generator degradation for the selenide Ground Demonstration Unit (GDS-1) and the generator used in the Galileo Project. Results of parametric studies of load voltage vs generator output are examined as well as the I-V curve and the resulting predicted power vs voltage. The paper also discusses the increased capability features contained in DEGRA2 and future plans for expanding the computer code performance.

  17. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  18. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  19. Electronic structure of polycrystalline Cd metal using 241Am radioisotope

    NASA Astrophysics Data System (ADS)

    Dhaka, M. S.; Sharma, G.; Mishra, M. C.; Sharma, B. K.

    2014-04-01

    Electronic structure study of the polycrystalline cadmium metal is reported. The experimental measurement is undertaken on a polycrystalline sheet sample using 59.54 keV radioisotope of 241Am. These results are compared with the ab initio calculations. The theoretical calculations are performed using linear combination of atomic orbitals (LCAO) method employing the density functional theories (DFT) and Hartree-Fock (HF) and augmented plane wave (APW) methods. The spherically averaged APW and LCAO based theoretical Compton profiles are in good agreement with the experimental measurement however the APW based theoretical calculations show best agreement.

  20. Radioisotope bone scanning in a case of sarcoidosis

    SciTech Connect

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions in the calvarium.

  1. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  2. Rhenium-188--a generator-derived radioisotope for cancer therapy.

    PubMed

    Knapp, F F

    1998-10-01

    Rhenium-188 (188Re) is an important therapeutic radioisotope which is obtained on demand as carrier-free sodium perrhenate by saline elution of the tungsten-188/rhenium-188 generator system. With a half-life of 16.9 hours and emission of a high energy beta particle (maximal energy of 2.12 MeV) and a gamma photon (155 keV, 15%) for imaging, 188Re can be provided at reasonable costs for routine preparation of radiopharmaceuticals for cancer treatment. PMID:10851424

  3. Axions from string decay

    SciTech Connect

    Hagmann, C., LLNL

    1998-07-09

    We have studied numerically the evolution and decay of axion strings. These global defects decay mainly by axion emission and thus contribute to the cosmological axion energy density. The relative importance of this source relative to misalignment production of axions depends on the spectrum. Radiation spectra for various string loop configurations are presented. They support the contention that the string decay contribution is of the same order of magnitude as the contribution from misalignment.

  4. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  5. Radio-isotope production using laser Wakefield accelerators

    SciTech Connect

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-07-27

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu{sup 61} was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator.

  6. [Clinical study of radioisotopic splenoportography in portal hypertension].

    PubMed

    Yokoyama, Y

    1990-02-01

    Radioisotopic splenoportography was performed in 55 patients with portal hypertension, in whom 52 had various degrees of esophagogastric varices, and in 20 patients without portal hypertension. In the patients with varices, collateral images were obtained in 50 patients (96%) by this method and no image was obtained in the patients without varices. The rate of positively imaged collaterals was as follows: Esophageal varices 69%, the left gastric vein 85%, the short gastric veins 48%, RI stasis in esophagogastric region 65%, the azygos vein 46%, the subclavian vein 25%, the para-umbilical veins 46%, splenorenal /gastrorenal shunts 19%, the inferior mesenteric vein 17%, the left intercostal veins 6%, and Arantius's duct 4%. These rates were superior to that obtained from the conventional transarterial portography. There were some correlations between RI-images by this method and clinical and laboratory findings; patients with ascending collaterals alone tended to have extensive and severe varices and higher rate of bleeding, on the other hand, variceal bleeding was not found and episodes of portosystemic encephalopathy frequently occurred in patients with descending collaterals alone. After successful sclerotherapy, RI-images of esophageal varices disappeared in 92% of the patients. Radioisotopic splenoportography appears to be a useful diagnostic and follow-up modality for patients with portal hypertension and esophagogastric varices. PMID:2325608

  7. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  8. Strontium Iodide Instrument Development for Gamma Spectroscopy and Radioisotope Identification

    SciTech Connect

    Beck, P; Cherepy, Nerine; Payne, Stephen A.; Swanberg, E.; Nelson, K.; Thelin, P; Fisher, S E; Hunter, Steve; Wihl, B; Shah, Kanai; Hawrami, Rastgo; Burger, Arnold; Boatner, Lynn A; Momayezi, M; Stevens, K; Randles, M H; Solodovnikov, D

    2014-01-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu), has progressed significantly in recent years. SrI2(Eu) has excellent material properties for gamma ray spectroscopy: high light yield (>80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z=49) for high photoelectric cross-section. High quality 1.5 and 2 diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  9. [Radioisotope decontamination of X-ray detector (photostimulable phosphor plate)].

    PubMed

    Onuma, Yoji; Hayashi, Michiko; Hayashi, Hiroaki; Nishihara, Sadamitsu

    2012-01-01

    We tried to remove contamination of radioisotope (RI) for an X-ray detector (photostimulable phosphor plate; IP) and verified that our procedure suggested by Nishihara et al. was effective for decontamination. The procedure was as follows. First, the IP was kept for approximately twelve hours, and then it was processed [image (A)] as well as a clinical processing mode. Second, using a wet-type chemical wiper, we scavenged the IP to remove the adhered RI on its surface. Then, once again, the IP was kept for approximately fifteen hours and processed [image (B)] in order to check an effect of decontamination. Finally, the two images of (A) and (B) were analyzed using ImageJ, which can be downloaded as a free software, and a percentage of removal was calculated. The procedure was applied to two IPs using the FCR 5501 plus. In the present case, the percentage of removal was approximately 96%. The removed radioisotopes in the chemical wipers were analyzed by Ge detector. Then, (134)Cs and (137)Cs were found with activities of 2.9 4.3 Bq and 3.5 5.2 Bq, respectively. For three months after that, we cannot see black spots on the IPs owing to the contamination of the RI and there are no defects caused by decontamination using a wet-type chemical wiper. PMID:22449904

  10. Multi-Watt Small Radioisotope Thermoelectric Generator Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Determan, William R.; Otting, William; Frye, Patrick; Abelson, Robert; Ewell, Richard; Miyake, Bob; Synder, Jeff

    2007-01-01

    A need has been identified for a small, light-weight, reliable power source using a radioisotope heat source, to power the next generation of NASA's small surface rovers and exploration probes. Unit performance, development costs, and technical risk are key criteria to be used to select the best design approach. Because safety can be a major program cost and schedule driver, RTG designs should utilize the DOE radioisotope safety program's data base to the maximum extent possible. Other aspects important to the conceptual design include: 1) a multi-mission capable design for atmospheric and vacuum environments, 2) a module size based on one GPHS Step 2 module, 3) use of flight proven thermoelectric converter technologies, 4) a long service lifetime of up to 14 years, 5) maximize unit specific power consistent with all other requirements, and 6) be ready by 2013. Another critical aspect of the design is the thermal integration of the RTG with the rover or probe's heat rejection subsystem and the descent vehicle's heat rejection subsystem. This paper describes two multi-watt RTG design concepts and their integration with a MER-class rover.

  11. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  12. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  13. Characterization of the Advanced Stirling Radioisotope Generator EU2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  14. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  15. Strontium iodide instrument development for gamma spectroscopy and radioisotope identification

    NASA Astrophysics Data System (ADS)

    Beck, P. R.; Cherepy, N. J.; Payne, S. A.; Swanberg, E. L.; Nelson, K. E.; Thelin, P. A.; Fisher, S. E.; Hunter, S.; Wihl, B. M.; Shah, K. S.; Hawrami, R.; Burger, A.; Boatner, L. A.; Momayezi, M.; Stevens, K. T.; Randles, M. H.; Solodovnikov, D.

    2014-09-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu2+), has progressed significantly in recent years. SrI2(Eu2+) has excellent material properties for gamma ray spectroscopy: high light yield (<80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z = 49) for high photoelectric cross-section. High quality 1.5" and 2" diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  16. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  17. Technology Development for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions.

  18. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect

    Noble, Robert J.; /SLAC

    2009-07-14

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  19. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  20. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Content,'' for the Production of Radioisotopes and NUREG-1537, part 2, ``Guidelines for Preparing and... a construction and operating license for a radioisotope production facility and the Research and..., Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...

  1. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  2. Space radioisotope power source requirements update and technology status

    SciTech Connect

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decision will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime

  3. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  4. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  5. Modulated curvaton decay

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2013-03-01

    We study primordial density perturbations generated by the late decay of a curvaton field whose decay rate may be modulated by the local value of another isocurvature field, analogous to models of modulated reheating at the end of inflation. We calculate the primordial density perturbation and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field, recovering standard curvaton and modulated reheating results as limiting cases. We verify the Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial density field generated by multiple field fluctuations, and find conditions for the bound to be saturated.

  6. Combinedatomic-nuclear decay

    NASA Astrophysics Data System (ADS)

    Dzyublik, A. Ya.

    2016-05-01

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2+ level of 63 153 Eu and K hole, formed in the K capture by 153Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2 p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10-13, that is much less than the recent experimental findings.

  7. Axions from wall decay

    SciTech Connect

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  8. AMTEC radioisotope power system for the Pluto Express mission

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.

    1995-12-31

    The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency to very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.

  9. Reliability Demonstration Approach for Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Ha, CHuong; Zampino, Edward; Penswick, Barry; Spronz, Michael

    2010-01-01

    Developed for future space missions as a high-efficiency power system, the Advanced Stirling Radioisotope Generator (ASRG) has a design life requirement of 14 yr in space following a potential storage of 3 yr after fueling. In general, the demonstration of long-life dynamic systems remains difficult in part due to the perception that the wearout of moving parts cannot be minimized, and associated failures are unpredictable. This paper shows a combination of systematic analytical methods, extensive experience gained from technology development, and well-planned tests can be used to ensure a high level reliability of ASRG. With this approach, all potential risks from each life phase of the system are evaluated and the mitigation adequately addressed. This paper also provides a summary of important test results obtained to date for ASRG and the planned effort for system-level extended operation.

  10. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  11. Computer program for the transient analysis of radioisotope thermoelectric generators.

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.; Ridihalgh, J. L.

    1972-01-01

    A computer program is described which represents a comprehensive analytical tool providing the capability for predicting the output power and temperature profile of an arbitrary radioisotope thermoelectric generator (RTG) design in the presence of time-dependent operating conditions. The approach taken involves the merging of three existing computer programs - namely, an RTG weight optimization design program, a thermoelectric analysis program, and a nodal heat-transfer computer program. A total of seven transient conditions are included in the computer program as the principal transients affecting long- and short-term performance characteristics of RTGs. This computer program is unique in that it designs an optimum RTG, generates a thermal model or analog and performs heat-transfer analysis of the RTG under user-specified transient conditions.

  12. Radioisotope thermoelectric generator cooling in the Shuttle bay

    NASA Technical Reports Server (NTRS)

    Stimpson, L. D.; Levine, D. I.

    1979-01-01

    The paper describes a Shuttle-integrated radioisotope thermoelectric generator (RTG) that consists primarily of a pump package and plumbing connected directly to the Shuttle payload heat exchanger. The RTG utilizes on-board water evaporative cooling capability, which is normally used for ascent, entry, and for supplementing the radiators. Attention is given to the RTG cooling concepts which include: (1) an active thermal cooling system (ATCS), where two Freon-21 loops operate simultaneously to transport heat from the Orbiter subsystem and payloads through liquid-to-liquid heat exchangers and pin-fin coldplates to four heat sinks, and (2) an atmosphere revitalization system (ARS) which provides for thermal, pressure, and contaminate control of the crew cabin and its equipment. The use of a payload heat exchanger to reduce weight, cost and complexity associated with an independent cooling system was investigated in detail.

  13. .sup.82 Sr-.sup.82 Rb Radioisotope generator

    DOEpatents

    Grant, Patrick M.; Erdal, Bruce R.; O'Brien, Harold A.

    1976-01-01

    An improved .sup.82 Sr-.sup.82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be > 10.sup.7. Approximately 80 percent of the .sup.82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH.sub.4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be > 10.sup.5, and no unusual strontium breakthrough behavior was seen in the system over nearly three .sup.82 Sr half lives.

  14. Development and Buildup of a Stirling Radioisotope Generator Electrical Simulator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.; Spina, Dan C.

    2008-01-01

    This paper describes the development of a Stirling Radioisotope Generator (SRG) Simulator for use in a prototype lunar robotic rover. The SRG developed at NASA Glenn Research Center (GRC) is a promising power source for the robotic exploration of the sunless areas of the moon. The simulator designed provides a power output similar to the SRG output of 5.7 A at 28 Vdc, while using ac wall power as the input power source. The designed electrical simulator provides rover developers the physical and electrical constraints of the SRG supporting parallel development of the SRG and rover. Parallel development allows the rover design team to embrace the SRG s unique constraints while development of the SRG is continued to a flight qualified version.

  15. Multimodality Therapy: Bone-Targeted Radioisotope Therapy of Prostate Cancer

    PubMed Central

    Tu, Shi-Ming; Lin, Sue-Hwa; Podoloff, Donald A.; Logothetis, Christopher J.

    2016-01-01

    Accumulating data suggest that bone-seeking radiopharmaceuticals can be used to treat prostate cancer bone metastasis and improve the clinical outcome of patients with advanced prostate cancer. It remains to be elucidated whether radiopharmaceuticals enhance the disruption of the onco-niche or the eradication of micrometastatic cells in the bone marrow. The purpose of this review is to investigate the role of bone-targeted radioisotope therapy in the setting of multimodality therapy for advanced prostate cancer. We examine available data and evaluate whether dose escalation, newer generations, or repeated dosing of radiopharmaceuticals enhance their antitumor effects and whether their combination with hormone ablative therapy, chemotherapy, or novel targeted therapy can improve clinical efficacy. PMID:20551894

  16. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt & Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around ``all possible missions''. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  17. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    SciTech Connect

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-30

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm ({approx}700 deg. C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  18. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-20

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  19. Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry

    NASA Astrophysics Data System (ADS)

    Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim

    2010-01-01

    Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.

  20. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-01

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm (˜700 °C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  1. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  2. Pathway of radioisotopes from land surface to sewage sludge

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Yokoo, Yoshiyuki

    2014-05-01

    Radioactive surface contaminations will only partially remain at the original location - a fraction of the inventory will take part in (mainly terrestrial and aquatic) environmental transport processes. The probably best known and most important process comprises the food chain. Besides, the translocation of dissolved and particle-bound radioisotopes with surface waters plays an important role. These processes can have the effect of displacing large radioisotope amounts over considerable distances and of creating new sinks and hot spots, as it is already known for sewage sludge. We are reporting on a combined modeling and experimental project concerning the transport of I-131 and Cs-134/Cs-137 FDNPP 2011 depositions in the Fukushima Prefecture. Well-documented experimental data sets are available for surface deposition and sewage sludge concentrations. The goal is to model the pathway in between, involving surface runoff, transport in the sewer system and processes in the sewage treatment plant. Watershed runoff and sewer transport will be treated with models developed recently by us in other projects. For sewage treatment processes a new model is currently being constructed. For comparison and further validation, historical data from Chernobyl depositions and tracer data from natural and artificial, e.g. medical, isotopes will be used. First results for 2011 data from Fukushima Prefecture will be presented. The benefits of the study are expected to be two-fold: on one hand, the abundant recent and historical data will help to develop and improve environmental transport models; on the other hand, both data and models will help in identifying the most critical points in the envisaged transport pathways in terms of radiation protection and waste management.

  3. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  4. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  5. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140° C while the heat losses caused by the addition of the VCHP are 1.8 W.

  6. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART

    PubMed Central

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200°F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12°C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 × 10−3 watt/cm2°C in the abdomen compared to a value of 14.9 × 10−3 watt/cm2°C from the heat exchanger plenum into the diaphragm. Images PMID:15215968

  7. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    PubMed

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm. PMID:15215968

  8. Tooth decay - early childhood

    MedlinePlus

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... chap 304. Ribeiro NM, Ribeiro MA. Breastfeeding and early childhood caries: a critical review. J Pediatr (Rio J) . ...

  9. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  10. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.