Science.gov

Sample records for biconcircular gradient vector

  1. Support vector classifiers via gradient systems with discontinuous righthand sides.

    PubMed

    Ferreira, Leonardo V; Kaszkurewicz, Eugenius; Bhaya, Amit

    2006-12-01

    Gradient dynamical systems with discontinuous righthand sides are designed using Persidskii-type nonsmooth Lyapunov functions to work as support vector machines (SVMs) for the discrimination of nonseparable classes. The gradient systems are obtained from an exact penalty method applied to the constrained quadratic optimization problems, which are formulations of two well known SVMs. Global convergence of the trajectories of the gradient dynamical systems to the solution of the corresponding constrained problems is shown to be independent of the penalty parameters and of the parameters of the SVMs. The proposed gradient systems can be implemented as simple analog circuits as well as using standard software for integration of ODEs, and in order to use efficient integration methods with adaptive stepsize selection, the discontinuous terms are smoothed around a neighborhood of the discontinuity surface by means of the boundary layer technique. The scalability of the proposed gradient systems is also shown by means of an implementation using parallel computers, resulting in smaller processing times when compared with traditional SVM packages. PMID:17011165

  2. Creation of polarization gradients from superposition of counter propagating vector LG beams.

    PubMed

    Vyas, Sunil; Kozawa, Yuichi; Miyamoto, Yoko

    2015-12-28

    We present a detailed theoretical analysis of the formation of standing waves using cylindrically polarized vector Laguerre-Gaussian (LG) beams. It is shown that complex interplay between the radial and azimuthal polarization state can be used to realize different kinds of polarization gradients with cylindrically symmetric polarization distribution. Expressions for four different cases are presented and local dynamics of spatial polarization distribution is studied. We show cylindrically symmetric Sisyphus and corkscrew type polarization gradients can be obtained from vector LG beams. The optical landscape presented here with spatially periodic polarization patterns may find important applications in the field of atom optics, atom interferometry, atom lithography, and optical trapping. PMID:26832055

  3. Determination of the Earth's lithospheric magnetic field using vector gradient data from the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-04-01

    One of the main goals of the Swarm three-satellite constellation mission is to determine the lithospheric field globally with the best possible resolution. To achieve that, explicit advantage of the constellation aspect of Swarm has to be taken by using gradient estimates. We derive lithospheric field models using more than one year of East-West and North-South magnetic gradient data, approximated by first differences of field vector data between the two lower Swarm satellites and along each satellite orbit, respectively. Despite the current relatively high altitude of 450 km of the Swarm satellites, the results are promising. We find that Swarm gradient data are less sensitive to large-scale external field fluctuations and enhance the resolution of the determined lithospheric field compared to only vector data. The derived models agree very well with previous models derived from CHAMP data, serving as an initial validation of the Swarm mission.

  4. A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields

    NASA Astrophysics Data System (ADS)

    Domokos, Gábor; Holmes, Philip; Lángi, Zsolt

    2016-06-01

    Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.

  5. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  6. Improved Gradient Vector Flow for robust shape estimation in medical imaging.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S

    2010-01-01

    We propose a improved Gradient Vector Flow (iGVF) for active contour detection. The algorithm herein proposed allows to surpass the problems of the GVF, which occur in noisy images with cluttered background. We experimentally illustrate that the proposed modified version of the GVF algorithm has a better performance in noisy images. The main difference concerns the use of more robust and informative features (edge segments) which significantly reduce the influence of noise. Experiments with real data from several image modalities are presented to illustrate the performance of the proposed approach. PMID:21097295

  7. Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1986-01-01

    In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.

  8. Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion.

    PubMed

    Li, Gang; Liu, Tianming; Nie, Jingxin; Guo, Lei; Malicki, Jarema; Mara, Andrew; Holley, Scott A; Xia, Weiming; Wong, Stephen T C

    2007-10-01

    The zebrafish has become an important vertebrate animal model for the study of developmental biology, functional genomics, and disease mechanisms. It is also being used for drug discovery. Computerized detection of blob objects has been one of the important tasks in quantitative phenotyping of zebrafish. We present a new automated method that is able to detect blob objects, such as nuclei or cells in microscopic zebrafish images. This method is composed of three key steps. The first step is to produce a diffused gradient vector field by a physical elastic deformable model. In the second step, the flux image is computed on the diffused gradient vector field. The third step performs thresholding and nonmaximum suppression based on the flux image. We report the validation and experimental results of this method using zebrafish image datasets from three independent research labs. Both sensitivity and specificity of this method are over 90%. This method is able to differentiate closely juxtaposed or connected blob objects, with high sensitivity and specificity in different situations. It is characterized by a good, consistent performance in blob object detection. PMID:17654652

  9. Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification

    PubMed Central

    Dai, Baisheng; Wu, Xiangqian; Bu, Wei

    2016-01-01

    Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches. PMID:27564376

  10. Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin

    2015-06-01

    We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found

  11. A 3-D Poisson Solver Based on Conjugate Gradients Compared to Standard Iterative Methods and Its Performance on Vector Computers

    NASA Astrophysics Data System (ADS)

    Kapitza, H.; Eppel, D.

    1987-02-01

    A conjugate gradient method for solving a 3-D Poisson equation in Cartesian unequally spaced coordinates is tested in concurrence to standard iterative methods. It is found that the tested algorithm is far superior to Red-Black-SOR with optimal parameter. In the conjugate gradient method no relaxation parameter is needed, and there are no restrictions on the number of gridpoints in the three directions. The iteration routine is vectorizable to a large extent by the compiler of a CYBER 205 without any special preparations. Utilizing some special features of vector computers it is completely vectorizable with only minor changes in the code.

  12. Subvoxel segmentation and representation of brain cortex using fuzzy clustering and gradient vector diffusion

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Ching; Tao, Xiaodong

    2010-03-01

    Segmentation and representation of human brain cortex from Magnetic Resonance (MR) images is an important step for visualization and analysis in many neuro imaging applications. In this paper, we propose an automatic and fast algorithm to segment the brain cortex and to represent it as a geometric surface on which analysis can be carried out. The algorithm works on T1 weighted MR brain images with extracranial tissue removed. A fuzzy clustering algorithm with a parametric bias field model is applied to assign membership values of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to each voxel. The cortical boundaries, namely the WM-GM and GM-CSF boundary surfaces, are extracted as iso-surfaces of functions derived from these membership functions. The central surface (CS), which traces the peak values (or ridges) of the GM membership function, is then extracted using gradient vector diffusion. Our main contribution is to provide a generic, accurate, fast, yet fully-automatic approach to (i) produce a soft segmentation of the MR brain image with intensity field correction, (ii) extract both the boundary and the center of the cortex in a surface form, where the topology and geometry can be explicitly examined, and (iii) use the extracted surfaces to model the curvy, folding cortical volume, which allows an intuitive measurement of the thickness. As a demonstration, we compute cortical thickness from the surfaces and compare the results with what has been reported in the literature. The entire process from raw MR image to cortical surface reconstruction takes on average between five to ten minutes.

  13. Gradient-based fusion of infrared and visual face images using support vector machine for human face identification

    NASA Astrophysics Data System (ADS)

    Saha, Priya; Bhowmik, Mrinal K.; Bhattacharjee, Debotosh; De, Barin K.; Nasipuri, Mita

    2013-03-01

    Pose and illumination invariant face recognition problem is now-a-days an emergent problem in the field of information security. In this paper, gradient based fusion method of gradient visual and corresponding infrared face images have been proposed to overcome the problem of illumination varying conditions. This technique mainly extracts illumination insensitive features under different conditions for effective face recognition purpose. The gradient image is computed from a visible light image. Information fusion is performed in the gradient map domain. The image fusion of infrared image and corresponding visual gradient image is done in wavelet domain by taking the maximum information of approximation and detailed coefficients. These fused images have been taken for dimension reduction using Independent Component Analysis (ICA). The reduced face images are taken for training and testing purposes from different classes of different datasets of IRIS face database. SVM multiclass strategy `one-vs.-all' have been taken in the experiment. For training support vector machine, Sequential Minimal Optimization (SMO) algorithm has been used. Linear kernel and Polynomial kernel with degree 3 are used in SVM kernel functions. The experiment results show that the proposed approach generates good classification accuracies for the face images under different lighting conditions.

  14. High-sensitivity in-plane vector magnetometry using the alternating gradient force method

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Rahmani, Anas; Renaudin, Patrice; Wack, André

    2003-05-01

    The alternating gradient force magnetometer is a highly sensitive tool particularly suited for thin films magnetometry. The measurement technique is based upon the alternating force generated on a magnetized sample by a set of field-gradient coils. The so-induced sample oscillation is directly proportional to the sample's magnetization. High sensitivity measurements are achieved by mounting the sample at the end of a cantilever attached to a piezoelectric bimorph element, and by tuning the excitation frequency close to the mechanical resonance of the sample-cantilever assembly. Here we describe a new design that allows to measure both in-plane components of the magnetization of a thin film sample, for any direction of the external magnetic field within the sample's plane. By rotating the sample-probe assembly, we find the output signal to be proportional to the projection of the alternating force along the sense axis of the piezoelectric bimorph. Besides, the resonance frequency of the system remains unchanged. Thus, hysteresis loops can be measured accurately for various angles between the applied field and an in-plane anisotropy axis. The signal only vanishes when the alternating force is orthogonal to the bimorph axis. Moreover, we have designed a set of two pairs of gradient coils, whose axis are orthogonal to one another. By varying the excitation current within these two pairs of coils, it is possible to rotate the alternating gradient direction, to detect magnetization components along or perpendicular to the external field.

  15. Galactic interstellar turbulence across the southern sky seen through spatial gradients of the polarization vector

    NASA Astrophysics Data System (ADS)

    Iacobelli, M.; Burkhart, B.; Haverkorn, M.; Lazarian, A.; Carretti, E.; Staveley-Smith, L.; Gaensler, B. M.; Bernardi, G.; Kesteven, M. J.; Poppi, S.

    2014-06-01

    Aims: Radio synchrotron polarization maps of the Galaxy can be used to infer the properties of interstellar turbulence in the diffuse magneto-ionic medium (MIM). In this paper, we investigate the normalized spatial gradient of linearly polarized synchrotron emission (|∇P|/|P|) as a tracer of turbulence, the relationship of the gradient to the sonic Mach number of the MIM, and changes in morphology of the gradient as a function of Galactic position in the southern sky. Methods: We used data from the S-band Polarization All Sky Survey (S-PASS) to image the normalized spatial gradient of the linearly polarized synchrotron emission (|∇P|/|P|) in the entire southern sky at 2.3 GHz. The spatial gradient of linear polarization reveals rapid changes in the density and magnetic fluctuations in the MIM due to magnetic turbulence as a function of Galactic position. We made comparisons of these data to ideal MHD numerical simulations. To constrain the sonic Mach number (Ms), we applied a high-order moments analysis to the observations and to the simulated diffuse, isothermal ISM with ideal magneto-hydrodynamic turbulence. Results: We find that polarization gradient maps reveal elongated structures, which we associate with turbulence in the MIM. Our analysis indicates that turbulent MIM is in a generally transonic regime. This result for the turbulent regime is more general than the ones deduced by the analysis of electron density variation data, because it is based on the stochastic imprints of the Faraday rotation effect, which is also sensitive to the magnetic field fluctuations. Filamentary structures are seen with typical widths down to the angular resolution, and the observed morphologies closely match numerical simulations and, in some cases, Hα contours. The |∇P|/|P| intensity is found to be approximately log-normal distributed. No systematic variations in the sonic Mach number are observed as a function of Galactic coordinates, which is consistent with

  16. Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi

    2008-12-01

    The traditional expressions of the gravitational vector (GV) and the gravitational gradient tensor (GGT) have complicated forms depending on the first- and the second-order derivatives of associated Legendre functions (ALF), and also singular terms when approaching the poles. This article presents alternative expressions for the GV and GGT, which are independent of the derivatives, and are also non-singular. By using such expressions, it suffices to compute the ALF to two additional degrees and orders, instead of computing the first and the second derivatives of all the ALF. Therefore, the formulas are suitable for computer programming. Matlab software as well as an output of a numerical computation around the North Pole is also presented based on the derived formulas.

  17. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms. PMID:24907810

  18. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    SciTech Connect

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  19. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2015-07-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.

  20. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2014-12-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees and orders, are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the higher-order partial derivatives of the magnetic field in local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (version 0.0) and the main magnetic field model of IGRF11. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the potential field.

  1. Lentiviral Vector-Mediated Gradients of GDNF in the Injured Peripheral Nerve: Effects on Nerve Coil Formation, Schwann Cell Maturation and Myelination

    PubMed Central

    Eggers, Ruben; de Winter, Fred; Hoyng, Stefan A.; Roet, Kasper C. D.; Ehlert, Erich M.; Malessy, Martijn J. A.; Verhaagen, Joost; Tannemaat, Martijn R.

    2013-01-01

    Although the peripheral nerve is capable of regeneration, only a small minority of patients regain normal function after surgical reconstruction of a major peripheral nerve lesion, resulting in a severe and lasting negative impact on the quality of life. Glial cell-line derived neurotrophic factor (GDNF) has potent survival- and outgrowth-promoting effects on motoneurons, but locally elevated levels of GDNF cause trapping of regenerating axons and the formation of nerve coils. This phenomenon has been called the “candy store” effect. In this study we created gradients of GDNF in the sciatic nerve after a ventral root avulsion. This approach also allowed us to study the effect of increasing concentrations of GDNF on Schwann cell proliferation and morphology in the injured peripheral nerve. We demonstrate that lentiviral vectors can be used to create a 4 cm long GDNF gradient in the intact and lesioned rat sciatic nerve. Nerve coils were formed throughout the gradient and the number and size of the nerve coils increased with increasing GDNF levels in the nerve. In the nerve coils, Schwann cell density is increased, their morphology is disrupted and myelination of axons is severely impaired. The total number of regenerated and surviving motoneurons is not enhanced after the distal application of a GDNF gradient, but increased sprouting does result in higher number of motor axon in the distal segment of the sciatic nerve. These results show that lentiviral vector mediated overexpression of GDNF exerts multiple effects on both Schwann cells and axons and that nerve coil formation already occurs at relatively low concentrations of exogenous GDNF. Controlled expression of GDNF, by using a viral vector with regulatable GDNF expression, may be required to avoid motor axon trapping and to prevent the effects on Schwann cell proliferation and myelination. PMID:23951085

  2. Least-squares gradient calculation from multi-point observations of scalar and vector fields: methodology and applications with Cluster in the plasmasphere

    NASA Astrophysics Data System (ADS)

    de Keyser, J.; Darrouzet, F.; Dunlop, M. W.; Décréau, P. M. E.

    2007-05-01

    This paper describes a general-purpose algorithm for computing the gradients in space and time of a scalar field, a vector field, or a divergence-free vector field, from in situ measurements by one or more spacecraft. The algorithm provides total error estimates on the computed gradient, including the effects of measurement errors, the errors due to a lack of spatio-temporal homogeneity, and errors due to small-scale fluctuations. It also has the ability to diagnose the conditioning of the problem. Optimal use is made of the data, in terms of exploiting the maximum amount of information relative to the uncertainty on the data, by solving the problem in a weighted least-squares sense. The method is illustrated using Cluster magnetic field and electron density data to compute various gradients during a traversal of the inner magnetosphere. In particular, Cluster is shown to cross azimuthal density structure, and the existence of field-aligned currents in the plasmasphere is demonstrated.

  3. Location and depth estimation of point-dipole and line of dipoles using analytic signals of the magnetic gradient tensor and magnitude of vector components

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent

    2010-01-01

    The magnetic gradient tensor (MGT) provides gradient components of potential fields with mathematical properties which allow processing techniques e.g. analytic signal techniques. With MGT emerging as a new tool for geophysical exploration, the mathematical modelling of gradient tensor fields is necessary for interpretation of magnetic field measurements. The point-dipole and line of dipoles are used to approximate various magnetic objects. I investigate the maxima of the magnitude of magnetic vector components (MMVC) and analytic signals of magnetic gradient tensor (ASMGT) resulting from point-dipole and line of dipoles sources in determining horizontal locations. I also present a method in which depths of these sources are estimated from the ratio of the maximum of MMVC to the maximum of ASMGT. Theoretical examples have been carried out to test the feasibility of the method in obtaining source locations and depths. The method has been applied to the MMVC and ASMGT computed from the total field data over a basic/ultrabasic body at the emerald deposit of Socotó, Bahia, Brazil and buried water supply pipe near Jadaguda Township, India. In both field examples, the method produces good correlations with previous interpretations.

  4. Gradient vector fields based on variational image decomposition for skeletonization of electronic speckle pattern interferometry fringe patterns with variable density and their applications.

    PubMed

    Chen, Xia; Tang, Chen; Li, Biyuan; Su, Yonggang

    2016-09-01

    The skeletonization methods based on gradient vector fields (GVFs) have been a powerful tool for electronic speckle pattern interferometry (ESPI) fringe patterns. However, the skeletonization of ESPI fringe patterns with variable density has been an open problem in this area. In this paper, we propose a novel method for calculating GVFs based on the variational image decomposition of ESPI fringe patterns with variable density. In the proposed method, the GVFs of low-density regions are described in Beppo-Levi space, the high-density regions in Hilbert space and the noise regions in curvelet space. The GVFs of a whole image are the sum of the decomposed GVFs of low-density regions and high-density regions. The skeletons of ESPI fringe patterns with variable density can be obtained based on the topological analysis of the GVFs of a whole image. We apply the proposed method to a computer-simulated and two experimentally obtained ESPI fringe patterns with variable density and compare them with the related skeleton methods based on GVFs. The experimental results have demonstrated that the proposed method outperforms the other methods, even when the quality of the ESPI fringe patterns is considerably low. PMID:27607264

  5. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  6. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units

    SciTech Connect

    Snyder, James W.; Hohenstein, Edward G.; Luehr, Nathan; Martínez, Todd J.

    2015-10-21

    We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10{sup 2}) atoms.

  7. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units.

    PubMed

    Snyder, James W; Hohenstein, Edward G; Luehr, Nathan; Martínez, Todd J

    2015-10-21

    We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10(2)) atoms. PMID:26493897

  8. Manipulating the Gradient

    ERIC Educational Resources Information Center

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  9. Symbolic computer vector analysis

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  10. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  11. Primer vector theory and applications

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1975-01-01

    A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.

  12. Irradiance gradients

    SciTech Connect

    Ward, G.J. Ecole Polytechnique Federale, Lausanne ); Heckbert, P.S. . School of Computer Science Technische Hogeschool Delft . Dept. of Technical Mathematics and Informatics)

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques.

  13. Divergence-based vector quantization.

    PubMed

    Villmann, Thomas; Haase, Sven

    2011-05-01

    Supervised and unsupervised vector quantization methods for classification and clustering traditionally use dissimilarities, frequently taken as Euclidean distances. In this article, we investigate the applicability of divergences instead, focusing on online learning. We deduce the mathematical fundamentals for its utilization in gradient-based online vector quantization algorithms. It bears on the generalized derivatives of the divergences known as Fréchet derivatives in functional analysis, which reduces in finite-dimensional problems to partial derivatives in a natural way. We demonstrate the application of this methodology for widely applied supervised and unsupervised online vector quantization schemes, including self-organizing maps, neural gas, and learning vector quantization. Additionally, principles for hyperparameter optimization and relevance learning for parameterized divergences in the case of supervised vector quantization are given to achieve improved classification accuracy. PMID:21299418

  14. Vector Video

    NASA Astrophysics Data System (ADS)

    Taylor, David P.

    2001-01-01

    Vector addition is an important skill for introductory physics students to master. For years, I have used a fun example to introduce vector addition in my introductory physics classes based on one with which my high school physics teacher piqued my interest many years ago.

  15. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  16. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  17. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  18. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  19. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  20. Multi-point gradient calculation with constraints

    NASA Astrophysics Data System (ADS)

    de Keyser, Johan

    Multi-spacecraft missions resolve the space-time ambiguity inherent in single-spacecraft in situ measurements. One particularly useful technique is the computation of the gradients (spaceand time-derivatives) from multi-point observations of scalar and vector fields. Given the diffi- culties inherent in computing derivatives, we propose to improve the determination of gradients by imposing additional information in the form of constraints. We discuss geometric constraints on the orientation of the gradient vectors and physically-motivated constraints. For instance, imposing the divergence-free condition for the magnetic field leads to an improved curlometer. We describe the usefulness of such constrained least-squares gradient techniques as applied to magnetic field and plasma density observations by Cluster.

  1. Vertical gradients of sunspot magnetic fields

    NASA Astrophysics Data System (ADS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-04-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  2. Vertical gradients of sunspot magnetic fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  3. Conjugate gradient algorithms using multiple recursions

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  4. A modified conjugate gradient solver for very large systems

    NASA Astrophysics Data System (ADS)

    Barkai, D.; Moriarty, K. J. M.; Rebbi, C.

    1985-03-01

    A modified conjugate gradient method is derived which requires only one pass through the coefficients and the temporary vectors. The method is applicable to problems which may be complex and non-symmetric. The method is implemented on a vector processor (the CDC CYBER 205) and applied to a high-energy physics lattice gauge theory problem, though the implementation methodology is quite general.

  5. Overview of vector sensors for undersea applications

    NASA Astrophysics Data System (ADS)

    McEachern, James F.

    2003-10-01

    An overview of vector sensors for sonar applications is presented. The most prolific use of vector or pressure gradient sensors has been in directional sonobuoys to accomplish effective directional measurements with a sensor that is much smaller than the signal wavelength. Common characteristics, implementation issues, and self noise sources of directional hydrophones are reviewed. Arrays of vector sensors began to emerge in the 1980s and have the attractive property of being able to provide substantially higher directivity for a smaller equivalent aperture than that required for a scalar (omnidirectional) sensor array. Dyadic sensors bring additional directivity but development is required to realize them in a compact configuration. Future applications of vector sensors are discussed. The limited amount of information relative to the ocean acoustic vector fields is noted as a corollary technological requirement for the widespread adoption of vector sensors in sonar systems.

  6. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  7. Minimizing inner product data dependencies in conjugate gradient iteration

    NASA Technical Reports Server (NTRS)

    Vanrosendale, J.

    1983-01-01

    The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).

  8. Multistage vector (MSV) therapeutics.

    PubMed

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  9. Gradient systems on coupled cell networks

    NASA Astrophysics Data System (ADS)

    Manoel, Miriam; Roberts, Mark

    2015-10-01

    For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs. These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of {{\\mathbf{S}}1} -invariant admissible functions on a ring of cells.

  10. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  11. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  12. Foamy virus vectors.

    PubMed Central

    Russell, D W; Miller, A D

    1996-01-01

    Human foamy virus (HFV) is a retrovirus of the spumavirus family. We have constructed vectors based on HFV that encode neomycin phosphotransferase and alkaline phosphatase. These vectors are able to transduce a wide variety of vertebrate cells by integration of the vector genome. Unlike vectors based on murine leukemia virus, HFV vectors are not inactivated by human serum, and they transduce stationary-phase cultures more efficiently than murine leukemia virus vectors. These properties, as well as their large packaging capacity, make HFV vectors promising gene transfer vehicles. PMID:8523528

  13. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  14. Principal patterns of fractional-order differential gradients for face recognition

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Cao, Qi; Zhao, Anping

    2015-01-01

    We investigate the ability of fractional-order differentiation (FD) for facial texture representation and present a local descriptor, called the principal patterns of fractional-order differential gradients (PPFDGs), for face recognition. In PPFDG, multiple FD gradient patterns of a face image are obtained utilizing multiorientation FD masks. As a result, each pixel of the face image can be represented as a high-dimensional gradient vector. Then, by employing principal component analysis to the gradient vectors over the centered neighborhood of each pixel, we capture the principal gradient patterns and meanwhile compute the corresponding orientation patterns from which oriented gradient magnitudes are computed. Histogram features are finally extracted from these oriented gradient magnitude patterns as the face representation using local binary patterns. Experimental results on face recognition technology, A.M. Martinez and R. Benavente, Extended Yale B, and labeled faces in the wild face datasets validate the effectiveness of the proposed method.

  15. Reduced Vector Preisach Model

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)

    2002-01-01

    A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.

  16. Laser textured surface gradients

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  17. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  18. The vector ruling protractor

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    The theory, structure and working of a vector slide rule is presented in this report. This instrument is used for determining a vector in magnitude and position when given its components and its moment about a point in their plane.

  19. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  20. MATRIX AND VECTOR SERVICES

    Energy Science and Technology Software Center (ESTSC)

    2001-10-18

    PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.

  1. Restart 68000 vector remapping

    SciTech Connect

    Gustin, J.

    1984-05-03

    The circuit described allows power-on-reset (POR) vector fetch from ROM for a 68000 microprocessor. It offers programmability of exception vectors, including the restart vector. This method eliminates the need for high-resolution, address-decoder peripheral circuitry.

  2. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  3. Bioactive Molecule Prediction Using Extreme Gradient Boosting.

    PubMed

    Babajide Mustapha, Ismail; Saeed, Faisal

    2016-01-01

    Following the explosive growth in chemical and biological data, the shift from traditional methods of drug discovery to computer-aided means has made data mining and machine learning methods integral parts of today's drug discovery process. In this paper, extreme gradient boosting (Xgboost), which is an ensemble of Classification and Regression Tree (CART) and a variant of the Gradient Boosting Machine, was investigated for the prediction of biological activity based on quantitative description of the compound's molecular structure. Seven datasets, well known in the literature were used in this paper and experimental results show that Xgboost can outperform machine learning algorithms like Random Forest (RF), Support Vector Machines (LSVM), Radial Basis Function Neural Network (RBFN) and Naïve Bayes (NB) for the prediction of biological activities. In addition to its ability to detect minority activity classes in highly imbalanced datasets, it showed remarkable performance on both high and low diversity datasets. PMID:27483216

  4. Density gradient expansion of correlation functions

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert

    2013-04-01

    We present a general scheme based on nonlinear response theory to calculate the expansion of correlation functions such as the pair-correlation function or the exchange-correlation hole of an inhomogeneous many-particle system in terms of density derivatives of arbitrary order. We further derive a consistency condition that is necessary for the existence of the gradient expansion. This condition is used to carry out an infinite summation of terms involving response functions up to infinite order from which it follows that the coefficient functions of the gradient expansion can be expressed in terms of the local density profile rather than the background density around which the expansion is carried out. We apply the method to the calculation of the gradient expansion of the one-particle density matrix to second order in the density gradients and recover in an alternative manner the result of Gross and Dreizler [Gross and Dreizler, Z. Phys. AZPAADB0340-219310.1007/BF01413038 302, 103 (1981)], which was derived using the Kirzhnits method. The nonlinear response method is more general and avoids the turning point problem of the Kirzhnits expansion. We further give a description of the exchange hole in momentum space and confirm the wave vector analysis of Langreth and Perdew [Langreth and Perdew, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.21.5469 21, 5469 (1980)] for this case. This is used to derive that the second-order gradient expansion of the system averaged exchange hole satisfies the hole sum rule and to calculate the gradient coefficient of the exchange energy without the need to regularize divergent integrals.

  5. Multiclass Reduced-Set Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Tang, Benyang; Mazzoni, Dominic

    2006-01-01

    There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.

  6. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis

    USGS Publications Warehouse

    Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.

    2007-01-01

    The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.

  7. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  8. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  9. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  10. Gradient tabu search.

    PubMed

    Stepanenko, Svetlana; Engels, Bernd

    2007-01-30

    This paper presents a modification of the tabu search called gradient tabu search (GTS). It uses analytical gradients for a fast minimization to the next local minimum and analytical diagonal elements of the Hessian to escape local minima. For an efficient blocking of already visited areas tabu regions and tabu directions are introduced into the tabu list (TL). Trials with various well-known test functions indicate that the GTS is a very promising approach to determine local and global minima of differentiable functions. Possible application areas could be optimization routines for force field parameters or conformational searches for large molecules. PMID:17186482

  11. Gradient enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    van Zijl, Peter C.; Hurd, Ralph E.

    2011-12-01

    This paper provides a brief overview of the personal recollections of the authors regarding their contributions to the introduction of shielded gradient technology into NMR spectroscopy during the late 1980s and early 1990s. It provides some background into early probe design and details some of the early technical progress with the use of shielded magnetic field gradients for coherence selection in high resolution NMR and describes the developments at General Electric, the National Institutes of Health, Georgetown University and Johns Hopkins University School of Medicine that ultimately led to this technology becoming commonplace in modern NMR spectroscopy. Most of this early technical work was published in the Journal of Magnetic Resonance.

  12. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  13. Index Sets and Vectorization

    SciTech Connect

    Keasler, J A

    2012-03-27

    Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.

  14. Face recognition using local gradient binary count pattern

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaochao; Lin, Yaping; Ou, Bo; Yang, Junfeng; Wu, Zhelun

    2015-11-01

    A local feature descriptor, the local gradient binary count pattern (LGBCP), is proposed for face recognition. Unlike some current methods that extract features directly from a face image in the spatial domain, LGBCP encodes the local gradient information of the face's texture in an effective way and provides a more discriminative code than other methods. We compute the gradient information of a face image through convolutions with compass masks. The gradient information is encoded using the local binary count operator. We divide a face into several subregions and extract the distribution of the LGBCP codes from each subregion. Then all the histograms are concatenated into a vector, which is used for face description. For recognition, the chi-square statistic is used to measure the similarity of different feature vectors. Besides directly calculating the similarity of two feature vectors, we provide a weighted matching scheme in which different weights are assigned to different subregions. The nearest-neighborhood classifier is exploited for classification. Experiments are conducted on the FERET, CAS-PEAL, and AR face databases. LGBCP achieves 96.15% on the Fb set of FERET. For CAS-PEAL, LGBCP gets 96.97%, 98.91%, and 90.89% on the aging, distance, and expression sets, respectively.

  15. Bigravity from gradient expansion

    NASA Astrophysics Data System (ADS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-05-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  16. Vectorization of algorithms for solving systems of difference equations

    SciTech Connect

    Buzbee, B.L.

    1981-01-01

    Today's fastest computers achieve their highest level of performance when processing vectors. Consequently, considerable effort has been spent in the past decade developing algorithms that can be expressed as operations on vectors. In this paper two types of vector architecture are defined. A discussion is presented on the variation of performance that can occur on a vector processor as a function of algorithm and implementation, the consequences of this variation, and the performance of some basic operators on the two classes of vector architecture. Also discussed is the performance of higher-level operators, including some that should be used with caution. With both types of operators, the implementation of techniques for solving systems of difference equations is discussed. Included are fast Poisson solvers and point, line, and conjugate-gradient techniques. 1 figure.

  17. Vector theories in cosmology

    SciTech Connect

    Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe

    2010-03-15

    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.

  18. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  19. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  20. Plasmonic phase-gradient metasurface for spontaneous emission control

    NASA Astrophysics Data System (ADS)

    Langguth, L.; Schokker, A. H.; Guo, K.; Koenderink, A. F.

    2015-11-01

    We combine the concept of phase-gradient metasurfaces with fluorescence directionality control of an ensemble of incoherent emitters. We design a periodic metasurface to control the scattering amplitude of the lattice in momentum space. The lattice is embedded in a waveguiding layer doped with organic fluorophores. In contrast to the usual symmetric directionality that plasmonic lattices impart on emission, we find that the phase gradient translates into asymmetric directional emission into the far field, determined by scattering on a subset of the reciprocal lattice vectors. The measured asymmetry is well explained by analytical modeling.

  1. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  2. Continuous gravity gradient logging

    SciTech Connect

    Fitch, J.L.; Lyle, W.D. Jr.

    1986-07-29

    A method is described for conducting a gravimetry survey of an earth formation, comprising the steps of: (a) continuously traversing the earth formation with a gravity logging tool having a column of fluid within the tool, (b) measuring a first pressure difference along a first interval within the column of fluid, (c) measuring a second pressure difference along a second interval within the column of fluid, (d) differencing the first and second pressure differences to determine the gravity gradient along the earth formation between the first and second intervals.

  3. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The

  4. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  5. Understanding Vector Fields.

    ERIC Educational Resources Information Center

    Curjel, C. R.

    1990-01-01

    Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)

  6. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  7. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  8. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center (ESTSC)

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  9. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method.

    PubMed

    Brorsen, Kurt R; Zahariev, Federico; Nakata, Hiroya; Fedorov, Dmitri G; Gordon, Mark S

    2014-12-01

    The equations for the response terms for the fragment molecular orbital (FMO) method interfaced with the density functional theory (DFT) gradient are derived and implemented. Compared to the previous FMO-DFT gradient, which lacks response terms, the FMO-DFT analytic gradient has improved accuracy for a variety of functionals, when compared to numerical gradients. The FMO-DFT gradient agrees with the fully ab initio DFT gradient in which no fragmentation is performed, while reducing the nonlinear scaling associated with standard DFT. Solving for the response terms requires the solution of the coupled perturbed Kohn-Sham (CPKS) equations, where the CPKS equations are solved through a decoupled Z-vector procedure called the self-consistent Z-vector method. FMO-DFT is a nonvariational method and the FMO-DFT gradient is unique compared to standard DFT gradients in that the FMO-DFT gradient requires terms from both DFT and time-dependent density functional theory (TDDFT) theories. PMID:26583213

  10. Generalized conjugate gradient squared

    SciTech Connect

    Fokkema, D.R.; Sleijpen, G.L.G.

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  11. Tectorial Membrane Stiffness Gradients

    PubMed Central

    Richter, Claus-Peter; Emadi, Gulam; Getnick, Geoffrey; Quesnel, Alicia; Dallos, Peter

    2007-01-01

    The mammalian inner ear processes sound with high sensitivity and fine resolution over a wide frequency range. The underlying mechanism for this remarkable ability is the “cochlear amplifier”, which operates by modifying cochlear micromechanics. However, it is largely unknown how the cochlea implements this modification. Although gradual improvements in experimental techniques have yielded ever-better descriptions of gross basilar membrane vibration, the internal workings of the organ of Corti and of the tectorial membrane have resisted exploration. Although measurements of cochlear function in mice with a gene mutation for α-tectorin indicate the tectorial membrane's key role in the mechanoelectrical transformation by the inner ear, direct experimental data on the tectorial membrane's physical properties are limited, and only a few direct measurements on tectorial micromechanics are available. Using the hemicochlea, we are able to show that a tectorial membrane stiffness gradient exists along the cochlea, similar to that of the basilar membrane. In artificial perilymph (but with low calcium), the transversal and radial driving point stiffnesses change at a rate of –4.0 dB/mm and −4.9 dB/mm, respectively, along the length of the cochlear spiral. In artificial endolymph, the stiffness gradient for the transversal component was –3.4 dB/mm. Combined with the changes in tectorial membrane dimensions from base to apex, the radial stiffness changes would be able to provide a second frequency-place map in the cochlea. Young's modulus, which was obtained from measurements performed in the transversal direction, decreased by −2.6 dB/mm from base to apex. PMID:17496047

  12. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  13. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    SciTech Connect

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-05-15

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.

  14. Gradient boosting machines, a tutorial.

    PubMed

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  15. Gradient boosting machines, a tutorial

    PubMed Central

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  16. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    NASA Astrophysics Data System (ADS)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  17. Gradients in analyzability.

    PubMed

    Grotstein, J S

    A discussion of "Some Communicative Properties of the Bipersonal Field" by Robert Langs, M.D. In response to Dr. Langs' delineation of the bipersonal field concept and his clinical elaboration of a triad of disorders which are graded into classifications of descending analyzability: Types A,B, and C fields. I confirm his thesis and endeavor to demonstrate some underlying foundations of his categorical assumptions, namely the conceptions of projective identification, of the intactness of the background object of primary identification, the conception of a dual-track theory of infantile development in order to delineate the parallel between the separated self and the continuation of primary identification, and the postulation of manic and schizoid types of narcissistic character disorders (Types B and C respectively). All of these conceptions are vicissitudes of the varying ways in which patients confront the depressive position of separation-individuation with rapprochement and, thereby, conform to a gradient in which symbolization interpretations can be utilized in analytic treatment. PMID:738806

  18. Vector WIMP miracle

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Kakizaki, Mitsuru; Matsumoto, Shigeki; Seto, Osamu

    2012-07-01

    Weakly interacting massive particle (WIMP) is well known to be a good candidate for dark matter, and it is also predicted by many new physics models beyond the standard model at the TeV scale. We found that, if the WIMP is a vector particle (spin-one particle) which is associated with some gauge symmetry broken at the TeV scale, the Higgs mass is often predicted to be 120-125 GeV, which is very consistent with the result of Higgs searches recently reported by ATLAS and CMS Collaborations at the Large Hadron Collider experiment. In this Letter, we consider the vector WIMP using a non-linear sigma model in order to confirm this result as general as possible in a bottom-up approach. Near-future prospects to detect the vector WIMP at both direct and indirect detection experiments of dark matter are also discussed.

  19. Vectorized garbage collection

    SciTech Connect

    Appel, A.W.; Bendiksen, A.

    1988-01-01

    Garbage collection can be done in vector mode on supercomputers like the Cray-2 and the Cyber 205. Both copying collection and mark-and-sweep can be expressed as breadth-first searches in which the queue can be processed in parallel. The authors have designed a copying garbage collector whose inner loop works entirely in vector mode. The only significant limitation of the algorithm is that if the size of the records is not constant, the implementation becomes much more complicated. The authors give performance measurements of the algorithm as implemented for Lisp CONS cells on the Cyber 205. Vector-mode garbage collection performs up to 9 times faster than scalar-mode collection.

  20. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  1. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  2. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  3. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  4. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  5. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  6. Gradient elution in capillary electrochromatography

    SciTech Connect

    Anex, D.; Rakestraw, D.J.; Yan, Chao; Dadoo, R.; Zare, R.N.

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  7. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  8. Vector-borne diseases.

    PubMed

    Gubler, D J

    2009-08-01

    Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years. PMID:20128467

  9. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  10. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  11. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  12. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  13. Research in vector control

    PubMed Central

    Quarterman, K. D.

    1963-01-01

    Current research on vector control is directed mainly at finding answers to the problem of resistance. Despite considerable advances in knowledge of the genetics, biochemistry, physiology, and ecology of resistant vectors, the only practical answer found so far has been the development of new, substitute insecticides. At present the operational needs of existing large-scale control or eradication programmes swallow up much of the funds, personnel and facilities that might otherwise be devoted to basic research. Moreover, to back up these programmes, there is a continuing need for applied research on such questions as the packaging of pesticides, improvements in equipment and the development of new formulations. The author gives examples of applied research already carried out or in progress and indicates some areas of both basic and applied research demanding urgent attention. Like other participants in the seminar, he stresses the fundamental importance of ecological studies. He also examines the concept of integrated vector control and points out that the realization of this concept presupposes close co-ordination between basic and applied research, laboratory and field studies, and investigations on chemical and non-chemical vector control measures. PMID:20604177

  14. Gradient estimation using configurations of two or three spacecraft

    NASA Astrophysics Data System (ADS)

    Vogt, J.; Sorbalo, E.; He, M.; Blagau, A.

    2013-11-01

    The forthcoming three-satellite mission Swarm will allow us to investigate plasma processes and phenomena in the upper ionosphere from an in-situ multi-spacecraft perspective. Since with less than four points in space the spatiotemporal ambiguity cannot be resolved fully, analysis tools for estimating spatial gradients, wave vectors, or boundary parameters need to utilise additional information such as geometrical or dynamical constraints. This report deals with gradient estimation where the planar component is constructed using instantaneous three-point observations or, for quasi-static structures, by means of measurements along the orbits of two close spacecraft. A new least squares (LS) gradient estimator for the latter case is compared with existing finite difference (FD) schemes and also with a three-point LS technique. All available techniques are presented in a common framework to facilitate error analyses and consistency checks, and to show how arbitrary combinations of planar gradient estimators and constraints can be formed. The accuracy of LS and FD planar gradient estimators is assessed in terms of prescribed and adjustable discretization parameters to optimise their performance along the satellite orbits. Furthermore, we discuss the implications of imperfect constraint equations for error propagation, and address the effects of sub-scale structures. The two-spacecraft LS scheme is demonstrated using Cluster FGM measurements at a planar and essentially force-free plasma boundary in the solar wind where all three different types of constraints to construct out-of-plane derivatives can be applied.

  15. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  16. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density. PMID:25978093

  17. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  18. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  19. Stochastic estimates of gradient from laser measurements for an autonomous Martian roving vehicle

    NASA Technical Reports Server (NTRS)

    Burger, P. A.

    1973-01-01

    The general problem of estimating the state vector x from the state equation h = Ax where h, A, and x are all stochastic, is presented. Specifically, the problem is for an autonomous Martian roving vehicle to utilize laser measurements in estimating the gradient of the terrain. Error exists due to two factors - surface roughness and instrumental measurements. The errors in slope depend on the standard deviations of these noise factors. Numerically, the error in gradient is expressed as a function of instrumental inaccuracies. Certain guidelines for the accuracy of permissable gradient must be set. It is found that present technology can meet these guidelines.

  20. Stochastic estimates of gradient from laser measurements for an autonomous Martian Roving Vehicle

    NASA Technical Reports Server (NTRS)

    Shen, C. N.; Burger, P.

    1973-01-01

    The general problem presented in this paper is one of estimating the state vector x from the state equation h = Ax, where h, A, and x are all stochastic. Specifically, the problem is for an autonomous Martian Roving Vehicle to utilize laser measurements in estimating the gradient of the terrain. Error exists due to two factors - surface roughness and instrumental measurements. The errors in slope depend on the standard deviations of these noise factors. Numerically, the error in gradient is expressed as a function of instrumental inaccuracies. Certain guidelines for the accuracy of permissable gradient must be set. It is found that present technology can meet these guidelines.-

  1. Parameter-exploring policy gradients.

    PubMed

    Sehnke, Frank; Osendorfer, Christian; Rückstiess, Thomas; Graves, Alex; Peters, Jan; Schmidhuber, Jürgen

    2010-05-01

    We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method outperforms well-known algorithms from the fields of standard policy gradients, finite difference methods and population based heuristics. We also show that the improvement is largest when the parameter samples are drawn symmetrically. Lastly we analyse the importance of the individual components of our method by incrementally incorporating them into the other algorithms, and measuring the gain in performance after each step. PMID:20061118

  2. Spatial gradient tuning in metamaterials

    NASA Astrophysics Data System (ADS)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  3. Preloadable vector sensitive latch

    NASA Technical Reports Server (NTRS)

    Acres, William R. (Inventor)

    1987-01-01

    A preloadable vector-sensitive latch which automatically releases when the force vector from a latch memebr reaches a specified release angle is presented. In addition, it contains means to remove clearance between the latched members and to preload the latch to prevent separation at angles less than the specified release angle. The latch comprises a triangular main link, a free link connected between a first corner of the main link and a yoke member, a housing, and an actuator connected between the yoke member and the housing. A return spring bias means connects the main link to a portion of the housing. A second corner of the main link is slidably and pivotally connected to the housing via a slot in a web portion of the housing. The latch housing has a rigid docking ring alignable with a mating locking ring which is engageable by a locking roller journalled on the third corner of the triangular main link.

  4. Generalized gradient and contour program

    USGS Publications Warehouse

    Hellman, Marshall Strong

    1972-01-01

    This program computes estimates of gradients, prepares contour maps, and plots various sets of data provided by the user on the CalComp plotters. The gradients represent the maximum rates of change of a real variable Z=f(X,Y) with respect to the twodimensional rectangle on which the function is defined. The contours are lines of equal Z values. The program also plots special line data sets provided by the user.

  5. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  6. Some experiences with Krylov vectors and Lanczos vectors

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng; Kim, Hyoung M.

    1993-01-01

    This paper illustrates the use of Krylov vectors and Lanczos vectors for reduced-order modeling in structural dynamics and for control of flexible structures. Krylov vectors and Lanczos vectors are defined and illustrated, and several applications that have been under study at The University of Texas at Austin are reviewed: model reduction for undamped structural dynamics systems, component mode synthesis using Krylov vectors, model reduction of damped structural dynamics systems, and one-sided and two-sided unsymmetric block-Lanczos model-reduction algorithms.

  7. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  8. Signal Selection in High-Resolution NMR by Pulsed Field Gradients. I. Geometrical Analysis

    NASA Astrophysics Data System (ADS)

    Mitschang, Lorenz

    1999-03-01

    A geometrical description for the selection of coherence transfer pathways in high resolution NMR by the application of pulsed field gradients along three orthogonal directions in space is presented. The response of the spin system is one point of the three-dimensional Fourier transform of the sample volume affected by a sequence of field gradients. The property that a pathway is retained (or suppressed) when a sequence of field gradients is applied is expressed by the property of vectors, representing the pathway and the sequence, respectively, to be orthogonal (or not orthogonal). Ignoring imperfections of RF pulses, and with the exception of sensitivity enhanced experiments and experiments where the relevant coherence order is zero while field gradients are applied, it is shown that at most only half of the relevant pathways, as compared to a phase cycled experiment, are retained when field gradients are used for signal selection.

  9. Properties of the Acoustic Vector Field in Underwater Waveguides

    NASA Astrophysics Data System (ADS)

    Dall'Osto, David R.

    This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.

  10. An M-step preconditioned conjugate gradient method for parallel computation

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.

  11. Determination of hearth position of a forthcoming strong EQ using gradients and phase velocities of ULF geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Kopytenko, Yu. A.; Ismaguilov, V. S.; Hattori, K.; Hayakawa, M.

    Behavior of gradient and phase velocity vectors of ULF ( F < 1 Hz) geomagnetic disturbances was investigated for two earthquake (EQ) events in Japan in 2000 ( M > 6) and 2003 ( M = 5.8) years. The gradient and phase velocity vectors were determined using the data of three high-sensitive three-component magnetic stations situated at a distance ∼5 km from each other (magnetic gradientometer). Two gradientometers were installed southeast and southwest of Tokyo at a distance ∼150 km from each other. It was found that the gradient and phase velocity values had anomaly changes 3-4 months before the strong EQs. New directions of the gradient vectors took place in the same period - the directions just to the forthcoming EQ epicenter. The directions from the forthcoming EQ epicenter arouse for the phase velocity vectors. We propose to use the gradient and phase velocity vectors of the ULF geomagnetic disturbances as important factors of the short-term prediction of strong earthquakes.

  12. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  13. Vector Theory of Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    So far, works on ultrasonic diffraction imaging are based on scalar theory of sound wave. This is not correct as sound has vector nature. But when sound propagates in solids, its vector nature has to be considered as polarization occurs and transverse wave as well as longitudinal wave will appear. Vector theory is especially needed when the obstacle size is smaller than the wavelength. We use the Smythe-Kirchhoff approach for the vector theory of diffraction. We derive the image formation theory based on the vector diffraction theory. The effect of polarization on acoustical imaging is discussed.

  14. Estimation of coastal density gradients

    NASA Astrophysics Data System (ADS)

    Howarth, M. J.; Palmer, M. R.; Polton, J. A.; O'Neill, C. K.

    2012-04-01

    Density gradients in coastal regions with significant freshwater input are large and variable and are a major control of nearshore circulation. However their measurement is difficult, especially where the gradients are largest close to the coast, with significant uncertainties because of a variety of factors - spatial and time scales are small, tidal currents are strong and water depths shallow. Whilst temperature measurements are relatively straightforward, measurements of salinity (the dominant control of spatial variability) can be less reliable in turbid coastal waters. Liverpool Bay has strong tidal mixing and receives fresh water principally from the Dee, Mersey, Ribble and Conwy estuaries, each with different catchment influences. Horizontal and vertical density gradients are variable both in space and time. The water column stratifies intermittently. A Coastal Observatory has been operational since 2002 with regular (quasi monthly) CTD surveys on a 9 km grid, an situ station, an instrumented ferry travelling between Birkenhead and Dublin and a shore-based HF radar system measuring surface currents and waves. These measurements are complementary, each having different space-time characteristics. For coastal gradients the ferry is particularly useful since measurements are made right from the mouth of Mersey. From measurements at the in situ site alone density gradients can only be estimated from the tidal excursion. A suite of coupled physical, wave and ecological models are run in association with these measurements. The models, here on a 1.8 km grid, enable detailed estimation of nearshore density gradients, provided appropriate river run-off data are available. Examples are presented of the density gradients estimated from the different measurements and models, together with accuracies and uncertainties, showing that systematic time series measurements within a few kilometres of the coast are a high priority. (Here gliders are an exciting prospect for

  15. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    PubMed Central

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737

  16. Vector ecology of equine piroplasmosis.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2015-01-01

    Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread. PMID:25564746

  17. Wideband direction finding via shielded gradient beamspace techniques

    NASA Astrophysics Data System (ADS)

    Brudner, Terry J.; Henderson, Terry L.

    2003-10-01

    Monopulse techniques have been used for over 50 years in the radar community to estimate the direction of arrival (DOA) of incoming echoes. In recent years, a variant of the monopulse technique has been developed, termed the shielded gradient technique, which allows DOA estimation for signals of arbitrary bandwidth. The technique maps the array-output M-vector into a frequency-invariant B-dimensional beamspace. The work presented here describes the shielded gradient beamspace model in its higher-order form, and develops wideband DOA estimation algorithms analogous to the narrow-band MUSIC, root-MUSIC, and ESPRIT algorithms. The performance of these new algorithms is studied through simulation and application to measured, in-water sonar data. They are also compared via simulation to existing wideband DOA estimation algorithms. [Work supported by the Internal Research and Development Program under Contract No. FEE-800.

  18. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  19. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  20. Full-sky lensing reconstruction of gradient and curl modes from CMB maps

    SciTech Connect

    Namikawa, Toshiya; Yamauchi, Daisuke; Taruya, Atsushi E-mail: yamauchi@icrr.u-tokyo.ac.jp

    2012-01-01

    We present a method of lensing reconstruction on the full sky, by extending the optimal quadratic estimator proposed by Okamoto and Hu (2003) to the case including the curl mode of deflection angle. The curl mode is induced by the vector and tensor metric perturbations, and the reconstruction of the curl mode would be a powerful tool to not only check systematics in the estimated gradient mode but also probe any vector and tensor sources. We find that the gradient and curl modes can be reconstructed separately, thanks to the distinctive feature in the parity symmetry between the gradient and curl modes. We compare our estimator with the flat-sky estimator proposed by Cooray et al (2005). Based on the new formalism, the expected signal-to-noise ratio of the curl mode produced by the primordial gravitational-waves and a specific model of cosmic strings are estimated, and prospects for future observations are discussed.

  1. The influence of ALN-Al gradient material gradient index on ballistic performance

    NASA Astrophysics Data System (ADS)

    Wang, Youcong; Liu, Qiwen; Li, Yao; Shen, Qiang

    2013-03-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  2. Vector-vector production in photon-photon interactions

    NASA Astrophysics Data System (ADS)

    Ronan, Micheal T.

    1989-04-01

    Measurements of exclusive untagged ρ0ρ0,ρφ,K*K¯*, and ρω production and tagged ρ0ρ0 production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.

  3. Polynomial preconditioning for conjugate gradient methods

    SciTech Connect

    Ashby, S.F.

    1987-12-01

    The solution of a linear system of equations, Ax = b, arises in many scientific applications. If A is large and sparse, an iterative method is required. When A is hermitian positive definite (hpd), the conjugate gradient method of Hestenes and Stiefel is popular. When A is hermitian indefinite (hid), the conjugate residual method may be used. If A is ill-conditioned, these methods may converge slowly, in which case a preconditioner is needed. In this thesis we examine the use of polynomial preconditioning in CG methods for both hermitian positive definite and indefinite matrices. Such preconditioners are easy to employ and well-suited to vector and/or parallel architectures. We first show that any CG method is characterized by three matrices: an hpd inner product matrix B, a preconditioning matrix C, and the hermitian matrix A. The resulting method, CG(B,C,A), minimizes the B-norm of the error over a Krylov subspace. We next exploit the versatility of polynomial preconditioners to design several new CG methods. To obtain an optimum preconditioner, we solve a constrained minimax approximation problem. The preconditioning polynomial, C(lambda), is optimum in that it minimizes a bound on the condition number of the preconditioned matrix, p/sub m/(A). An adaptive procedure for dynamically determining the optimum preconditioner is also discussed. Finally, in a variety of numerical experiments, conducted on a Cray X-MP/48, we demonstrate the effectiveness of polynomial preconditioning. 66 ref., 19 figs., 39 tabs.

  4. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  5. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  6. Templating Surfaces with Gradient Assemblies

    SciTech Connect

    Genzer,J.

    2005-01-01

    One of the most versatile and widely used methods of forming surfaces with position-dependent wettability is that conceived by Chaudhury and Whitesides more than a decade ago. In this paper we review several projects that utilize this gradient-forming methodology for: controlled of deposition of self-assembled monolayers on surfaces, generating arrays of nanoparticles with number density gradients, probing the mushroom-to-brush transition in surface-anchored polymers, and controlling the speed of moving liquid droplets on surfaces.

  7. Variable metric conjugate gradient methods

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  8. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  9. HIGH GRADIENT MAGNETIC PARTICULATE COLLECTION

    EPA Science Inventory

    This paper describes the initial phases of an evaluation of high gradient magnetic separation (HGMS) as a potential method of fine particle collection from industrial stack gases. HGMS is a relatively new separation technique that has been shown to be capable of removing small, w...

  10. Gradient Tempering Of Bearing Races

    NASA Technical Reports Server (NTRS)

    Parr, Richardson A.

    1991-01-01

    Gradient-tempering process increases fracture toughness and resistance to stress-corrosion cracking of ball-bearing races made of hard, strong steels and subject to high installation stresses and operation in corrosive media. Also used in other applications in which local toughening of high-strength/low-toughness materials required.

  11. Multiscale hierarchical support vector clustering

    NASA Astrophysics Data System (ADS)

    Hansen, Michael Saas; Holm, David Alberg; Sjöstrand, Karl; Ley, Carsten Dan; Rowland, Ian John; Larsen, Rasmus

    2008-03-01

    Clustering is the preferred choice of method in many applications, and support vector clustering (SVC) has proven efficient for clustering noisy and high-dimensional data sets. A method for multiscale support vector clustering is demonstrated, using the recently emerged method for fast calculation of the entire regularization path of the support vector domain description. The method is illustrated on artificially generated examples, and applied for detecting blood vessels from high resolution time series of magnetic resonance imaging data. The obtained results are robust while the need for parameter estimation is reduced, compared to support vector clustering.

  12. VLSI Processor For Vector Quantization

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Pixel intensities in each kernel compared simultaneously with all code vectors. Prototype high-performance, low-power, very-large-scale integrated (VLSI) circuit designed to perform compression of image data by vector-quantization method. Contains relatively simple analog computational cells operating on direct or buffered outputs of photodetectors grouped into blocks in imaging array, yielding vector-quantization code word for each such block in sequence. Scheme exploits parallel-processing nature of vector-quantization architecture, with consequent increase in speed.

  13. Localization and vector spherical harmonics

    NASA Astrophysics Data System (ADS)

    von Brecht, James H.

    2016-01-01

    This paper establishes the following localization property for vector spherical harmonics: a wide class of non-local, vector-valued operators reduce to local, multiplication-type operations when applied to a vector spherical harmonic. As localization occurs in a very precise, quantifiable and explicitly computable fashion, the localization property provides a set of useful formulae for analyzing vector-valued fractional diffusion and non-local differential equations defined on S d - 1. As such analyses require a detailed understanding of operators for which localization occurs, we provide several applications of the result in the context of non-local differential equations.

  14. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  15. The MSFC Vector Magnetograph

    NASA Astrophysics Data System (ADS)

    Hagyard, M. J.; Cumings, N. P.; West, E. A.; Smith, J. E.

    1982-09-01

    The NASA/Marshall Space Flight Center's solar vector magnetograph system is described; this system allows measurements of all components of the Sun's photospheric magnetic field over a 5 × 5 or 2.0 × 2.0 arc min square field-of-view with an optimum time resolution of ˜ 100 s and an optimum signal-to-noise of ˜1600. The basic system components are described, including the optics, detector, digital system and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration. Scientific investigations which utilize the unique characteristics of the instrument are described and typical results are presented.

  16. The MSFC vector magnetograph

    NASA Astrophysics Data System (ADS)

    Hagyard, M. J.; Cumings, N. P.; West, E. A.

    1981-02-01

    The NASA/Marshall Space Flight Center's solar vector magnetograph system allows measurements of all components of the Sun's photospheric magnetic field over a 5 x 5 or 2.5 x 2.5 arc min square field of view with an optimum time resolution of approximately 100 sec and an optimum signal-to-noise of approximately 1000. The basic system components are described, including the optics, detector, digital system, and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration.

  17. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  18. Iterative methods for the WLS state estimation on RISC, vector, and parallel computers

    SciTech Connect

    Nieplocha, J.; Carroll, C.C.

    1993-10-01

    We investigate the suitability and effectiveness of iterative methods for solving the weighted-least-square (WLS) state estimation problem on RISC, vector, and parallel processors. Several of the most popular iterative methods are tested and evaluated. The best performing preconditioned conjugate gradient (PCG) is very well suited for vector and parallel processing as is demonstrated for the WLS state estimation of the IEEE standard test systems. A new sparse matrix format for the gain matrix improves vector performance of the PCG algorithm and makes it competitive to the direct solver. Internal parallelism in RISC processors, used in current multiprocessor systems, can be taken advantage of in an implementation of this algorithm.

  19. An efficient method for recovering Lyapunov vectors from singular vectors

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher L.; Samelson, Roger M.

    2007-05-01

    Lyapunov vectors are natural generalizations of normal modes for linear disturbances to aperiodic deterministic flows and offer insights into the physical mechanisms of aperiodic flow and the maintenance of chaos. Most standard techniques for computing Lyapunov vectors produce results which are norm-dependent and lack invariance under the linearized flow (except for the leading Lyapunov vector) and these features can make computation and physical interpretation problematic. An efficient, norm-independent method for constructing the n most rapidly growing Lyapunov vectors from n - 1 leading forward and n leading backward asymptotic singular vectors is proposed. The Lyapunov vectors so constructed are invariant under the linearized flow in the sense that, once computed at one time, they are defined, in principle, for all time through the tangent linear propagator. An analogous method allows the construction of the n most rapidly decaying Lyapunov vectors from n decaying forward and n - 1 decaying backward singular vectors. This method is demonstrated using two low-order geophysical models.

  20. Towed and Shipboard Vector Magnetometers in Marine Geophysics

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Engels, M.

    2011-12-01

    The use of vector magnetometer components in geomagnetics has many advantages compared to the use of total field magnetometers. However, in marine geophysics the robust and easy-to-use Proton Precession magnetometers are still the standard instruments. Most of the few vector magnetometers in use work on multi instrument deep submersible platforms. Here we present some new instrumental and methodological aspects of surface towed fluxgate vector magnetometers which we use in a combination with Overhauser sensors. Processed fluxgate total field data are practically identical to the Overhauser reference and even provide a reliable gradient when combined with one Overhauser.The vertical component derived from the vector data constrains 2-D modelling much better than the total field alone. Although towed vector magnetometers typically provide no independent estimate of yaw, we illustrate that a numerical yaw (bandpass filtered magnetic heading) can provide reasonable estimates of the horizontal field components. These component data open additional analysis tools: the strike direction of magnetic lineations can be estimated from single profiles by either magnetic boundary strike ellipses in the space domain or by coherences between vertical and horizontal components in the wavenumber domain. Auto power spectra of the total field provide an approximate depth to the anomaly source or, if in obvious contradiction to the bathymetric depth, allow the detection of distortions, for example, by external temporal geomagnetic variations. A more common application is the use of vector magnetometers as shipboard instruments where the sensor's orientation can easily be resolved with data from the ship's positioning systems. We present some comparisons of shipboard and towed vector data. The quality of the magnetic data recorded onboard the ship can be surprisingly good after a thorough compensation for the ship's magnetic field.

  1. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  2. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  3. Dislocation microstructures and strain-gradient plasticity with one active slip plane

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Garroni, Adriana; Müller, Stefan

    2016-08-01

    We study dislocation networks in the plane using the vectorial phase-field model introduced by Ortiz and coworkers, in the limit of small lattice spacing. We show that, in a scaling regime where the total length of the dislocations is large, the phase field model reduces to a simpler model of the strain-gradient type. The limiting model contains a term describing the three-dimensional elastic energy and a strain-gradient term describing the energy of the geometrically necessary dislocations, characterized by the tangential gradient of the slip. The energy density appearing in the strain-gradient term is determined by the solution of a cell problem, which depends on the line tension energy of dislocations. In the case of cubic crystals with isotropic elasticity our model shows that complex microstructures may form in which dislocations with different Burgers vector and orientation react with each other to reduce the total self-energy.

  4. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  5. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  6. Bubble vector in automatic merging

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Butler, T. G.

    1987-01-01

    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.

  7. Carbon and Oxygen Galactic Gradients

    NASA Astrophysics Data System (ADS)

    Carigi, L.; Peimbert, M.; Esteban, C.; García-Rojas, J.

    2006-06-01

    A chemical evolution model of the Galaxy has been computed to reproduce the O/H gradients from Galactic HII regions. This model solves the C enrichment problem because it fits the C/H and C/O gradients and the C and O histories of the solar vicinity. The model is based on C yields dependent on metallicity (Z) owing to stellar winds. The C yields of massive stars (MS) increase with Z and those of low and intermediate mass stars (LIMS) decrease with Z. An important result is that the fraction of carbon in the interstellar medium (ISM) due to MS and LIMS is strongly dependent on Z of the ISM, therefore, that fraction depends on time and on the Galactocentric distance. At present and in the solar vicinity about half of the C in the interstellar medium has been produced by MS and half by LIMS.

  8. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  9. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  10. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  11. A neural support vector machine.

    PubMed

    Jändel, Magnus

    2010-06-01

    Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested. PMID:20092978

  12. Strategies for targeting lentiviral vectors.

    PubMed

    Frecha, Cecilia; Szécsi, Judit; Cosset, Francois-Loîc; Verhoeyen, Els

    2008-12-01

    Vectors derived from retroviruses such as lentiviruses and onco-retroviruses are probably among the most suitable tools to achieve a long-term gene transfer since they allow stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses (MLV) since in contrast to the latter they can transduce non-proliferating target cells. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer approaches in vivo. Here we provide an overview of innovative approaches to upgrade lentiviral vectors for tissue or cell targeting and which have potential for in vivo gene delivery. In this overview we distinguish between three types of lentiviral vector targeting strategies (Fig 1): 1) targeting of vectors at the level of vector-cell entry through lentiviral vector surface modifications; 2) targeting at the level of transgene transcription by insertion of tissue specific promoters into lentiviral vectors; 3) a novel microRNA technology that rather than targeting the 'right' cells will 'detarget' transgene expression from non-target cells while achieving high expression in the target-cell. It is clear that each strategy is of enormous value for several gene therapy approaches but combining these three layers of transgene expression control will offer tools to really overcome several drawbacks in the field such as side-effect of off-target expression, clearance of transgene modified cells by immune response to the transgene and lack of biosecurity and efficiency in in vivo approaches. PMID:19075628

  13. Superdirective and gradient sensor arrays

    NASA Astrophysics Data System (ADS)

    Merklinger, Harold M.

    2003-10-01

    During the late 1960s and the 1970s, underwater acoustic investigators examined superdirective and gradient sensor systems in order to enhance submarine detection capabilities for surface ships and maritime aircraft. Simple gradient processing had already been used in both in-air acoustic systems (cardioid and super-cardioid microphones) as well as radio and radar applications. Superdirective techniques were known [R. L. Pritchard, J. Acoust. Soc. Am. 25, 879 (1953)] and sometimes exploited in radar systems. It was quickly demonstrated that simple gradient sensors and modest degrees of superdirective array processing were possible, although self-noise and the ability to calibrate hydrophones limited the processing gains achievable. Circular superdirective arrays were used extensively by the Defence Research Establishment Atlantic for noise directionality measurements in the frequency range 4 Hz to about 1 kHz and considered for naval ASW applications until the superiority of oil-filled conventional arrays became apparent. Nevertheless, the significant theoretical and practical development of spatial harmonic beamforming and direction finding was completed. Although much of this work was not considered classified, neither was it widely published. This presentation will review the concepts developed and progress made. Beamforming, noise mitigation and calibration issues are covered.

  14. Vector Network Analysis

    Energy Science and Technology Software Center (ESTSC)

    1997-10-20

    Vector network analyzers are a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. The Microwave Project, which is part of Sandia National Laboratories Primary Standards Laboratory, routinely uses check standardsmore » to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance process, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the same check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user.« less

  15. Vector-vector production in photon-photon interactions

    SciTech Connect

    Ronan, M.T.

    1988-12-09

    Measurements of exclusive untagged /rho//sup 0//rho//sup 0/, /rho//phi/, K/sup *//bar K//sup */, and /rho/..omega.. production and tagged /rho//sup 0//rho//sup 0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented. 10 refs., 9 figs.

  16. Vector-vector production in photon-photon interactions

    SciTech Connect

    Ronan, M. T.

    1989-04-25

    Measurements of exclusive untagged /rho//sup 0//rho0/,/rho//phi/,/ital K//sup *//ital K/bar /*/, and /rho/..omega.. production and tagged /rho//sup 0//rho0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.

  17. Surface reconstruction in gradient-field domain using compressed sensing.

    PubMed

    Rostami, Mohammad; Michailovich, Oleg V; Wang, Zhou

    2015-05-01

    Surface reconstruction from measurements of spatial gradient is an important computer vision problem with applications in photometric stereo and shape-from-shading. In the case of morphologically complex surfaces observed in the presence of shadowing and transparency artifacts, a relatively large dense gradient measurements may be required for accurate surface reconstruction. Consequently, due to hardware limitations of image acquisition devices, situations are possible in which the available sampling density might not be sufficiently high to allow for recovery of essential surface details. In this paper, the above problem is resolved by means of derivative compressed sensing (DCS). DCS can be viewed as a modification of the classical CS, which is particularly suited for reconstructions involving image/surface gradients. In DCS, a standard CS setting is augmented through incorporation of additional constraints arising from some intrinsic properties of potential vector fields. We demonstrate that using DCS results in reduction in the number of measurements as compared with the standard (dense) sampling, while producing estimates of higher accuracy and smaller variability as compared with CS-based estimates. The results of this study are further supported by a series of numerical experiments. PMID:25769157

  18. On the heat flux vector for flowing granular materials--part II: derivation and special cases

    SciTech Connect

    Massoudi, Mehrdad

    2006-09-10

    Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non-linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient.

  19. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  20. Enhancing poxvirus vectors vaccine immunogenicity

    PubMed Central

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought. PMID:25424927

  1. Investigation, design, and integration of insert gradient coils in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feldman, Rebecca E.

    three imaging axes. Both resistive and inductive merits were investigated. Of these, inductive values proved to be the limiting factor when designing coils sized to perform in a full body MRI system. Optimal merit and gradient strength were obtained from a butterfly design, and planar coils provided localized strength over a larger region. A butterfly coil was constructed with hollow copper wiring and powered to produce diffusion weighting during MRI. Diffusion contrast b=1300 s/mm2 was obtained using the insert with significant time and signal to noise ratio improvements. Keywords: butterfly coil, magnetic resonance imaging, electric field, gradient coil, inductive merit, nerve stimulation threshold, optimization, peripheral nerve stimulation, planar gradient, resistive merit, scalar potential, simulation, stimulation, vector potential, optimization.

  2. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    PubMed

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health. PMID:26943010

  3. Emerging Vector-Borne Diseases - Incidence through Vectors.

    PubMed

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  4. Polarization-insensitive unidirectional spoof surface plasmon polaritons coupling by gradient metasurface

    NASA Astrophysics Data System (ADS)

    Hong-yu, Shi; An-xue, Zhang; Jian-zhong, Chen; Jia-fu, Wang; Song, Xia; Zhuo, Xu

    2016-07-01

    A polarization-insensitive unidirectional spoof surface plasmon polariton (SPP) coupler mediated by a gradient metasurface is proposed. The field distributions and average Poynting vector of the coupled spoof SPPs are analyzed. The simulated and experimental results support the theoretical analysis and indicate that the designed gradient metasurface can couple both the parallel-polarized and normally-polarized incident waves to the spoof SPPs propagating in the same direction at about 5 GHz. Project supported by the China Postdoctoral Science Foundation (Grant No. 2015M580849) and the National Natural Science Foundation of China (Grant Nos. 61471292, 61501365, 61471388, 61331005, 41404095, and 41390454).

  5. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation

    PubMed Central

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  6. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation.

    PubMed

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  7. Vector statistics of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Underwood, D.

    1977-01-01

    A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.

  8. Baculovirus as a vaccine vector

    PubMed Central

    Lu, Hsin-Yu; Chen, Yi-Hsuan; Liu, Hung-Jen

    2012-01-01

    Baculovirus is extensively utilized as an excellent tool for production of recombinant protein in insect cells. Baculovirus infects insects in nature and is non-pathogenic to humans. In addition to insect cells, baculovirus is capable of transducing a broad range of animal cells. Due to its biosafety, large cloning capacity, low cytotoxicity, and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has been utilized as RNA interference mediators, gene delivery vectors, and vaccine vectors for a wide variety of applications. This article focuses on the utilization of baculoviruses as vaccine vectors to prepare antigen or subunit vaccines. PMID:22705893

  9. Relativistic Gamow vectors: State vectors for unstable particles

    NASA Astrophysics Data System (ADS)

    Kaldas, Hany Kamel Halim

    The relativistic Gamow vectors are derived from the analytic continuation of the angular momentum velocity kets to the resonance pole of the S- matrix. This construction is justifiable within a Rigged Hilbert Space of Hardy class functions. The kets obtained | p j3[ sRjR ]-> are characterized by a spin jR and a complex mass square sR = (MR - iΓ R/2)2. Our use of the velocity kets renders the Gamow vectors | p j3[ sRjR ]-> ``minimally complex'', as the 4-velocities p̂μ = p μ/ s are taken real and they remain real under Lorentz transformations. When the symmetry transformations of the Gamow vectors are considered, it is found that they obey a semigroup time evolution in the forward light cone for the subgroup of P with causal space- time translations, i.e., for space-time translations with 4-vectors x such that x2 >= 0. This semigroup evolution, which is a consequence of the characterization obtained for the Gamow vectors as functionals in a Rigged Hilbert Space, is in conformity with the time directedness associated with decay phenomena. The Gamow vectors, with a Breit-Wigner distribution and exponential decay law, provide a description of decaying particles with a wide range of Γ/ M. Moreover, the Gamow vectors, being members of a complex basis vector expansion, allow the Wigner-Weisskopf's based effective theories, such as the Lee-Oehme-Yang theory for the neutral K-mesons, to be obtained as an approximation in an exact formalism.

  10. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  11. Oxygen gradients in the microcirculation.

    PubMed

    Pittman, R N

    2011-07-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453

  12. Neural cell image segmentation method based on support vector machine

    NASA Astrophysics Data System (ADS)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  13. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  14. Electron Temperature Gradient Mode Transport

    SciTech Connect

    Horton, W.; Kim, J.-H.; Hoang, G. T.; Park, H.; Kaye, S. M.; LeBlanc, B. P.

    2008-05-14

    Anomalous electron thermal losses plays a central role in the history of the controlled fusion program being the first and most persistent form of anomalous transport across all toroidal magnetic confinement devices. In the past decade the fusion program has made analysis and simulations of electron transport a high priority with the result of a clearer understanding of the phenomenon, yet still incomplete. Electron thermal transport driven by the electron temperature gradient is examined in detail from theory, simulation and power balance studies in tokamaks with strong auxiliary heating.

  15. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  16. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  17. Autonomous pump against concentration gradient

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan; Zhong, Wei-Rong

    2016-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process.

  18. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  19. Design and analysis of vector color error diffusion halftoning systems.

    PubMed

    Damera-Venkata, N; Evans, B L

    2001-01-01

    Traditional error diffusion halftoning is a high quality method for producing binary images from digital grayscale images. Error diffusion shapes the quantization noise power into the high frequency regions where the human eye is the least sensitive. Error diffusion may be extended to color images by using error filters with matrix-valued coefficients to take into account the correlation among color planes. For vector color error diffusion, we propose three contributions. First, we analyze vector color error diffusion based on a new matrix gain model for the quantizer, which linearizes vector error diffusion. The model predicts the key characteristics of color error diffusion, esp. image sharpening and noise shaping. The proposed model includes linear gain models for the quantizer by Ardalan and Paulos (1987) and by Kite et al. (1997) as special cases. Second, based on our model, we optimize the noise shaping behavior of color error diffusion by designing error filters that are optimum with respect to any given linear spatially-invariant model of the human visual system. Our approach allows the error filter to have matrix-valued coefficients and diffuse quantization error across color channels in an opponent color representation. Thus, the noise is shaped into frequency regions of reduced human color sensitivity. To obtain the optimal filter, we derive a matrix version of the Yule-Walker equations which we solve by using a gradient descent algorithm. Finally, we show that the vector error filter has a parallel implementation as a polyphase filterbank. PMID:18255498

  20. Solid rocket thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Thrust vector control systems that superimpose a side force on the motor thrust, steering being achieved by the side force causing a moment about the vehicle center of gravity are described. A brief review of thrust vector control systems is presented, and two systems, flexible joint and liquid injection, are treated in detail. Treatment of the flexible-joint thrust vector control system is limited to the design of the flexible joint and its insulation against hot motor gases. Treatment of the liquid injection thrust vector control system is limited to discussion of the injectant, valves, piping, storage tanks, and pressurization system; no evaluation is presented of the nozzle except for (1) the effect of the injectant and erosion at the injection port and (2) the effect of injection on pressure distribution within the nozzle.

  1. Experiments With Magnetic Vector Potential

    ERIC Educational Resources Information Center

    Skinner, J. W.

    1975-01-01

    Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)

  2. Molecular dynamics on vector computers

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Mountain, R. D.; Oconnell, J.

    1985-10-01

    An algorithm called the method of lights (MOL) has been developed for the computerized simulation of molecular dynamics. The MOL, implemented on the CYBER 205 computer, is based on sorting and reformulating the manner in which neighbor lists are compiled, and it uses data structures compatible with specialized vector statements that perform parallel computations. The MOL is found to reduce running time over standard methods in scalar form, and vectorization is shown to produce an order-of-magnitude reduction in execution time.

  3. Coulomb problem for vector bosons

    SciTech Connect

    Kuchiev, M.Yu.; Flambaum, V.V.

    2006-05-01

    The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.

  4. Effective Masses of Vector Polarons

    NASA Astrophysics Data System (ADS)

    Foell, Charles; Clougherty, Dennis

    2006-03-01

    We consider the vector polarons of a one-dimensional model of an electron in a doubly (or nearly) degenerate band that couples to two elastic distortions, as described previously by Clougherty and Foell [1]. A variational approach is used to analytically and numerically calculate effective masses of the three types of vector polarons. [1] D. P. Clougherty and C. A. Foell, Phys. Rev. B 70, 052301 (2004).

  5. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  6. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  7. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  8. Gradient-Modulated PETRA MRI

    PubMed Central

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J.; Garwood, Michael

    2015-01-01

    Image blurring due to off-resonance and fast T2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners. PMID:26771005

  9. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  10. Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models

    ERIC Educational Resources Information Center

    Humphreys, L. D.; McKenna, P. J.

    2005-01-01

    This paper describes how the method of steepest descent can be used to find periodic solutions of differential equations. Applications to two suspension bridge models are discussed, and the method is used to find non-obvious large-amplitude solutions.

  11. Strength gradient enhances fatigue resistance of steels.

    PubMed

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch's tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  12. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  13. Strain gradient effects on cyclic plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Legarth, Brian Nyvang

    2010-04-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between rigid platens have been carried out, using the finite element method. It is shown for elastic-perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening in the presence of conventional material hardening. Furthermore, it is shown that dissipative gradient effects can lead to both an increase and a decrease in the dissipation per load cycle depending on the magnitude of the dissipative length parameter, whereas energetic gradient effects lead to decreasing dissipation for increasing energetic length parameter. For dissipative gradient effects it is found that dissipation has a maximum value for some none zero value of the material length parameter, which depends on the magnitude of the deformation cycles.

  14. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  15. Gradient scaling for nonuniform meshes

    SciTech Connect

    Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.

    1985-01-01

    This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.

  16. Novel hybrid classified vector quantization using discrete cosine transform for image compression

    NASA Astrophysics Data System (ADS)

    Al-Fayadh, Ali; Hussain, Abir Jaafar; Lisboa, Paulo; Al-Jumeily, Dhiya

    2009-04-01

    We present a novel image compression technique using a classified vector Quantizer and singular value decomposition for the efficient representation of still images. The proposed method is called hybrid classified vector quantization. It involves a simple but efficient classifier-based gradient method in the spatial domain, which employs only one threshold to determine the class of the input image block, and uses three AC coefficients of discrete cosine transform coefficients to determine the orientation of the block without employing any threshold. The proposed technique is benchmarked with each of the standard vector quantizers generated using the k-means algorithm, standard classified vector quantizer schemes, and JPEG-2000. Simulation results indicate that the proposed approach alleviates edge degradation and can reconstruct good visual quality images with higher peak signal-to-noise ratio than the benchmarked techniques, or be competitive with them.

  17. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale.

    PubMed

    Egizi, Andrea; Fefferman, Nina H; Fonseca, Dina M

    2015-04-01

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024

  18. Director alignment relative to the temperature gradient in nematic liquid crystals studied by molecular dynamics simulation.

    PubMed

    Sarman, Sten; Laaksonen, Aatto

    2014-07-28

    The director alignment relative to the temperature gradient in nematic liquid crystal model systems consisting of soft oblate or prolate ellipsoids of revolution has been studied by molecular dynamics simulation. The temperature gradient is maintained by thermostating different parts of the system at different temperatures by using a Gaussian thermostat. It is found that the director of the prolate ellipsoids aligns perpendicularly to the temperature gradient whereas the director of the oblate ellipsoids aligns parallel to this gradient. When the director is oriented in between the parallel and perpendicular orientations a torque is exerted forcing the director to the parallel or perpendicular orientation. Because of symmetry restrictions there is no linear dependence of the torque being a pseudovector on the temperature gradient being a polar vector in an axially symmetric system such as a nematic liquid crystal. The lowest possible order of this dependence is quadratic. Thus the torque is very weak when the temperature gradient is small, which may explain why this orientation phenomenon is hard to observe experimentally. In both cases the director attains the orientation that minimises the irreversible entropy production. PMID:24919847

  19. Toward an integrated view of ionospheric plasma instabilities: Altitudinal transitions and strong gradient case

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.

    2016-04-01

    A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.

  20. Distributed semi-supervised support vector machines.

    PubMed

    Scardapane, Simone; Fierimonte, Roberto; Di Lorenzo, Paolo; Panella, Massimo; Uncini, Aurelio

    2016-08-01

    The semi-supervised support vector machine (S(3)VM) is a well-known algorithm for performing semi-supervised inference under the large margin principle. In this paper, we are interested in the problem of training a S(3)VM when the labeled and unlabeled samples are distributed over a network of interconnected agents. In particular, the aim is to design a distributed training protocol over networks, where communication is restricted only to neighboring agents and no coordinating authority is present. Using a standard relaxation of the original S(3)VM, we formulate the training problem as the distributed minimization of a non-convex social cost function. To find a (stationary) solution in a distributed manner, we employ two different strategies: (i) a distributed gradient descent algorithm; (ii) a recently developed framework for In-Network Nonconvex Optimization (NEXT), which is based on successive convexifications of the original problem, interleaved by state diffusion steps. Our experimental results show that the proposed distributed algorithms have comparable performance with respect to a centralized implementation, while highlighting the pros and cons of the proposed solutions. To the date, this is the first work that paves the way toward the broad field of distributed semi-supervised learning over networks. PMID:27179615

  1. Vector Encoding in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  2. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  3. Symbolic vector analysis in plasma physics

    NASA Astrophysics Data System (ADS)

    Qin, H.; Tang, W. M.; Rewoldt, G.

    1999-01-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the underlying coordinate systems. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. Besides the basic vector analysis functions, the package provides asymptotic capabilities, 2D vector analysis notation, and a simple interface for users to define their own coordinate systems. These features will benefit physicists and applied mathematicians in their research where complicated vector analysis in complicated coordinate systems is required. Several applications of this symbolic vector analysis package to plasma physics are also given.

  4. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation. PMID:27271915

  5. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  6. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  7. A complete implementation of the conjugate gradient algorithm on a reconfigurable supercomputer

    SciTech Connect

    Dubois, David H; Dubois, Andrew J; Connor, Carolyn M; Boorman, Thomas M; Poole, Stephen W

    2008-01-01

    The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double precision, non-preconditioned, conjugate gradient solver for fmite-element or finite-difference methods. OUf work utilizes the SRC Computers, Inc. MAPStation hardware platform along with the 'Carte' software programming environment to ease the programming workload when working with the hybrid (CPUIFPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7 non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining high performance. Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of this algorithm on that architecture.

  8. Fast and accurate circle detection using gradient-direction-based segmentation.

    PubMed

    Wu, Jianping; Chen, Ke; Gao, Xiaohui

    2013-06-01

    We present what is to our knowledge the first-ever fitting-based circle detection algorithm, namely, the fast and accurate circle (FACILE) detection algorithm, based on gradient-direction-based edge clustering and direct least square fitting. Edges are segmented into sections based on gradient directions, and each section is validated separately; valid arcs are then fitted and further merged to extract more accurate circle information. We implemented the algorithm with the C++ language and compared it with four other algorithms. Testing on simulated data showed FACILE was far superior to the randomized Hough transform, standard Hough transform, and fast circle detection using gradient pair vectors with regard to processing speed and detection reliability. Testing on publicly available standard datasets showed FACILE outperformed robust and precise circular detection, a state-of-art arc detection method, by 35% with regard to recognition rate and is also a significant improvement over the latter in processing speed. PMID:24323106

  9. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  10. Extrapolation methods for vector sequences

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Ford, William F.; Sidi, Avram

    1987-01-01

    This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.

  11. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  12. Ant colony optimization and stochastic gradient descent.

    PubMed

    Meuleau, Nicolas; Dorigo, Marco

    2002-01-01

    In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633

  13. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering

    PubMed Central

    Ramalingam, Murugan; Young, Marian F.; Thomas, Vinoy; Sun, Limin; Chow, Laurence C.; Tison, Christopher K.; Chatterjee, Kaushik; Miles, William C.; Simon, Carl G.

    2012-01-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues. PMID:22286209

  14. Bred vectors, singular vectors, and Lyapunov vectors in simple and complex models

    NASA Astrophysics Data System (ADS)

    Norwood, Adrienne

    We compute and compare three types of vectors frequently used to explore the instability properties of dynamical models, Lyapunov vectors (LVs), singular vectors (SVs), and bred vectors (BVs). The first model is the Lorenz (1963) three-variable model. We find BVs align with the locally fastest growing LV, which is often the second fastest growing global LV. The growth rates of the three types of vectors reveal all predict regime changes and durations of new regimes, as shown for BVs by Evans et al. (2004). The second model is the toy 'atmosphere-ocean model' developed by Pena and Kalnay (2004) coupling three Lorenz (1963) models with different time scales to test the effects of fast and slow modes of growth on the dynamical vectors. A fast 'extratropical atmosphere' is weakly coupled to a fast 'tropical atmosphere' which is strongly coupled to a slow 'ocean' system, the latter coupling imitating the tropical El Nino--Southern Oscillation. BVs separate the fast and slow modes of growth through appropriate selection of the breeding parameters. LVs successfully separate the fast 'extratropics' but cannot completely decouple the 'tropics' from the 'ocean,' leading to 'coupled' LVs that are affected by both systems but mainly dominated by one. SVs identify the fast modes but cannot capture the slow modes until the fast 'extratropics' are replaced with faster 'convection.' The dissimilar behavior of the three types of vectors degrades the similarities of the subspaces they inhabit (Norwood et al. 2013). The third model is a quasi-geostrophic channel model (Rotunno and Bao 1996) that is a simplification of extratropical synoptic-scale motions with baroclinic instabilities only. We were unable to successfully compute LVs for it. However, randomly initialized BVs quickly converge to a single vector that is the leading LV. The last model is the SPEEDY model created by Molteni (2003). It is a simplified general atmospheric circulation model with several types of instabilities

  15. Helper-Dependent Adenoviral Vectors

    PubMed Central

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2012-01-01

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227

  16. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation

    NASA Astrophysics Data System (ADS)

    Gao, Shouting; Li, Xiaofan; Tao, Wei-Kuo; Shie, Chung-Lin; Lang, Steve

    2007-01-01

    The relationships between cloud hydrometeors and convective/moist vorticity vectors are investigated using hourly data from a three-dimensional, 5-day cloud-resolving model (CRM) simulation during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX). Vertical components of convective and moist vorticity vectors are highly correlated with cloud hydrometeors. The vertical components represent the interaction between horizontal vorticity and horizontal moist potential temperature/specific humidity gradient. The vertical components of convective and moist vorticity vectors can be used to study tropical oceanic convection in both two-dimensional and three-dimensional frameworks.

  17. Multispectral face liveness detection method based on gradient features

    NASA Astrophysics Data System (ADS)

    Hou, Ya-Li; Hao, Xiaoli; Wang, Yueyang; Guo, Changqing

    2013-11-01

    Face liveness detection aims to distinguish genuine faces from disguised faces. Most previous works under visible light focus on classification of genuine faces and planar photos or videos. To handle the three-dimensional (3-D) disguised faces, liveness detection based on multispectral images has been shown to be an effective choice. In this paper, a gradient-based multispectral method has been proposed for face liveness detection. Three feature vectors are developed to reduce the influence of varying illuminations. The reflectance-based feature achieves the best performance, which has a true positive rate of 98.3% and a true negative rate of 98.7%. The developed methods are also tested on individual bands to provide a clue for band selection in the imaging system. Preliminary results on different face orientations are also shown. The contributions of this paper are threefold. First, a gradient-based multispectral method has been proposed for liveness detection, which considers the reflectance properties of all the distinctive regions in a face. Second, three illumination-robust features are studied based on a dataset with two-dimensional planar photos, 3-D mannequins, and masks. Finally, the performance of the method on different spectral bands and face orientations is also shown in the evaluations.

  18. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  19. An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package

    NASA Astrophysics Data System (ADS)

    Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.

    1989-05-01

    The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.

  20. Quantifying solar superactive regions with vector magnetic field observations

    NASA Astrophysics Data System (ADS)

    Chen, A. Q.; Wang, J. X.

    2012-07-01

    Context. The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. Aims: We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. Methods: The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities; 2) the total photospheric free magnetic energy; 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient; and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. Results: We found that most of the SARs have a net magnetic flux higher than 7.0 × 1021 Mx, a total photospheric free magnetic energy higher than 1.0 × 1024 erg cm-1, a magnetic neutral line with a steep horizontal magnetic gradient (≥300 G Mm-1) longer than 30 Mm, and an area with strong magnetic shear (shear angle ≥ 80°) greater than 100 Mm2. In contrast, the values of these parameters for the FARs are mostly very low. The Pearson χ2 test was used to examine the significance of the difference between the SARs and FARs, and the results indicate that these two types of ARs can be fairly distinguished by each of these parameters. The significance levels are 99.55%, 99.98%, 99.98%, and 99.96%, respectively. However, no single parameter can distinguish them perfectly. Therefore we propose a composite index based on these parameters, and find that the distinction between the two types of ARs is also significant with a significance level of 99.96%. These results are useful for a better physical understanding of the SAR and FAR.

  1. Hydrogen as an energy vector

    NASA Technical Reports Server (NTRS)

    Powers, W. D.

    1975-01-01

    The feasibility of utilizing hydrogen as an energy vector is considered, with special attention given to means of hydrogen production. The state-of-the-art in thermochemical processes is reviewed, and criteria for the technical and economic feasibility of large-scale thermochemical water splitting processes are presented. The production of hydrogen from coal and from photolysis of water is discussed.

  2. Portfolio Analysis for Vector Calculus

    ERIC Educational Resources Information Center

    Kaplan, Samuel R.

    2015-01-01

    Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…

  3. Biosafety Features of Lentiviral Vectors

    PubMed Central

    Schambach, Axel; Zychlinski, Daniela; Ehrnstroem, Birgitta

    2013-01-01

    Abstract Over the past decades, lentiviral vectors have evolved as a benchmark tool for stable gene transfer into cells with a high replicative potential. Their relatively flexible genome and ability to transduce many forms of nondividing cells, combined with the potential for cell-specific pseudotyping, provides a rich resource for numerous applications in experimental platforms and therapeutic settings. Here, we give an overview of important biosafety features of lentiviral vectors, with detailed discussion of (i) the principles of the lentiviral split-genome design used for the construction of packaging cells; (ii) the relevance of modifications introduced into the lentiviral long terminal repeat (deletion of enhancer/promoter sequences and introduction of insulators); (iii) the basic features of mRNA processing, including the Rev/Rev-responsive element (RRE) interaction and the modifications of the 3′ untranslated region of lentiviral vectors with various post-transcriptional regulatory elements affecting transcriptional termination, polyadenylation, and differentiation-specific degradation of mRNA; and (iv) the characteristic integration pattern with the associated risk of transcriptional interference with cellular genes. We conclude with considerations regarding the importance of cell targeting via envelope modifications. Along this course, we address canonical biosafety issues encountered with any type of viral vector: the risks of shedding, mobilization, germline transmission, immunogenicity, and insertional mutagenesis. PMID:23311447

  4. Vector ecology of equine piroplasmosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...

  5. Transcriptomics and disease vector control

    PubMed Central

    2010-01-01

    Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever. See research article http://www.biomedcentral.com/1471-2164/11/216 PMID:20525113

  6. Auxiliary function approach to independent component analysis and independent vector analysis

    NASA Astrophysics Data System (ADS)

    Ono, N.

    2015-05-01

    In this paper, we review an auxiliary function approach to independent component analysis (ICA) and independent vector analysis (IVA). The derived algorithm consists of two alternative updates: 1) weighted covariance matrix update and 2) demixing matrix update, which include no tuning parameters such as a step size in the gradient descent method. The monotonic decrease of the objective function is guaranteed by the principle of the auxiliary function method. The experimental evaluation shows that the derived update rules yield faster convergence and better results than natural gradient updates. An efficient implementation on a mobile phone is also presented.

  7. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  8. Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence.

    PubMed

    Verma, Siddhartha; Blanquart, G

    2014-06-01

    The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number. It is shown that the alignment direction observed numerically using these two filters is predicted very well by the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially, the model might not suffer from solution instability when used for large eddy simulations of scalar transport in homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations. PMID:25019887

  9. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  10. Calibration of SQUID vector magnetometers in full tensor gradiometry systems

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Stolz, R.; Chwala, A.; Krech, W.; Meyer, H.-G.; Kukowski, N.

    2014-08-01

    Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.