Science.gov

Sample records for biebrza river valley

  1. The analysis of changes in oxbow lakes characteristics using remote sensing data. A case study from Biebrza River in Poland.

    NASA Astrophysics Data System (ADS)

    Slapinska, Malgorzata; Chormanski, Jaroslaw

    2014-05-01

    Biebrza River Valley is located in North-Eastern part of Poland. Biebrza is a river of intermediate size with almost natural character. River has numerous of oxbow lakes. Biebrza River Valley consists of three Basins: Upper, Middle and Lower, which are characterized by different geomorphological structure. Biebrza River Valley is an area of significant ecological importance, especially because it is one of the biggest wetlands in Europe. It consists of almost undisturbed floodplain marshes and fens. Biebrza river is also characterised by low contamination level and small human influence. Because of those characteristics Biebrza River can be treated as a reference area for other floodplains and fen ecosystems in Europe. Since oxbow lakes are the least known part of the river valleys there is a need for more research on them. The objective of this study is the characterisation of the oxbow lake water quality and indirectly oxbow lake state using remote sensing method. For achieving the objective two remote sensing datasets has been analysed: IKONOS and hyperspectral camera AISA. The utility of both data sources was compared and time variability of oxbow lakes was defined. The first part of the remote sensing analysis of oxbow lakes was held with the usage of the satellite images from IKONOS satellite from 20.07.2008 (images were taken from Biebrza National Park resources). All analysis were made in ArcGIS 10.0 and ENVI 5.0. The second part of the image analysis was conducted with the data gained from airborne hyperspectral camera AISA Eagle in August 2013. The oxbow lakes have been described on: state of the habitat, transparency, state of overgrowing, connectivity with the river, maximum area and maximum length. The general method of describing oxbow lakes is visual habitat state, related with natural succession. Three main habitat states of oxbow lakes were designated: privileged (described as 'good'), eutrophic and disappearing. The results confirm the fact that

  2. Derivation from the Landsat 7 NDVI and ground truth validation of LAI and interception storage capacity for wetland ecosystems in Biebrza Valley, Poland

    NASA Astrophysics Data System (ADS)

    Suliga, Joanna; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata; Berezowski, Tomasz; van Griensven, Ann; Verbeiren, Boud

    2015-10-01

    Wetlands are very valuable areas because they provide a wide range of ecosystems services therefore modeling of wetland areas is very relevant, however, the most widely used hydrological models were developed in the 90s and usually are not adjusted to simulate wetland conditions. In case of wetlands including interception storage into the model's calculation is even more challenging, because literature data hardly exists. This study includes the computation of interception storage capacity based on Landsat 7 image and ground truthing measurements conducted in the Biebrza Valley, Poland. The method was based on collecting and weighing dry, wet and fully saturated samples of sedges. During the experiments measurements of fresh/dry biomass and leaf area index (LAI) were performed. The research was repeated three times during the same season (May, June and July 2013) to observe temporal variability of parameters. Ground truthing measurements were used for the validating estimation of parameters derived from images acquired in a similar period as the measurements campaigns. The use of remote sensing has as major advantage of being able to obtain an area covering spatially and temporally distributed estimate of the interception storage capacity. Results from this study proved that interception capacity of wetlands vegetation is changing considerably during the vegetation season (temporal variability) and reaches its maximum value when plants are fully developed. Different areas depending on existing plants species are characterized with different values of interception capacity (spatial variability). This research frames within the INTREV and HiWET projects, funded respectively by National Science Centre (NCN) in Poland and BELSPO STEREO III.

  3. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  4. Valley evolution by meandering rivers

    NASA Astrophysics Data System (ADS)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  5. 1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ELEVATION OF INTAKE ON EAST SIDE OF DAM - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  6. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  7. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  8. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  9. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  10. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  11. 4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  12. 3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  13. Red River Valley. Selected Readings. Grade Five.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Project Social Studies Curriculum Center.

    Sixteen readings dating from 1854 through 1969, many of which are primary materials excerpted from dated Minnesota newspapers, are intended for fifth grade students. Five themes describe past and present conditions in the Red River Valley: 1) show the importance of fur trade and describe the wooden carts in the train that carried the trade; 2)…

  14. 2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  15. Beaver assisted river valley formation

    USGS Publications Warehouse

    Westbrook, C.J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  16. The Red River Valley archeological project

    NASA Technical Reports Server (NTRS)

    Bennett, Jack; Smith, Lawson; Laustrup, Mark

    1986-01-01

    The Red River Valley Archeology Project is a long-term effort involving numerous individuals and institutions engaged in archeological investigations in the Texas and Oklahoma portions of the Red River Valley. To date the focus of the project was on site location. The project acquired both Thermal Infrared Multispectral Scanner (TIMS), TMS, and color infrared photographs over a significant portion of the project area in an effort to define signatures for archeological sites and to assist in the detailed geomorphological mapping of the flood plain. Preliminary analysis of acquired data indicates that both the TIMS and TMS can make a substantial contribution to landform definition, the identification of cultural resources, and to the clarification of site-landform correlations in this riverine environment.

  17. Raptor ecology of Raft River Valley, Idaho

    SciTech Connect

    Thurow, T.L.; White, C.M.; Howard, R.P.; Sullivan, J.F.

    1980-09-01

    Raptor data were gathered in the 988-km/sup 2/ Raft River Valley in southcentral Idaho while conducting a tolerance study on the nesting Ferruginous Hawk (Buteo regalis) near the Department of Energy's Raft River Geothermal Site. Prior research from 1972 to 1977 on the nesting activity of the Ferruginous Hawk population provided a historical information base. These data are combined with new Ferruginous Hawk data collected between 1978 and 1980 to give a continuous 9-year breeding survey. Information on the distribution, density, and production of the other raptor species found in the study area during 1978 and 1979 is also provided.

  18. 27 CFR 9.208 - Snake River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Snake River Valley. 9.208 Section 9.208 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.208 Snake River Valley. (a) Name. The name of...

  19. 27 CFR 9.216 - Upper Mississippi River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Upper Mississippi River Valley. 9.216 Section 9.216 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.216 Upper Mississippi River Valley....

  20. 27 CFR 9.216 - Upper Mississippi River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Upper Mississippi River... Areas § 9.216 Upper Mississippi River Valley. (a) Name. The name of the viticultural area described in this section is “Upper Mississippi River Valley”. For purposes of part 4 of this chapter,...

  1. 27 CFR 9.216 - Upper Mississippi River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Upper Mississippi River... Areas § 9.216 Upper Mississippi River Valley. (a) Name. The name of the viticultural area described in this section is “Upper Mississippi River Valley”. For purposes of part 4 of this chapter,...

  2. 27 CFR 9.216 - Upper Mississippi River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Upper Mississippi River... Areas § 9.216 Upper Mississippi River Valley. (a) Name. The name of the viticultural area described in this section is “Upper Mississippi River Valley”. For purposes of part 4 of this chapter,...

  3. 27 CFR 9.216 - Upper Mississippi River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Upper Mississippi River... Areas § 9.216 Upper Mississippi River Valley. (a) Name. The name of the viticultural area described in this section is “Upper Mississippi River Valley”. For purposes of part 4 of this chapter,...

  4. Contrasts of atmospheric circulation and associated tropical convection between Huaihe River valley and Yangtze River valley mei-yu flooding

    NASA Astrophysics Data System (ADS)

    Hong, Jieli; Liu, Yimin

    2012-07-01

    The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Furthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall.

  5. This Glorious Mud Pile (Rocky River Valley). Revised Edition.

    ERIC Educational Resources Information Center

    Cabbage, Mary Ellen

    This student text focuses on the social and geological history of a river basin. In addition to background information, the text includes student worksheets for 12 field trip stops in Ohio's Rocky River Valley. Material is designed to support a full-day field trip during which students work in small groups. Also included are a geological…

  6. Rivers and valleys of Pennsylvania, revisited

    NASA Astrophysics Data System (ADS)

    Morisawa, Marie

    1989-09-01

    The 1889 paper by William Morris Davis on the "Rivers and Valleys of Pennsylvania" is a landmark in the history of geomorphology. It was in this manuscript that he set forth what came to be known as the Davisian system of landscape. It is important to understand that Davis' interpretation of landforms was restricted by the geologic paradigms of his day. Uniformitarianism was strongly entrenched and Darwin's theory of evolution had become popularly accepted. The concept of the landmass Appalachia and then current theories on mountain building affected the approach that Davis took in hypothesizing the origin and development of the Folded Appalachian drainage. All of these geologic precepts influenced the formulation and explanation of his theories. In his exposition he adapted, synthesized and embellished on ideas he derived from fellow geologists such as Gilbert, Dutton, Powell, and McGee. A number of the concepts he proposed in the 1889 paper quickly became the bases for geomorphic studies by others: the cycles of river erosion and landscape evolution and the peneplain (here called base level erosion). The cycle of erosion became the model for subsequent geomorphic analyses, and peneplain hunting became a popular sport for geomorphologists. Davis' hypothesis of the origin and development of Pennsylvanian drainage stimulated subsequent discussion and further hypotheses by others. In fact, many of the later theories were refinements and/or elaborations of ideas mentioned in this paper of Davis. He proposed the origin of the drainage as consequent streams, then antecedence, superposition, headward extension of divides by piracy, erosion along lines of weaknesses (faults, easily erodible beds) through resistant ridges and normal fluvial erosion. Thus, the hypotheses of regional superposition (Johnson), extended consequents (Ruedemann), consequents and local superposition (Meyerhoff and Olmstead), the utilization of structural weaknesses in development of transverse

  7. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  8. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  9. Quaternary landscape evolution of the Turkey River Valley, northeastern Iowa

    SciTech Connect

    Hudak, C.M.

    1987-01-01

    The Turkey River Valley, a major Mississippi tributary in northeastern Iowa, provides a more complete and accessible Quaternary record than the Upper Mississippi Valley. This project, using 3-dimensional reconstructions of both valley and upland deposits, revealed at least 13 important depositional, erosional, and soil-forming events. From oldest to youngest these events are: (1) deposition of pre-Illinoian till; (2) erosion of till and bedrock as the Turkey River cut down; (3) deposition of fluvial and colluvial sediments in the valley; (4) development of a Sangamon soil(s) on both the pre-Illinoian (upland) till and valley sediments; (5) truncation of the Sangamon soil(s) relatively high in the valley as bedrock entrenchment proceeded to its deepest point; (6) deposition of coarse fluvial and colluvial sediments in the valley prior to 32,000 yr. B.P.; (7) aggradation of mostly loess-derived alluvium until approximately 16,000 yr. B.P.; (8) large-scale colluviation between approximately 32,000 and 13,000 yr., B.P.; (9) major downcutting between 16,000 and 14,000 yr. B.P.; (10) aggradation of coarse to medium alluvium from approximately 14,000 to 13,000 yr. B.P.; (11) overall downcutting during several intervals of the late Wisconsinan and early Holocene; (12) aggradation of mid to late Holocene alluvium starting by 5000 yr. B.P.; (13) lateral erosion and deposition during the past 200 yr. B.P. Turkey River Valley deposits previously interpreted as pre-Illinoian are now recognized as late Wisconsinan or early Holocene, as indicated by /sup 14/C dates and molluscan fossils. The Paleozoic Plateau landform region (formerly part of the Driftless Area) is herein interpreted as a rugged, although complex, extension of the Iowan Erosion Surface.

  10. 75 FR 2885 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Office of the Secretary Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting... the John H. Chafee Blackstone River Valley National Heritage Corridor Commission will be held on...: Jan H. Reitsma, Executive Director, John H. Chafee Blackstone River Valley National Heritage...

  11. Record of recent river channel instability, Cheakamus Valley, British Columbia

    NASA Astrophysics Data System (ADS)

    Clague, John J.; Turner, Robert J. W.; Reyes, Alberto V.

    2003-07-01

    Rivers flowing from glacier-clad Quaternary volcanoes in southwestern British Columbia have high sediment loads and anabranching and braided planforms. Their floodplains aggrade in response to recurrent large landslides on the volcanoes and to advance of glaciers during periods of climate cooling. In this paper, we document channel instability and aggradation during the last 200 years in lower Cheakamus River valley. Cheakamus River derives much of its flow and nearly all of its sediment from the Mount Garibaldi massif, which includes a number of volcanic centres dominated by Mount Garibaldi volcano. Stratigraphic analysis and radiocarbon and dendrochronological dating of recent floodplain sediments at North Vancouver Outdoor School in Cheakamus Valley show that Cheakamus River aggraded its floodplain about 1-2 m and buried a valley-floor forest in the early or mid 1800s. The aggradation was probably caused by a large (ca. 15-25×10 6 m 3) landslide from the flank of Mount Garibaldi, 15 km north of our study site, in 1855 or 1856. Examination of historical aerial photographs dating back to 1947 indicates that channel instability triggered by this event persisted until the river was dyked in the late 1950s. Our observations are consistent with data from many other mountain areas that suggest rivers with large, but highly variable sediment loads may rapidly aggrade their floodplains following a large spike in sediment supply. Channel instability may persist for decades to centuries after the triggering event.

  12. Valley confinement as a factor of braided river pattern for the Platte River

    NASA Astrophysics Data System (ADS)

    Fotherby, Lisa M.

    2009-02-01

    The Platte River in Nebraska has evolved in the twentieth century from a predominantly braided river pattern to a mélange of meandering, wandering, anastomosed, island braided, and fully braided reaches. Identifying the factors that determine the occurrence of a fully braided main channel was the objective of this study. Aerial photography, gage flow data, ground-surveyed cross sections, bed material samples, and the results of sediment transport modeling were used to examine factors that control spatial change in main river pattern of the central Platte River. Valley confinement is identified as the determining factor of braided river in nine of eleven divisions of the central Platte River. Flow reduction and the interruption of sediment supply are identified as determining factors preventing fully braided river in the remaining two of eleven reaches. Valley confinement, the topography which limits the width of the floodplain, was initially measured as width between historical banks (predevelopment river banks). This metric was later refined to width between confining features (historical banks, remnant bars, bridge abutments, protected banks and levees). Under existing conditions, the main channel of the central Platte River is fully braided when valley confinement (width between confining features) is 600 m or less and begins to divide into the multiple channels of an anastomosed pattern when valley confinement (width between confining features) exceeds 600 m When Platte River flow is divided between two to four major anabranches, a fully braided pattern in the main channel of the main anabranch requires a more confined valley of 400 m or less. Valley confinement is demonstrated to be the dominant factor in determining river pattern in the central Platte River, although this factor is not normally considered in the continuum of channel pattern model. Conclusions from this study can be used to increase the occurrence of fully braided main channel in the central

  13. 75 FR 48359 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Office of the Secretary Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting... the John H. Chafee Blackstone River Valley National Heritage Corridor Commission will be held on... Valley National Heritage Corridor Commission, One Depot Square, Woonsocket, RI 02895, Tel.: (401)...

  14. River valley construction as hazard for engineering structure

    NASA Astrophysics Data System (ADS)

    Postolenko, Galina

    2010-05-01

    It is common knowledge that for designing of engineering structure at river valleys it is necessary to investigate base of dam rock with a view to find out the structure disposition and nature of bottom rocks. It is important with relation to structural and economic calculation. One object of that investigation is alluvium. At present due to achievement of large success in geomorphology it is known that river valleys are constructed very complex. They have buried alluvium. Buried alluvium one can find both in plain and mountain valleys. It differs by thickness, composition and age. Since the Quaternary geological body is local, it is very important to know its chronological successive rise and the regularity of its spatial disposal. The investigative base consists in the stratigraphic and genetic research of the mellow deposit. Earlier the chronological determination depended on the hypsometric criteria . Complex of geomorphologic, biostratigraphic, lithologic, and physical data established the history of relief development and the spatial distribution of different age and genetic homogeneous relief fragments and sediment. These data show that relief and correlative sediment are formed as a result of the complex cyclical, non-one-trend geomorphologic processes at the Quaternary period. The several stages of relief and sediment development are established at the Quaternary period. They differed in process intensity, character and duration. This is the cause that the morpholithogenetic results of these stages are different. These are different sizes of valleys deepening and increasing of the relief height amplitude at the instructive stage, the different correlative sediment capacity at the constructive stage of relief development. These indexes are so significant, that river terraces of something stages turned out buried by the alluvium those stages that have the smaller alluvium capacity. Consequences of such valleys development lie in

  15. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    USGS Publications Warehouse

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  16. Hydrologic conditions in the Bill Williams River National Wildlife Refuge and Planet Valley, Arizona, 2000

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    2002-01-01

    During a period of sustained base-flow conditions in the Bill Williams River below Alamo Dam in west central Arizona from March to July 2000, the channel of the river through Planet Valley was dry, and the water table sloped almost due west parallel to the main slope of the flood plain. Water from the river infiltrated into the channel bottom at the head of Planet Valley, moved downgradient in the subsurface, and reappeared in the channel about 0.3 mile downstream from the east boundary of the Bill Williams River National Wildlife Refuge. A river aquifer in hydraulic connection with the Bill Williams River was mapped from a point 6.3 miles upstream from Highway 95 to the upstream end of Planet Valley. Formations that make up the river aquifer in Planet Valley are younger alluvium, older alluviums, and fanglomerate. Total thickness of the river aquifer probably is less than 200 feet in the bedrock canyons to as much as 1,035 feet in Planet Valley. The purpose of this study was to investigate the current hydrologic conditions along the Bill Williams River, which included an inventory of wells within the river aquifer of the Colorado River and in Planet Valley, and to determine the configuration of the water table. A map shows the elevation and configuration of the water table from the east end of Planet Valley to the confluence of the Bill Williams River with Lake Havasu.

  17. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with

  18. Monitoring of heavy flooding by orbital remote sensing: The example of the Doce river valley. [Doce River Valley, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Novo, E. M. L. D.; Dossantos, A. P.

    1981-01-01

    The application of temporal LANDSAT data to study floods was verified, and the natural features responsible for this phenomenon were surveyed using the Doce river valley as a test site, because of the catastrophic (1978-1979) flood. Data from LANDSAT images and CCT's were used. Geomorphical mapping evaluated morphostructural features. Seven and nine classes of water surfaces for dry and rainy seasons were analyzed. The magnitude of the changes from preflood to postflood stage are estimated. The single Pixel program was applied to correlate the drainage basin characteristics to the grey level of LANDSAT data.

  19. A cleaning energy area conception on Fenhe river valley

    SciTech Connect

    Guan, C.

    1997-12-31

    Fenhe river valley has a dense population, abundant resources and coal mining, coke making, metallurgy industry concentration. Therefore, it is a seriously pollute area. The paper puts forward a concept of building up a clean energy area through process improvement and change of energy structure to realize ecological economy. The analysis shows that the indigenous method used for coking produces serious pollution, the resource cannot be used comprehensively, the regular machinery coke has a high investment in capital construction, but not much economic benefit. All are disadvantages for health and sustainable economic development. Also, this paper describes a LJ-95 machinery coke oven which has lower investment, higher product quality, less pollution, and higher economical benefit. LJ-95 coke oven will be the technical basis for construction of a clean energy area. The clean energy area concept for the Fenhe river valley consists of a coal gas pipeline network during the first phase and building electricity generation using steam turbines in the second phase.

  20. D GIS for Flood Modelling in River Valleys

    NASA Astrophysics Data System (ADS)

    Tymkow, P.; Karpina, M.; Borkowski, A.

    2016-06-01

    The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  1. 75 FR 17756 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... the John H. Chafee Blackstone River Valley National Heritage Corridor Commission will be held on... on May 20, 2010 at 9 a.m. at Atria Draper Place located at 25 Hopedale Street, Hopedale, MA for the..., Executive Director, John H. Chafee, Blackstone River Valley National Heritage Corridor Commission, One...

  2. 75 FR 64741 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Office of the Secretary Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting... the John H. Chafee Blackstone River Valley National Heritage Corridor Commission will be held on... Heritage Corridor Commission, One Depot Square, Woonsocket, RI 02895, Tel.: (401) 762-0250....

  3. Assessment of the alluvial sediments in the Big Thompson River Valley, Colorado

    USGS Publications Warehouse

    Barnett, Adrienne; Ellefsen, Karl J.

    2000-01-01

    To obtain subsurface geologic information about the alluvium in the Big Thompson River valley, S-wave refraction data were collected along three roads that cross the valley. The refraction data were used to estimate velocities and thickness for a layered-earth model; from these models, three cross sections of the river valley were constructed. These cross sections show the thickness and the gross stratigraphy of the alluvium.

  4. Agricultural water and energy use in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Masiyandima, M. C.; Sow, A.

    2015-12-01

    Assessment of the productivity of irrigation water is important measuring the performance of irrigation schemes especially in water scarce areas. Equally important for performance is the energy cost of providing water for irrigation. Sahel irrigation schemes are dependent on pumping water from rivers into a network of gravity operated channels. In the Senegal River valley in Senegal the cost of pumping water and for irrigation has been estimated to be 20-25% of total rice production costs. Irrigation schemes in the valley are characterized by low water productivity. We analysed rice production, irrigation water use and energy use for supplying irrigation water at Pont Gendarme, Ndiawar and Ngallenka MCA irrigation schemes in the Senegal River valley. For the 2013 rainfall season the mean yield ranged between 6 and 8t ha-1. Dry season yield ranged between 1.7 and 6.8t ha-1. Energy use for irrigation in the Ndiawar irrigation scheme was 8kg MJ-1 and 6.4kg MJ-1 in the 2013 and 2014 rainfall seasons respectively. In 2014 (rainfall season) energy productivity of irrigation water was 8.5, 8.0 and 16.4 kg MJ-1 at Ngallenka MCA, Ndiawar and Pont Gendarme respectively. Dry season (2014) energy productivity at Ndiawar and Pont Gendarme was 3.4 and 11.2kg MJ-1 respectively. Productivity of irrigation water was similar for all schemes (0.37kg m-3 at Pont Gendarme, 0.42kg m-3 at Ngallenka MCA, and 0.41kg m-3 Ndiawar). Energy use for the supply of irrigation water in the rainfall season ranged from 403 to 1,002MJ ha-1. Dry season irrigation energy use was 589MJ ha-1 Pont Gendarme and 331MJ ha-1 at Ndiawar. Reducing water use in these schemes through better water management will result in lower production costs and increased margins for the farmers. The observations from 2013 - 2014 highlight the importance of using both water and energy productivity to assess performance of irrigation schemes.

  5. Histoplasmosis infections worldwide: thinking outside of the Ohio River valley

    PubMed Central

    Bahr, Nathan C; Antinori, Spinello; Wheat, L. Joseph; Sarosi, George A.

    2015-01-01

    In the United States, histoplasmosis is generally thought to occur mainly in the Ohio and Mississippi River Valleys, and the classic map of histoplasmosis distribution reflecting this is second nature to many U.S. physicians. With the advent of the HIV pandemic reports of patients with progressive disseminated histoplasmosis and AIDS came from regions of known endemicity, as well as from regions not thought to be endemic for histoplasmosis throughout the world. In addition, our expanding armamentarium of immunosuppressive medications and biologics has increased the diagnosis of histoplasmosis worldwide. While our knowledge of areas in which histoplasmosis is endemic has improved, it is still incomplete. Our contention is that physicians should consider histoplasmosis with the right constellations of symptoms in any febrile patient with immune suppression, regardless of geographic location or travel history. PMID:26279969

  6. Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley

    NASA Astrophysics Data System (ADS)

    Chemel, Charles; Arduini, Gabriele; Staquet, Chantal; Largeron, Yann; Legain, Dominique; Tzanos, Diane; Paci, Alexandre

    2016-03-01

    Urbanized valleys are particularly vulnerable to particulate air pollution during the winter, when ground-based stable layers or cold-air pools persist over the valley floor. We examine whether the temporal variability of PM10 concentration in the section of the Arve River Valley between Cluses and Servoz in the French Alps can be explained by the temporal variability of the valley heat deficit, a bulk measure of atmospheric stability within the valley. We do this on the basis of temperature profile and ground-based PM10 concentration data collected during wintertime with a temporal resolution of 1 h or finer, as part of the Passy-2015 field campaign conducted around Passy in this section of valley. The valley heat deficit was highly correlated with PM10 concentration on a daily time scale. The hourly variability of PM10 concentrations was more complex and cannot be explained solely by the hourly variability of the valley heat deficit. The interplay of the diurnal cycles of emissions and local dynamics is demonstrated and a drainage mechanism for observed nocturnal dilution of near-surface PM10 concentrations is proposed.

  7. Pleistocene-Holocene transition in the central Mississippi River valley

    NASA Astrophysics Data System (ADS)

    Van Arsdale, Roy B.; Cupples, William B.; Csontos, Ryan M.

    2014-06-01

    Within the northern Mississippi embayment the ancestral Mississippi River flowed south through the Western Lowlands and the ancestral Ohio River flowed through the Eastern Lowlands for most of the Pleistocene. Previous investigators have mapped and dated the terraces of their respective braid belts. This current research investigates the three-dimensional aspect of the Quaternary alluvium north of Memphis, Tennessee, through the interpretation of 3374 geologic well logs that are 91.4 m (300 ft) deep. The braid belts are capped by a thin silt/clay horizon (Pleistocene loess) that overlies gravelly sand, which in turn overlies sandy gravel. The base of the Pleistocene alluvium beneath the Ash Hill (27.3-24.6 ka), Melville Ridge (41.6-34.5 ka), and Dudley (63.5-50.1 ka) terraces of the Western Lowland slope southerly by 0.275 m/km and all have an average basal elevation of 38 m. Near Beedeville, Arkansas, the bases of these terraces descend 20 m across a northeast-striking down-to-the-southeast fault that coincides with the western margin of the Cambrian Reelfoot rift. The maximum depth of flow (lowest elevation of base of alluvium) occurred in the Eastern Lowlands and appears to have been the downstream continuation of the ancestral Ohio River Cache valley course in southern Illinois. In traversing from west to east in the Eastern Lowlands, the Sikeston braid belt (19.7-17.8 ka) has a basal elevation averaging 7 m, the Kennett braid belt (16.1-14.4 ka) averages 13 m, the Morehouse (12 ka) braid belt averages 24 m, and the Holocene (≤ 10 ka) Mississippi River floodplain has the highest average basal elevation at 37 m. Along this easterly traverse the base of the Quaternary alluvium rises and the age of alluvium decreases. The eastward thinning of the floodplain alluvium in the Eastern Lowlands appears to be caused by decreasing Mississippi River discharge as it transitioned from the Wisconsinan glacial maximum to the Holocene. The base of the Holocene Mississippi

  8. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO

    NASA Astrophysics Data System (ADS)

    Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  9. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    PubMed

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers. PMID:27059223

  10. Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO

    USGS Publications Warehouse

    Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.

    2016-01-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  11. EMISSION CHARACTERIZATION OF MAJOR FOSSIL FUEL POWER PLANTS IN THE OHIO RIVER VALLEY

    EPA Science Inventory

    This study characterizes the atmospheric emissions from five major coal-fired power plant units in the Ohio River Valley between Portsmouth, Ohio, and Louisville, Kentucky. This characterization provides data that are representative of the boiler fuel emission control combination...

  12. [Ethnic dimension to migration in the Senegal river valley].

    PubMed

    Traore, S

    1993-08-01

    Studies of the factors determining migratory patterns in the Senegal River Valley usually stress the importance of economic factors related to colonial domination. But when cultural factors and the social relations governing them are examined in a comparative study of ethnic groups, distinct population subgroups may be revealed to have differential migratory patterns. The Soninka and the Poular, two groups highly affected by migration, were chosen for an analysis of the impact of specific historical experiences on migratory behavior. A historical analysis of colonial archives and anthropological and historical monographs and the 1982-83 "Survey of Migration in the Valley of the Senegal River" provided data. The survey indicated that Soninka and Poular migratory patterns differed from each other, but that both differed from the migratory patterns of all other ethnic groups in the region. Soninka migration is international and oriented primarily toward Europe. It has recently become more intense than that of the poular. The determinants of migration in the two groups appear related more to the structure of households than to lack of educational and health facilities or even of food at the village level. Pastoral life and its associated beliefs and religious ideology appear to have been the principal determinants of precolonial movement among the Poular, while Soninka migration responded more to competition over control of manpower. Itinerant commercial activity was coupled with use of slave labor to ensure food production. But the suppression of slavery and crises of subsistence aggravated by colonial policy provoked ever more distant migration, which found a focus in the French demand for labor after World War II. Migration as an alternative does not appear to have been as significant for the Poular until more recently, when subsistence agriculture and the sale of animals were no longer sufficient to cover monetary needs. Male migration among the Soninka is a

  13. Community Survey Results for Rappahannock River Valley National Wildlife Refuge: Completion Report

    USGS Publications Warehouse

    Sexton, Natalie R.; Stewart, Susan C.; Koontz, Lynne

    2008-01-01

    This report provides a summary of results for the survey of residents of communities adjacent to Rappahannock River Valley NWR conducted from the spring through the summer in 2006. This research was commissioned by the Northeast Region of the U.S. Fish and Wildlife Service in support of the Rappahannock River Valley NWR CCP and conducted by the Policy Analysis and Science Assistance Branch (PASA) of the U.S. Geological Survey/Fort Collins Science Center.

  14. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  15. Geoindicators for river and river-valley monitoring in the humid tropics

    USGS Publications Warehouse

    Osterkamp, W.R.

    2002-01-01

    Geoindicators for rivers and river valleys in the humid tropics are suggested to indicate environmental change during periods of up to a century. Geoindicators suggested for upland areas of supply are rainfall-runoff relations, rates of soil movement and slope failure, and analyses of drainage density. Data applicable to sediment storage in lowlands are rates of sediment deposition as shown by monuments, short-lived radioisotopes, and pollen. Discharges of water, sediment, and dissolved solids are basic geoindicators for large streams, especially when analyses include flood frequency, stage-discharge relations, flow duration, sediment-rating curves, and comparisons of dissolved loads to sediment loads. The utility of geoindicators in the humid tropics may be greatest if observation sites are selected with a network design to permit comparisons of sites with similar conditions of climate and drainage-basin characteristics.

  16. Lithologic Heterogeneity and Variable Valley Width in the Buffalo River Watershed, AR

    NASA Astrophysics Data System (ADS)

    Shepherd, S. L.; Keen-Zebert, A.

    2014-12-01

    Lithologic heterogeneity across catchments is thought to be a key control on the style of incision, whether dominated by vertical or lateral processes, but little field evidence is available to support the claims. Map and field observations from the Buffalo National River (BNR) indicate that valley width is related to variation in lithology along the length of the river. The BNR is a gravel-mantled, ingrown meandering, bedrock river that incises through a sequence of Pennsylvanian, Mississippian, and Ordovician carbonate and clastic sedimentary rocks. Using GIS, valley width was measured at 250 m intervals along the entire length of the river through two sequences of limestone and sandstone reaches that represent the dominant lithologies of the catchment. Preliminary results show measurable and statistically significant differences in valley width between limestone and sandstone reaches. Where limestone strata is exposed at river level the mean width is ~ 360 m and is highly variable with a standard deviation of 227 m. The mean width in sandstone strata is ~240 m with a standard deviation of 88 m. At each transition from limestone to sandstone there is a greater than 20% decrease in valley width downstream, with no visible change in channel width at map scales. It is possible the atypical pattern in valley width in the BNR is due to variation in lithologic resistance. These results support the assumption that lithologic heterogeneity exerts control on stream valley evolution.

  17. Holocene river dynamics in Northland, New Zealand: The influence of valley floor confinement on floodplain development

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Fuller, I. C.; Holt, K. A.; Litchfield, N. J.; Macklin, M. G.

    2013-11-01

    Valley floor mapping, sedimentology, and 14C-dating have been used to reconstruct the fluvial history at eight floodplain sites spread throughout Northland, a region removed from the main areas of tectonic and volcanic activity in New Zealand. We present a probability-based record of Holocene river behaviour for Northland using 14C-dated Holocene fluvial deposits and compare this with independent palaeoclimate proxy records from the North Island. Holocene floodplain evolution and fluvial behaviour have been conditioned by the degree of valley-floor confinement. In the most and least confined valley settings, Holocene floodplain evolution has involved the development of a single floodplain surface. At partly confined sites, the river terrace and floodplain geomorphology are more complex. Region-wide progressive floodplain alluviation through the mid to late Holocene and a period of increased river activity between 3500 and 2800 cal. YBP in response to climatically driven increases in sediment supply was followed by a period of valley floor incision and terrace formation beginning after 1900 cal. YBP. In partly confined valley settings, this was followed by the aggradation of a lower Holocene floodplain surface, with rapid rates of vertical accretion in response to post-settlement catchment disturbance. The results of this study indicate that valley floor confinement has played a major role in controlling Northland Holocene river floodplain development, producing a continuum of floodplain and river terrace landforms in response to climatically and anthropogenically driven variations in sediment flux.

  18. The evolution of the Shiwanghe River valley in response to the Yellow River incision in the Hukou area, Shaanxi, China

    NASA Astrophysics Data System (ADS)

    Qiu, Wei-Li; Zhang, Jia-Fu; Wang, Xiao-Yan; Guo, Yu-Jie; Zhuang, Mao-Guo; Fu, Xiao; Zhou, Li-Ping

    2014-06-01

    Tributary response to mainstream incision is an important landscape evolution process. The objective of this study is to examine tributary valley evolution in response to mainstream incision. The Shiwanghe River, a tributary of the Yellow River in the Hukou area, was chosen for a case study. The terraces and knickpoints of the Shiwanghe River were investigated and correlated to those of the mainstream. Optically stimulated luminescence (OSL) was applied to date fluvial terraces. Longitudinal profiles of river and terraces were used to analyze valley evolution. The terrace sequence of the Shiwanghe River near their confluence is almost identical to the Yellow River terraces at the Hukou area. This suggests that terrace formations of the tributary and the mainstream are synchronous, and influenced by similar factors. But the formation age of the same tributary terrace varies from downstream to the upper reaches of the river valley. For such terraces, their formation should be controlled by knickpoint migration. A sudden drop in base-level caused by the Yellow River incision would trigger the formation of a knickpoint in the tributary. A new terrace would be formed as the knickpoint propagated upstream throughout the tributary valley. Due to the different erodibility of bedrock, a set of interbedded sandstone and shale, the major knickpoint would disassemble into a cluster of small ones during its propagation. The age of terrace formation with various valley segments depends on knickpoint migration rate and distance from the confluence. Vertical incision of the Yellow River results in knickpoint recession of its tributaries. The migration rate of knickpoints was affected by climate, lithologic variation, and, to some extent, structural control.

  19. Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system

    USGS Publications Warehouse

    Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.

    1994-01-01

    The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.

  20. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    SciTech Connect

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  1. Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range

    SciTech Connect

    Berri, D.A.; Korosec, M.A.

    1983-01-01

    The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

  2. Evaluation of reforestation in the Lower Mississippi River Alluvial Valley

    USGS Publications Warehouse

    King, S.L.; Keeland, B.D.

    1999-01-01

    Only about 2.8 million ha of an estimated original 10 million ha of bottomland hardwood forests still exist in the Lower Mississippi River Alluvial Valley (LMAV) of the United States. The U.S. Fish and Wildlife Service, the U.S. Forest Service, and state agencies initiated reforestation efforts in the late 1980s to improve wildlife habitat. We surveyed restorationists responsible for reforestation in the LMAV to determine the magnitude of past and future efforts and to identify major limiting factors. Over the past 10 years, 77,698 ha have been reforested by the agencies represented in our survey and an additional 89,009 ha are targeted in the next 5 years. Oaks are the most commonly planted species and bare-root seedlings are the most commonly used planting stock. Problems with seedling availability may increase the diversity of plantings in the future. Reforestation in the LMAV is based upon principles of landscape ecology; however, local problems such as herbivory, drought, and flooding often limit success. Broad-scale hydrologic restoration is needed to fully restore the structural and functional attributes of these systems, but because of drastic and widespread hydrologic alterations and socioeconomic constraints, this goal is generally not realistic. Local hydrologic restoration and creation of specific habitat features needed by some wildlife and fish species warrant attention. More extensive analyses of plantings are needed to evaluate functional success. The Wetland Reserve Program is a positive development, but policies that provide additional financial incentives to landowners for reforestation efforts should be seriously considered.

  3. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China

    PubMed Central

    2013-01-01

    Background The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. Results 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Conclusion Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations. PMID:24079706

  4. Using a novel flood prediction model and GIS automation to measure the valley and channel morphology of large river networks

    EPA Science Inventory

    Traditional methods for measuring river valley and channel morphology require intensive ground-based surveys which are often expensive, time consuming, and logistically difficult to implement. The number of surveys required to assess the hydrogeomorphic structure of large river n...

  5. [Dynamics and influence width of dry valley landscape boundary in upper reaches of Minjiang River].

    PubMed

    Yang, Zhao-Ping; Chang, Yu; Yang, Meng; Hu, Yuan-Man; Bu, Ren-Cang; He, Xing-Yuan

    2007-09-01

    Based on RS and GIS techniques, the distribution extent of the dry valley in upper reaches of Minjiang River was determined, with the dynamics and influence width of its landscape boundary analyzed. The results indicated that the dry valley had a gradually expanded distribution, and the total length of its boundary was increased. The boundary complexity increased from 1974 to 1995 but decreased from 1995 to 2000, and the upper boundary of the dry valley ascended rapidly along mountain slope. The uppermost elevation of the dry valley boundary was 3128 m in 1974, 3167 m in 1995, and 3181 m in 2000. In the last 26 years, the upper boundary of the dry valley ascended 53 m in total, being about 2 m per year. The influence width of the dry valley boundary was 800 m, which could be regarded as a buffer zone to disturbances. The area between 800-1200 m from the dry valley boundary to exterior was a transition zone intensely influenced by the dry valley and its surrounding landscape, which should be addressed in the restoration of the dry valley. PMID:18062298

  6. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  7. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  8. Geomorphological record of transformations of upland river valley bottoms at variable rate of gully erosion (case study: Wieprz River valley in Roztocze)

    NASA Astrophysics Data System (ADS)

    Kociuba, Waldemar

    2014-06-01

    In the upland geosystems of the moderate climate zone, any change in the conditions of functioning of a catchment causes a response of the system involving variable dynamics of fluvial processes (Gregory, Walling 1973; Schumm 1977, 1981; Kostrzewski, Szpikowski 2003; Świeca, Kociuba 2007). In the conditions of low anthropopressure, the direction and intensity of the processes modelling the valley bottom are determined by environmental factors, i.e. the geology and lithology of sediments, and land relief, and climate-driven factors, i.e. precipitation and groundwater supply determining water and sediment discharge rate (Froehlich 1982; Kostrzewski et al. 1994; Krzemień 1999; Dearing, Jones 2003, Meybeck et al. 2003; Kociuba et al. 2003; Świeca, Kociuba 2007; Rodzik et al. 2008). In the conditions of strong anthropopressure, the processes of transformation of the valley bottom can be largely accelerated due to disturbances in the stability of the catchment’s environmental conditions. Their geomorphological ef fects are manifested in changes in the channel shape (in the plan and cross profile), and in the modelling of the zone outside the channel, as a result of both flood and delluvial sediment deposition, particularly in the mouth zones of dry valleys and erosional dissections (Bork 1989; Rodzik et al. 2008; Brown 2009). Transformations of valley landforms resulting from changes in natural conditions and anthropopressure on the valley system can be traced based on the example of the meridional part of the Roztocze section of the Wieprz River valley (Fig. 1) - a typical medium-sized upland river of the moderate climate zone (Rodzik et al. 2008). The modern relief of the alluvial plain of the Roztocze fragment of the Wieprz River valley results from complex morphogenetic processes (Kociuba, Brzezińska-Wójcik 2002; Kociuba, Superson 2004). The primary morphostructural features developed with the contribution of tectonic movements in the Neogene and Early

  9. Types of river valleys as a criterion for estimation of the territory geodiversity

    NASA Astrophysics Data System (ADS)

    Opekunova, Marina; Vyrkin, Vladimir

    2015-04-01

    The Oka plateau occupies an intermediate position between large morphostructures of Southern Siberia. It is a unique object, where the features of relief development of the contiguous areas were reflected. The structure of the plateau also includes the Ilchir-Kitoi depression, located in the southeast, and the Oka depression, which lies in the north-west. The river network is characterized by deeply incised valleys, the relief of which bears traces of glacial activity, manifestations of Cenozoic volcanism, and active neotectonic movements. These factors also determine a wide variability in distribution of the types of river valleys: from the valleys with the hilly-moraine topography to the broad-floodplain sections of valleys with an instrativ floodplain-terrace complex and incised type of channel when the river crosses basalt fields. Thus, the antecedent Oka river valley of ancient formation was actively affected by volcanism and glaciation in Late Cenozoic. Lava flows enabled the formation of the incised and adapted types of channels within the south-western part of the Oka depression. Large areas of distribution of basalts on the left-bank part of the Oka river basin, occupying mainly the watershed positions, contributed to the formation of a certain type of longitudinal profiles of channels, characterized by a shallow form in the upper reaches (in the field of basalts development) and by a steep form in the middle and lower sections of the valleys. The distribution of fluvioglacial landforms and moraine ridges descending into the Oka valley along the tributaries (Sentsa, Gargan and others), and the presence of facies transitions from fluvioglacial and glacial to alluvial deposits determine the specific type of river valleys, developed under the conditions of the glacial relief formation. Due to the uplift of the Kropotkin range, the river erosion within the plateau is relatively slowed down in comparison with the surrounding mountains, which is reflected in the

  10. PCB cleanup battle wages on in the Hudson River Valley

    SciTech Connect

    Nichols, A.B.

    1990-07-01

    The Hudson River between Troy, NY and Fort Edward, NY has sediments contaminated with polychlorobiphenyls (PCBs). The author discusses the legal red tape and public opinion problems associated with the clean up of this river.

  11. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  12. Irrigation related arsenic contamination of a thin, alluvial aquifer, Madison River Valley, Montana, U. S. A

    SciTech Connect

    Sonderegger, J.L. ); Ohguchi, Takeshi )

    1988-04-01

    The arsenic concentration in 13 water samples from wells in the thin, alluvial aquifer of the Madison River Valley, Montana, U.S.A. ranged from 26 to 150 {mu}g/l. The Madison River, which originates in Yellowstone National Park, has a mean arsenic concentration of 51 {mu}g/l ({sigma} = 26 {mu}g/l), based upon very limited sampling in the study area during the main irrigation period. Groundwater arsenic concentration increases down the valley can be best correlated with the intensity of ditch irrigation in this semiarid area. No other sources of dissolved arsenic as concentrated as that of the river water have been identified. Evaporative concentration of river-derived irrigation water is believed to have been the overwhelming factor in the contamination of this shallow aquifer.

  13. Quality of the Arkansas River and irrigation-return flows in the lower Arkansas River Valley, Colorado

    USGS Publications Warehouse

    Cain, Doug

    1985-01-01

    Irrigation-return flows in the lower Arkansas River valley of Colorado were investigated using one-time data at 59 sites, monthly data at 4 sites, and intensive data in a small irrigated area. Specific conductance of return flows increased downstream, paralleling specific conductance of irrigation water. During July 1977, Arkansas River streamflow below Manzanola was mostly irrigation-return flow. A similar situation existed during periods of little precipitation in the early and late irrigation seasons during 1974 to 1978. Irrigation-return flows had a large effect on Arkansas River water quality during these times. (USGS)

  14. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  15. Holocene climatic events recorded in palaeoflood slackwater deposits along the middle Yiluohe River valley, middle Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xueru; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Guo, Yongqiang; Hu, Guiming

    2016-06-01

    Palaeohydrological investigations were carried out in the middle reaches of the Yiluohe River, a major tributary in the lower-middle Yellow River basin. Typical palaeoflood slackwater deposits (SWDs) were identified in the Holocene pedostratigraphy on the cliffy river banks. Analytical results, including magnetic susceptibility and grain-size distribution data, indicated that these SWDs were deposited from the suspended sediment load in flood water. These SWDs are different from eolian loess, soils and aeolian sands in the riverbank profile. They recorded several episodes of extraordinary palaeoflood events. In the Longmenxia reaches of the Yihe River valley, these flood events were dated at 3100-3000 a, 1800-1700 a, 770-610 a, and 420-340 a using the optically stimulated luminescence method in combination with the pedostratigraphic correlations. In the Longhutan reaches of the Luohe River valley, the palaeoflood events were dated at 1975-1466 a, i.e., from the Han to Wei dynasties (AD 25-534), during which the capital city on the river banks was flooded many times, as recorded in the literature. These extraordinary flood events are well correlated chronologically with the known Holocene climatic events that occurred in the Northern Hemisphere. Thus, the monsoonal climate was highly variable with both floods and droughts occurring frequently during these episodes. These results are important for understanding the response of river systems in eastern Asia to global changes.

  16. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Valley viticultural area is located in Sonoma County, California. (1) Starting point Healdsburg map... miles generally north along Santa Rosa Avenue, which becomes Mendocino Avenue, to its intersection with... Mendocino Avenue, section 11, T7N, R8W, on the Santa Rosa map. (21) Proceed 2.5 miles straight...

  17. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Valley viticultural area is located in Sonoma County, California. (1) Starting point Healdsburg map... miles generally north along Santa Rosa Avenue, which becomes Mendocino Avenue, to its intersection with... Mendocino Avenue, section 11, T7N, R8W, on the Santa Rosa map. (21) Proceed 2.5 miles straight...

  18. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  19. 78 FR 1832 - Nez Perce-Clearwater National Forests; Id; Crooked River Valley Rehabilitation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service Nez Perce-Clearwater National Forests; Id; Crooked River Valley Rehabilitation Project Correction In notice document 2012-29836 appearing on pages 73976-73978 in the issue of Wednesday,...

  20. 76 FR 70866 - Expansions of the Russian River Valley and Northern Sonoma Viticultural Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... description of the features of the viticultural area that affect viticulture, such as climate, geology, soils..., in the Federal Register (73 FR 49123) regarding the proposed expansion of the Russian River Valley....) ATF-159, published in the Federal Register (48 FR 48812) on October 21, 1983. It was expanded by...

  1. First record of Diatraea tabernella in the Cauca River Valley of Colombia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diatraea tabernella (Dyar) is first recorded in the Cauca River Valley of Colombia. Even though information on its status has been unknown for almost a century in Colombia, its recent register creates concern about its potential economic importance in virtue of its abundance and distribution in the ...

  2. TRACE ELEMENT CONCENTRATIONS ON FINE PARTICLES IN THE OHIO RIVER VALLEY

    EPA Science Inventory

    Atmospheric particles were collected from May, 1980 to Dec., 1981 at 3 sampling sites in the Ohio River Valley (ORV). The collected samples were analyzed by x-ray fluorescence (XRF) for elemental concentrations and their masses determined by beta gauging. The XRF data and associa...

  3. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  4. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... viticultural area are 12 U.S.G.S. topographic maps in the scale 1:250,000, as follows: (1) Paducah NJ 16-7... River and the Ohio River (Paducah map). (2) The boundary follows the Illinois-Indiana State line... in a straight line northwesterly to the beginning point (Paducah map). (d) Transition period. A...

  5. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... viticultural area are 12 U.S.G.S. topographic maps in the scale 1:250,000, as follows: (1) Paducah NJ 16-7... River and the Ohio River (Paducah map). (2) The boundary follows the Illinois-Indiana State line... in a straight line northwesterly to the beginning point (Paducah map). (d) Transition period. A...

  6. Accounting System for Water Use by Vegetation in the Lower Colorado River Valley

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1992-01-01

    The Colorado River is the principal source of water in the valley of the Colorado River between Hoover Dam and the international boundary with Mexico (fig. 1). Agricultural, domestic, municipal, industrial, hydroelectric-power genera-tion, and recreation are the primary uses of river water in the valley. Most of the consumptive use of water from the river occurs downstream from Davis Dam, where water is diverted to irrigate crops along the river or is exported to interior regions of California and Arizona. Most of the agricultural areas are on the alluvium of the flood plain; in a few areas, land on the alluvial terraces has been cultivated. River water is consumed mainly by vegetation (crops and phreatophytes) on the flood plain. Crops were grown on 70.3 percent of the vegetated area classified by using 1984 digital image satellite data. Phreatophytes, natural vege-tation that obtain water from the alluvial aquifer, covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped from the river. In some areas, water is pumped from wells completed in the alluvial aquifer, which is hydraulically connected to the river.

  7. Characteristics of a Recent and Prehistoric Landslides in the Pine River Valley, BC: a Mapping Effort

    NASA Astrophysics Data System (ADS)

    Heijenk, R.; Geertsema, M.; Miller, B.; de Jong, S. M.

    2015-12-01

    Spreads and other low gradient landslides are common in glacial lake sediments in north eastern British Columbia. Both pre and post glacial lake sediments, largely derived from shale bedrock are susceptible to low-gradient landslides. Bank erosion by rivers and streams and high pore pressures, have contributed to the landslides. We used LiDAR for mapping the extent of the glaciolacustrine sediments and map and characterise landslides in the Pine River valley, near Chetwynd, British Columbia. We included metrics such as travel angle, length, area, and elevation to distinguish rotational and translational landslides. We mapped 45 landslides in the Pine River valley distinguishing between rotational and translational landslides. The rotational landslides commonly have a smaller area and smaller travel length than translational landslides. Most rotational slides involved overlying alluvial fans, while most translational slides involved terraces.

  8. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    USGS Publications Warehouse

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  9. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... viticultural area are 12 U.S.G.S. topographic maps in the scale 1:250,000, as follows: (1) Paducah NJ 16-7... River (Paducah map). (2) The boundary follows the Illinois-Indiana State line northerly (across the... map). (21) The boundary proceeds in a straight line northwesterly to the beginning point (Paducah map)....

  10. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... viticultural area are 12 U.S.G.S. topographic maps in the scale 1:250,000, as follows: (1) Paducah NJ 16-7... River (Paducah map). (2) The boundary follows the Illinois-Indiana State line northerly (across the... map). (21) The boundary proceeds in a straight line northwesterly to the beginning point (Paducah map)....

  11. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... viticultural area are 12 U.S.G.S. topographic maps in the scale 1:250,000, as follows: (1) Paducah NJ 16-7... River (Paducah map). (2) The boundary follows the Illinois-Indiana State line northerly (across the... map). (21) The boundary proceeds in a straight line northwesterly to the beginning point (Paducah map)....

  12. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, D.E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  13. Native American prehistory of the middle Savannah River Valley

    SciTech Connect

    Sassaman, K.E.; Brooks, M.J.; Hanson, G.T.; Anderson, D.G.

    1990-01-01

    Archaeological investigations on the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina span 17 years and continue today through a cooperative agreement between DOE and the South Carolina Institute of Archaeology and Anthropology (SCIAA), University of South Carolina. The Savannah River Archaeological Research Program (SRARP) of SCIAA has been and continues to be the sole archaeological consultant for DOE-SRS. This report documents technical aspects of all prehistoric archaeological research conducted by the SRARP between 1973 and 1987. Further, this report provides interpretative contexts for archaeological resources as a basis for an archaeological resource plan reported elsewhere (SRARP 1989), and as a comprehensive statement of our current understanding of Native American prehistory. 400 refs., 130 figs., 39 tabs.

  14. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals

    NASA Astrophysics Data System (ADS)

    Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia

    2005-02-01

    We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.

  15. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa

    USGS Publications Warehouse

    Bettis, E. Arthur, III; Baker, R.G.; Nations, B.K.; Benn, D.W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ?? 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan. ?? 1990.

  16. Sublacustrine river valley in the shelf zone of the Black Sea parallel to the Bulgarian coast

    NASA Astrophysics Data System (ADS)

    Preisinger, A.; Aslanian, S.; Beigelbeck, R.; Heinitz, W.-D.

    2009-04-01

    The considered sublacustrine river valley is situated in the shelf zone of the Black Sea. It runs in parallel to the Bulgarian coast, was formed in the time period of the Younger Dryas (Preisinger et al., 2005), and features an inclination of about 0.5 m/km. An about 200 km long sediment wall separates the approximately 10 km broad river valley from the outside shelf zone. This wall was generated during the Older Dryas until the beginning of the Younger Dryas. Its shape was formed by transportation of water and sediment from the Strait of Kerch by a circulating rim current in the Black Sea and water as well as sediment flow of the Danube in direction to the Bosporus. New investigations of the sediments of this river valley were performed by utilizing a Sediment Echo Sounder (SES 2000). This Echo Sounder is a parametric sub-bottom profiler enabling a high resolution sub-bottom analyses. It is capable of penetrating sea beds up to more than 50 m of water depth. The received echo data are real-time processed. The signal amplitudes are valuated in context to a logarithmic scale and graphically visualized by means of a colorized echogram utilizing false colours ranging from red for a high to blue representing a low signal (W.-D. Heinitz et al., 1998). The highest signal (red) is given by the acoustic impedance of the boundary between sea water and river sediment. The echograms of the river valley depict spatially isolated (red) high-signal peaks, which are periodically repeated in vertical direction between the sediment surface and the bottom of the valley. The number of these high-signal parts increase with an increasing valley depth. Studying of the distribution of these peaks allows to draw conclusions regarding the content and composition of the sediment. This prediction of the sediment composition obtained by means of the SES 2000 was successfully verified by analyzing a gravity core taken near Nos Maslen (at 44 m water depth) with a particular focus on the water

  17. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa*1

    NASA Astrophysics Data System (ADS)

    Bettis, E. Arthur; Baker, Richard G.; Nations, Brenda K.; Benn, David W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ± 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan.

  18. Catastrophic flood origin, little Missouri River valley, Montana, South Dakota, and North Dakota

    SciTech Connect

    Clausen, E.N.

    1988-07-01

    Mosaics of photographically reduced topographic maps demonstrate the Little Missouri River valley was developed by gigantic floods. Catastrophic flood landforms, oriented in a northwest-southeast direction, cross the entire Little Missouri drainage basin. Field evidence, consisting of abundant flood-deposited alluvium, supports map evidence. Flood-produced landforms, cut in easily eroded claystone bedrock, appear fresh, suggesting that floods occurred late during the last glacial cycle. Sheets of water, several hundred kilometers wide, flowed in a southeast direction, parallel with a continental ice margin. Erosion lowered the regional surface from a level corresponding to the tops of the highest present-day buttes to the surface now crossed by the headwaters of the Moreau, Grand, Cannonball, Heart, and Green Rivers. Spillway trenches served to channel flow and rapidly cut headward into easily eroded claystone. These trenches include the Moreau, Grand, Cannonball, Heart, and Missouri valleys. The Missouri valley in western North Dakota became the dominant spillway as tributary trenches systematically cut off flow feeding competing spillways. Formation of the Little Missouri spillway, first as a north-trending valley, progressively cut off floodwaters flowing into the Heart, Cannonball, Grand, and Moreau spillways. The north end of the Little Missouri spillway also was cut off by a deeper east-trending spillway. Huge sheets of floodwater continued to pour across the divide west of the Little Missouri continuing to lower that surface. These floodwaters were cut off by development of the Yellowstone spillway in eastern Montana.

  19. Numerical modeling of tectonically driven river dynamics and deposition in an upland incised valley

    NASA Astrophysics Data System (ADS)

    Bianchi, Valeria; Salles, Tristan; Ghinassi, Massimiliano; Billi, Paolo; Dallanave, Edoardo; Duclaux, Guillaume

    2015-07-01

    Within upstream reaches of incised valleys, fluvial sedimentation occurs where it is controlled by interaction between climate and tectonics. This study focuses on a Plio-Pleistocene fluvial paleovalley, which drained the northeastern margin of Siena basin (northern Apennines, Italy). Valley filling resulted from the interaction between river drainage and active normal faults striking perpendicular and parallel to the main valley. Through numerical modeling, this study aims to refine temporal and spatial mesoscale deposit variations, which highlight the upset of fluvial architectures derived from the interplay between the river system and uplift. Geomorphological and hydrodynamic parameter calibration was performed integrating field studies with paleohydraulic and paleomagnetic data. The numerical model simulates the evolution of valley formation with the development of (i) a pre-tectonic steady state system, followed by (ii) a syntectonic aggradation and avulsion phase, and (iii) a post-tectonic relaxation phase. The syntectonic phase shows fine sediment back-filling upstream of the uplifted area and coarse sediment down-filling downstream of the upwarping. The recorded aggradations are asynchronous with upstream deposition preceding downstream deposition.

  20. Climatic and morphological controls on post-glacial lake and river valley evolution in the Weichselian belt - an example from the Wda valley, Northern Poland

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Błaszkiewicz, M.; Piotrowski, J. A.; Brauer, A.; Gierszewski, P.; Kordowski, J.; Lamparski, P.; Lorenz, S.; Noryśkiewicz, A. M.; Ott, F.; Slowinski, M. M.; Tyszkowski, S.

    2014-12-01

    The River Wda valley is a classical example of a polygenetic valley, consisting of former lake basins joined by erosive gap sections. In its middle section, which was the subject of our research, a fragment of an abandoned Lateglacial river valley is preserved, which is unique for the Weichselian moraine belt in the Central European Lowlands. The analysis of the relationship between the lacustrine and fluvial sediments and landforms enabled the authors to report many evolutionary connections between the initial period of the river system formation and the emergence of lakes during the Weichselian Lateglacial. The surface drainage essentially determined the progress of melting of dead ice blocks buried in the glacial depressions, which finally led to lake formation there. Most of the lake basins in the study area were formed during the Bølling-Allerød period. However, one section of the subglacial channel was not exposed to the thermokarst conditions and was therefore preserved with dead ice blocks throughout the entire Lateglacial. The dead ice decay at the beginning of the Holocene, as well as the emergence of another lake, created a lower base level of erosion in the close vicinity of the abandoned valley and induced a change of the river's course. Both fluvial and lacustrine deposits and landforms distributed in the central section of the River Wda valley indicate two processes, which proceeded simultaneously: (1) emergence of fluvially joined lake basins within a glacial channel, (2) degradation of the river bed in the gap sections interfering between the lakes. The processes described for the central section of the River Wda channel indicate a very dynamic river valley development during the Weichselian Lateglacial and the early Holocene. The valley formation was tightly interwoven with the morphogenesis of the primary basins within the valley, mainly with the melting of the buried blocks of dead ice and the development of lakes. This study is a contribution

  1. [Relationships between biochemical qualities of paddy rice and climate conditions in the Anning River Valley].

    PubMed

    Peng, Guozhao; Bai, Jian; Wang, Jingbo

    2004-12-01

    Based on the experimental data of paddy rice planted geographically periodically without control in the Anning River Valley of Sichuan Province, this paper quantitatively analyzed the effects of meteorological conditions from 40 days before heading to ripeness on the biochemical qualities of paddy rice, and developed a model about the integrated relationships between biochemical qualities of paddy rice and mean temperature, daily range of temperature and daylight hours, which would be of significance both for the instruction of paddy distribution in the Anning River Valley and for improving rice qualities via adjusting planting time. The results showed that climate conditions had a great effect on the biochemical qualities of paddy rice, which was different in ways and in critical periods. The period when the correlation between some ingredients of rice and climate conditions was most significant was before or after, or from before to after full heading, which widened the existing knowledge about the period which was important for paddy rice qualities forming. Applying this finding in the Anning River Valley during 2002-2003, the accumulated high-grade paddy farming area stood at 73,000 hm2, 30,000 hm2 more than that in 2001, and brought 0.2 billion yuan increment to the peasants, promoting the development of high-grade paddy greatly. PMID:15825441

  2. Ground-water resources of the Mattapoisett River Valley, Plymouth County, Massachusetts

    USGS Publications Warehouse

    Olimpio, J.C.; De Lima, Virginia

    1984-01-01

    Ground-water withdrawals by municipal wells in the Mettapoisett River valley, Massachusetts, are expected to triple in the next two decades. State and local concern about the long-term impacts of these withdrawals on ground-water levels and streamflow made it necessary to assess the ground-water resources of the valley and to develop a digital ground-water-flow model for management purposes. Ten pumping scenarios, which represent the present and proposed withdrawals from the aquifer, were simulated using reduced recharge conditions. Under conditions simulating 1965 average annual recharge, predicted water levels in the aquifer are as much as 9 feet lower than average annual levels. At the highest withdrawal rates, the predicted drawdown in four wells exceeds the estimated available drawdown. Under conditions representative of the 7-day 10-year low flow of the river, predicted water levels decline as much as 19 feet. Simulated withdrawals in six scenarios use all of the available ground-water discharge. If this drought condition should occur and streamflow is not supplemented by surface water, the model results indicate that the river in the southern half of the valley will stop flowing under most pumping plans. (USGS)

  3. Debris Flow Control on Fluvial Hanging Valley Formation in the South Fork Eel River, CA

    NASA Astrophysics Data System (ADS)

    Deshpande, N.; Perkins, J.; Finnegan, N. J.

    2012-12-01

    An understanding of how base level signals are transmitted into landscapes is fundamental to interpreting river long profiles in tectonically active settings. Fluvial hanging valleys, locations where waves of incision have apparently arrested at tributary junctions, suggest that base level propagation is an unsteady process in many settings. A recent hypothesis (Wobus et al., 2006) explains the formation of fluvial hanging valleys via an instability in the saltation abrasion model of Sklar and Dietrich (2004). At locations where small steep tributaries join trunk streams, tributary incision rates can actually decrease with increasing channel slope when subjected to downstream base-level fall. However, we note that in mountainous river networks steep tributaries also commonly convey debris flows into trunk channels. Since these tributary junctions mark the upstream limit of channels whose beds are mobilized on a regular basis during flood events, here we hypothesize that transitions from fluvial to debris flow channels control the location of fluvial hanging valleys. To test our hypothesis, we exploit a natural experiment in base level fall and landscape evolution along the South Fork Eel River, which is argued to be responding to an increase in rock uplift rate associated with the passage of the Mendocino Triple Junction. In order to separate debris flow channels from fluvial channels, we use airborne laser swath mapping (ALSM) to quantify channel slopes and concavities. In our analysis, concavity data are noisy and represent a poor metric for determination of debris flow channels. In lieu of this, we choose a more straightforward metric of channel slope to discriminate where debris flows occur on the landscape. We find that, on average, fluvial hanging valleys are only present in tributaries with average gradients above 0.10, consistent with empirical determinations of the gradient at which debris flow channels transition to fluvial channels (0.03-0.10). Field

  4. Digital Map of Surficial Geology, Wetlands, and Deepwater Habitats, Coeur d'Alene River Valley, Idaho

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Jackson, Berne L.; Brandt, Theodore R.; Derkey, Pamela D.; Munts, Steven R.

    1999-01-01

    The Coeur d'Alene (CdA) River channel and its floodplain in north Idaho are mostly covered by metal-enriched sediments, partially derived from upstream mining, milling and smelting wastes. Relative to uncontaminated sediments of the region, metal-enriched sediments are highly enriched in silver, lead, zinc, arsenic, antimony and mercury, copper, cadmium, manganese, and iron. Widespread distribution of metal-enriched sediments has resulted from over a century of mining in the CdA mining district (upstream), poor mine-waste containment practices during the first 80 years of mining, and an ongoing series of over-bank floods. Previously deposited metal-enriched sediments continue to be eroded and transported down-valley and onto the floodplain during floods. The centerpiece of this report is a Digital Map Surficial Geology, Wetlands and Deepwater Habitats of the Coeur d'Alene (CdA) River valley (sheets 1 and 2). The map covers the river, its floodplain, and adjacent hills, from the confluence of the North and South Forks of the CdA River to its mouth and delta front on CdA Lake, 43 linear km (26 mi) to the southwest (river distance 58 km or 36 mi). Also included are the following derivative theme maps: 1. Wetland System Map; 2. Wetland Class Map; 3. Wetland Subclass Map; 4. Floodplain Map; 5. Water Regime Map; 6. Sediment-Type Map; 7. Redox Map; 8. pH Map; and 9. Agricultural Land Map. The CdA River is braided and has a cobble-gravel bottom from the confluence to Cataldo Flats, 8 linear km (5 mi) down-valley. Erosional remnants of up to four alluvial terraces are present locally, and all are within the floodplain, as defined by the area flooded in February of 1996. High-water (overflow) channels and partly filled channel scars braid across some alluvial terraces, toward down-valley marshes and (or) oxbow ponds, which drain back to the river. Near Cataldo Flats, the river gradient flattens, and the river coalesces into a single channel with a large friction

  5. Digital elevation model based geomorphological mapping in the lower River Boyne valley, Ireland

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan; Gallagher, Colman; Lewis, Helen

    2010-05-01

    Interpretation of digital elevation models (DEMs) is rapidly becoming a valuable extension to field-based geomorphic mapping. High-resolution LiDAR data (Light Detection and Ranging; point spacing 1m, vertical accuracy 0.1m) is ideally-suited for mapping areas of complex and subtle geomorphology, such as fluvial landscapes. This poster outlines how LiDAR data are being used to map and characterise the postglacial fluvial terraces of the lower Boyne valley, Co. Meath, Ireland. Comprehensive mapping, together with longitudinal profiles, demonstrate that the valley contains a suite, or ‘staircase', of six main fluvial terraces, spanning an altitude range of ca. 20m. These terraces represent a chronosequence of ‘palaeo' floodplains, with the highest (T1) being the oldest level, and the lowest (T6) the youngest. The evolution of the valley has thus involved progressive erosion, punctuated by episodes of vertical stability or re-filling. Classified maps of the river terrace sequence indicate that terrace T1 is closely associated with glacial landforms, while T2 exhibits multiple channels with large bar-forms, and could mark a braided river system that conveyed huge water and sediment loads during deglaciation ca. 20-17 ka BP. The ‘modern' floodplain (T6) is ubiquitous, and preliminary field studies have dated two of its palaeochannels to >1,000 cal. BP. The LiDAR based model of geomorphic evolution in the lower Boyne valley is being used to underpin field-based geomorphological and sediment studies, focusing on the acquisition of OSL and radiocarbon dates to secure the timing of river terrace formation and to assess the relationships between fluvial development and environmental change since the Late Glacial period.

  6. Authentic Research Experience for University of the Fraser Valley Undergraduate Students through the Global Rivers Observatory.

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Gillies, S. L.; Ehrenbrink, B. P. E.; Voss, B.; Janmaat, A.; Yakemchuk, A.; Smith, S.; Faber, A.; Luymes, R.; Epp, A.; Bennett, M. C.; Fanslau, J.; Downey, B.; Wiebe, B.; VanKoughnett, H.; Macklam-Harron, G.; Herbert, J.

    2014-12-01

    The University of the Fraser Valley has undertaken the time series sampling of water chemistry of the Fraser River at Fort Langley, British Columbia, Canada as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) which is organized by Woods Hole Oceanographic Institution and Woods Hole Research Center. In addition, we have been afforded the opportunity to undertake a time series sampling of Fraser Valley tributaries of the Fraser River. These small salmon bearing streams are being threatened by increased urbanization within their watersheds and runoff from agricultural activity. Students in upper level courses and individual research students have had the opportunity to become involved in GRO research projects. These students have been instructed in the sampling protocol and techniques and have become more aware of the threats to both local streams and the Fraser River watershed. Additionally, individual research students have been able to develop their own research projects within the larger project and present their findings at academic conferences. They have also been involved in peer-reviewed publications as co-authors of research papers.

  7. 77 FR 47493 - DMH Trust fbo Martha M. Head-Acquisition of Control Exemption-Red River Valley & Western Railroad...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board DMH Trust fbo Martha M. Head--Acquisition of Control Exemption-- Red River..., has filed a verified notice of exemption to acquire control of Red River Valley & Western...

  8. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  9. Centipede (Chilopoda) richness and diversity in the Bug River valley (Eastern Poland)

    PubMed Central

    Leśniewska, Małgorzata; Jastrzębski, Piotr; Stańska, Marzena; Hajdamowicz, Izabela

    2015-01-01

    Abstract The main aim of the survey was to describe the diversity and richness of Chilopoda in the selected area of the Bug River valley. The study sites were located in two regions differing in the shape of the valley, the presence of thermophilous habitats and the size of riparian forests. Pitfall traps were used as a sampling method. As a result, 444 specimens belonging to 12 centipede species of two orders – Geophilomorpha (four species) and Lithobiomorpha (eight species) were caught. Lithobius (Monotarsobius) curtipes C.L.Koch, 1847, Pachymerium ferrugineum (C.L.Koch, 1835), Lamyctes (Lamyctes) emarginatus (Newport, 1844) and Lithobius (Monotarsobius) dudichi Loksa, 1947 were the most common and the most numerous species. Of particular note is Lithobius dudichi found in Poland for the first time and previously known based on a single specimen. Two to 10 Chilopoda species were found in each habitat under investigation. The greatest species richness was found in thermophilous thickets (10 species), sandy grasslands (eight), xerothermic grasslands (eight) and mesic meadows (six). The fewest number of species (two) was found in rushes at oxbows and in wet meadows. We found differences in the species composition and the number of Chilopoda between the lower (102 specimens, six species) and the middle (324 specimens, 11 species) section of the river valley. Our results confirm the need to protect xerothermic habitats, unique almost throughout entire Central Europe, which due to their distribution and their small area covered are fairly easily subject to the process of destruction. PMID:26257539

  10. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  11. Centipede (Chilopoda) richness and diversity in the Bug River valley (Eastern Poland).

    PubMed

    Leśniewska, Małgorzata; Jastrzębski, Piotr; Stańska, Marzena; Hajdamowicz, Izabela

    2015-01-01

    The main aim of the survey was to describe the diversity and richness of Chilopoda in the selected area of the Bug River valley. The study sites were located in two regions differing in the shape of the valley, the presence of thermophilous habitats and the size of riparian forests. Pitfall traps were used as a sampling method. As a result, 444 specimens belonging to 12 centipede species of two orders - Geophilomorpha (four species) and Lithobiomorpha (eight species) were caught. Lithobius (Monotarsobius) curtipes C.L.Koch, 1847, Pachymeriumferrugineum (C.L.Koch, 1835), Lamyctes (Lamyctes) emarginatus (Newport, 1844) and Lithobius (Monotarsobius) dudichi Loksa, 1947 were the most common and the most numerous species. Of particular note is Lithobiusdudichi found in Poland for the first time and previously known based on a single specimen. Two to 10 Chilopoda species were found in each habitat under investigation. The greatest species richness was found in thermophilous thickets (10 species), sandy grasslands (eight), xerothermic grasslands (eight) and mesic meadows (six). The fewest number of species (two) was found in rushes at oxbows and in wet meadows. We found differences in the species composition and the number of Chilopoda between the lower (102 specimens, six species) and the middle (324 specimens, 11 species) section of the river valley. Our results confirm the need to protect xerothermic habitats, unique almost throughout entire Central Europe, which due to their distribution and their small area covered are fairly easily subject to the process of destruction. PMID:26257539

  12. Landslide hazard mapping in the Göta river valley to limit

    NASA Astrophysics Data System (ADS)

    Tremblay, M.; Svahn, V.; Lind, B.; Lundström, K.; Cederbom, C. E.

    2012-04-01

    Landslide scars are frequent along the river bank of the Göta river in southwest Sweden, and several landslides in quick-clay have resulted in casualties and severe damages on buildings and infrastructure during the last century. Moreover, higher average precipitation and increased occurrence of extreme rainfall events are some expected climate changes in Sweden during the coming 70-100 years. The Swedish Geotechnical Institute (SGI) was therefore commissioned by the Swedish Government to perform an inventory of the landslide potential in the Göta river valley, taking predicted climate changes into consideration. The project was running over three years (2009-2011) and the final report is presented in March 2012. To prevent extensive floodings and damages of cities and infrastructure around Lake Vänern, it is necessary to allow controlled overflow from Lake Vänern through the Göta river. An overflow in the river, in turn, leads to increased risk for erosion and landslides along the river valley. The inventory has included detailed field and laboratory investigations of the geological and hydrological conditions, methodology development, erosion modeling, effects of climate changes on porewater and groundwater conditions as well as an estimation of consequences and probabilities for failure in the present-day and future climate. In the final report risk estimates for the complete study area are presented along with rough cost estimates for first-order preventing measures. This presentation aims to give an overview of the outcome of the inventory, the experience and new knowledge acquired during the project as well as the need of research and development work in different technical areas in order to improve risk mapping of natural slopes.

  13. The environmental conditionings of the location of primeval settlements in the Wieprz River valley

    NASA Astrophysics Data System (ADS)

    Kozieł, Marcin; Kozieł, Wojciech

    2012-01-01

    The Wieprz River along the section currently occupied by the Nadwieprzański Landscape Park (NLP) constituted a convenient place of human settlement from the moment of retreat of the last ice sheet. Depending on the types of economy preferred by representatives of individual archaeological cultures, the river valley from Spiczyn to Dorohucza offered continuous access to water. This obviously gained additional importance from the moment of appearance of Neolithic cultures, particularly the Globular Amphora culture and Corded Ware culture with semi-nomadic style of life, dealing with breeding. Neolithic hunters-gatherers exploited the animal resources available in the river and its vicinity. The further role of fishing, i.e. providing a diet element or supplementation already in the conditions of agricultural-breeding economy, seems to be evidenced by findings of fishing hooks at Lusatian and Wielbark sites. Another factor affecting the location of settlements in NLP was also its close vicinity to the crops of the Rejowiec flint. According to archaeologists, this is particularly obvious in the case of the Late Palaeolithic and the turn of the Neolithic and Bronze Age. The communication function of the river could also be of importance: in the case of seasonal animal migrations of animals and hunters (Late Palaeolithic); livestock and shepherds (Globular Amphora culture and Corded Ware culture); or people alone (migration of the population of the Wielbark culture to the Red Sea). The fact that a commercial trail fragment was located along the Wieprz River is probably evidenced by the abundance of import from various parts of Europe at site 53 in Spiczyn. Fertile soils (black soils, silt-peat soils) prevailing in the valley also favoured the settlement of cultures with an agricultural-breeding model of economy, providing good conditions for horticulture. Meadows near the river could be used as pastures.

  14. Water balance of selected floodplain lake basins in the Middle Bug River valley

    NASA Astrophysics Data System (ADS)

    Dawidek, J.; Ferencz, B.

    2014-04-01

    This study is the first attempt in the literature on the subject of comparing water balance components for floodplain lake basins, depending on the type of a lake connection to the parent river. Research was carried out in the Bug River valley in 2007-2011 water years. Four types of connections were distinguished in the area under study. Simple water balance equation could only be used with regard to the lakes connected to the main river via the upstream crevasses. Detailed and individual water balance equations were developed with reference to the other types of lakes. Water gains and losses varied significantly in the lakes under study. Values of horizontal water balance components (inflow and outflow) of the floodplain lake in Wola Uhruska considerably prevailed over the vertical ones (precipitation and evaporation). Inflow of the Bug River waters was diverse during the time period under study and amounted from 600 000 to 2 200 000 m3 yr-1. Volumes of precipitation and evaporation were rather stable and amounted to approx. 30 000 m3 yr-1. The lowest disparity between horizontal and vertical water balance components was observed in the inter-levee lake. Both upstream inflow of rivers water and outflow from the lake (ranged from 0 in 2008 to 35 000 m3 yr-1 in 2009) were usually an order of magnitude higher than precipitation and evaporation from the lake surface (700-800 m3 yr-1). Study showed that the values and the proportion between aforementioned vertical and horizontal water balance elements were determined by the type of a lake connection to the Bug River. Storage volume showed no relationship to the type of connection, but resulted from individual features of the lakes (location within the valley, precipitation and evaporation volume, difference between water inflow and outflow).

  15. Wetlands monitoring - hydrological conditions and water quality in selected transects of Biebrza National Park.

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Mateusz; Okruszko, Tomasz

    2010-05-01

    Water Framework Directive (WFD) obligates Member States to prevent further deterioration as well as to protect and enhance the status of aquatic ecosystems and wetlands. In order to fulfill one of the WFD objectives - to keep wetlands in good surface water and groundwater status (determined by good ecological, chemical and quantitative status) it is necessary to specify most favourable conditions for them. In that case monitoring of factors responsible for wetlands status in natural areas is a key issue. Further, achieved knowledge of existing relations in ecosystems can be implemented in protection and restoration projects. There are a number of factors influencing diversity of habitats responsible for developing different wetland ecosystems and their sustaining in good ecological status. It's believed that among significant factors such as hydrological conditions, water quality, nutrient availability in the soil, pH value and management (e.g. grazing, mowing) the hydrological conditions are the most important. In presented work authors concentrated on hydrological conditions and water quality and theirs influence on wetland vegetation of Biebrza National Park (BNP). BNP located north-east part of Poland is recognized by many scientist as a unique undisturbed wetland reference area. Five transects located in different basins of BNP were chosen. Transects consist of piezometers in which the water table levels and water quality were measured. Analysis of electroconductivity (EC), alkalinity (HCO3-) and pH were done directly in the field. In the laboratory anions (NO3-, PO43-, Cl-, SO42-) and cations (NH4+, Ca2+, Mg2+, Br+, Li+, Na+, K+) concentration was determined using High Performance Liquid Chromatography (HPLC). D-divers, electronic devices to permanent measurement of groundwater level changes were located in some of the piezometers. Piezometers were located in the sites characterized by different hydrological conditions, from groundwater fed to river fed areas

  16. Is history of rivers important in restoration projects? The example of human impact on a lowland river valley (the Obra River, Poland)

    NASA Astrophysics Data System (ADS)

    Słowik, Marcin

    2015-12-01

    Palaeoenvironmental and palaeohydrological reconstructions can provide important guidance for river restoration projects. This paper reconstructs the trajectory of river pattern changes of a lowland river (the Obra River, western Poland) as a basis to inform realistic restoration activities. The history of river changes is reconstructed for the last 12,700 radiocarbon years BP. The sequence and timing of change differ from widely recognized, conventional assessments of transitions from braided to meandering planforms in the Polish Lowlands. Traces of a laterally migrating anabranching system were found in the middle Obra valley. In its lower course, a transition from a braided to meandering planform took place later than in other rivers of the Polish Lowlands. Sediment delivery from parts of the catchment situated downstream of lakes in the river course could have been the main reason for maintenance of the braided pattern. Restoration scenarios that take into account the trajectory of river planform changes are hypothesized in relation to variations of sediment supply and degree of anthropogenic impact.

  17. A ground-water-quality monitoring network for the Lower Mojave River Valley, California

    USGS Publications Warehouse

    Woolfenden, L.R.

    1984-01-01

    A ground-water-quality monitoring network was developed for the Lower Mojave River valley to define the ground-water quality of the valley. Basin geohydrology, geology, land use and water-level and water-quality data were factors considered in developing objectives for an ideal network. These objectives were used in selecting well locations for the conceptual ground-water-quality monitoring network. The conceptual network was used as a guide in the design of the ground-water-quality monitoring network. Active monitoring sites are wells that are currently being monitored by some agency and were selected whenever possible because of budgetary constraints. In areas where no wells are currently being monitored, new well locations were selected and are considered proposed monitoring sites. A sampling regimen is also included. (USGS)

  18. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  19. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  20. Active evaporite tectonics and collapse in the Eagle River valley and the southwestern flank of the White River uplift, Colorado

    USGS Publications Warehouse

    Scott, R.B.; Lidke, D.J.; Hudson, M.R.; Perry, W.J., Jr.; Bryant, Bruce; Kunk, M.J.; Budahn, J.R.; Byers, F.M., Jr.

    1999-01-01

    This field trip presents field evidence for Neogene evaporite tectonism, dissolution of evaporates, and related collapse in Eagle River valley and along the southwestern flank of the White River uplift. In the Eagle collapse center, Pennsylvanian evaporite flowed to form anticlinal diapirs, dissolved, and disrupted a lower Miocene basaltic plateau originally at elevations as high as 3.35 km by tilting, faulting, and sagging to elevations as low as about 2.1 km. Also in the Eagle collapse center, the 30 x 10-km, homoclinal Hardscrabble Mountain sank into evaporite during Triassic and Permian collapse followed by Neogene(?) tilting and collapse, based on seismic reflection data. Along the southwestern flank of the White River uplift in the northwestern part of the Carbondale collapse center, parts of the Grand Hogback monocline have collapsed northeastward toward a series of strike-elongate extrusive diapirs. The volume of evaporite removed from the Eagle and Carbondale collapse centers during the Neogene (about 2,250 km3 from an area of roughly 4,500 km2) was calculated by measuring the departure of collapsed basalts from an assumed original basalt plateau. Regional Neogene uplift and incision of the Rocky Mountains, which locally began about 8-10 Ma, probably triggered dissolution and collapse. Presently the Colorado River removes a dissolved-solids load of about 1.4 x 109 kg per year from the two collapse centers.

  1. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA

    USGS Publications Warehouse

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.

    2010-01-01

    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  2. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    NASA Astrophysics Data System (ADS)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-04-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale river-aquifer interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel river residing within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the river is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through sediments that have high hydraulic conductivities in a narrow valley produces higher baseflow to the river during wet (high flow) periods as a result of hydraulic loading. In the lower catchment, the open and flat alluvial plains, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower and constant groundwater inflow. With a small difference between the water table and the river height, small changes in river height or in groundwater level can result fluctuating gaining and losing behaviour along the river. The middle catchment represents a transition in river-aquifer interactions from upper to lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flow over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflow is 4-22% of total flow with higher baseflow occurring in high flow periods. Uncertainties in gas exchange coefficient and 222Rn activities of groundwater alter the calculated groundwater inflow to 3-35%. Ignoring hyporheic exchange appears not to have a significant impact on the total groundwater estimates. In comparison to 222Rn activities, Cl

  3. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  4. Paper Birch Decline in the Niobrara River Valley, Nebraska: Weather, Microclimate, and Birch Stand Conditions

    USGS Publications Warehouse

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980's. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  5. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  6. Reconstructing late Pliocene to middle Pleistocene Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae) dispersal hypotheses

    USGS Publications Warehouse

    Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C., III; David, B.T.; Ebbs, V.M.

    2008-01-01

    During glacial (pluvial) climatic periods, Death Valley is hypothesized to have episodically been the terminus for the Amargosa, Owens, and Mojave Rivers. Geological and biological studies have tended to support this hypothesis and a hydrological link that included the Colorado River, allowing dispersal of pupfish throughout southeastern California and western Nevada. Recent mitochondrial deoxyribonucleic acid (mtDNA) studies show a common pupfish (Cyprinodontidae) ancestry in this region with divergence beginning 3-2 Ma. We present tephrochronologic and paleomagnetic data in the context of testing the paleohydrologic connections with respect to the common collection point of the Amargosa, Owens, and Mojave Rivers in Death during successive time periods: (1) the late Pliocene to early Pleistocene (3-2 Ma), (2) early to middle Pleistocene (1.2-0.5 Ma), and (3) middle to late Pleistocene (<0.70.03 Ma; paleolakes Manly and Mojave). Using the 3.35 Ma Zabriskie Wash tuff and 3.28 Ma Nomlaki Tuff Member of the Tuscan and Tehama Formations, which are prominent marker beds in the region, we conclude that at 3-2 Ma, a narrow lake occupied the ancient Furnace Creek Basin and that Death Valley was not hydrologically connected with the Amargosa or Mojave Rivers. A paucity of data for Panamint Valley does not allow us to evaluate an Owens River connection to Death Valley ca. 3-2 Ma. Studies by others have shown that Death Valley was not hydrologically linked to the Amargosa, Owens, or Mojave Rivers from 1.2 to 0.5 Ma. We found no evidence that Lake Manly flooded back up the Mojave River to pluvial Lake Mojave between 0.18 and 0.12 Ma, although surface water flowed from the Amargosa and Owens Rivers to Death Valley at this time. There is also no evidence for a connection of the Owens, Amargosa, or Mojave Rivers to the Colorado River in the last 3-2 m.y. Therefore, the hypothesis that pupfish dispersed or were isolated in basins throughout southeastern California and western

  7. The Owens River as a tiltmeter for Long Valley caldera, California

    SciTech Connect

    Reid, J.B. Jr )

    1992-05-01

    In the lower 11 km of its course around the resurgent dome of Long Valley caldera, the Owens River displays two parallel meander belts, comparable in meander wavelength and amplitude but unequal in age, elevation, and discharge. It appears the two belts take turns carrying the river's flow depending on whether the dome is inflating or subsiding. The inboard belt, some 200-300 m closer to the dome and now 30-60 cm higher in elevation, contains an underfit stream and is now being abandoned. The outboard channel formed in a series of avulsions apparently induced by recent uplift of the dome. In the upper 4 km of the two-channel reach, avulsion occurred between 1856 and 1878 as inferred from the original US Coast and Geodetic Survey mapping the caldera. Avulsion had already occurred by 1856 in the lower 4 km of the river, suggesting a possible migration of the center of uplift through time. More ancient meander scars at the inboard and outboard limits of the floodplain imply additional earlier episodes of inflation and subsidence. Projection of surveyed topographic profiles across the river's floodplain to the center of the dome suggests that cumulative recent uplift is on the order of 15-35 m, or about 30-70 times greater than that measured for the caldera since 1979 (Castle et al. 1984). The duration of the era of subsidence can be estimated by comparing oxbow densities in the old and new meander belts in the upper two-channel reach; the data suggest that the dome may have been in subsidence for a period of at least 500 to 1,000 yr ending about 150 yr ago. No eruptions of the Long Valley volcanic system have accompanied these inflations and subsidings.

  8. Interactions of Growth-faulting with Incised Valleys and Channels on the Late Miocene to Recent Mississippi River Delta, LA

    NASA Astrophysics Data System (ADS)

    Armstrong, C. P.; Mohrig, D.; Steel, R. J.

    2011-12-01

    The interaction between incised valleys and growth-fault related subsidence is poorly understood in the Late Miocene to Recent Mississippi River Delta. Previous work has found little evidence that growth-faults are able to affect the course or geometry of small (< 200m in width and 20m in depth) channels. However, the relationship between growth-faults and larger scale valleys (> 1km in width and 25m in depth) has not been previously evaluated in this area. We use a 1400 km2 3D seismic volume located under Breton Sound, LA, integrated with a selection of well logs to document the effect of growth-faults on 12 valleys and 14 channels present within the upper 1.5 kilometers of the seismic volume. In contrast to the majority of smaller distributary channels found within the survey, valleys appear to be steered along or away from growth-faults. This observation suggests that faults are able to affect the course of valleys to a greater extent than small channels. We suggest that this is because valleys are long lived features which do not avulse before being influenced by shorter time scale faulting events. This study contributes to our understanding of the dynamics of growth-faults and valleys in the subsurface and has important long term societal implications for populations living near large rivers in areas with active growth-faulting.

  9. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  10. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  11. Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Kothyari, Girish Ch.; Luirei, Khayingshing

    2016-09-01

    The present study has been carried out with special emphasis on the aggradational landforms to explain the spatial and temporal variability in phases of aggradation/incision in response to tectonic activity during the late Quaternary in the Saryu River valley in central Kumaun Himalaya. The valley has preserved cut-and-fill terraces with thick alluvial cover, debris flow terraces, and bedrock strath terraces that provide signatures of tectonic activity and climate. Morphostratigraphy of the terraces reveals that the oldest landforms preserved south of the Main Central Thrust, the fluvial modified debris flow terraces, were developed between 30 and 45 ka. The major phase of valley fill is dated between 14 and 22 ka. The youngest phase of aggradation is dated at early and mid-Holocene (9-3 ka). Following this, several phases of accelerated incision/erosion owing to an increase in uplift rate occurred, as evident from the strath terraces. Seven major phases of bedrock incision/uplift have been estimated during 44 ka (3.34 mm/year), 35 ka (1.84 mm/year), 15 ka (0.91 mm/year), 14 ka (0.83 mm/year), 9 ka (1.75 mm/year), 7 ka (5.38 mm/year), and around 3 ka (4.4 mm/year) from the strath terraces near major thrusts. We postulate that between 9 and 3 ka the terrain witnessed relatively enhanced surface uplift (2-5 mm/year).

  12. Fuel regulation in inland navigation: Reduced soil black carbon deposition in river valleys in Germany

    NASA Astrophysics Data System (ADS)

    Bläsing, M.; Shao, Y.; Lehndorff, E.

    2015-11-01

    Inland navigation is of increasing economic and ecological interest, however its contribution to environmental quality is hardly known. We hypothesized that i) inland navigation emits considerable amounts of soot-Black Carbon (BC) as a product of incomplete combustion of diesel fuel, which is then deposited on soils along river valleys, that ii) improvement of fuel quality by sulfur reduction in 2011 decreased BC inputs to soil, and that iii) this provides a tracer for the spatial impact of inland navigation emissions. The spatial and temporal patterns of soil BC deposits from inland navigation were investigated yearly (2010-2013) working within transects perpendicular to the rivers Rhine, Moselle and Ahr, Germany (the Ahr Valley is free of shipping and served as a reference). In rural areas at inland waterways navigation likely represented the dominant BC emitter. Topsoils (0-10 cm depth) were sampled in vineyards. Their BC content and composition was determined via oxidation of bulk soil organic matter to benzene polycarboxylic acids (BPCAs). The highly trafficked Rhine Valley yielded only little more BC (64.7 ± 12 g BC kg-1 soil organic carbon (SOC) compared to 51.7 ± 9 at the Moselle, and 53.6 ± 6 at the reference Ahr Valley). At both inland waterways soil BC increased towards the river, following the simulated dispersal of ship-derived BC using a Lagrangian model. In the course of ship fuel regulation, soil BC deposits at the Rhine and Moselle waterways decreased significantly from 70.2 ± 3.2 to 47.9 ± 1.1 and 57.6 ± 1.3 to 41.7 ± 0.9 g BC kg-1 SOC within 3 years. Even more pronounced was the change in BC composition, i.e., the ratio of pentacarboxylated to mellitic acid increased from 0.75 to 1.3 (Rhine) and 1 to 1.4 (Moselle) during this time span. From this we calculated that ∼30% less BC was deposited by inland navigation likely due to reduced BC emissions after sulfur regulation in ship diesel.

  13. Relating streamflow characteristics to specialized insectivores in the Tennessee River Valley: a regional approach

    USGS Publications Warehouse

    Knight, Rodney R.; Gregory, M. Brian; Wales, Amy K.

    2008-01-01

    Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance), and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was completed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession can strand fish in pools and other areas that are disconnected from flowing water and remove invertebrates as food sources that were suspended during high-streamflow events.

  14. Nitrate in ground water in the Great Valley carbonate subunit of the Potomac River Basin

    USGS Publications Warehouse

    Ferrari, Matthew J.; Ator, Scott W.

    1995-01-01

    Agriculture is the major land use in the carbonate part of the Great Valley of the Potomac River Basin. Applied fertilizer and manure are potential sources of nitrate that can contaminate Groundwater. Nitrate concentrations in Groundwater increased with increasing percentage of cropland but did not decrease with increasing well depth, as has been found in previous studies elsewhere. Samples from 28 wells contained nitrate concentrations ranging from 0.29 to 29 mg/L (milligrams per liter) as nitrogen, with a median concentration of 4.55 mg/L, compared to a median of 1.8 mg/L for 1,056 Groundwater samples from the entire Potomac River Basin. Median nitrate concentrations in Groundwater samples were higher in the Maryland, Pennsylvania, and West Virginia part of the valley, and were lower in the Virginia part (7.45 and 2.95 mg/L, respectively), probably as a result of differences in agricultural land-use patterns; this geographical difference was also noted in surface-water samples (6.65 and 2.3 mg/L, respectively). The area of contribution to each well could not be delineated by surface topography or distance to the well, because Groundwater flow and nitrate transport can be unpredictable in the carbonate region because of fractures and solution channels present.

  15. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    USGS Publications Warehouse

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Hans, Ackerman; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  16. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  17. Fluvial Record of Active Deformation Along the Canyon River Fault in the Wynoochee River Valley, WA

    NASA Astrophysics Data System (ADS)

    Delano, J.; Amos, C. B.; Loveless, J. P.; Rittenour, T. M.

    2015-12-01

    Ongoing uplift of the Olympic Peninsula of Washington State represents unknown contributions from Cascadia subduction zone processes, including earthquakes, interseismic deformation, aseismic slow slip events, and north-south shortening of the North American plate focused on upper plate faults. The relationship between upper plate faults and Cascadia subduction is poorly understood, as is the seismic hazard posed by these structures to the greater Puget Sound region. The Wynoochee River is a south-flowing drainage in the southern Olympic Mountains bisected by a previously uncharacterized section of the Canyon River reverse fault. In this study we utilize high-resolution aerial lidar and optically stimulated luminescence (OSL) dating of offset fluvial terraces to determine the kinematics and slip rate of the Canyon River fault over the late Quaternary. In combination with surficial geologic mapping and differential GPS surveys of terrace straths observed in the field, we also determine incision rates along the Wynoochee River from OSL dates. Our mapping reveals eight generations of fluvial and glaciofluvial terraces, with twenty-one pending ages from OSL sampling of fluvial sands intercalated with outwash and river gravels. Additionally, we compare our slip rate results with a boundary element model, estimating the stress on the Canyon River fault over the recent decades, as constrained by GPS data from the Cascadia subduction zone. Preliminary results indicate that the Canyon River fault is a long-lived feature with south-side-up and left-lateral displacement. Taken together, our results enable comparison of deformation rates constrained by short-term, geodetic data with those acting over longer-term geologic time scales.

  18. Flood data for the Sacramento River and Butte Basin, Sacramento Valley, California, 1980-90

    USGS Publications Warehouse

    Harmon, Jerry G.

    1994-01-01

    Floodflows and peak states of floods were measured and channel cross sections were surveyed at sites along the Sacramento River and in Butte Basin, Sacramento Valley, California, during 1980-90 to document magnitudes of flooding and channel changes. The study reach extends from rivermile 200 near Hamilton City to rivermile 134 near Meridian. Data were collected for each flood at about 70 sites that include streamf-flow gages, crest-stage gages, bridges and road overflows on State Highway 162 east of Butte City, and locations of historical high- water marks. Six cross sections of the river between rivermiles 193.7 near Big Chico Creek and 183.3 near Ordbend were surveyed annually during calendar years 1981-84, and 1986-90. Floodflows (peak flow 157,000 cubic feet per second) almost equaled the design flow capacity of the river at Butte City on March 2, 1983, when the peak stage of 93.0 feet was 5 feet below the top of the levee. This was the largest flood recorded at Butte City during 1980- 90. The most recent flood occurred February 18-19, 1986, when the peak stage in the river at Butte City was 92.0 feet and the peak flow was 145,000 cubic feet per second.

  19. Depth to water, 1991, in the Rathdrum Prairie, Idaho; Spokane River valley, Washington; Moscow-Lewiston-Grangeville area, Idaho; and selected intermontane valleys, east-central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles E.; Bassick, M.D.; Rogers, T.L.; Garcia, S.P.

    1995-01-01

    This map report illustrates digitally generated depth-to-water zones for the Rathdrum Prairie in Idaho; part of the Spokane River Valley in eastern Washington; and the intermontane valleys of the upper Big Wood, Big Lost, Pahsimeroi, Little Lost, and Lemhi Rivers and Birch Creek in Idaho. Depth to water is 400 to 500 feet below land surface in the northern part of Rathdrum Prairie, 100 to 200 feet below land surface at the Idaho-Washington State line, and 0 to 250 feet below land surface in the Spokane area. Depth to water in the intermontane valleys in east-central Idaho is least (usually less than 50 feet) near streams and increases toward valley margins where mountain-front alluvial fans have formed. Depths to water shown in the Moscow-Lewiston-Grangeville area in Idaho are limited to point data at individual wells because most of the water levels measured were not representative of levels in the uppermost aquifer but of levels in deeper aquifers.

  20. Groundwater hydrogeochemistry of mayor ions in the Radovna River valley (NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Torkar, Anja; Brenčič, Mihael; Vreča, Polona

    2013-04-01

    Chemical analysis of major elements was used to investigate the characteristics of various springs and surface water in the Radovna River valley. The valley is situated in the north-western part of Slovenia. It is 17-kilometre long Alpine river flowing between karstic plateaus of Pokljuka and Mežakla confluenting with Sava Dolinka River. Wider area of the valley is built up by Triassic limestone and dolomite. Quaternary alluvial and glacial sediments occur in the bottom of the valley and on the slopes of the plateaus. Water was sampled monthly from May 2005 till March 2007 at 10 locations along the valley. Locations are divided into: 5 springs, 3 surface water locations, 1 small lake and 1 artesian borehole. On site conductivity, pH and water temperature was measured and samples for chemical analyses were collected. Groundwater, spring water and surface water are related to carbonate rocks; therefore the pH of the samples is in range between 7.1 and 8.4. In most cases pH of river water is higher than that of groundwater and spring water. Conductivity of the water varied in the interval between 188 μS/cm and 374 μS/cm. Results of chemical analyses show that concentration of Ca2+ exceeds that of Mg2+ in all of the samples and Ca/Mg ratio varies between 2.6 and 16.8. The concentration of Na+ is lower than Mg2+, but always higher than that of K+. Predominant anion is the HCO3- and varies between 100 mg/l and 211 mg/l. Concentration of anions Cl-, NO3- and SO42- are low and range from 0.1 mg/l to 7.47 mg/l and between 0.62 mg/l and 12 mg/l for Cl- and SO42-, respectively. NO3- is in almost all of the samples below 1 mg/l. Water data shows that waters are alkaline and the dominant facies is Ca-Mg-HCO3-. Ion concentrations fluctuate seasonally and are related to changes in discharge. In winter and early spring, when the discharge is low, the ion concentrations are higher and in late spring and summer during snowmelt, when the discharge is higher, the ion concentration

  1. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1989-01-01

    The River Valley pluton is a ca. 100 km2 body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An60-70) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo70-80. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. Ten samples, including both igneous and deformed lithologies give a Pb-Pb whole-rock isochron of 2560??155Ma, which is our best estimate of the time of primary crystallization. The River Valley pluton is thus the oldest anorthositic intrusive yet reported from the Grenville Province, but is more calcic and augitic than typical massifs, and lacks their characteristic Fe-Ti oxide ore deposits. The River Valley body may be more akin to similar gabbro-anorthosite bodies situated at the boundary between the Archean Superior Province and Huronian supracrustal belt of the Southern Province west of the Grenville Front. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2377 ?? 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2185 ?? 105 Ma, which is similar to internal Pb-Pb isochron ages of 2165 ?? 130 Ma and 2100 ?? 35 Ma for two igneous-textured rocks. It is uncertain whether these ages correspond to a discrete event at this time or represent a partial resetting of the Rb-Sr and Pb

  2. The Quaternary Channel River: seismic stratigraphy of its palaeo-valleys and deeps

    NASA Astrophysics Data System (ADS)

    Lericolais, Gilles; Auffret, Jean-Paul; Bourillet, Jean-François

    2003-02-01

    Based on the interpretation of geophysical data (very high resolution seismic data combined with EM1000 swath bathymetry), this paper reviews the history of the Channel River throughout the late Cenozoic. New evidence does illustrate how the interplay of tectonics, eustacy and climate have influenced this northwest European drainage system.The concepts of sequence stratigraphy allow the subdivision of the sedimentary record into depositional sequences bounded by unconformities, resulting from globally synchronous sea-level changes. However, the recognition of eustatic sea-level changes in a cold climate environment is very difficult, because of the interplay of additional phenomena such as glacio-isostatic sea-level changes with glacio-eustatic changes. For our interpretation, it was necessary to adjust these concepts with the relative importance of geomorphological processes determining the behaviour of rivers and steering their evolution.The foundations of the modern drainage system were laid after the Oligocene Channel inversion. In general these early rivers occupied shallow valleys. The Pleistocene cold climates resulted in fluvial incision. Through time, the Channel River has adopted a drainage system that can be divided into three parts: (i) the drainage basin comprising the Southern Bight, the eastern Channel and the London and Paris basins, (ii) the river zone itself, which begins at the Cotentin peninsula and passes through the Hurd Deep, before reaching the continental shelf-break in the Celtic Sea, (iii) the depositional basin represented by the Celtic Banks complex and by the deep sea fans, located at the foot of Shamrock and Black Mud canyons. During important lowstands (marine oxygen isotope stages 22, 16, 10, 6 and 2), the Channel River seems to have reached the shelf-break, as indicated by the internal structure of the banks.

  3. Water balance of selected floodplain lake basins in the Middle Bug River valley

    NASA Astrophysics Data System (ADS)

    Dawidek, J.; Ferencz, B.

    2013-08-01

    This study is the first attempt in the literature on the subject of comparing water balance equations for floodplain lake basins depending on the type of connection the lake has to its parent river. Where confluent lakes (upstream connections) were concerned, it was only possible to apply a classic water balance equation. When dealing with contrafluent lakes (downstream connections) as well as lakes with a complex recharge type (contrafluent-confluent) modified equations were created. The hydrological type of a lake is decided by high water flow conditions and, consequently, the duration of potamophase (connection with a river) and limnophase (the isolation of the lake), which determine the values of particular components and the proportion of the vertical to horizontal water exchange rate. Confluent lakes are characterised by the highest proportion of horizontal components (the inflow and runoff of river water) to the vertical ones (precipitation and evaporation). The smallest differences occur with respect to a contrafluent lake. In the case of confluent lakes, the relationship between water balance components resulted from the consequent water flow through the basin, consistent with the slope of the river channel and valley. The supplying channels of contrafluent lakes had an obsequent character, which is why the flow rate was lower. Lakes with a complex, contrafluent-confluent recharge type showed intermediate features. After a period of slow contrafluent recharge, the inflow of water through a downstream crevasse from the area of the headwater of the river was activated; this caused a radical change of flow conditions into confluent ones. The conditions of water retention in lake basins were also varied. Apart from hydrological recharge, also the orographic features of the catchment areas of the lakes played an important role here, for example, the distance from the river channel, the altitude at which a given catchment was located within the floodplain and

  4. Late Pleistocene valley fills source sediment flux of Tibetan Plateau margin rivers, Zanskar, India

    NASA Astrophysics Data System (ADS)

    Blöthe, J. H.; Munack, H.; Korup, O.; Fulop, R. H.; Codilean, A.; Fink, D.

    2015-12-01

    The Indus and its tributaries, one of Asia's largest river systems, drain the NW Himalaya and the Transhimalayan ranges that border the western Tibetan Plateau margin. From the internally drained low-relief areas of the Tibetan Plateau, local relief increases towards the Western Himalayan Syntaxis, where it exceeds 7 km. Simultaneously, average denudation rates rise from as little as 10 mm ka-1 at the Tibetan Plateau margin to rates of >1000 mm ka-1 close to the western Himalayan Syntaxis. In this rugged bedrock landscape, river valleys frequently alternate between deeply incised gorges and broad alluviated reaches. Vast fill terrace staircases of up to 400 m height above current river levels, and intercalated lake sediments point to repeated phases of incision and aggradation within the region. Despite a broad interest in a better understanding of mechanisms that modulate plateau erosion, age constraints on the generation of these impressive features remain sparse, though indicate mainly Pleistocene formation ages. Here we present new data from the More Plains section, a vast sedimentary fill, located in the headwaters of the Zanskar River, the largest tributary to the upper Indus. The vast sedimentary successions of the More Plains originally belonged to a former endorheic basin that has been tapped by the Zanskar River, today revealing a sedimentary exposures of >250 m thickness. We combine morphometric analysis and field based observations with 10Be surface exposure dating and basin-wide denudation rates to constrain the late Quaternary history of this setting. Analysis of a 10Be depth profile on top of the More Plains section indicate a surface exposure age of ~125 +/- 15 ka, which is supported by ages from nearby amalgamated surface samples. Grounding on a morphometric approach, we estimate that ~1.65-1.95 km3 were removed from this section by fluvial erosion since aggradation ceased, requiring a specific sediment yield of 85-100 t km-2 yr-1 averaged over the

  5. Morphology and filling of incised submarine valleys on the continental shelf near the mouth of the Fly River, Gulf of Papua

    NASA Astrophysics Data System (ADS)

    Crockett, J. S.; Nittrouer, C. A.; Ogston, A. S.; Naar, D. F.; Donahue, B. T.

    2008-03-01

    Much historical perspective about terrestrial and marine processes can be obtained from examination of fluvial valleys formed during lower sea level on surfaces that are now continental shelves. The continental shelf near the mouth of the Fly River (Gulf of Papua) has three incised valleys, which were not extensively modified or filled during the Holocene Transgression. Multibeam mapping of the valleys documents their morphology; seismic profiling reveals stratigraphy of sediment fill; and coring within and near the valleys suggests mechanisms of filling. Kiwai Valley is deep (20-50 m relief), narrow (˜1 km wide), steep-sided and meandering, due to river flows that caused its excavation through competent sedimentary deposits. Purutu Valley is shallow (10-20 m relief) and broad (>2 km wide). Umuda Valley is widest (˜14 km) and has multiple channels with variable incision depths, suggesting more extensive fluvial activity than the other two valleys. Valley filling has occurred in several ways, reflecting valley morphology and location relative to the present river mouth. Kiwai and Umuda valleys reveal three stages of infill: (1) hemipelagic sedimentation at distal sites, (2) gravity-driven flows spreading down the valley, and (3) subsequent clinoform progradation that completely fills the valley. Purutu Valley fill is dominated by clinoform progradation. Clinoform progradation in Umuda Valley is driven by intense sediment reworking on the surrounding topset regions, and its large width allows progradation from the sides as well as down its axis. Most shelf valleys around the world were filled long ago, and available techniques have severe limitations for documenting the details of morphology and the mechanisms of filling. The shelf valleys described in this paper provide a unique perspective to terrestrial and marine processes before, during, and after the Holocene Transgression.

  6. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    PubMed

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast. PMID:26553775

  7. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Turner, Falko; Tolksdorf, Johann Friedrich; Viehberg, Finn; Schwalb, Antje; Kaiser, Knut; Bittmann, Felix; von Bramann, Ullrich; Pott, Richard; Staesche, Ulrich; Breest, Klaus; Veil, Stephan

    2013-01-01

    Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (˜14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.

  8. Fertilisation of the Southern Atlantic: Ephemeral River Valleys as a replenishing source of nutrient-enriched mineral aerosols

    NASA Astrophysics Data System (ADS)

    Dansie, Andrew; Wiggs, Giles; Thomas, David

    2016-04-01

    Oceanic dust deposition provides biologically important iron and macronutrients (Phosphorus (P) and Nitrogen-based (N) compounds) that contribute to phytoplankton growth, marine productivity and oceanic atmospheric CO2 uptake. Research on dust emission sources to date has largely focused on the northern hemisphere and on ephemeral lakes and pans. Our work considers the ephemeral river valleys of the west coast of Namibia as an important yet overlooked source of ocean-fertilizing dust. Dust plumes are frequently emitted from the river valleys by strong easterly winds during the Southern Hemisphere winter, when the upwelling of the Benguela Current is at its weakest. We present field data from dust emission source areas along the main river channels near the coastal termini of the Huab, Kuiseb and Tsauchab river valleys. Collected data include erodible surface sediment, wind-blown flux, and associated meteorological data. Extensive surface sediment sampling was also undertaken throughout the combined 34,250 km2 extent of each river valley catchment with samples collected from within the main river channels, the main branches of each river system, selected tributaries, and into the upper watersheds. Geochemical data show valley sediment and wind-blown flux material have high concentrations of bioavailable Fe, P and N, exceeding that measured at the major dry lake basin dust sources in southern Africa. The contribution of fertilising deposition material is enhanced by both the spatial proximity of the source areas to the ocean and enrichment of source material by ephemeral fluvial accumulation and desiccation. Results show that geographical factors within each watershed play a key role in the nutrient composition of the emitting fluvial deposits in the river valleys. Analysis explores potential relationships between land use, geology, climate and precipitation in the upper watersheds and their influence on bioavailability of Fe, P and N compounds in wind

  9. Snake River Sockeye Salmon, Sawtooth Valley Project : 1992 Juvenile and Adult Trapping Program : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ``endangered`` (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973.

  10. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  11. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  12. Quaternary eolian dunes in the Savannah River valley, Jasper County, South Carolina, USA

    NASA Astrophysics Data System (ADS)

    Swezey, Christopher S.; Schultz, Arthur P.; González, Wilma Alemán; Bernhardt, Christopher E.; Doar, William R.; Garrity, Christopher P.; Mahan, Shannon A.; McGeehin, John P.

    2013-09-01

    Sand hills in the Savannah River valley in Jasper County (South Carolina, USA) are interpreted as the remnants of parabolic eolian dunes composed of sand derived from the Savannah River and stabilized by vegetation under prevailing climate conditions. Optically stimulated luminescence ages reveal that most of the dunes were active ca. 40 to 19 ka ago, coincident with the last glacial maximum (LGM) through early deglaciation. Modern surface winds are not sufficient for sustained eolian sand transport. When the dunes were active, winds blew at velocities of at least 4 m/s from west to east, and some vegetation was present. The ratio of annual precipitation to potential evapotranspiration (P:PE) was less than the modern ratio of 1.23 and may have been < 0.30, caused by stronger winds (which would have resulted in greater evaporation) and/or reduced precipitation. The Savannah River dunes are part of a larger assemblage of eolian dunes that were active in the eastern United States during and immediately after the LGM, suggesting that eolian sediment behavior in this region has been controlled by regional forcing mechanisms during the Quaternary.

  13. Holocene intramontane lake development: A new model in the Jáchal River Valley, Andean Precordillera, San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Colombo, Ferran; Busquets, Pere; Sole de Porta, Nuria; Limarino, Carlos Oscar; Heredia, Nemesio; Rodriguez-Fernandez, Luis Roberto; Alvarez-Marron, Joaquina

    2009-10-01

    The Jáchal River Valley displays a number of significant Holocene sedimentary accumulations made up of fine-grained materials. These deposits are interpreted as the sedimentary infill of shallow temporary lakes that were generated by slow growing episodes of alluvial fans that obstructed the Jáchal River Valley. The association of fossil remains through the Holocene sedimentary sequence suggests that the accumulation of lacustrine sediments was affected by climate variations. The predominant aridity was punctuated by very few humid episodes characterised by fresh-water gastropoda and the intercalations of muddy sediments. The high proportion of charcoal particles in some samples indicates periodic forest fires. Abundant non-pollen forest remains suggest that an open zone dominated by several types of grasses underwent a dry season during part of the year. The palynomorph associations found in the Jáchal River Valley Holocene lacustrine sediments suggest that the humid conditions were less intense than those in the San Juan River Valley located more than one hundred kilometres southwards. Our study suggests that lake formation could have been controlled by climate oscillation probably related to the ENSO variation at 30° south latitude.

  14. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana.

    PubMed

    Lamelas, Araceli; Ampah, Kobina Assan; Aboagye, Samuel; Kerber, Sarah; Danso, Emelia; Asante-Poku, Adwoa; Asare, Prince; Parkhill, Julian; Harris, Simon R; Pluschke, Gerd; Yeboah-Manu, Dorothy; Röltgen, Katharina

    2016-07-01

    In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU) lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions. PMID:27434064

  15. Selected well and ground-water chemistry data for the Boise River Valley, southwestern Idaho, 1990-95

    USGS Publications Warehouse

    Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina

    1996-01-01

    Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.

  16. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana

    PubMed Central

    Aboagye, Samuel; Kerber, Sarah; Danso, Emelia; Asante-Poku, Adwoa; Asare, Prince; Parkhill, Julian; Harris, Simon R.; Pluschke, Gerd; Yeboah-Manu, Dorothy; Röltgen, Katharina

    2016-01-01

    In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU) lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions. PMID:27434064

  17. Effects of the Paradox Valley Unit on dissolved solids, sodium, and chloride in the Dolores River near Bedrock, Colorado, water years 1988-98

    USGS Publications Warehouse

    Watts, Kenneth R.

    2000-01-01

    During 1999, a study was conducted by the U.S. Geological Survey (USGS) in cooperation with the Bureau of Reclamation to evaluate the effect of the Paradox Valley Unit on dissolved solids, sodium, and chloride in the Dolores River downstream from the Paradox Valley Unit. This report describes this evaluation and presents the results from this study. Daily mean flow and daily mean specific conductance, measured at gages upstream and downstream from the Paradox Valley Unit, and results from monthly water-quality samples are used to estimate changes in the dissolved-solids load and concentrations of sodium and chloride in the river as it crosses the valley and to correlate these changes with withdrawals of brine by the Paradox Valley Unit. The time period for this evaluation was restricted to October 1987?September 1998 (water years 1988?98) because regular collection of water-quality samples from the Dolores River in the valley gaban in 1987.

  18. The impact of institutional constraints on the Limarí River Valley water market

    NASA Astrophysics Data System (ADS)

    Hadjigeorgalis, Ereney; Lillywhite, Jay

    2004-05-01

    Institutional constraints on water and water rights trades are usually implemented to reduce the potential costs of free trade in water rights, but these constrains are themselves not without cost. Using data on permanent water rights and annual spot water transactions in the Limarí River Valley of northern Chile, we test for trade barrier-induced price differences in the constrained permanent water rights market versus the unconstrained spot water market and then estimate the welfare losses generated as a result of these restrictions. We find that trade barriers in the permanent water rights market cause prices to diverge across adjacent irrigation districts for homogenous water rights despite the fact that prices equalize across irrigation districts in the unconstrained spot water market. The resulting estimates of welfare losses from these barriers in the permanent water rights market are found to be significant.

  19. [Peculiarities of the biotope distribution of click beetle larvae (Coleoptera, Elateridae) in the Irtysh river valley].

    PubMed

    Samoĭlova, E S; Striganova, B R

    2013-01-01

    The spatial distribution of Elateridae larvae in the Lower Irtysh valley has been analyzed. The larvae analyzed belonged to 19 Elateridae species inhabiting soils of the floodplain and the river terrace. It has been pointed out that the larvae of Paraphotistus nigricornis, A. lineatus, L. parallelus, and A. incanus are most tolerant to the regular spring flooding. It has been found that the species compositions of floodplains and terrace meadows are significantly different. As a rule, species with a wide tropical spectrum inhabit floodplain soils, including bush and forest habitats. At the same time, the terrace was dominated by species characteristic of open habitats, including the steppe zone. It has been revealed that the values of species diversity vary significantly in the floodplain and terrace plots, but the higher species richness (Menhinick index) was registered in the floodplain. PMID:25518558

  20. Integration of environmental and spectral data for sunflower stress determination. [Red River Valley, Minnesota

    NASA Technical Reports Server (NTRS)

    Lillesand, T.; Seeley, M.

    1983-01-01

    Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.

  1. Lyme disease and migrating birds in the Saint Croix River Valley.

    PubMed Central

    Weisbrod, A R; Johnson, R C

    1989-01-01

    During a study of migrating land birds in 1987, we examined over 9,200 individual birds representing 99 species from the Saint Croix River Valley, a Lyme disease-endemic area of east central Minnesota and northwestern Wisconsin. We found that 250 deer tick (Ixodes dammini) larvae and nymphs infested 58 birds from 15 migrant species; 56 ticks (22.4%) were positive for the Lyme disease spirochete Borrelia burgdorferi. Five ground-foraging migrant bird species favoring mesic habitats, veery (Catharus fuscescens), ovenbird (Seiurus aurocapillus), northern waterthrush (S. novaboracensis), common yellowthroat (Geothlypis trichas), and swamp sparrow (Melospiza georgiana), accounted for nearly three-quarters of parasitized individuals. Nearly half of the spirochete-positive ticks were removed from migrating birds taken in a riparian floodplain forest. Recaptured migrants with infected ticks indicate that they transmit B. burgdorferi to hexapod larvae. We suggest that birds may be both an important local reservoir in the upper Mississippi Valley and long-distance dispersal agents for B. burgdorferi-infected ticks to other regions of the continent. PMID:2782872

  2. Evaluation of the water quality in the releases from thirty dams in the Tennessee River Valley

    SciTech Connect

    Butkus, S.R.

    1990-09-01

    The Tennessee Valley Authority (TVA) has routinely monitored dissolved oxygen (DO) and temperature from the tailwater releases of its dams since the 1950s. The original objective of this monitoring was to collect baseline information to support reaeration research and determine the relative impact of impoundments on the assimilative capacity of the river system. This monitoring has continued even though the original objective was satisfied. New purposes for this monitoring data have arisen in support of several programs, without new consideration of the monitoring strategy and sampling design. The primary purpose of this report is to compare the historical release data for 30 dams in the Tennessee Valley based on four different objectives: (1) comparison of seasonal patterns, (2) comparison of baseline conditions using descriptive statistics, (3) evaluation of monotonic trends, and (4) discussion of monitoring strategies that might be required to determine compliance with existing and proposed criteria. A secondary purpose of the report is to compile the existing database into tables and figures that would be useful for other investigators. 51 refs., 210 figs., 1 tab.

  3. Outburst flood origin of the Central Kalamazoo River Valley, Michigan, USA

    NASA Astrophysics Data System (ADS)

    Kozlowski, Andrew L.; Kehew, Alan E.; Bird, Brian C.

    2005-11-01

    Geomorphic evidence and stratigraphic information from boreholes suggest that the oversized Central Kalamazoo River Valley (CKRV) in southwest Michigan resulted from a catastrophic outburst flood emanating from subglacial channels under the Saginaw lobe of the Laurentide Ice Sheet. The CKRV occurs as a deeply incised trench over 2 km wide and in excess of 50 m deep situated in a reentrant formed by the Lake Michigan, Saginaw and Huron-Erie lobes. The course of the CKRV follows an irregular flow path that bisects the Kalamazoo Moraine of the Lake Michigan lobe. Erosional terraces near the mouth of the channel indicate that Lake Michigan lobe meltwater drained eastward prior to the westward Saginaw outburst. Prior to valley formation the Lake Michigan lobe had retreated westward to at least the Lake Border Moraine. With the Lake Michigan lobe absent to impede flow, drainage from the CKRV proceeded southwesterly until draining into glacial Lake Chicago near St. Joseph, Michigan. The outburst originated from a system of Saginaw tunnel channels that display convex-up flow profiles and contain eskers. Meltwater drainage transitioned from subglacial-to-ice marginal and proglacial environments. During the interval represented by the outburst, the Saginaw Lobe appears to have been in a relatively stationary position.

  4. Hazard assessment of landslide and debris flow in the Rjeina river valley, Croatia

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki

    2013-04-01

    The Rječina River extends approximately 18.7km long and flows into the Adriatic Sea at the center of Rijeka City, Croatia. Landslide, debris flow and rockfall are main geohazards in the middle part of the Rječina river basin. The zone between the Valići reservoir dam and the Pasac Bridge is particularly the most unstable and hazardous area in the river basin. The Grohovo landslide in the middle part of the river basin is located on the valley's slope facing southwest and situated at just downstream of the Valići dam. This landslide is the largest active landslide along the Adriatic Sea coast in Croatia. Assuming that serious heavy rainfall or earthquake occurs, it is most likely to occur two types of geohazard event. One scenario is that the debris deposited on the Grohovo landslide will move down to the channel of the Rječina River and dam up the river course. Another scenario is that the slope deposits on the landslide will be mixed with water and subsequently turn into a debris flow reaching to Rijeka City. We simulate both two cases of the formation of landslide-dam and the occurrence of debris-flow by two integrated models using GIS to represent the dynamic process across 3D terrains. In the case of the formation of landslide-dam, it is assumed that slope deposits will move downhill after failing along a shear zone. GIS-based revised Hovland's 3D limit equilibrium model is used to simulate the movement and stoppage of the slope deposits to form landslide-dam. The 3D factor of safety will be calculated step by step during the sliding process simulation. Stoppage is defined by the factor of safety much greater than one and the velocity equal to zero. The simulation result shows that the height of the landslide-dam will be nine meters. In case of debris flow, the mixture of slope deposits and water will be differentiated from landslide by fluid-like deformation of the mobilized material. GIS-based depth-averaged 2D numerical model is used to predict the

  5. Current development of mass movements in lowland river valleys at the site of old landslides - case study form Vistula Valley, Poland

    NASA Astrophysics Data System (ADS)

    Tyszkowski, S.

    2014-12-01

    Landslides in Polish lowlands are found mostly in the escarpment zone of river valleys. In this geomorphological position, landslides were investigated in the middle of the Lower Vistula Valley - major polish river valley (53°14'N 18°14E). In the zone between Fordon and Kozielec landslides develop within Quaternary tills, sands and clays with glacitectonic deformation. Determination of contemporary activity of landslides in the escarpment zone is based on field work, such as a detailed inventory and documentation of the landslide forms, geotechnical and geological drillings, geodesic measurements, and analysis of aerial photographs. Shearing slides, often in the multiple rotational form, are the most common type of landslides. Most landslides are developed within the main scarps of old landslides. The size of contemporary landslides ranges from 500m2 to 70000m2. While the old, inactive landslides' area varied between 120000m2 to 300000m2. Contemporary active forms represents 58%, regularly active for 17%, and inactive for 25% of the identified landslides. Depending on geomorphological zones, landslides cover up to 30% of the area of the slopes. Currently, in the study area precipitation and geological settings are the most important factor of landslide activation. This study was supported by the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association and the research project no. N N306 0860 37 Polish Ministry of Science and Higher Education.

  6. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    NASA Astrophysics Data System (ADS)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  7. Groundwater Quality and Nitrogen Use Efficiency in Nebraska's Central Platte River Valley.

    PubMed

    Ferguson, Richard B

    2015-03-01

    Groundwater nitrate contamination has been an issue in the Platte River Valley of Nebraska since the 1960s, with groundwater nitrate-N concentrations frequently in excess of 10 mg L. This article summarizes education and regulatory efforts to reduce the environmental impact of irrigated crop production in the Platte River Valley. In 1988, a Groundwater Management Area (GWMA) was implemented in the Central Platte Natural Resources District to encourage adoption of improved management practices. Since 1988, there have been steady declines in average groundwater nitrate-N concentrations of about 0.15 mg NO-N L yr in much of the GWMA (from 19 to 15 mg NO-N L). However, N use efficiency (NUE) (partial factor productivity for N [PFP]) has increased very little from 1988 to 2012 (60-65 kg grain kg N), whereas statewide PFP increased from 49 to 67 kg grain kg N in the same period. Although growers are encouraged to credit N from sources besides fertilizer (e.g., soil residual, legumes, irrigation water, and manure), confidence in and use of credits tended to decrease as credits became larger; there was a tendency toward an average N rate regardless of credit-based recommendations. This information, coupled with data from other studies, suggests that much of the decline in groundwater nitrate can be attributed to improved irrigation management-especially conversion from furrow to sprinkler irrigation-and to a lesser extent to improved timing of N application. The development and adoption of improved N management practices, such as fertigation, controlled-release N formulation, and use of crop canopy sensors for in-season N application may be required for further significant NUE gains in these irrigated systems. PMID:26023964

  8. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    SciTech Connect

    Ashwal, L.D. ); Wooden, J.L. )

    1989-03-01

    The River Valley pluton is a ca. 100 km{sup 2} body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An{sub 60-70}) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo{sub 70-80}. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2,377 {plus minus} 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2,185 {plus minus} 105 Ma, which is similar to internal Pb-Pb isochron ages of 2,165 {plus minus} 130 Ma and 2,100 {plus minus} 35 Ma for two igneous-textured rocks. Initial isotopic ratios for the River Valley pluton correspond to single-stage model parameters of {mu} = 8.06, {epsilon}{sub Nd} = O to {minus}3, and I{sub Sr} = 0.7015 to 0.7021. Collectively, these suggest either an enriched mantle source or crustal contamination of a mantle-derived magma. The crustal component involved must have been older and more radiogenic than the majority of rocks exposed at the surface in the nearby Superior Province.

  9. Reconnaissance of alluvial fans as potential sources of gravel aggregate, Santa Cruz River valley, Southeast Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Melick, Roger

    2002-01-01

    This investigation was conducted to provide information on the aggregate potential of alluvial fan sediments in the Santa Cruz River valley. Pebble lithology, roundness, and particle size were determined in the field, and structures and textures of alluvial fan sediments were photographed and described. Additional measurements of particle size on digital photographs were made on a computer screen. Digital elevation models were acquired and compiled for viewing the areal extent of selected fans. Alluvial fan gravel in the Santa Cruz River valley reflects the lithology of its source. Gravel derived from granitic and gneissic terrane of the Tortolita, Santa Catalina, and Rincon Mountains weathers to grus and is generally inferior for use as aggregate. Gravel derived from the Tucson, Sierrita, and Tumacacori Mountains is composed mostly of angular particles of volcanic rock, much of it felsic in composition. This angular volcanic gravel should be suitable for use in asphalt but may require treatment for alkali-silica reaction prior to use in concrete. Gravel derived from the Santa Rita Mountains is of mixed plutonic (mostly granitic rocks), volcanic (mostly felsic rocks), and sedimentary (sandstone and carbonate rock) composition. The sedimentary component tends to make gravel derived from the Santa Rita Mountains slightly more rounded than other fan gravel. The coarsest (pebble, cobble, and boulder) gravel is found near the heads (proximal part) of alluvial fans. At the foot (distal part) of alluvial fans, most gravel is pebble-sized and interbedded with sand and silt. Some of the coarsest gravel was observed near the head of the Madera Canyon, Montosa Canyon, and Esperanza Wash fans. The large Cienega Creek fan, located immediately south and southeast of Tucson, consists entirely of distal-fan pebble gravel, sand, and silt.

  10. Flow pattern in regional aquifers and flow relations between the lower Colorado River valley and regional aquifers in six counties of southeastern Texas

    USGS Publications Warehouse

    Woodward, Dennis G.

    1989-01-01

    The lower Colorado River discussed in this report consists of the 318- river-mile reach from Mansfield Dam near Austin, Texas, to the Gulf of Mexico. The river is underlain directly or indirectly by six regional aquifers the Trinity Group, Edwards, Carrizo-Wilcox, Queen City, Sparta, and Gulf Coast; the Trinity Group aquifer is further subdivided into the lower Trinity, middle Trinity, and upper Trinity aquifers. Generalized potentiometric-surface maps of each regional aquifer show the ground-water-flow pattern near the river valley. Each regional aquifer discharges water to the lower Colorado River valley, particularly in the outcrop area of each aquifer. Only the Gulf Coast aquifer in central Wharton County appears to be recharged by water in the river valley. A summary map shows those subreaches of the lower Colorado River that gain water from the aquifers and those subreaches that lose water to the aquifers.

  11. Aquifer model of the Susquehanna River valley in southwestern Broome County, New York

    USGS Publications Warehouse

    Randall, A.D.

    1986-01-01

    A finite-difference model of groundwater flow within stratified drift in the 14 mi reach of the Susquehanna River valley from Binghamton west to Tioga County line (including Johnson City, Endicott, and Vestal) has been developed. Outwash is the most permeable and extensive type of stratified drift in the valley but has only small saturated thickness except where it is downwarped beneath ice-block depressions. The outwash is commonly underlain by extensive beds of silt and clay deposited in proglacial lakes. Older ice-contact deposits are also extensive and provide the largest yields to wells but are highly variable in thickness and commonly siltier than the outwash. The ice-contact deposits seem to occur mainly as ridges that parallel the axis of major valleys and are buried beneath later lacustrine and outwash sediments. The model simulates horizontal flow in two layers-the upper layer generally represents outwash, the lower layer generally represents older ice-contact deposits; and vertical flow between those layers through the beds of silt and clay or, where the two aquifer layers are in direct contact, through sand and gravel. The model has been calibrated to reproduce observed water levels that represent steady-state conditions. The model was calibrated for average steady-state conditions from data for April 1981, when water levels remained fairly stable for nearly 2 months. Recharge from precipitation on the aquifer during this period was determined to be about 1.28 in/mo. Transmissivity of the lower aquifer, as determined by calibration of the model for areas influenced by pumping, was significantly less than transmissivity values calculated from pumping records or geologic logs of individual wells. This difference is attributed to scattered silty layers that reduce average transmissivity of generally permeable materials. Data are available for transient calibration, including: (1) semiannual water level measurements that reflect seasonal changes in river

  12. Landscape Genetic Structure of a Streamside Tree Species Euptelea pleiospermum (Eupteleaceae): Contrasting Roles of River Valley and Mountain Ridge

    PubMed Central

    Wei, Xinzeng; Meng, Hongjie; Jiang, Mingxi

    2013-01-01

    We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900–2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the “classical metapopulaton” model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming. PMID:23825588

  13. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    USGS Publications Warehouse

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  14. Invisible geomorphosites. A case study in the Rhone River valley (Switzerland)

    NASA Astrophysics Data System (ADS)

    Clivaz, Mélanie; Reynard, Emmanuel

    2016-04-01

    During the last two decades, numerous inventories of geosites have been carried out at various scales. As all kinds of inventory, they aim at documenting the state of the geological heritage, which is the basis for management strategies (geoconservation, geoeducation, geotourism, etc.). In very humanized regions, where the original geomorphology has been highly modified by human infrastructures, agriculture, urban sprawling, and various modifications of the landforms, it is interesting to inventory not only the landforms visible today but also former landforms that have been destroyed or hidden by human activities. To address the issue of the inventory of invisible geomorphosites, two approaches have been tested in the Rhone River valley, in Switzerland. For centuries the river was flowing quite freely on the floodplain and alternated - both in time and space - braided and meandering sectors. Tributaries fed by glaciers and snow-melting as well as torrential systems were building alluvial fans at their confluence with the Rhone River, and more or less extensive wetlands were isolated by these alluvial fans and the braided sectors of the main river. Floods were frequent and temporary lakes were formed during the snow-melting season and during intensive rainfall events, especially in autumn. Even sand dunes were visible in several places due to the remobilisation of fine fluvial deposits by wind processes. During the second half of the 19th century, the Rhone River and the majority of its tributaries was channelized, the sand dunes were completely destroyed - partly for filling the depressions -, and most wetlands were drained during the first half of the 20th century and replaced by intensive agricultural crops. The first study consisted to inventory the geomorphosites of the research area. Not only the visible landforms but also the landforms that had completely disappeared were evaluated using the assessment method of Reynard et al. (2015). A total of 28

  15. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang

    2014-11-01

    This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.

  16. Conjunctive-use optimization model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Clark, Brian R.; Reed, Thomas B.

    2003-01-01

    The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression over 100 feet deep have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 14,104 square miles, extending northeast from the Arkansas River into the northeast corner of Arkansas and parts of southeastern Missouri. The flow model showed that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. To develop estimates of withdrawal rates that could be sustained in compliance with the constraints of critical ground-water area designation, conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer in northeastern Arkansas. Ground-water withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state flow conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely). Within the optimization model, 11 rivers are specified. Surface-water diversion rates that occurred in 2000 were subtracted from specified overland flow at the appropriate river cells. Included in these diversions were the

  17. Occurrence of Escherichia coli in the Cuyahoga River in the Cuyahoga Valley National Park, Ohio

    USGS Publications Warehouse

    Brady, Amie M.G.; Plona, Meg B.

    2010-01-01

    There are several measures of the 'cleanliness' of a natural body of water, including concentrations of indicator bacteria, anthropogenic chemicals (chemicals derived from human activities), and nutrients, such as nitrogen and phosphorous. Escherichia coli (E. coli) is a bacterium that lives in the intestinal tract of warm-blooded animals, such as humans, deer, cows, and dogs. Most strains of E. coli are not harmful and are in fact beneficial to humans by aiding in the digestive process. A few strains, such as the O157 strain, produce toxins that can cause gastrointestinal illness, but occurrence of toxic strains in the environment is not common. E. coli is considered a good indicator bacterium because its occurrence in the environment indicates the presence of fecal contamination and therefore the possible presence of pathogenic organisms associated with feces. The U.S. Environmental Protection Agency (USEPA) recommends using measurements of E. coli to monitor freshwaters and set criteria for the concentration of bacteria that can be present in the water with minimal adverse human-health effects. Typically, a State's waters are assigned a recreational-use designation, such as bathing, primary-contact, or secondary contact waters, which is used to set the State's water-quality standards based on the USEPA criteria. The Cuyahoga River in the Cuyahoga Valley National Park is designated for primary-contact recreation; therefore, when concentrations of E. coli exceed 298 CFU/100mL, the river would be considered potentially unsafe for recreation.

  18. High Resolution Monitoring of Algal Growth Dynamics in a Hypereutrophic River in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Henson, S. S.; Dahlgren, R.; van Nieuwenhuyse, E.; O'Geen, A. T.; Gallo, E. L.; Ahearn, D. S.

    2005-05-01

    The lower San Joaquin River in California's Central Valley experiences periods of hypoxia during the late summer and fall that is detrimental to aquatic organisms and migration of fall-run chinook salmon and steelhead trout. Hypoxia is attributable, in part, to excess nutrients from urban waste water and agricultural runoff, which contribute to growth of high concentrations of phytoplankton. This study examined spatial and temporal growth patterns that control algal loading using continuous fluorescence measurements at three sites along a 50 km section of the lower San Joaquin River between April and October. A strong diel fluorescence signal was observed and associated grab samples verified that fluorescence was an accurate measure of chlorophyll. Peak chlorophyll concentrations occurred between 18:00 and 20:00 and minimum concentrations between 10:00 and 12:00. Maximum concentrations were nearly two times greater than minimum concentrations although this ratio varied temporally and spatially. Although the mechanism for the diel chlorophyll signal is not very well understood several parameters including temperature, irradiance, turbidity, residence time, stream depth, and zooplankton grazing were considered within the scope of this study. This study highlights the importance of considering high resolution sampling on algal loading rates within heavily impacted riverine systems.

  19. Early Pleistocene Glacial Lake Lesley, West Branch Susquehanna River valley, central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ramage, Joan M.; Gardner, Thomas W.; Sasowsky, Ira D.

    1998-02-01

    Laurentide glaciers extended into north central Pennsylvania repeatedly during at least the last 2 million years. Early Pleistocene glaciation extended farther south into central Pennsylvania than any subsequent glaciation, reaching the West Branch Susquehanna River (WBSR) valley. Early Pleistocene ice dammed the northeast-flowing West Branch Susquehanna River at Williamsport, forming Glacial Lake Lesley, a 100-km-long proglacial lake. In this paper, we present compelling evidence for the lake and its age. Maximum lake volume (˜ 100 km 3) was controlled by the elevation of the lowest drainage divide, ˜ 340 m above sea level at Dix, Pennsylvania. Stratified deposits at McElhattan and Linden are used to reconstruct depositional environments in Glacial Lake Lesley. A sedimentary section 40 m thick at McElhattan fines upward from crossbedded sand to fine, wavy to horizontally laminated clay, consistent with lake deepening and increasing distance from the sediment source with time. At Linden, isolated cobbles, interpreted as dropstones, locally deform glacio-lacustrine sediment. We use paleomagnetism as an age correlation tool in the WBSR valley to correlate contemporaneous glaciofluvial and proglacial lacustrine sediments. Reversed remanent polarity in finely-laminated lacustrine clay and silt at McElhattan ( I = 20.4°, D = 146.7°, α95 = 17.7°) and in interbedded silt and sand at Linden ( I = 55.3°, D = 175.2°, α95 = 74.6°) probably corresponds to the latter part of the Matuyama Reversed Polarity Chron, indicating an age between ˜ 770 and ˜ 970 ka. At McElhattan, a diamicton deformed the finely laminated silt and clay by loading and partial fluidization during or soon after lake drainage. As a result, the deformed clay at McElhattan lacks discrete bedding and records a different characteristic remanent magnetism from underlying, undeformed beds. This difference indicates that the characteristic remanent magnetism is detrital. An electrical resistivity

  20. Geo-referenced social accounting with application to integrated watershed planning in the Hudson River Valley

    NASA Astrophysics Data System (ADS)

    Nowosielski, Audra Ann

    Changing economic activity and patterns of human habitation have long been a cause of concern for the ecological health of the Hudson River and its tributaries. Today, economic development in the Hudson River Valley is often characterized as a battle between proponents of economy-wide growth and citizen groups concerned about the cumulative impact of incremental development on the watershed. Current development trends in the Hudson River Valley are driving the conversion of rural, agricultural and forestland to urban or industrial uses. This thesis is part of a larger study of the economic changes that lead to land use and environmental changes. It focuses specifically on the economic drivers of development in Dutchess County, an area of the lower watershed on the east bank of the Hudson, midway between New York City and the state capital of Albany. The objective was to engage the Dutchess County planning community in developing a planning model, the economic portion of which characterizes the economy with a Social Accounting Matrix (SAM) referenced to a Geographical Information System (GIS). The model was used to assess economic impacts of locally relevant development scenarios including a new IBM semiconductor plant, agro-tourism, and commuting behavior. These scenarios each discuss economic changes that have land use consequences. For example, a new IBM plant will likely instigate new residential development, agro-tourism offers a way to keep land in agricultural use, and the study of commuting behavior leads to insights on how residential growth may depend on commuting patterns, as well as information on the effects of second home communities. The final model will help stakeholders to visualize not only how economic shocks will change their communities, but also how these changes may lead to land use and cumulative environmental impact. Stakeholders will be able to visualize the trade-off between new economic growth and the possible loss of environmental

  1. Map of water table in Solomon River valley, Waconda Lake to Solomon, north-central Kansas, May 1980

    USGS Publications Warehouse

    Reed, Thomas B.

    1983-01-01

    A map of the water table in the Solomon River valley from Waconda Lake to Solomon presents current (1980) data on water levels in the unconsolidated deposits. The Solomon River, which originates in western Kansas, flows southeastward from Waconda Lake to its confluence with the Smoky Hill River at Solomon. In the study area, its valley is incised into consolidated rocks that are composed mostly of shale and limestone. The unconsolidated deposits in the valley underlie the flood plain and the terrace. The alluvial deposits generally consist of gravel and sand, grading upward to sand and silt, with clay lenses interbedded throughout. Thickness of the deposits may be as much as 70 feet. Ground water in the unconsolidated deposits is a principal source of supply for domestic, stock, and irrigation use. Water-table contours indicate that ground water moves from the alluvial deposits to the stream. Thus, the Solomon River gains in flow through most of the reach. Water-level measurements for this study were made during the spring of 1980, prior to the irrigation season. (USGS)

  2. Updated glacial chronology of the South Fork Hoh River valley, Olympic Peninsula, Washington through detailed stratigraphy and OSL dating

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, C.; Rittenour, T. M.; Thackray, G. D.

    2012-12-01

    The Olympic Peninsula lies within a maritime climatic zone under the direct influence of westerly atmospheric flow and Pacific Ocean sea surface temperature variations (i.e. ENSO and PDO). During the last glaciation, large valley glaciers extended radially from the Mt. Olympus area and carved deep valleys, which preserve glacial diamicton, outwash, and lacustrine sediment emplaced during ice advance and retreat. Previous work by Thackray (1996) mapped glacial deposits through several key drainages in the western Olympic Mountains and used exposures along the South Fork Hoh River to reconstruct MIS 2 glaciation and determine the relative extent of the LGM ice margin in the region. Findings suggest that the extent of mountain glaciers in the western Olympics were much reduced during MIS 2 in comparison to MIS 3/4, with glacier mass balance primarily controlled by moisture delivery. Here we discuss new data constraining the style and timing of deglaciation in the South Fork Hoh River valley of the western Olympic Mountains, Washington, USA. Previous research in the South Fork Hoh River used radiocarbon ages, geomorphic mapping, and general stratigraphic relationships to establish a chronostratigraphic framework (Thackray, 1996). To further that understanding and provide new insight on the style and timing of MIS 2 glaciation, we examine the sedimentology and stratigraphic architecture of glacial landforms, which contain invaluable information about glacial processes and style. Optically stimulated luminescence (OSL) dating, commonly regarded as problematic in glacial sediments, constrains the ages of proximal glacial outwash and glaciolacustrine deposits that were traditionally difficult to date due to the lack of organic matter for radiocarbon dating. OSL ages are internally coherent and stratigraphically consistent with previous radiocarbon ages. Results from this research in the South Fork Hoh River valley and associated work in the Queets River valley, the next

  3. Delta growth and river valleys: the influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Maselli, V.; Trincardi, F.; Asioli, A.; Ceregato, A.; Rizzetto, F.; Taviani, M.

    2014-09-01

    Incised valleys across continental margins represent the response of fluvial systems to changes in their equilibrium dynamics, mainly driven by base level fall forced by glacial-eustatic cycles. The Manfredonia Incised Valley formed during the last glacial sea level lowstand, when most of the southern Adriatic shelf was sub-aerially exposed but the outer shelf remained under water. The pronounced upstream deepening of the valley is ascribed to river incision of the MIS5e highstand coastal prism and related subaqueous clinoform under the influence of MIS5-4 sea level fluctuations, while the downstream shallowing and narrowing mainly reflects the impact of increased rates of sea level fall at the MIS3-2 transition on a flatter mid-outer shelf. Until 15 ka BP, the valley fed an asymmetric delta confined to the mid-outer shelf, testifying that continental and deep marine systems remained disconnected during the lowstand. Sea level rise reached the inner shelf during the Early Holocene, drowning the valley and leading to the formation of a sheltered embayment confined toward the land: at this time part of the incision remained underfilled with a marked bathymetric expression. This mini-basin was rapidly filled by sandy bayhead deltas, prograding from both the northern and southern sides of the valley. In this environment, protected by marine reworking and where sediment dispersal was less effective, the accommodation space was reduced and autogenic processes forced the formation of multiple and coalescing delta lobes. Bayhead delta progradations occurred in few centuries, between 8 and 7.2 ka cal BP, confirming the recent hypothesis that in this area the valley was filled during the formation of sapropel S1. This proximal valley fill, representing the very shallow-water equivalent of the cm-thick sapropel layers accumulated offshore in the deeper southern Adriatic basin, is of key importance in following the signature of the sapropel in a facies-tract ideally from the

  4. Demographics and movements of least terns and piping plovers in the Central Platte River Valley, Nebraska

    USGS Publications Warehouse

    Roche, Erin A.; Sherfy, Mark H.; Ring, Megan M.; Shaffer, Terry L.; Anteau, Michael J.; Stucker, Jennifer H.

    2016-01-01

    The Central Platte River Valley provides breeding habitat for a variety of migratory birds, including federally endangered interior least terns (Sternula antillarum; least tern) and threatened piping plovers (Charadrius melodus). Since 2009, researchers have collected demographic data on both species that span their lifecycle (that is, from egg laying through survival of adults). Demographic data were used to estimate vital rates (for example, nest survival, chick survival, and so on) for both species and assess how these vital rates were related to type and age of nesting habitat. Nest survival of both species was unrelated to the age of the site a nest was initiated on. Piping plover chick survival to fledging age was not related to the age of the site it was hatched at, however, the probability of a least tern chick surviving to fledging was higher at older sites. In general there were fewer piping plover nests than least tern nests found at sites created through either the physical construction of a new site or new vegetation management regimes, during 2009–14.Mean daily least tern nest survival was 0.9742 (95-percent confidence interval [CI]: 0.9692–0.9783) and cumulative nest survival was 0.59 (95-percent CI: 0.53–0.65). Mean daily least tern chick survival was 0.9602 (95-percent CI: 0.9515–0.9673) and cumulative survival to fledging was 0.54 (95-percent CI = 0.48–0.61). Annual apparent survival rates were estimated at 0.42 (95-percent CI = 0.22–0.64) for adult least terns nesting in the Central Platte River Valley and an apparent survival rate of 0.14 (95-pecent CI = 0.04–0.41) for juvenile least terns. The number of least tern nests present at sites created during 2009–14 was associated with the age of the site; more least tern nests were associated with older sites. During 2009–14, there were four (less than 1 percent of all chicks marked) least tern chicks hatched from the Central Platte River Valley that were subsequently captured on

  5. Large flood on a mountain river subjected to restoration: effects on aquatic habitats, channel morphology and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-04-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  6. Natural curiosities of the Bug river valley near Janów Podlaski as a chance of the specialized tourism development

    NASA Astrophysics Data System (ADS)

    Kusznerczuk, Marta

    2009-01-01

    This paper presents the most precious natural curiosities of the Bug river valley near Janów Podlaski (between Zaczopki and Gnojno). This area is protected as the landscape park - "Podlasie Bug Water Gap". The natural abiotic elements, among others geomorphological ones significantly conditioning unrepeatable charms of the Bug river valley landscape, are regarded as marginal in many papers concerning the unique values of this valley. The presented natural curiosities are arranged in genetic and chronological order. These main relief elements of the Bug river valley are associated with different morphogenetic processes, i.e. the gap formation, the Bug river metamorphosis and gully erosion. These elements can be a chance of the development of specialised tourism, which will influence the economic mobilization of this undeveloped region.

  7. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  8. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur, III; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  9. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  10. Present-day CGPS-derived Crustal Strain Rate Field of the Saint Lawrence River Valley

    NASA Astrophysics Data System (ADS)

    Goudarzi, M. A.; Cocard, M.; Santerre, R.

    2015-12-01

    The Saint Lawrence River valley (SLRV) is one of the most seismically active areas in eastern Canada. Along the SLRV and the Ottawa valley, earthquakes are concentrated on three distinct zones of western Quebec along the Ottawa River, Charlevoix, and Lower Saint Lawrence. The entire area is also subject to the glacial isostatic adjustment (GIA). We studied the earth's surface deformation of the area using the velocity field of 51 continuous GPS (CGPS) stations and the least-squares collocation method. While the intraplate horizontal velocities showed a coherent horizontal motion towards southeast with the typical magnitude of ~1.3 mm/yr for stations along the SLRV, the interpolated vertical velocities demonstrated a coherent uplift with the average rate of 3.1 mm/yr. We estimated strain rate tensors including the effect of vertical velocity. A NNW-SSE shortening with a typical rate of ~3.6-8.1 nstrain/yr was observed over Lower Saint Lawrence. In Charlevoix, an extension with a typical rate of ~3.0-7.1 nstrain/yr was oriented in ENE-WSW parallel to the SLRV. In western Quebec, the deformation has a shear straining mechanism with a typical shortening rate of ~1.0-5.1 nstrain/yr and extension rate of ~1.6-4.1 nstrain/yr. The extension over the northern model is consistent with the prediction of the GIA models. The range of the estimated strain rates of the area (~1.0-8.1 nstrain/yr) is between typical values of rigid blocks (< 0.1 nstrain/yr) and active tectonic regions (> 100 μstrain/yr). A strong correlation was observed between epicenters of earthquakes and areas with the highest rate of shear strain. We found a good agreement between the orientations of the principal axes of strain rate tensors and the maximum horizontal compressional stress σH from World Stress Map 2008 for both strike-slip and thrust faulting regimes especially those derived from focal mechanisms. This shows our CGPS intraplate velocities are representative of the current crustal deformation

  11. A subsynoptic-scale kinetic energy study of the Red River Valley tornado outbreak (AVE-SESAME 1)

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Fuelberg, H. E.

    1981-01-01

    The subsynoptis-scale kinetic energy balance during the Red River Valley tornado outbreak is presented in order to diagnose storm environment interactions. Area-time averaged energetics indicate that horizontal flux convergence provides the major energy source to the region, while cross contour flow provides the greatest sink. Maximum energy variability is found in the upper levels in association with jet stream activity. Area averaged energetics at individual observation times show that the energy balance near times of maximum storm activity differs considerably from that of the remaining periods. The local kinetic energy balance over Oklahoma during the formation of a limited jet streak receives special attention. Cross contour production of energy is the dominant local source for jet development. Intense convection producing the Red River Valley tornadoes may have contributed to this local development by modifying the surrounding environment.

  12. Analysis and computer simulation of stream-aquifer hydrology, Arkansas River Valley, southwestern Kansas

    USGS Publications Warehouse

    Barker, R.A.; Sauer, C.G.; Dunlap, L.E.

    1983-01-01

    A study was made, in cooperation with the Division of Water Resources, Kansas State Board of Agriculture, to determine geohydrologic conditions underlying nearly 110,000 acres of the Arkansas River Valley between the Colorado-Kansas State line and the Bear Creek Fault zone in southwestern Kansas. The Arkansas River meanders atop and interacts hydraulically with the area's unconfined sand and gravel aquifer. Owing to decreasing recharge and increasing discharge during the 1970's, water levels declined an average of 4 feet during 1970-79. Average annual streamflow at Syracuse, Kansas, also decreased from 232 cubic feet per second during 1951-69 to 85 cubic feet per second during 1970-79. A digital-computer model was calibrated to simulate the trends of historic water levels and streamflow during 1970-79. Simulated 1975-79 conditions depict an annual recharge to the aquifer of 15,000 acre-ft (acre-feet) from river leakage, 9,000 acre-ft from boundary inflow, and 50,000 acre-ft from deep percolation. Simulated annual discharge consists of 12,000 acre-ft to boundary outflow across the Bear Creek Fault zone, 1,000 acre-ft as leakage to the Arkansas River, 11,000 acre-ft to groundwater evaporation, and 57,000 acre-ft to pumpage. Simulated annual recharge was 7,000 acre-ft less than simulated annual discharge of 81,000 acre-ft. Simulation indicates that: (1) The long-term effects of less recharge from smaller than average amounts of annual precipitation during the 1970's were offset by more recharge during brief, timely periods of much greater than the mean monthly amounts of precipitation, and (2) the effects of the increased pumpage were partly offset by increased recharge resulting from increased irrigation. Model results indicate that the water-level decline and streamflow shortage during 1970-79 were affected more directly by departures from historic (1951-69) rates of incoming streamflow than by either the smaller than average amounts of precipitation or the

  13. Conjunctive-use optimization model of the Mississippi River Valley alluvial aquifer of Southeastern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Clark, Brian R.; Stanton, Gregory P.

    2003-01-01

    The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 3,826 square miles, extending south from the Arkansas River into the southeastern corner of Arkansas, parts of northeastern Louisiana, and western Mississippi. The flow-model results indicated that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. Conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer to develop withdrawal rates that could be sustained relative to the constraints of critical ground-water area designation. These withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely).One point along the Arkansas River and one point along Bayou Bartholomew were specified for obtaining surface-water sustainable-yield estimates within the optimization model. Streamflow constraints were specified at two river cells based on average 7-day low flows

  14. Soils developed from alluvial and proluvial deposits in the Gröndalselva River valley in West Spitsbergen

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.; Litvinova, T. I.

    2012-05-01

    The genetic characterization of soils developed from alluvial and proluvial deposits in the Gröndalselva River valley (West Spitsbergen) is presented. These soils are compared with analogous soils formed on marine terraces along the coasts of Isfjord and Grönfjord. Gray-humus (soddy) soils with an O-AY-C profile have been described on parent materials of different origins, including alluvial and proluvial sediments. The texture of the soils in the Gröndalselva River valley varies from medium to heavy loam and differs from the texture of the soils on other geomorphic positions in the higher content of fine particles. The soils developed from the alluvial deposits are characterized by their richer mineralogical and chemical composition in comparison with the soils developed from proluvial deposits, marine deposits, and bedrocks. All the deposits are impoverished in CaO. No differentiation of the chemical composition of the soils along the soil profiles has been found in the soils of the coastal areas and the river valley. Some accumulation of oxalate-soluble Al and Fe compounds takes place in the uppermost mineral horizon. The soils of all the geomorphic positions have a high humus content and a high exchange capacity.

  15. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  16. Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia.

    PubMed

    Plummer, Thomas W; Ferraro, Joseph V; Louys, Julien; Hertel, Fritz; Alemseged, Zeresenay; Bobe, René; Bishop, L C

    2015-11-01

    The Shungura Formation in the lower Omo River Valley, southern Ethiopia, has yielded an important paleontological and archeological record from the Pliocene and Pleistocene of eastern Africa. Fossils are common throughout the sequence and provide evidence of paleoenvironments and environmental change through time. This study developed discriminant function ecomorphology models that linked astragalus morphology to broadly defined habitat categories (open, light cover, heavy cover, forest, and wetlands) using modern bovids of known ecology. These models used seven variables suitable for use on fragmentary fossils and had overall classification success rates of >82%. Four hundred and one fossils were analyzed from Shungura Formation members B through G (3.4-1.9 million years ago). Analysis by member documented the full range of ecomorph categories, demonstrating that a wide range of habitats existed along the axis of the paleo-Omo River. Heavy cover ecomorphs, reflecting habitats such as woodland and heavy bushland, were the most common in the fossil sample. The trend of increasing open cover habitats from Members C through F suggested by other paleoenvironmental proxies was documented by the increase in open habitat ecomorphs during this interval. However, finer grained analysis demonstrated considerable variability in ecomorph frequencies over time, suggesting that substantial short-term variability is masked when grouping samples by member. The hominin genera Australopithecus, Homo, and Paranthropus are associated with a range of ecomorphs, indicating that all three genera were living in temporally variable and heterogeneous landscapes. Australopithecus finds were predominantly associated with lower frequencies of open habitat ecomorphs, and high frequencies of heavy cover ecomorphs, perhaps indicating a more woodland focus for this genus. PMID:26208956

  17. Groundwater uranium origin and fate control in a river valley aquifer.

    PubMed

    Banning, Andre; Demmel, Thomas; Rüde, Thomas R; Wrobel, Michael

    2013-12-17

    Groundwater in a Quaternary gravel aquifer partly exhibits uranium (U) concentrations exceeding the new German drinking water limitation (22% of the samples >10 μg L(-1)). This study assesses relevant U reservoirs and hydrogeochemical processes responsible for U transfer between them. A large data set of solid materials (sediments and soils, 164 samples total) and groundwater (114 samples total) characteristics was created in terms of geo- and hydrochemistry, mineralogy, U microdistribution, and mobilization potential. Results show that U primarily derived from lignitic inclusions in Tertiary sediments is transported to and accumulated (complexation to organic substance and UO2 precipitation) in lowland moor peats of the river valley grown on the aquifer gravels. The alkaline character of the system predefines a hydrogeochemical framework fostering U mobility. Elevated concentrations (up to 96 μg L(-1) U) occur downstream of the moor areas and under Mn/NO3-reducing groundwater conditions. Oxic and stronger reduced settings are rather little affected. Supporting previous laboratory studies, this suggests enhanced U mobility in the presence of nitrate also in the field scale. While no anthropogenic U input was detected in the study area, agricultural usage of the moor areas triggers geogenic U release via nitrate fertilization, surface peat degradation, and erosion. PMID:24112070

  18. Monitoring agricultural burning in the Mississippi River Valley region from the moderate resolution imaging spectroradiometer (MODIS).

    PubMed

    Korontzi, Stefania; McCarty, Jessica; Justice, Christopher

    2008-09-01

    The 2003 active fire observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), on board NASA's Terra and Aqua satellites, were analyzed to assess burning activity in the cropland areas of the Mississippi River Valley region. Agricultural burning was found to be an important contributor to fire activity in this region, accounting for approximately one-third of all burning. Agricultural fire activity showed two seasonal peaks: the first, smaller peak, occurring in June during the spring harvesting of wheat; and the second, bigger peak, in October during the fall harvesting of rice and soy. The seasonal signal in agricultural burning was predominantly evident in the early afternoon MODIS Aqua fire detections. A strong diurnal agricultural fire signal was prevalent during the fall harvesting months, as suggested by the substantially higher number (approximately 3.5 times) of fires detected by MODIS Aqua in the early afternoon, compared with those detected by MODIS Terra in the morning. No diurnal variations in agricultural fire activity were apparent during the springtime wheat-harvesting season. The seasonal and diurnal patterns in agricultural fire activity detected by MODIS are supported by known crop management practices in this region. MODIS data provide an important means to characterize and monitor agricultural fire dynamics and management practices. PMID:18817116

  19. Evapotranspiration from forage grass replacing native vegetation in the Gila River valley of Arizona

    USGS Publications Warehouse

    Leppanen, O.E.

    1981-01-01

    Estimates of evapotranspiration from an area of forage grass, which had been planted to replace native vegetation of little economic value, were made daily for a 363-day period in 1969 and 1970. The measurement site was located in the Gila River valley in east-central Arizona. The forage, panigrass (Panicum antidotale Retz.), grew from seed during the early summer of 1969 and after winterkill, regrew in 1970. Daily evapotranspiration estimates, which were based on energy budget measurements, ranged from a maximum of 9.2 millimeters to small amounts of condensation. Two daily values of substantial condensation (0.9 and 0.4 millimeter) were of dubious quality, but were retained in the record. The annual evapotranspiration was 989 millimeters, of which about 332 millimeters came from precipitation at the site. The water table fluctuated between 210 and 280 centimeters below land surface. However, the measurement site was near a wash, so that undocumented, shallower subterranean flows may have occurred. (USGS)

  20. The helminth community of the wood mouse Apodemus sylvaticus from the Erro River valley, Navarre, Spain.

    PubMed

    Debenedetti, A L; Sainz-Elipe, S; Sáez-Durán, S; Galicia, D; Imaz, A; Galán-Puchades, M T; Fuentes, M V

    2015-11-01

    The helminth fauna of the wood mouse, Apodemus sylvaticus, in the Erro River valley (Navarre, Spain) was investigated from a total of 150 mice between February 2001 and July 2002. An overall prevalence of 90.7% was recorded and up to 14 helminth species identified. The most prevalent species was the nematode Heligmosomoides polygyrus (78.0%), whereas Syphacia stroma was the species with the highest median abundance (19.8). The detection of Calodium hepaticum, Rodentolepis straminea and the larvae of Hydatigera taeniaeformis are significant, since these helminth species could be considered potential human parasites. The helminth infracommunity comprised no more than five species. A significant predominance of monoxenous species was detected. Statistically significant differences were also found between prevalences, helminth abundance, species richness and helminth diversity of sub-populations of the wood mouse determined by host age and season of capture, which agree with most of the studies carried out on this host. This study will shed light on the helminth community of the wood mouse from a region of Spain which has not previously been documented. PMID:25007313

  1. Ancient landslide-dam events in the Jishi Gorge, upper Yellow River valley, China

    NASA Astrophysics Data System (ADS)

    Dong, Guanghui; Zhang, Fanyu; Ma, Minmin; Fan, Yuxin; Zhang, Jiawu; Wang, Zongli; Chen, Fahu

    2014-05-01

    Some scholars have argued that the formation and outburst of an ancient dammed lake in the Jishi Gorge at ca. 3700 cal yr BP resulted in the destruction of Lajia, the site of a famous prehistoric disaster in the Guanting Basin, upper Yellow River valley, China. However, the cause of the dammed lake and the exact age of the dam breaching are still debated. We investigated ancient landslides and evidence for the dammed lake in the Jishi Gorge, including dating of soil from the shear zone of an ancient landslide, sediments of the ancient dammed lake, and loess above lacustrine sediments using radiocarbon and optically stimulated luminescence (OSL) dating methods. Six radiocarbon dates and two OSL dates suggested that the ancient landslides and dammed lake events in the Jishi Gorge probably occurred around 8100 cal yr BP, and the ancient dammed lake was breached between 6780 cal yr BP and 5750 cal yr BP. Hence, the outburst of the ancient dammed lake in the Jishi Gorge was unrelated to the ruin of the Lajia site, but likely resulted in flood disasters in the Guanting Basin around 6500 cal yr BP.

  2. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    USGS Publications Warehouse

    Morrissey, D.J.

    1987-01-01

    The highly permeable, unconfined, glacial drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many communities that obtain part or all of their public water supply from groundwater. Analytical , two-dimensional numerical and three-dimensional numerical models were used to delineate contributing areas of groundwater pollution. These methods of analysis were compared by applying them to hypothetical aquifer having the dimensions and geometry of a typical glacial drift, river valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial drift aquifers in New England. These controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and degree of well penetration. Numerical models of valley aquifers are deemed best suited to determine the approximate contributing area of a well because of their capability to simulate more accurately the variable geohydrologic conditions typical of glacial drift valley aquifers. On the basis of results obtained with the two-dimensional numerical model, for which a wide range of hydrologic conditions were simulated, the contributing area in a typical glacial drift, river valley setting for a well pumped at a rate of 1.0 million gal/day--a common pumping rate--can be expected to range from about 0.9 to 1.8 sq mi. Model analysis also shows that the contributing area of pumped wells may be expected to extend to the opposite side of the river and to include significant areas of till uplands adjacent to the aquifer on both sides of the valley

  3. Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

    2001-01-01

    In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley

  4. The inter-ground massive ice sheet in the bottoms of Valyok Valley (Norilskaya River)

    NASA Astrophysics Data System (ADS)

    Grebenets, V.; Ablyazina, D.

    2009-04-01

    Inter-ground massive ice sheet is a wide spread phenomena in many regions of permafrost zone and in Norilsk area (North of Middle Siberia) as well. Here they are located at the 2nd terrace of the Norilskaya River where in lateral piedmont parts of the valley buried glacier sheet ice occurs. High ice content and occurrence of ice sheets and ice wedges are the reasons of thermokarst, thermoerosion and cryogenic landslides development on coasts of rivers and lakes. The Valyok Valley (lacustrine-alluvial terrace of the Norilskaya River) is located in the intermountain depression limited by the Putorana Plateau offshoots from the north, east, south and south-west. To the north-west it spreads towards the Pyasino Lake. In the Late Pleistocene and Early Holocene the valley was occupied by the cold fresh-water lake and ancient permafrost melted. After the water retreat 9000-8000 years B. P., epigenetic freezing began. The lower part of sediments of this epoch (al III34 vl - al-b IV vl) is represented by bandy clay covered by loam and loamy-sand deposits on the plain and by loamy-sand and gravel deposits in the piedmont part. The surface on many sites is composed of peat up to 2-3 m thick containing ice wedges. For epigenetically frozen sediments of the Valyok formation, high ice content (i up to 30-60% by volume) in upper layers is characteristic. In buildings construction, dangerous ground subsidence resulted from ice-rich deposits thawing may occur. At the same time, a contrary tendency was marked. In engineering prospect in 1970, before construction of large building of a suburban ski base, ice-rich clay of lattice cryostructure (i = 25 - 40 %) was found near the surface and at the depth of 8-12 m, a massive ice sheet 3,2 m thick was discovered. Temperature measurements (5 November, 1970) detected that the permafrost here is in the degrading state and lattice cryostructure formed under colder thermal conditions of Holocene age. Besides, thawing and thawed ground below

  5. Effect of the Paradox Valley Unit on the dissolved-solids load of the Dolores River near Bedrock, Colorado, 1988-2001

    USGS Publications Warehouse

    Chafin, Daniel T.

    2003-01-01

    Discharge of brine with an average dissolved-solids concentration of about 256,000 milligrams per liter from alluvium in Paradox Valley, a collapsed salt anticline, substantially increases the dissolved-solids load of the Dolores River. In 1996, the Bureau of Reclamation began operation of the Paradox Valley Unit, a series of brine-withdrawal wells completed in alluvium along the Dolores River and a deep-injection well for the brine, to decrease flow of brine into the river. This report presents the findings of a study to determine the effectiveness of the Paradox Valley Unit from 1988 through September 2001. Differences in dissolved-solids load of the Dolores River between two gaging stations, one upstream and one downstream from the Paradox Valley Unit, indicate that an average dissolved-solids load of about 313 tons per day (an annual average of about 115,000 tons) was contributed by brine inflow to the Dolores River before operation of the Paradox Valley Unit began in July 1996. By September 30, 2001, the dissolved-solids load contributed by brine had declined to an average of about 29 tons per day? a decrease of about 90 percent. This decrease might have been facilitated by a decrease in precipitation and streamflow into the Paradox Valley during the last few years of the assessed period.

  6. Analysis of extent and effects caused by the flood wave in May and June 2010 in the Vistula and Odra River Valleys

    NASA Astrophysics Data System (ADS)

    Turlej, K.; Bartold, M.; Lewinski, S.

    2010-01-01

    In May and June 2010 a flood occurred in Poland, which was the result of intensive rainfalls in the upper sections of the Vistula and Odra Rivers. Medium-resolution TERRA-MODIS satellite images were used for analysis of the extent of the flood wave. Images taken on 6 June for the Vistula River Valley and on 9 June for the Odra River Valley were selected from a generally accessible database. The size of flooded areas was delineated using an object-oriented classification methods in the eCognition software environment. Statistical analysis of classification results was performed at the municipality level, by comparing the classification with Corine Land Cover 2006 database. During the discussed flood, areas in 184 municipalities along the Vistula River and in 120 municipalities along the Odra River were flooded. The most extensive flooding occurred in Slonsk Municipality in the Odra River Valley, where 4055 hectareswere flooded. In total, the Vistula waters flooded 4.01% of the area of municipalities located within the Vistula River Valley, and 3.29% of the area of Odra municipalities were flooded by the Odra River waters.

  7. Topographic growth around the Orange River valley, southern Africa: A Cenozoic record of crustal deformation and climatic change

    NASA Astrophysics Data System (ADS)

    Dauteuil, Olivier; Bessin, Paul; Guillocheau, François

    2015-03-01

    We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.

  8. Forces driving late Pleistocene (ca. 77-12 ka) landscape evolution in the Cimarron River valley, southwestern Kansas

    NASA Astrophysics Data System (ADS)

    Layzell, Anthony L.; Mandel, Rolfe D.; Ludvigson, Greg A.; Rittenour, Tammy M.; Smith, Jon J.

    2015-07-01

    This study presents stratigraphic, geomorphic, and paleoenvironmental (δ13C) data that provide insight into the late Pleistocene landscape evolution of the Cimarron River valley in the High Plains of southwestern Kansas. Two distinct valley fills (T-1 and T-2) were investigated. Three soils occur in the T-2 fill and five in the T-1 fill, all indicating periods of landscape stability or slow sedimentation. Of particular interest are two cumulic soils dating to ca. 48-28 and 13-12.5 ka. δ13C values are consistent with regional paleoenvironmental proxy data that indicate the prevalence of warm, dry conditions at these times. The Cimarron River is interpreted to have responded to these climatic changes and to local base level control. Specifically, aggradation occurred during cool, wet periods and slow sedimentation with cumulic soil formation occurred under warmer, drier climates. Significant valley incision (~ 25 m) by ca. 28 ka likely resulted from a lowering of local base level caused by deep-seated dissolution of Permian evaporite deposits.

  9. Influence of Organic Agriculture on the Net Greenhouse Effect in the Red River Valley, Minnesota

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.

    2004-12-01

    Fluxes for the suite of biologically-produced greenhouse gases (CH4, N2O and CO2) are strongly influenced by agriculture, yet the influence of organic agriculture on all three gases, which comprise the net greenhouse effect (GHE), is not clear in the context of large-scale agricultural production. Greenhouse gas mitigation potential will depend upon the net balance for all three gases [GHE balance (CO2 equiv.)= CO2 flux+ 23CH4flux + 296N2Oflux]. On-farm, field-scale experiments were performed to test the hypothesis that the net GHE at the soil-atmosphere interface is reduced under organic wheat production, compared with conventional, and that effects vary inter-seasonally. Trace gas fluxes were measured at the soil-atmosphere interface for organic and conventional wheat farms in the Red River Valley, Minnesota, one of the most productive agricultural regions in the US. We utilized 40-60 ha field pairs planted with hard red spring wheat (Triticum aestivum L.). Treatment pairs were located 6km apart and consisted of fields continuously cropped for wheat/soybean/sugar beet production for over 20 yr. Ten random, permanent points were generated for each 8.1 ha sub-plot nested inside each field. Each field pair was similar with respect to crop, climate, cultivation history, tillage, rotation, soil texture, pH, macronutrients, bulk density, and water holding capacity. Differences between treatments for the last five years were soil amendments (compost or urea) and herbicide/fungicide application versus mechanical weed control. We collected gas fluxes at each of the 41 points from April (wheat emergence) until the end of July (maturity) to determine the hourly and seasonally integrated net GHE for each management practice, given similar soil/plant/climatic conditions. Moreover, we analyzed inter-seasonal variability to determine the relationship between wheat phenology and flux under field conditions for soil temperature and moisture (water-filled pore space). The net GHE

  10. Isotopic Content of Ground Ice in the Lower Kolyma River Valley (Eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Spektor, V.; Vonk, J.; Kholodov, A. L.; Spawn, S.; Spektor, V. B.; Andreeva, V. V.; Natali, S.

    2014-12-01

    The report deals with the results of isotopic investigations in ground ice of Quaternary sediments in the Lower Kolyma River Lowland. The field works were undertaken in 2012 and 2013. Analyses of oxygen (δ18O) and hydrogen (δD) stable isotopes were obtained using the Picarro Isotopic Liquid Water Analyzer (Biogeosciences group, ETH-Zurich, Switzerland). The ground ice samples were collected both from four boreholes (BH) drilled on the right limit of the Kolyma River valley and from one section (S) in the Duvanny Yar exposure. Late Pleistocene wedge ice (Ice complex) was recovered by the BH13/1 located on a yedoma relics towering over the low thermokarst plain (N68°30.7' E161°29.6') and S12/4 in the Duvanny Yar exposure (N68°37.8' E159°08.6'). Isotopes δ18O and δD range from -31.413 to -34.05 and from -244.934 to -260.57, correspondingly. Modern wedge ice was recovered by the BH13/3 located on the joint Kolyma and Panteleikha Rivers floodplain underlain by river-bed sediments (N68°36.8', E161°21'). Isotopes range from -25.83 to -26.32(δ18O) and from -197.09 to -204.47 (δD). Oblique segregated ice layers adjacent to a modern ice wedge were recovered by the BH12/2 on the annually flooded thermokarst plain (N68˚30.8' E161˚30). Isotopes range from -18.778 to -20.897 (δ18O) and from -149.883 to -168.901 (δD). The δD contents are the lowest here, resulting possibly from mixed (ice wedging and segregation) mechanism of ice lenses formation. Segregated ice was recovered by the BH13/2 on the Schuch'e lake alas (N68°44.77', E161°23.3') and S12/4 in the transition layer of the Duvanny Yar. Isotopes range from -19.63 to -23.43 (δ18O) and from -146.77 to -177.23 (δD). Preliminary results are as follows: 1) all samples are distributed near the line of meteoric water providing evidence for atmospheric origin of ground ice in the region; 2) isotope distribution exhibits a clear distinction between Late Pleistocene wedge ice, modern wedge ice, segregated ice

  11. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India.

    PubMed

    Bhuyan, Soubhagya K; Vairale, Mohan G; Arya, Neha; Yadav, Priti; Veer, Vijay; Singh, Lokendra; Yadava, Pramod K; Kumar, Pramod

    2016-06-01

    Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for

  12. Foraging ecology of fall-migrating shorebirds in the Illinois River valley.

    PubMed

    Smith, Randolph V; Stafford, Joshua D; Yetter, Aaron P; Horath, Michelle M; Hine, Christopher S; Hoover, Jeffery P

    2012-01-01

    Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2 ± 4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity

  13. wrv: An R Package for Groundwater Flow Model Construction, Wood River Valley Aquifer System, Idaho

    NASA Astrophysics Data System (ADS)

    Fisher, J. C.

    2014-12-01

    Groundwater models are one of the main tools used in the hydrogeological sciences to assess resources and to simulate possible effects from future water demands and changes in climate. The hydrological inputs to groundwater models can be numerous and can vary in both time and space. Difficulties associated with model construction are often related to extensive datasets and cumbersome data processing tasks. To mitigate these difficulties, a graphical user interface (GUI) is often employed to aid the input of data for creating models. Unfortunately, GUI software presents an obstacle to reproducibility, a cornerstone of research. The considerable effort required to document processing steps in a GUI program, and the rapid obsoleteness of these steps with subsequent versions of the software, has prompted modelers to explicitly write down processing steps as source code to make them 'easily' reproducible. This research describes the R package wrv, a collection of datasets and functions for pre- and post-processing the numerical groundwater flow model of the Wood River Valley aquifer system, south-central Idaho. R largely facilitates reproducible modeling with the package vignette; a document that is a combination of content and source code. The code is run when the vignette is built, and all data analysis output (such as figures and tables) is created on the fly and inserted into the final document. The wrv package includes two vignettes that explain and run steps that (1) create package datasets from raw data files located on a publicly accessible repository, and (2) create and run the groundwater flow model. MODFLOW-USG, the numerical groundwater model used in this study, is executed from the vignette, and model output is returned for exploratory analyses. The ability of R to perform all processing steps in a single workflow is attributed to its comprehensive list of features; that include geographic information system and time series functionality.

  14. Foraging Ecology of Fall-Migrating Shorebirds in the Illinois River Valley

    PubMed Central

    Smith, Randolph V.; Stafford, Joshua D.; Yetter, Aaron P.; Horath, Michelle M.; Hine, Christopher S.; Hoover, Jeffery P.

    2012-01-01

    Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity

  15. Computer modeling of ground-water availability in the Pootatuck River Valley, Newtown, Connecticut

    USGS Publications Warehouse

    Haeni, F.P.; Handman, Elinor H.

    1978-01-01

    A hydrologic analysis of the stratified drift in Newtown, Conn., based on available data, test drilling, seismic refraction profiling, and the stream-aquifer connection was performed using a digital computer model. Simulated pumping indicates that a total of 4.0 million gallons of water per day (Mgal/d) can be withdrawn from the stream-aquifer system. A minimum of 2.5 Mgal/d is available for future development since Fairfield Hills Hospital is capable of withdrawing 1.5 Mgal/d. Induced recharge from the Pootatuck River supplies 65 percent, or 2.6 Mgal/d of the total pumpage, and captured ground-water outflow supplies the remaining 35 percent of 1.4 Mgal/d. The predicted yields are for long-term average hydrologic conditions; usually dry or extended drought periods would significantly reduce the water available from the aquifer. The quality of surface water in the valley as shown by seven samples from five sites, meets the Connecticut standards for public drinking water except for excessive coliform bacteria. Ground-water quality also meets these standards, as indicated by analyses of 20 samples from 14 wells and 1 spring, but high manganese (up to 15 mg/L) and iron (up to 1.7 mg/L) would require treatment prior to use. Trace metals from one surface-water and four ground-water samples are also within these standards, except for the high cadmium concentration of 26 micrograms per liter in water from one well. (Woodard-USGS)

  16. A Holocene vegetation record from the Mississippi River Valley, southeastern Missouri

    USGS Publications Warehouse

    King, J.E.; Allen, W.H., Jr.

    1977-01-01

    Pollen preserved in a peat deposit from a large swamp, the Old Field in the Mississippi River Valley near Advance, Missouri, records radiocarbon-dated vegetation changes between 9000 and about 3000 years ago. The principal feature of both the percentage and influx pollen diagrams is the replacement of arboreal pollen, primarily Quercus, Fraxinus, and Cephalanthus, with Gramineae and NAP between 8700 and 5000 years BP. This vegetation shift is interpreted as reflecting a decrease in the extent of the Old Field swamp and its associated bottomland forest species along with the expansion of a grass-dominated herb community, as a result of a reduction in available ground water. The desiccation of the swamp during this period indicates a reduction in precipitation within the ground-water source area and a shift to a drier climate in the southern Midwest. The pollen suggests that the lowest water levels and driest climate in southeastern Missouri lasted from 8700 to 6500 years BP, at which time there is a partial reappearance of swamp species. Relatively dry conditions, however, continued until at least 5000 years BP. Although pollen influx data are lacking from the upper part of the profile, the relative pollen frequencies suggest an increase in trees after 5000 BP. The replacement of the arboreal vegetation by grasses and herbs between 8700 and 5000 years BP reflects the period of maximum expansion of the Prairie Peninsula in southeastern Missouri. The Old Field swamp provides the first pollen evidence that the vegetational changes along the southern border of the Prairie Peninsula were chronologically similar to those on the northern and northeastern margins. ?? 1977.

  17. Late Pleistocene paleosols in the lower Mississippi River Valley: Documentation of regional base level change

    SciTech Connect

    Autin, W.J. ); Aslan, A. . Dept. of Geological Sciences)

    1992-01-01

    Late Pleistocene alluvial paleosols of the Mississippi River are developed in constructional fluvial deposits of ancestral meander belt, overbank, and flood basin deposits. At the type section of the Mt. Pleasant Bluff Alloformation of the Prairie Complex, the upper paleosol developed between 27 and 22 ka as part of a sequence of stacked paleosols that reflect cycles of an abandoned channel fill draped by proximal overbank deposits. Peoria Loess and mixed loess accumulated between 22 and 12 ka to bury the alluvial sequence. Base level lowering coincided with Late Wisconsinan glaciation and a minimum sea level at about 20 to 18 ka. Subsequent Holocene alluvial aggradation and valley wall plantation produced the present terrace escarpment. Soil morphology of the Mt. Pleasant Bluff Alloformation reflects two stages of soil development related to the removal of soils from an active flood plain environment to a terraced landscape position. Based on comparison with Holocene analogs, the first stage of pedogenesis in an active flood plain environment produced a hydromorphic soil as evidenced by color mottles, iron and carbonate nodules, and moderately developed B and C horizons. The second stage of development produced a more oxidized and leached soil profile as evidenced by an increase in soil color brightness, kaolinite content, and a decrease in smectite content and soil pH. In addition, pedogenic mixing by biogenic processes probably incorporated the A and E horizons into the overlying loess. A stratigraphic succession of alluvial paleosols may contain a record of regional base level rise and fall. However, an evaluation of eustatic, climatic, and/or tectonic influences on regional base level must first take into account local factors that control flood plain sedimentation and erosion.

  18. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    USGS Publications Warehouse

    Morrissey, Daniel J.

    1989-01-01

    The highly permeable, unconfined, glacial-drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many of the communities that obtain part or all of their public water supply from ground water. Recent events have shown that these aquifers are highly susceptible to contamination that results from a number of sources, such as seepage from wastewater lagoons, leaking petroleum-product storage tanks, and road salting. To protect the quality of water pumped from supply wells in these aquifers, it is necessary to ensure that potentially harmful contaminants do not enter the ground in the area that contributes water to the well. A high degree of protection can be achieved through the application of appropriate land-use controls within the contributing area. However, the contributing areas for most supply wells are not known. This report describes the factors that affect the size and shape of contributing areas to public supply wells and evaluates several methods that may be used to delineate contributing areas of wells in glacial-drift, river-valley aquifers. Analytical, two-dimensional numerical, and three-dimensional numerical models were used to delineate contributing areas. These methods of analysis were compared by applying them to a hypothetical aquifer having the dimensions and geometry of a typical glacial-drift, river-valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial-drift aquifers in New England. The controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and

  19. Facies and facies association of the siliciclastic Brak River and carbonate Gemsbok formations in the Lower Ugab River valley, Namibia, W. Africa

    NASA Astrophysics Data System (ADS)

    Paciullo, F. V. P.; Ribeiro, A.; Trouw, R. A. J.; Passchier, C. W.

    2007-03-01

    The Neoproterozoic Zerrissene Turbidite Complex of central-western Namibia comprises five turbiditic units. From the base to the top they are the Zebrapüts Formation (greywacke and pelite), Brandberg West Formation (marble and pelite), Brak River Formation (greywacke and pelite with dropstones), Gemsbok River Formation (marble and pelite) and Amis River Formation (greywacke and pelites with rare carbonates and quartz-wacke). In the Lower Ugab River valley, five siliciclastic facies were recognised in the Brak River Formation. These are massive and laminated sandstones, classical turbidites (thick- and thin-bedded), mudrock, rare conglomerate and breccia. For the carbonate Gemsbok River Formation four facies were identified including massive non-graded and graded calcarenite, fine grained evenly bedded blue marble and calcareous mudrock. Most of these facies are also present in the other siliciclastic units of the Zerrissene Turbidite Complex as observed in other areas. The vertical facies association of the siliciclastic Brak River Formation is interpreted as representing sheet sand lobe to lobe-fringe palaeoenvironment with the abandonment of siliciclastic deposition at the top of the succession. The vertical facies association of the carbonate Gemsbok Formation is interpreted as the slope apron succession overlain by periplatform facies, suggesting a carbonate slope sedimentation of a prograding depositional shelf margin. If the siliciclastic-carbonate paired succession would represent a lowstand relative sea-level and highstand relative sea-level, respectively, the entire turbidite succession of the Zerrissene Turbidite Complex can be interpreted as three depositional sequences including two paired siliciclastic-carbonate units (Zebrapüts-Brandberg West formations; Brak River-Gemsbok formations) and an incomplete succession without carbonate at the top (Amis River Formation).

  20. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  1. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  2. Influence of logjam-formed hard points on the formation of valley-bottom landforms in an old-growth forest valley, Queets River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Abbe, Tim B.

    2006-01-01

    Field surveys and radiocarbon dating of buried logjams in the floodplain of an old-growth forest river demonstrate the formation of erosion-resistant "hard points" on the floodplain of the Queets River, Washington. These hard points provide refugia for development of old-growth forest patches in frequently disturbed riparian environments dominated by immature forest. Our surveys show that local bed aggradation associated with logjams not only influences channel patterns and profiles but leads to development of a patchwork of elevated landforms that can coalesce to form portions of the valley bottom with substantial (i.e., 1 to >4 m) relief above the bankfull elevation. In addition, logjam-formed hard points promote channel avulsion, anastomosing morphology, and growth of mature patches of floodplain forest that, in turn, provide large logs needed to form more logjam-formed hard points. Hence, our findings substantiate the potential for a feedback mechanism through which hard points sustain complex channel morphology and a patchwork floodplain composed of variable-elevation surfaces. Conversely, such a feedback further implies that major changes in riparian forest characteristics associated with land use can lead to dramatic simplification in channel and floodplain morphology.

  3. Mercury Loads in the South River and Simulation of Mercury Total Maximum Daily Loads (TMDLs) for the South River, South Fork Shenandoah River, and Shenandoah River: Shenandoah Valley, Virginia

    USGS Publications Warehouse

    Eggleston, Jack

    2009-01-01

    Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189

  4. Groundwater resources of the Wood River Valley, Idaho--A groundwater-flow model for resource management

    USGS Publications Warehouse

    Bartolino, James; Vincent, Sean

    2013-01-01

    The U.S. Geological Survey (USGS), in collaboration with the Idaho Department of Water Resources (IDWR), will use the current understanding of the Wood River Valley aquifer system to construct a MODFLOW numerical groundwater-flow model to simulate potential anthropogenic and climatic effects on groundwater and surface-water resources. This model will serve as a tool for water rights administration and water-resource management and planning. The study will be conducted over a 3-year period from late 2012 until model and report completion in 2015.

  5. A new green anole lizard of the "Dactyloa" clade (Squamata: Dactyloidae) from the Magdalena river valley of Colombia .

    PubMed

    Velasco, Julián A; Hurtado-Gómez, Juan Pablo

    2014-01-01

    We describe a new species of Anolis from the Magdalena river valley in Colombia. The new species is morphologically similar to Anolis ibanezi and A. chocorum, but differs in body and dewlap color, and head scalation. We performed an exploratory multivariate analysis based on 15 morphological characteristics of the new species and A chocorum and found that differences between both species are mainly associated with head dimensions. A phylogenetic analysis based on morphological characters suggests that the new species is nested within the "Dactyloa" clade of Anolis. Finally, we discuss phylogenetic relationships and biogeographical affinities based in its distribution.  PMID:24872178

  6. A mid to late Holocene history of floodplain and terrace reworking along the middle Delaware River valley, USA

    NASA Astrophysics Data System (ADS)

    Stinchcomb, Gary E.; Driese, Steven G.; Nordt, Lee C.; Allen, Peter M.

    2012-10-01

    This study tests and refines the traditional floodplain development model for the partly confined middle Delaware River valley, which has shown that the main channel was relatively stable and flanked by a 6000-8000 year old, vertically accreting alluvial terrace. The Holocene alluvial processes and history presented here in 6 fluvial phases were reconstructed using morphostratigraphy, 36 profile descriptions, 332 grain size analyses, and 82 14C ages from soil trenches, auger borings, and archaeological excavations. Fluvial phases I-III largely validate previous reconstructions showing a late Pleistocene (I: > 10.7 ka) braided stream transition into an early Holocene wandering stream with prolonged floodplain stability (II: 10.7-8 ka), followed by early-middle Holocene erosion and then deposition (III: 8-5 ka). The early and middle Holocene changes in alluvial stratigraphy and sedimentology broadly correlate with climatically derived Holocene subdivisions, suggesting climate change partly controls alluvial response along the middle Delaware River valley. This study documents for the first time a middle Holocene episode of channel incision occurring sometime between 6.0 and 5.0 ka. Although the results reconfirm that the majority of alluvial landforms are composed of vertical accretion deposits, we present here new evidence of oblique, abandoned channel, and lateral accretion deposits inset to similar landforms with different formation histories (i.e., polycyclic terrace development), depicting a river valley that has experienced floodplain and terrace reworking. The majority of floodplain and terrace reworking occurs during the late-middle and late Holocene phases IV-VI (5.5-0 ka), following the middle Holocene incision event. These phases demonstrate floodplain reworking processes in the form of channel abandonment, stripping, flood channeling, and convex bank erosion. The subsequent space filled rapidly with evidence of multistory soil formation, and eventually

  7. Garnet-orthopyroxene-plagioclase-quartz barometry: refinement and application to the English River subprovince and the Minnesota River valley

    NASA Astrophysics Data System (ADS)

    Perkins, Dexter; Chipera, Steve J.

    1985-03-01

    colname="c1"> 3.6 1.6 Otter Lake, Quebec 9.3 7.7 Qianxi Country, China 11.0 10.7 The above pressures are, in general, in excellent agreement with previous estimates. The results for the English River subprovince and for the Minnesota River Valley further support the idea that the Archean crust was, in some areas, in excess of 20 km thick.

  8. Effects of ground-water withdrawals on flow in the Sauk River Valley Aquifer and on streamflow in the Cold Spring area, Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    2001-01-01

    The simulated contributing areas for selected watersupply wells in the Cold Spring area generally extend to and possibly beyond the model boundaries to the north and to the southeast. The contributing areas for the Gold'n Plump Poultry Processing Plant supply wells extend: (1) to the Sauk River, (2) to the north to and possibly beyond to the northern model boundary, and (3) to the southeast to and possibly beyond the southeastern model boundary. The primary effects of projected increased ground-water withdrawals of 0.23 cubic feet per second (7.5 percent increase) were to: (1) decrease outflow from the Sauk River Valley aquifer through constant-head boundaries and (2) decrease leakage from the valley unit of the Sauk River Valley aquifer to the streams. No appreciable differences were discernible between the simulated steady-state contributing areas to wells with 1998 pumpage and those with the projected pumpage.

  9. Geophysical Characterization for a CO2 Sequestration Potential in the Ohio River Valley Region

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Jagucki, P.; Meggyesy, D.; Janosy, R.; Sminchak, J.; Ramakrishan, T.; Boyd, A.

    2003-12-01

    A site at the American Electric Power's (AEP) Mountaineer Power Plant, WV in the Ohio River Valley in the Midwestern U.S., a region with the economy heavily dependent on fossil fuels, such as coal, oil, and gas, is being evaluated to determine the potential for geologic sequestration. The project is supported by the U.S. Department of Energy, Battelle, AEP, BP, The Ohio Air Quality Development Office, and Schlumberger. The major objective of the current phase is to characterize the reservoir at the plant site. Future decisions with regard to CO2 injection will be subject to the evaluated reservoir properties. The effort includes acquisition of 2-dimensional seismic data, assessment of regional geology, drilling to PreCambrian rocks and formation analysis and testing in a 2,800 meters deep well, reservoir simulations, risk assessment, and stakeholder outreach. The test well reached total depth in summer 2003. Wireline logging and reservoir testing was performed for each section of the borehole, including extensive tests in the lowermost 885 meters to estimate formation properties and pressure gradients. The logs included gamma-ray, neutron and density, and array resistivity, magnetic resonance relaxation for permeability information, elemental composition via capture spectroscopy, and resistivity based formation image. The seismic survey was conducted over approximately 11 miles along 2 lines: one along strike and one along dip. The results of the geophysical surveys combined with the field observations provide an integrated assessment of the major injection parameters for the two main injection reservoirs of interest, the Rose Run Formation and the Lower Maryville formation. In addition, the properties of the potential caprock formations overlying the candidate injection zones were also determined. The results of this characterization will be presented with emphasis on geophysical testing and seismic survey. These results are also being used to conduct reservoir

  10. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Sexton, Natalie; Donovan, Ryan

    2009-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. The Rappahannock River Valley National Wildlife Refuge (refuge) is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan for the refuge must contain an analysis of expected effects associated with current and proposed refuge management strategies. The purpose of this study was to assess the regional economic implications associated with draft Comprehensive Conservation Plan management strategies. Special interest groups and local residents often criticize a change in refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on economic impacts may show that these fears are overstated. Quite often, the extent of economic benefits a refuge provides to a local community is not fully recognized, yet at the same time the effects of negative changes is overstated. Spending associated with refuge recreational activities, such as wildlife viewing and hunting, can generate considerable tourist activity for surrounding communities. Additionally, refuge personnel typically spend considerable amounts of money purchasing supplies in local stores, repairing equipment and purchasing fuel at the local service stations, and reside and spend their salaries in the local community. For refuge Comprehensive Conservation Plan planning, a regional economic assessment provides a means of estimating how current management (no action alternative) and proposed management activities (alternatives) could affect the local economy. This type of analysis provides two critical pieces of

  11. Source attribution, physicochemical properties and spatial distribution of wet deposited mercury to the Ohio River valley

    NASA Astrophysics Data System (ADS)

    White, Emily Mae

    Mercury (Hg) is a bioaccumulative neurotoxin that is emitted from anthropogenic sources through fossil fuel combustion. The spatial scale of atmospheric transport prior to deposition is dependent on the chemical and physical form of Hg emissions, and has yet to be quantitatively defined. A five-year comprehensive Hg monitoring and source apportionment study was conducted in Steubenville, Ohio to investigate atmospheric Hg deposition to the highly industrialized Ohio River Valley region. Long-term event-precipitation measurements revealed a significant 30% to three-fold enrichment of Hg concentrations and total Hg deposition flux to the Steubenville site over other Great Lakes regional sites. Multivariate receptor models attributed ˜70% of Hg wet deposition to local coal combustion sources. While local stagnant atmospheric conditions led to moderately high volume-weighted mean Hg concentrations and the majority of Hg wet deposition flux, regional transport from the Chicago/Gary and Detroit/Windsor urban areas also led to elevated precipitation Hg concentrations, but did not contribute significantly to the overall Hg deposition. The degree of local source influence was established during a summertime field intensive study in which a local scale network of concurrently collected rain samples revealed that 42% of Hg wet deposition measured less than one km from the base of coal fired utilities could be attributed to the adjacent source, corresponding to 170% Hg concentration enhancement over regionally representative precipitation collected concurrently. In addition, 69+/-37% of the Hg collected in rain was in a soluble form, entering the precipitation as reactive gas phase or fine particle associated Hg. The Hg scavenging coefficient (rate of concentration reduction throughout a single precipitation event) was particularly low when compared to other trace elements. Furthermore, when compared to an upwind but non-locally source impacted site, the scavenging

  12. Using GPS to Quantify Three Dimensional Storage and Aquifer Deformation in the Virgin River Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Warner, S. M.; Burbey, T. J.; Blewitt, G.; Bell, J. W.; Hill, E.; Johnson, M.

    2003-12-01

    Quantifying aquifer storage is important in order to characterize aquifer response and optimize aquifer pumping in large well fields located in thick sedimentary basins like those in the arid southwestern United States. The majority of this water is released from storage because of aquifer-system compaction. Historically this compaction was assumed to occur only in the vertical direction. However, aquifer mechanics and related field investigations indicate that strain is three-dimensional and the amount of water released from storage by horizontal strain can be significant. The development of empirically-based analytical techniques that allow for accurate quantification of storage and an assessment of the strain components at various radii from the pumping well are needed. From May through August, 2003, field scale aquifer testing and land subsidence monitoring were performed in the Virgin River Valley at Mesquite, NV. The goals were to determine the usefulness of storage quantification methods at the field scale and developing an effective inexpensive method to monitor three-dimensional deformation patterns due to removal of water from storage. The ground movement was monitored using choke ring antennas and GPS receivers at 10 different locations at various distances from the pumping well for 100 days. The well was pumped for approximately 12 hours each day at a rate of about 18000 m3/d. Compared to pumping at a steady rate, pulsating pumping (i.e. on and off cycles) has been shown to concentrate vertical deformation closer to the pumping well. The effect of pulsed pumping on horizontal deformation is previously not well documented but can now be investigated. The GPS data and pumping data collected from the aquifer test will be used to quantify aquifer strain in three dimensions at various distances from the well and stages during pumping. These strain patterns will provide information about possible faults in the area that affect groundwater flow, provide

  13. Geographic information science: Contribution to understanding salt and sodium affected soils in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Ndiaye, Ramatoulaye

    The Senegal River valley and delta (SRVD) are affected by long term climate variability. Indicators of these climatic shifts include a rainfall deficit, warmer temperatures, sea level rise, floods, and drought. These shifts have led to environmental degradation, water deficits, and profound effects on human life and activities in the area. Geographic Information Science (GIScience), including satellite-based remote sensing methods offer several advantages over conventional ground-based methods used to map and monitor salt-affected soil (SAS) features. This study was designed to assess the accuracy of information on soil salinization extracted from Landsat satellite imagery. Would available imagery and GIScience data analysis enable an ability to discriminate natural soil salinization from soil sodication and provide an ability to characterize the SAS trend and pattern over 30 years? A set of Landsat MSS (June 1973 and September 1979), Landsat TM (November 1987, April 1994 and November 1999) and ETM+ (May 2001 and March 2003) images have been used to map and monitor salt impacted soil distribution. Supervised classification, unsupervised classification and post-classification change detection methods were used. Supervised classifications of May 2001 and March 2003 images were made in conjunction field data characterizing soil surface chemical characteristics that included exchange sodium percentage (ESP), cation exchange capacity (CEC) and the electrical conductivity (EC). With this supervised information extraction method, the distribution of three different types of SAS (saline, saline-sodic, and sodic) was mapped with an accuracy of 91.07% for 2001 image and 73.21% for 2003 image. Change detection results confirmed a decreasing trend in non-saline and saline soil and an increase in saline-sodic and sodic soil. All seven Landsat images were subjected to the unsupervised classification method which resulted in maps that separate SAS according to their degree of

  14. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden

    NASA Astrophysics Data System (ADS)

    Zhu, Zhuo-Yi; Wu, Ying; Liu, Su-Mei; Wenger, Fred; Hu, Jun; Zhang, Jing; Zhang, Rui-Feng

    2016-02-01

    In the face of ongoing global warming and glacier retreat, the composition and flux of organic matter in glacier-fjord systems are key variables for updating the carbon cycle and budget, whereas the role of Arctic valley glaciers seems unimportant when compared with the huge Greenland Ice Sheet. Our field observations of the glacier-fed Bayelva River, Svalbard, and the adjacent Kongsfjorden allowed us to determine the compositions of particulate organic matter from glacier to fjord and also to estimate the flux of organic carbon, both for the river and for Svalbard in general. Particulate organic carbon (POC) and dissolved organic carbon (DOC) in the Bayelva River averaged 56 and 73 µM, respectively, in August, 2012. Amino acids (AAs) and phytoplankton carbon accounted for ˜ 10 % of the bulk POC in the Bayelva River, while AAs represented > 90 % of particulate nitrogen (PN) in fjord surface water, suggesting the strong in situ assimilation of organic matter. Bacteria accounted for 13 and 19 % of the POC in the Bayelva River and the Kongsfjorden, respectively, while values for PN were much higher (i.e., 36 % in Kongsfjorden). The total discharge from the Bayelva River in 2012 was 29 × 106 m3. Furthermore, we calculated the annual POC, DOC, and PN fluxes for the river as 20 ± 1.6 tons, 25 ± 5.6 tons, and 4.7 ± 0.75 tons, respectively. Using the POC content and DOC concentration data, we then estimated the annual POC and DOC fluxes for Svalbard glaciers. Although the estimated POC (0.056 ± 0.02 × 106 tons year-1) and DOC (0.02 ± 0.01 × 106 tons year-1) fluxes of Svalbard glaciers are small in amount, its discharge-weighted flux of DOC was over twice higher than other pan-Arctic glacier systems, suggesting its important role as a terrestrial DOC source.

  15. Shallow subsurface geology of part of the Savannah River alluvial valley in the upper Coastal Plain of Georgia and South Carolina

    USGS Publications Warehouse

    Leeth, D.C.; Nagle, D.D.

    1996-01-01

    The depth to which Coastal Plain rivers incise underlying formations is an important control on local and regional hydrologic flow systems. In order to clarify these stream/aquifer relations, a better understanding of the shallow subsurface geology of the Savannah River was necessary. To accomplish this, three drillhole transects were completed across a part of the Savannah River alluvial valley in September 1993, and five geologic sections were constructed from the data. The alluvium is coarser, more angular, and more poorly sorted than the underlying formations, and lithologic differences between the strata are readily apparent, especially in areas where the underlying strata are of marine origin. Inspection of the transects indicates an asymmetry to both the alluvial terrace complex and the underlying bedrock strath. The alluvium thins in a coastward direction; and similarly, bulk-grain size diminishes in a downstream direction. This phenomenon has remained constant over time and is most likely a function of the change in slope which occurs when the river traverses the Fall Line north of the study area. The maximum thickness of the alluvial valley fill is 50 ft. The elevation of the unconformity between the alluvium and the underlying formation is far below the lowest elevation of the modern-day thalweg, indicating that the alluvial system has aggraded to form the modern-day Savannah River Valley. Formerly, the Savannah River was located immediately adjacent to and east of the modern floodplain when the river valley was formed by a cyclic pattern of infilling and subsequent entrenchment that gave rise to an irregular bedrock surface beneath the depositional terrace system. After this depositional period, the river migrated to the southwest and began a period of downcutting that ended with the formation of the unconformity (erosional terrace) that lies some 45 ft. beneath the modern-day river. The protracted southwestward migration of the river system is perhaps

  16. High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province

    USGS Publications Warehouse

    Schmitz, M.D.; Bowring, S.A.; Southwick, D.L.; Boerboom, Terrence; Wirth, K.R.

    2006-01-01

    High-precision U-Pb ages have been obtained for high-grade gneisses, late-kinematic to postkinematic granitic plutons, and a crosscutting mafic dike of the Archean Minnesota River Valley tectonic subprovince, at the southern ramparts of the Superior craton of North America. The antiquity of the Minnesota River Valley terranes is confirmed by a high-precision U-Pb zircon age of 3422 ?? 2 Ma for a tonalitic phase of the Morton Gneiss. Voluminous, late-kinematic monzogranites of the Benson (Ortonville granite) and Morton (Sacred Heart granite) blocks yield identical crystallization ages of 2603 ?? 1 Ma, illustrating the synchrony and rapidity of deep crustal melting and plutonism throughout the Minnesota River Valley terranes. Postkinematic, 2591 ?? 2 Ma syenogranites and aplitic dikes in both blocks effectively constrain the final penetrative deformation of the Minnesota River Valley subprovince. Monazite growth from 2609 to 2595 Ma in granulitic paragneisses of the Benson and Montevideo blocks is interpreted to record prograde to peak granulite facies metamorphic conditions associated with crustal thickening and magmatism. Neoarchean metamorphism and plutonism are interpreted to record the timing of collisional accretion and terminal suturing of the Mesoarchean continental Minnesota River Valley terranes to the southern margin of the Superior Province, along the western Great Lakes tectonic zone. Subsequent Paleoproterozoic rifting of this margin is recorded by voluminous basaltic dike intrusion, expressed in the Minnesota River Valley by major WNW-trending tholeiitic diabase dikes dated at 2067 ?? 1 Ma, only slightly younger than the structurally and geochemically similar 2077 ?? 4 Ma Fort Frances (Kenora-Kabetogama) dike swarm of northern Minnesota and adjoining Canada. ?? 2006 Geological Society of America.

  17. Particulate organic matter composition and organic carbon flux in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden

    NASA Astrophysics Data System (ADS)

    Zhu, Z.-Y.; Wu, Y.; Liu, S.-M.; Wenger, F.; Hu, J.; Zhang, J.; Zhang, R.-F.

    2015-09-01

    In the face of ongoing global warming and glacier retreat, the composition and flux of organic matter in glacier-fjord systems are key variables for updating the carbon cycle and budget, whereas the role of Arctic valley glaciers seems unimportant when compared with the huge Greenland Ice Sheet. Our field observations of the glacier-fed Bayelva River, Svalbard, and the adjacent Kongsfjorden allowed us to determine the compositions of particulate organic matter from glacier to fjord and also to estimate the flux of organic carbon, both for the river and for Svalbard in general. Particulate organic carbon (POC) and dissolved organic carbon (DOC) in the Bayelva River averaged 56 and 73 μM, respectively, in August 2012. Amino acids (AAs) and phytoplankton pigments accounted for ~ 10 % of the particulate organic matter (POM) in the Bayelva River, while AAs represented > 90 % of particulate nitrogen in fjord surface water, suggesting the strong in situ assimilation of organic matter. Bacteria accounts for 13 and 19 % of the POC in the Bayelva River and the Kongsfjorden, respectively, while values for particulate nitrogen (PN) are much higher (i.e., 36 % in Kongsfjorden). The total discharge from the Bayelva River in 2012 was 29 × 106 m3. Furthermore, we calculated the annual POC, DOC, and PN fluxes for the river as 20 ± 1.6, 25 ± 5.6, and 4.7 ± 0.75 t, respectively. Using the POC content and DOC concentration data, we then estimated the annual POC and DOC fluxes for Svalbard glaciers. Although the estimated POC (0.056 ± 0.02 × 106 t yr-1) and DOC (0.02 ± 0.01 × 106 t yr-1) fluxes of Svalbard glaciers are small compared with those of the Greenland Ice Sheet, the area-weighted POC flux of Svalbard glaciers is twice that of the Greenland Ice Sheet, while the flux of DOC can be 4 to 7 times higher. Therefore, we propose that valley glaciers are efficient high-latitude sources of organic carbon.

  18. 77 FR 73976 - Nez Perce-Clearwater National Forests; Idaho; Crooked River Valley Rehabilitation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... from the road surface, and often floods during spring runoff. Crooked River Road 233 prism is within... The current Road 233 prism is within the bankfull floodplain of Crooked River for much of its...

  19. Evidence for synsedimentary coseismic hydraulic fracturing in the Middle Devonian Cedar Valley Group, Plum River Fault Zone of Iowa

    SciTech Connect

    Ludvigson, G.A.; Gonzalez, L.A.; Faulds, J.E. )

    1993-03-01

    Correspondence between the Plum River Fault Zone and stratigraphic asymmetry the Middle Devonian Wapsipinicon and Cedar Valley groups in eastern Iowa have long been considered to record probable paleotectonism. Mesoscopic evidence for Devonian paleotectonism is exposed in strata of the Rapid Mbr of the Little Cedar Fm (Givetian) at the Silver Creek Graben, a 150 m-wide fault block within the Plum River Fault zone in southern Jackson county, Iowa. Little Cedar limestones are cut by multiple generations of brittle microstructures including compound sediment/spar-filled veins, tectonic stylolites that cut bedding at high angles, and late calcite veins coupled with stylolites. Internal sediments filling compound veins are preserved as unfossiliferous early gray and late olive-colored inclusion-rich microspars, both with mottled luminescence. Inclusions in the microspars consist of detrital illite and diagenetic microdolomite. Spars enclosing the internal sediments have a constructional oscillatory luminescent-nonluminescent zonation. Internal sediments in compound veins at Silver Creek Graben apparently were drawn downward through 15--30 m of overlying Cedar Valley carbonates to fill dilational fractures opened by coseismic hydraulic fracturing during the late Givetian erosional episode that followed deposition of the Coralville Fm. Preliminary sampling of cements and gray microspars from compound veins have [delta][sup 18]O values ranging from [minus]6 to [minus]5 [per thousand] and [delta][sup 13]C values ranging from [minus]6.5 to [minus]3 [per thousand]. These components are interpreted to record diagenesis in a meteoric phreatic environment.

  20. Holocene ethnobotanical and paleoecological record of human impact on vegetation in the Little Tennessee River Valley, Tennessee

    NASA Astrophysics Data System (ADS)

    Delcourt, Paul A.; Delcourt, Hazel R.; Cridlebaugh, Patricia A.; Chapman, Jefferson

    1986-05-01

    Human occupation and utilization of plant resources have affected vegetation in the lower Little Tennessee River Valley of East Tennessee for 10,000 yr. Changes in Indian cultures and land use are documented by radiocarbon chronologies, lithic artifacts, ceramics, settlement patterns, and ethnobotanical remains from 25 stratified archaeological sites within the Holocene alluvial terrace. The ethnobotanical record consists of 31,500 fragments (13.7 kg) of wood charcoal identified to species and 7.7 kg of carbonized fruits, seeds, nutshells, and cultigens from 956 features. Pollen and plant macrofossils from small ponds both in the uplands and on lower stream terraces record local vegetational changes through the last 1500 to 3000 yr. Human impact increased after cultigens, including squash and gourd, were introduced ca. 4000 yr B.P. during the Archaic cultural period. Forest clearance and cultivation disturbed vegetation on both the floodplain and lower terraces after 2800 yr B.P., during the Woodland period. Permanent Indian settlements and maize and bean agriculture extended to higher terraces 1.5 km from the floodplain by the Mississippian period (1000 to 300 yr B.P.). After 300 yr B.P., extensive land clearance and cultivation by Historic Overhill Cherokee and Euro-Americans spread into the uplands beyond the river valley.

  1. Morphogenetic evolution of the Têt river valley (eastern Pyrenees) using 10Be/21Ne cosmogenic burial dating

    NASA Astrophysics Data System (ADS)

    Sartégou, Amandine; Blard, Pierre-Henri; Braucher, Régis; Bourlès, Didier L.; Calvet, Marc; Zimmermann, Laurent; Tibari, Bouchaïb; Hez, Gabriel; Gunnell, Yanni; Aumaitre, Georges; Keddadouche, Karim

    2016-04-01

    The rates and chronologies of valley incision are closely modulated by the tectonic uplift of active mountain ranges and were controlled by repeated climate changes during the Quaternary. The continental collision between the Iberian and Eurasian plates induced a double vergence orogen, the Pyrenees, which has been considered as a mature mountain range in spite of significant seismicity (e.g. Chevrot et al., 2011) and evidence of neotectonics (e.g. Goula et al., 1999). Nevertheless, recent studies indicate that the range may have never reached a steady state (Ford et al., in press). One option for resolving this controversy is to quantify the incision rates since the Miocene by reconstructing the vertical movement of geometric markers such as fluvial terraces. However, the few available ages from the Pyrenean terrace systems do not exceed the middle Pleistocene. Thus, to enlarge the time span of this dataset, we studied alluvium-filled horizontal epiphreatic passages in limestone karstic networks. Such landforms are used as substitutes of fluvial terraces because they represent former valley floors (e.g. Palmer, 2007; Audra et al., 2013). They record the transient position of former local base levels during the process of valley deepening. The Têt river valley (southern Pyrenees) was studied near the Villefranche-de-Conflent limestone gorge where 8 cave levels have been recognized over a vertical height of 600 meters. Given that 26Al/10Be cosmogenic burial dating in this setting was limited to the last ~5 Ma (Calvet et al., 2015), here we used the cosmogenic 10Be/21Ne method in order to restore a more complete chronology of valley incision (e.g. Balco & Shuster, 2009; McPhilipps et al., 2016). Burial age results for alluvial deposits from 12 caves document incision rates since the Langhian (~14 Ma). Preliminary results indicate a history of valley deepening in successive stages. The data show a regular incision rate of 70-80 mm/a from the Langhian to the Messinian

  2. Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho

    USGS Publications Warehouse

    Bassick, M.D.; Jones, M.L.

    1992-01-01

    The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224

  3. Pre-and post-Missoula flood geomorphology of the Pre-Holocene ancestral Columbia River Valley in the Portland forearc basin, Oregon and Washington, USA

    NASA Astrophysics Data System (ADS)

    Peterson, Curt D.; Minor, Rick; Peterson, Gary L.; Gates, Edward B.

    2011-06-01

    Geomorphic landscape development in the pre-Holocene ancestral Columbia River Valley (1-5 km width) in the Portland forearc basin (~ 50 km length) is established from depositional sequences, which pre-date and post-date the glacial Lake Missoula floods. The sequences are observed from selected borehole logs (150 in number) and intact terrace soil profiles (56 in number) in backhoe trenches. Four sequences are widespread, including (1) a vertically aggraded Pleistocene alluvial plain, (2) a steep sided valley that is incised (125-150 m) into the Pleistocene gravel plain, (3) Missoula flood terraces (19-13 ka) abandoned on the sides of the ancestral valley, and (4) Holocene flooding surfaces (11-8 ka) buried at 70-30 m depth in the axial Columbia River Valley. Weathering rims and cementation are used for relative dating of incised Pleistocene gravel units. Soil development on the abandoned Missoula flood terraces is directly related to terrace deposit lithology, including thin Bw horizons in gravel, irregular podzols in sand, and multiple Bw horizons in thicker loess-capping layers. Radiocarbon dating of sand and mud alluvium in the submerged axial valley ties Holocene flooding surfaces to a local sea level curve and establishes Holocene sedimentation rates of 1.5 cm year- 1 during 11-9 ka and 0.3 cm year- 1 during 9-0 ka. The sequences of Pleistocene gravel aggradation, river valley incision, cataclysmic Missoula flooding, and Holocene submergence yield complex geomorphic landscapes in the ancestral lower Columbia River Valley.

  4. Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho: an initial assessment

    USGS Publications Warehouse

    Burnham, W.L.; Harder, A.H.; Dion, N.P.

    1969-01-01

    Five areas within the Bear River drainage of southeastern Idaho offer potential for further development of ground water--the valley north of Bear Lake, north of Soda Springs, Gem Valley, Cache Valley in Idaho, and Malad Valley in Idaho. Saturated deposits north of Bear Lake are too fine-textured to yield large quantities to wells; the areas north of Soda Springs and in Gem Valley would provide large yields, but at the expense of current beneficial discharge. Northern Cache Valley has small areas of high yield in the northwestern part, but total annual yield would be only about 20,000 acre-feet and seasonal water-level fluctuation would be large. Malad Valley contains a large aquifer system within valley fill underlying about 75 square miles. The aquifer system is several hundred feet thick, and contains about 1.8 million acre-feet of water in storage in the top 300 feet of saturated thickness. Average annual recharge to the valley-fill aquifer is about 64,000 acre-feet. Lowering of the water level 100 feet uniformly over the valley area would theoretically yield about 300,000 acre-feet from storage and salvage a present-day large nonbeneficial discharge. Sufficient water to irrigate all lands in a planned project near Samaria could be pumped with a maximum 200-foot pumping lift and then delivered by gravity flow. Such pumping would cause water-level lowering of a few feet to a few tens of feet in present artesian areas, and would cause many present-day artesian wells to cease flowing at land surface. Chemical-quality problems in Malad Valley seem not to be sufficient to prohibit development and use of the ground-water resource.

  5. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda

    NASA Astrophysics Data System (ADS)

    Green, William J.; Canfield, Donald E.

    1984-12-01

    The Onyx River (Wright Valley, Antarctica) is a dilute meltwater stream originating in the vicinity of the Wright Lower Glacier. It acquires a significant fraction of its salt content when glacial meltwaters contact Wright Valley soils at Lake Brownworth and the concentrations of all ions increase with distance along the 28-km channel down to Lake Vanda. Average millimolar concentrations of major ions at the Vanda weir during the 1980-1981 flow season were: Ca = 0.119; Mg = 0.061; Na = 0.212; K = 0.033; Q = 0.212; SO4 = 0.045; HCO3 = 0.295; and SiO2 = 0.049. Based on the flow measurements of Chinn (1982), this amounts to an annual flux (in moles) to Lake Vanda of: Ca = 0.238 × 10 6; Mg = 0.122 × 10 6; Na = 0.424 × 10 6; K = 0.066 × 10 6; Cl = 0.424 × 10 6; SO4 = 0.09 × 10 6; HCO3 = 0.59 × 10 6; SiO2 = 0.098 × 10 6. In spite of the large salt input from this source, equilibrium evaporation of Onyx River water would have resulted in early calcite deposition and in the formation of a Na-Mg-Cl-HCO 3 brine rather than in the Ca-Na-Mg-Cl waters observed in Lake Vanda. The river alone could not have produced a brine having the qualitative geochemical features of the lower saline waters of Lake Vanda. It is proposed that the Vanda brine is instead the result of past ( > 1200 yrs BP) mixing events between Onyx River inflows and calcium chloride-rich deep groundwaters derived from the Don Juan Basin. The mixing model presented here shows that the Onyx River is the major contributor of K, HCO 3, SO 4, and (possibly) Mg found in the lake and a significant contributor (approximately one half) of the observed Na. Calcium and Cl, on the other hand, came largely from deep groundwater sources in the Don Juan Basin. All concentrations except Mg are well predicted by this model. The chemical composition of the geologically recent upper lake is explained in terms of ionic diffusion from the pre-formed brine, coupled with Onyx River inflow. Ionic ratios calculated from this

  6. Hydrology and model of North Fork Solomon River Valley, Kirwin Dam to Waconda Lake, north-central Kansas

    USGS Publications Warehouse

    Jorgensen, Donald G.; Stullken, Lloyd E.

    1981-01-01

    The alluvial valley of the North Fork Solomon River is an important agricultural area. Reservoir releases diverted below Kirwin Dam are the principal source of irrigation water. During the 1970'S, severe water shortages occurred in Kirwin Reservoir and other nearby reservoirs as a result of an extended drought. Some evidence indicates that surface-water shortages may have been the result of a change in the rainfall-runoff relationship. Examination of the rainfall-runoff relationship shows no apparent trend from 1951 to 1968, but annual records from 1969 to 1976 indicate that deficient rainfall occurred during 6 of the 8 years. Ground water from the alluvial aquifer underlying the river valley also is used extensively for irrigation. Utilization of ground water for irrigation greatly increased from about 200 acre-feet in 1955 to about 12,300 acre-feet in 1976. Part of the surface water diverted for irrigation has percolated downward into the aquifer raising the ground-water level. Ground-water storage in the aquifer increased from 230,000 acre-feet in 1946 to 275,000 acre-feet in 1976-77. A digital model was used to simulate the steady-state conditions in the aquifer prior to closure of Kirwin Dam. Model results indicated that precipitation was the major source of recharge to the aquifer. The effective recharge, or gain from precipitation minus evapotranspiration, was about 11,700 acre-feet per year. The major element of discharge from the aquifer was leakage to the river. The simulated net leakage (leakage to the river minus leakage from the river) was about 11,500 acre-feet per year. The simulated value is consistent with the estimated gain in base flow of the river within the area modeled. Measurements of seepage used to determine gain and loss to the stream were made twice during 1976. Based on these measurements and on base-flow periods identified from hydrographs, it was estimated that the ground-water discharge to the stream has increased about 4,000 acre

  7. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  8. Crustal anisotropy in the Archean Minnesota River Valley Subprovince and its significance

    NASA Astrophysics Data System (ADS)

    Gebelin, A.; Ferre, E. C.; Teyssier, C.

    2007-12-01

    The origin and evolution of the American continental lithosphere is a key question addressed by EarthScope. The Superior Province formed as an amalgamation of Archean/ Proterozoic terranes that subsequently acted as a stabilizing nucleus. This province is characterized by a strong seismic anisotropy (SWS = 1.3 s) of unknown origin. As suggested for the Archean Kaapvaal Craton (South Africa), this could be attributed (1) to current asthenospheric flow, or (2) to fossil lithospheric anisotropy, or (3) to the role of lithospheric keels on modern asthenospheric flow. The first hypothesis is not favored because SWS data for the Superior Province do not fit global mantle flow models. The second hypothesis would be compatible with obliquity between lithospheric mantle and crustal seismic anisotropies, possibly due to oblique docking. The third hypothesis would require asthenospheric flow to be controlled by lithospheric block geometry. The origin of seismic anisotropy and its spatial variations need to be determined to test these hypotheses. The deployment of USArray in the Superior Province in FY10, along with the prospect of deployment of a Flexible Array and the GeoFrame Superior focus area should provide a wealth of seismic data. Yet, the contribution of the Archean-early Proterozoic continental crust to seismic anisotropy is unknown. This study focusses on the Minnesota River Valley (MRV) Subprovince, part of the Superior Province. The MRV Subprovince consists of four juxtaposed blocks (Benson, Montevideo, Morton and Jeffers) of amphibolite to granulite grade migmatites, tonalites, granodiorites, diorites and pelitic rocks interlayered into each other. These blocks are separated by EW-dipping shear zones broadly parallel to SWS observations. In other parts of the world, the crustal seismic anisotropy is generally considered to be modest (SWS = 0.1-0.2 s), although experiments specifically designed to constrain it are scarce. The MRV represents a 200 km-wide, tilted

  9. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  10. 77 FR 41048 - Safety Zone; Hudson Valley Triathlon, Ulster Landing, Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ...) 366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal... Federal Register (76 FR 139) for this event. The Coast Guard is issuing this final rule without prior... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Hudson Valley Triathlon, Ulster...

  11. Hydrogeologic for the Saco River valley glacial aquifer from Bartlett, New Hampshire to Fryeburg, Maine; October 1983 through January 1986

    USGS Publications Warehouse

    Johnson, C.D.; Tepper, D.H.; Morrissey, D.J.

    1987-01-01

    Hydrogeologic data was collected for a study of the Saco River valley glacial aquifer. The study area extends along the Saco River from Bartlett, New Hampshire to Fryeburg, Maine. The study was done in cooperation with the Maine Geological Survey (Department of Conservation), the New Hampshire Water Supply and Pollution Control Commission, the New Hampshire Water Resources Board, and the Town of Conway, New Hampshire. The data include information on 54 well-inventory sites, 69 exploration-hole logs , analyses of grain-size distribution in 130 samples of glacial sediments, monthly water-table measurements in 100 wells, and continuous water-table measurements in 7 wells. Discharge data are presented from 6 stream-gaging stations operated for this study during the 1984 and 1985 water years. Data from 50 sets of seepage runs and 15 miscellaneous discharge measurements conducted on the mainstream of the Saco River and on 7 tributary streams during the 1984 and 1985 water years are also presented. Water quality analyses of groundwater samples from 92 sites and surface water samples from 12 sites are presented. Field determinations include pH, temperature, and specific conductance. Laboratory determinations include nutrients, common inorganic anions and cations, selected volatile organic compounds, and detergents. Maps show the locations of data-collection sites. (USGS)

  12. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  13. Stages of the development of alluvial soils in the Bikin River valley (the Amur River basin) in the Middle and Late Holocene

    NASA Astrophysics Data System (ADS)

    Nazarkina, A. V.; Belyanin, P. S.

    2014-05-01

    The evolution of alluvial soils in the Bikin River basin in the Middle and the Late Holocene is discussed. On the basis of biostratigraphic data, four pollen zones have been identified in the soils: Pinus koraiensis- Picea, Pinus koraiensis- Quercus- Sphagnum, Betula- Alnus- Alnaster, and Quercus. A set of soil characteristics (texture, acid-base properties, and the organic matter content and group composition) have also been determined. These data allow us to distinguish between four stages of alluvial soil formation in the Bikin River basin. They characterize humus-forming conditions in the Middle and the Late Holocene. Reconstruction of ancient vegetation conditions makes it possible to conclude that climatic fluctuations were synchronous with changes in the soil characteristics. During the Holocene climatic optimum, humus was formed in a slightly acid medium, and humic acids predominated. In cold periods with increased precipitation, fulvic acids predominated in the composition of humus, and the portion of insoluble residue was high because of the more acid medium. The stages of alluvial pedogenesis in the Bikin River valley follow the sedimentation model of soil evolution. Alluvial gray humus soils evolved from typical gray humus soils under meadow communities during warm periods to gleyic and gleyed soils under birch shrubs and alder groves in colder and wetter periods.

  14. The Politics of Place: Official, Intermediate and Community Discourses in Depopulated Rural Areas of Central Spain. The Case of the Riaza River Valley (Segovia, Spain)

    ERIC Educational Resources Information Center

    Paniagua, Angel

    2009-01-01

    This paper provides theoretical and methodological arguments to study the politics of space in small marginal and depopulated areas of Spain. The case for research is the Riaza river valley in the province of Segovia. Usually the analysis of rural space (and the geographical space in general) provides opposing presentations: vertical, between…

  15. Nitrogen, sulfate, chloride, and manganese in ground water in the alluvial deposits of the South Platte River Valley near Greeley, Weld County, Colorado

    USGS Publications Warehouse

    Gaggiani, N.G.

    1984-01-01

    Ground water from the valley-fill deposits of the South Platte River Valley and its tributaries is used extensively for agriculture in the study area, about 10 miles east of Greeley and about 50 miles northeast of Denver, Colorado. The valley-fill deposits, which consist of alluvial and terrace deposits, are in a valley system eroded in Laramie Formation bedrock. Water samples collected from 53 wells during 1974 and 1980 were analyzed for nitrite plus nitrate nitrogen, sulfate, chloride, and manganese. Median concentrations changes in these constituents from 1974 to 1980 are as follows: 6.0 to 8.8 milligrams per liter for nitrite plus nitrate nitrogen, 850 to 900 milligrams per liter for sulfate, and 94 to 120 milligrams per liter for chloride. Manganese concentrations were greater than 1,000 micrograms per liter in both 1974 and 1980 in a small area at the mouth of Box Elder Creek. (USGS)

  16. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    USGS Publications Warehouse

    Ericksen, G.E.; Hosterman, J.W.; St., Amand, P.

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae

  17. Preconstruction and postconstruction ground-water levels, Lock and Dam 4, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.; Reed, J.E.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 4 at realined mile 154 (kilometer 250) above the mouth of the Red River call for a pool elevation of 115 feet (35 meters) and will cause an average increase in river stage ranging from 24 to 4.5 feet (7 to 1.4 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more between the Red River and Bayou Pierre from the dam to Coushatta , and below Campti, east of the river. The potentiometric surface may be at or near land surface in low areas between the Red River and Bayou Pierre, and above land surface locally upstream from the dam. The magnitude of ground-water-level fluctuations near the river will be reduced to less than half the present range.

  18. Prevalence of dust-mite allergens in homes and workplaces of the Upper Connecticut River Valley of New England.

    PubMed

    Friedman, F M; Friedman, H M; O'Connor, G T

    1992-01-01

    This study sought to determine the relative abundance and seasonal variation of Dermatophagoides farinae and D pteronyssinus allergens in homes and workplaces of the Upper Connecticut River Valley of New England. Dust samples were obtained from 15 homes and 23 carpeted workplaces in public buildings. Half the samples were collected in June 1990 and half in September 1990. D pteronyssinus and D farinae content of the samples were determined by enzyme-linked immunosorbent assay (ELISA). This observational study of homes and workplaces found a predominance of D pteronyssinus allergens in both homes and workplaces; a marked seasonal increase in total Dermatophagoides group I allergens from June to September; and only very low levels of allergens in workplaces. Workplaces seem an unlikely source of significant dust-mite allergen exposure, and workplace exposure does not negate efforts at home dust control by affected patients in this region. PMID:1483576

  19. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico

    PubMed Central

    Piperno, Dolores R.; Ranere, Anthony J.; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-01-01

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands. PMID:19307570

  20. Landscape trajectories during the Lateglacial and the Holocene in the Loir River Valley (France) : the contribution of Geoarchaeology

    NASA Astrophysics Data System (ADS)

    Piana, Juliene

    2015-04-01

    A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).

  1. Distribution of 137Cs in soil along Ta-han River Valley in Tau-Yuan County in Taiwan.

    PubMed

    Nabyvanets, Y B; Gesell, T F; Jen, M H; Chang, W P

    2001-01-01

    Environmental 137Cs contamination was suspected from accidents at spent fuel storage pits of a research reactor site in the Ta-han River valley in Taiwan. In order to further characterize this contamination, soil samples were collected and measured by a gamma-spectroscopy system in 1999. It was found that 137Cs contamination is distributed up to 4 km from the reactor in an area covered mostly by rice and plant fields. 137Cs concentration in the topsoil ranged up to about 1000 Bq kg-1, as compared with soil beyond the contaminated area, which does not exceed 15 Bq kg-1. Spatial distribution of 137Cs was characterized by strong non-uniformity, which complicated our understanding of the distribution pathway of the radionuclides. The highest concentrations of 137Cs, up to more than 1000 Bq kg-1, were found within a few rice fields. The relative location of these rice fields and the water supplies from local streams suggested that the 137Cs was distributed along water pathways in the valley. PMID:11381945

  2. [Depth of edge influence on agriculture-forestry boundary in arid valley of upper reaches of Minjiang River, China].

    PubMed

    Li, Liguang; He, Xingyuan; Li, Xiuzhen; Wen, Qingchun; Zhao, Yonghua; Hu, Zhibin; Chang, Yu; Zhu, Yaping

    2004-10-01

    By using moving split-window techniques (MSWT), this study estimated how far the edge effects penetrated the forest and agricultural fields in the arid valley of upper reaches of Minjiang River, southwestern China. Its aim was to provide general information on vegetation along edge to interior gradients in order to assist in interpretation and prediction of biological phenomena associated with agriculture-forestry boundary, and to improve current management practices in such areas. Three types of boundaries (10 transects) were investigated and sampled. The results showed that when the window width reached 6-10, the change of the SED curve on the graph tended to become stable, and one or two peaks occurred. The depth of edge influence was clearly different for different types of boundaries, and could be estimated within 50 m from the edge to interior. The depth of edge influence (DEI) on vegetation diversity almost varied between 12-30 m, mainly depending on the patch type, topography and microclimate, but seldom on slope orientation. Of the 6 forest transects in the three types of boundaries, the DEI was detected only in the forest part transects M2 and M6, but almost detectable in the agricultural part of all transects. MSWT was considered to be a useful tool for characterizing edge dynamics if enough data was available, and became a simple and powerful technique for analyzing the boundary. The results will provide further knowledge for understanding the interaction between forestry and agriculture in the arid valley. PMID:15624812

  3. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico.

    PubMed

    Piperno, Dolores R; Ranere, Anthony J; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-03-31

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands. PMID:19307570

  4. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    USGS Publications Warehouse

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and

  5. Soilscape analysis at different scales using pattern indices in the Jarama-Henares interfluve and Henares River valley, Central Spain

    NASA Astrophysics Data System (ADS)

    Saldaña, A.; Ibáñez, J. J.; Zinck, J. A.

    2011-12-01

    The Jarama-Henares interfluve is located south of the Ayllon range, one of the easternmost ranges of the "Sistema Central" mountains in central Spain. The Henares river valley is asymmetric, with 20 topographic benches along its right bank and a series of glacis-terraces on its left bank. We investigated the soil-geoform units in the Jarama-Henares interfluve and the Henares river valley using several indices to quantify and understand the evolution of soil and landscape patterns of the area during the Plio-Quaternary. Features such fragmentation, dominance, geopedologic unit diversity, relative spatial diversity, size and shape, neighbourhood and interaction were analysed in geopedologic maps prepared at two scales (1:18,000 and 1:50,000) using ancillary data, aerial photographs and field observations. Likewise, the taxonomic pedorichness and pedodiversity were assessed on plot maps at 1:100 scale representing three fluvial terrace areas of different age. Soil diversity analysis was carried out at the subgroup level of the USDA Soil Taxonomy using (1) the number of individuals included in a given pedotaxum, and (2) the areal proportion occupied by each soil taxum in a given map unit. One of the main findings was that the values of the indices were higher and the number of indices required to describe appropriately the soilscape patterns was smaller at the local than at the regional scale, the relative spatial diversity being one of the most useful indices. At the plot scale, taxonomic pedorichness and pedodiversity of soil subgroups increased from low/young to high/old terraces. Thus, pattern indices can be used to characterise soilscape evolution aspects such as diversification due to the behaviour of the depositional system or to relief dissection.

  6. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics

    USGS Publications Warehouse

    Southwick, D.L.; Chandler, V.W.

    1996-01-01

    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  7. Hydrologic data from test wells and low-flow investigations in the middle reach of the Eagle River valley, Alaska; 1980-81

    USGS Publications Warehouse

    Deeter, Gary; George, R.S.

    1982-01-01

    Test wells and low-flow investigations in the Eagle River valley , Alaska, were used to evaluate the feasibility of developing ground water for a public supply. Aquifers capable of supplying large yield wells were not indicated in any of the drilling areas. The data include: results of low-flow seepage investigations at 22 river sites; geologic materials logs of eight test wells; water-quality data from two observation wells, two springs, and two river sites; and water level and temperature information for the observation wells and streams. (USGS)

  8. Trends in discharge and flow season timing of the Onyx River, Wright Valley, Antarctica since 1969

    USGS Publications Warehouse

    Gooseff, Michael N.; McKnight, Diane M.; Doran, Peter T.; Lyons, W. Berry

    2007-01-01

    /decade at Vanda), and increasing flow season lengths (by 7 d/decade at LWRT, and 2.7 d/decade at Vanda), influenced by earlier start and later end dates (5.2 and 0.8 d/decade, respectively at LWRT; 4.8, 1.4 d/decade, respectively at Vanda). This suggests that flow season climate patterns in the Dry Valleys are decreasing glacier melt intensity overall, but extending the period of meltwater generation

  9. Use of long-term tritium records from the Colorado River to determine timescales for hydrologic processes associated with irrigation in the Imperial Valley, California

    USGS Publications Warehouse

    Michel, R.L.; Schoeder, R.A.

    1994-01-01

    Tritium records were used to study hydrologic processes associated with irrigation and drainage in the Imperial Valley, a 2000-km2 agricultural area in the southeastern California desert. Tritium was analyzed in surface water, ground water, soil-pore water and drain water, and the results were compared to the historical record of tritium in the Colorado River. The Colorado River record was reconstructed using a simple reservoir model and precipitation data in the Colorado River Basin for the period prior to 1965, and from continuous measurements in the river for 1965-1988. This historical record is especially useful in the arid Imperial Valley because recent agricultural development has been entirely dependent on irrigation water diverted from the Colorado River and local recharge is negligible. Results indicate that it takes about 5 a for irrigation drainage to move through the soil to a depth of 2-3 m. Drainwaters have a wide range in tritium concentrations because of varying degrees of influence from ground-water intrusion, and from rapid percolation of irrigation through preferred pathways. The net result is that drainwater from about 40 fields had a range in tritium concentration similar to that of the Colorado River over the last 9 a (1980-1988), a period during which tritium concentration was declining about 15% annually in the river. ?? 1994.

  10. Preconstruction and postconstruction ground-water levels, Lock and Dam 2, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 1 at mile 44 (kilometer 71) above the mouth of the Red River call for a pool elevation of 40 feet (12.2 meters) and will cause an average increase in river stage of 9 feet (2.7 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more within 4 miles (6.4 kilometers) of the river. The potentiometric surface may be near land surface in low-lying areas, and above land surface along the course of drainage features near the dam. The magnitude of ground-water-level fluctuations near the river will be reduced. (Woodard-USGS)

  11. Preconstruction and postconstruction ground-water levels, Lock and Dam 3, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.; Terry, J.E.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 3 at realined mile 111 (kilometer 179) above the mouth of the Red River call for a pool elevation of 87 feet (27 meters) and will cause an average increase in river stage ranging from 21 to 3.5 feet (l.4 to 1.1 meters). As a result, ground-water levels will be raised to near land surface in low areas east of the river from the damsite to Aloha and in a 0.5-mile (0.8-kilometer) strip along the west side extending 9 miles (14 kilometers) above the dam. The potentiometric surface may be above land surface locally near the dam. The magnitude of ground-water-level fluctuations near the river will be reduced to less than half the preconstruction range.

  12. Preconstruction and postconstruction ground-water levels, Lock and Dam 2, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 2 at mile 87 (kilometer 140) above the mouth of the Red River call for a pool elevation of 58 feet (17.7 meters) and will cause an average increase in river stage of 12.5 feet (3.8 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more within 4 miles (6.4 kilometers) of the river and will be near land surface in low areas. The potentiometric surface may be as much as 1 to 2 feet (0.3 to 0.6 meter) above land surface south of Latanier along Chatlin Lake Canal and south of the Annandale area of Alexandria. The magnitude of ground-water-level fluctuations near the river will be reduced.

  13. Chronology and provenance of alluvial fills in the dry valley environment of the lower Molopo River, southern Kalahari

    NASA Astrophysics Data System (ADS)

    Ramisch, Arne; Bens, Oliver; Eden, Marie; Hürkamp, Kerstin; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The dry valleys of the Molopo-Kuruman and the Nossob-Auob system form the largest drainage basin of the southern Kalahari, with a total drainage area of over 100.000 km². The South-Kalahari drainage system is connected to the perennial Orange River by the lower Molopo valley which is therefore the only potential fluvial outlet for sediments originating from the southern Kalahari. Despite its key geomorphological position, little is known about Late Quaternary landscape dynamic in the lower Molopo section. To estimate the timing of fluvial sedimentation phases near the Molopo-Orange confluence, we sampled alluvial fills within the narrow trench of the Molopo canyon. The chronology was established using a total of 15 Optical Stimulated Luminescence (OSL) samples from key profiles within the canyon. The results suggest that landscape development was dominated by two phases of valley infill during a) the Mid Holocene and b) the Late Holocene. To gain insight into sediment dynamics during these intervals, we carried out a provenance analysis on the fine fraction (< 2 mm) of fluvial sediments. Sediment source areas were estimated by analyzing the elemental and mineralogical composition of 93 tributaries and 32 dune deposits throughout the reaches of the lower Molopo via X-ray fluorescence (XRF) and X-ray diffraction analysis (XRD). The appliance of a fuzzy cluster algorithm on the elemental and mineralogical composition of reference samples revealed three major sediment source areas: i) The Molopo canyon, ii) fluvial source areas north of the canyon and iii) eolian sands covering the recent lower Molopo valley in its upper reaches. A similarity analysis between fluvial sediments of the Molopo canyon to the previously identified source areas suggests that alluvial fills mainly originate from the canyon itself, suggesting short-distance sediment mobilization as the driving mechanism behind aggradation. Thereby, both Holocene intervals differ in the mean distance of

  14. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador.

    PubMed

    Mainville, N; Webb, J; Lucotte, M; Davidson, R; Betancourt, O; Cueva, E; Mergler, D

    2006-09-01

    Soil erosion and degradation provoked by deforestation in the Amazon is a global concern, and recent studies propose a link between deforestation, soil erosion and the leaching of naturally occurring mercury (Hg). In the Ecuadorian Amazon, elevated deforestation rates and the proximity of volcanoes could play an important role in soil fertility and soil Hg levels. The goal of this study is to evaluate the impacts of deforestation on Andisol and Inceptisol fertility and Hg levels in the Napo River Valley, Ecuador. Results show a significant decrease in surface soil organic matter (-15% to -70% of C and N) and exchangeable cations (-25% to -60%) in deforested plots. Hg concentrations at the surface (0-5 cm), higher in Andisols (225 ng/g average) than in Inceptisols (95 ng/g average), show a decrease of up to 60% following deforestation. Soil erosion exposes the mineral horizon, a layer with a higher Hg burden, to the elements thus provoking and accelerating Hg leaching. These results suggest that deforestation and the associated Hg leaching could contribute to the fish Hg contamination measured in the Napo River watershed. PMID:16499953

  15. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A.

    USGS Publications Warehouse

    De Steven, Diane; Faulkner, Stephen; Keeland, Bobby D.; Baldwin, Michael; McCoy, John W.; Hughes, Steven C.

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespreadconversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs haveattempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation)and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whetherplanting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extentto which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may beindicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restorationefforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetationattributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses;floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generallyhydrophytic, but species composition differed from that of mature bottomland forest because of young successional age anddiffering responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variationin canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes ofrestoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.

  16. Paleomagnetic evidence for repeated glacial lake missoula floods from sediments of the Sanpoil River Valley, Northeastern Washington

    NASA Astrophysics Data System (ADS)

    Steele, William K.

    1991-03-01

    Recent explanations of widespread rhythmically layered sediments in eastern Washington as the result of repeated great floods from glacial Lake Missoula implicitly suggest a paleomagnetic test for validity. If each conjectural flood layer is separated by years or decades, as hypothesized, a sequence of several such flood beds should record measurable secular variation in geomagnetic field direction. In the Sanpoil River valley where the rhythmite sequences are thought to have been deposited in glacial Lake Columbia, the paleomagnetic test consists of measuring remanent magnetization (RM) directions for thick, upwardly fining beds inferred to be sediments deposited by the influx of flood waters from glacial Lake Missoula into glacial Lake Columbia. Laboratory measurements of samples from three widely spaced sections along the Sanpoil River yield RM vectors with erratic inclinations, apparently affected by varying contributions of inclination error and (or) compaction shallowing, but with declinations that generally differ statistically from one flood to the next and that show the same west-to-east trend at all three locations. The rates of declination change inferred from these data are consistent with modern rates, thus providing the first geophysical evidence supporting the timing in the tens-of-floods theory.

  17. Magnetic Susceptibility and Mineral Zonations Controlled by Provenance in Loess along the Illinois and Central Mississippi River Valleys

    USGS Publications Warehouse

    Grimley, D.A.; Follmer, L.R.; McKay, E.D.

    1998-01-01

    Magnetic susceptibility (MS) patterns have proven useful for regional stratigraphic correlations of zones within thick, oxidized Peoria and Roxana Silts along the Illinois and Central Mississippi River valleys for more than 350 km. Variations in MS of C horizon loess are controlled by silt-sized magnetite content and are interpreted to reflect changes in sediment provenance due to fluctuations of the Superior and Lake Michigan glacier lobes and the diversion of the Mississippi River to its present course. Grain size distributions and scanning electron microscopic observations indicate that stratigraphic changes in MS are not significantly influenced by eolian sorting or diagenetic dissolution, respectively. Three compositional zones (lower, middle, and upper) are delineated within Peoria Silt which usually can be traced in the field by MS, the occurrence of clay beds, interstadial soils, and/or subtle color changes. These zones can be correlated with, but are generally of more practical use than, previously studied dolomite zones (McKay, 1977) or clay mineral zones (Frye et al., 1968). However, mineralogical analyses can help to substantiate zone boundaries when in question. MS and compositional zones may indirectly record a climatic signal, primarily through the effect that global cooling has had on ice lobe fluctuations in the Upper Mississippi drainage basin. ?? 1998 University of Washington.

  18. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    PubMed Central

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  19. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    PubMed

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  20. Comparing meteorological records between mountainous and valley bottom sites in the upper reaches of the Heihe River, northwestern China: implications for dendroclimatology

    NASA Astrophysics Data System (ADS)

    Zeng, Qiao; Yang, Bao

    2016-01-01

    Tree-ring records from remote upland areas are widely used in climate reconstructions, but they are typically calibrated by meteorological data from low-lying areas. With the aim of assessing relationships between climatic records from mountainous and valley bottoms, this study compared meteorological records between mountainous sites (lower to upper elevations) and valley bottoms (Qilian (QL) and Yeniugou (YNG)) in the upper reaches of the Heihe River, northwestern China. We found that daily, 5-day, 10-day, and monthly mean air temperatures observed during a 4-year observational period in valley bottoms were strongly correlated (R = 0.90-0.99) to their mountainous site counterparts. Additionally, temperature records from the QL meteorological station shared a higher percentage of variance with each mountainous site compared to YNG. Correlations of precipitation totals between valley bottoms and mountainous sites showed a similar pattern to temperatures. Furthermore, different time series of total rainfall in YNG can explain more variance than those from QL and were also more suitable representations of mountainous sites. Our results confirmed the reliability of utilizing monthly climatic records from valley bottoms to calibrate tree-ring records in mountainous sites. We also caution that when conducting fine-scale microcoring and dendrometer monitoring studies, lower correlations of short-term scale precipitation records between valley bottoms and mountainous sites may introduce unavoidable errors.

  1. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing

  2. Early findings from artificial recharge efforts of the Mississippi River Valley Alluvial Aquifer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long-term success and sustainability of agriculture in the Lower Mississippi River Basin will depend largely on water resources. Aquifer decline in the region has been documented since the 1980s and continues today. Artificial recharge is one possible tool that could help alleviate this declin...

  3. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume I..

    SciTech Connect

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest

    1985-06-01

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developed to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost ratio of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. 28 figs., 23 tabs.

  4. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  5. Ecosystem types of boreal forest in the North Klondike River Valley, Yukon Territory, Canada, and their productivity potentials.

    PubMed

    Kojima, S

    1996-01-01

    Vegetation, environmental characteristics, and forest productivity were studied in the boreal forest in the North Klondike River Valley, Yukon Territory, Canada. The concept and approach of biogeoclimatic ecosystem classification were followed. For the treed vegetation, five ecosystem types were distinguished based on vegetation structure and physical and chemical properties of soils. They were: 1) spruce-lichen type, 2) spruce-moss type, 3) spruce-Equisetum type, 4) spruce-willow type, and 5) bog forest type. These types were differentiated mainly by moisture regime and base status of soils. The sequence of the ecosystem types reflected their topographical position from slope summit to valley bottom. The spruce-lichen type developed in the driest and nutritionally impoverished habitats, the spruce-Equisetum type occurred in moist and nutritionally enriched sites, and the spruce-moss type was found in between them. The bog forest type occurred where peat had accumulated sufficiently to generate ombrotrophic conditions in habitats of high water table underlain with permafrost. The spruce-willow type developed along small creeks where substrates were very coarse. Tree growth characteristics were measured, except for the bog forest type that did not have trees over 5 m tall. Total volume of standing trees ranged from 29 to 582 m(3)/ha, with an overall mean of 216.9 m(3)/ha. The spruce-Equisetum type exhibited the highest figure, 413.5 m(3)/ha, while spruce-lichen type the lowest one, 87.7 m(3)/ha. Mean annual increment ranged from 0.15 to 2.66 m(3)/ha, with an overall mean of 1.10 m(3)/ha. A similar tendency was noted for all other forestry characteristics, i.e., the spruce-Equisetum type showed the highest productivity while the spruce-lichen type the lowest. This tendency was considered to be attributed to the availability of moisture and basic cations in soils. PMID:24198010

  6. Chronostratigraphic and paleoclimatic data for Quaternary loessial and fluvial deposits in the Mississippi River Valley of Arkansas and Tennessee

    SciTech Connect

    Markewich, H.W. ); Millard, H.T. Jr. ); Pavich, M.J. ); Rodbell, D.T. ); Rich, F.J. ); Rutledge, E.M. ); Ward, L. . Soil Conservation Service); Van Valkenberg, S. ); Wysocki, D. . Soil Conservation Service)

    1992-01-01

    Ongoing investigations into Quaternary paleoclimates of the Mississippi River Valley in eastern Arkansas and western Tennessee include age estimations using [sup 14]C, [sup 10]Be, thermoluminescent (TL), and optically stimulated luminescent (OSL) analyses; compositional studies using petrographic and diffractometer analyses; pedological analyses with complete characterization studies; and magnetic susceptibility measurements with laboratory analyses to investigate the source of the magnetism. Preliminary data on composition of the < 63-micron fraction, thickness, and age of the loesses and associated paleosols are available from selected stratigraphic sections that are being described and sampled in detail. These data suggest the following: (1) overall thickness of loess, as well as thickness of each loess sheet, decreases by one-half to two-thirds within the 96-km distance from the south end of Crowleys Ridge near Helena, AR northward to Forest City, AR and Memphis, TN; (2) near Helena, loess thicknesses are 25 to 30 m, 7 m, 6 m, and 6 m for the Peoria, Roxana, Loveland, and Crowleys Ridge respectively; (3) the depth of weathering in the Peoria ranges from 4.5 to 8.5 m near Helena, depending on slope position; (4) at the south end of Crowleys Ridge, near Helena, the Roxana has two associated paleosols and an intervening layer of weathered parent material; (5) isotopic data suggest that (a) loess deposition took place between 4,500 ka and 10 ka and that (b) each younger disconformity represents less time than the one before; (6) the predominantly illite and illite/smectite mineralogy of the paleosols, even that of the Sangamon soil, suggests minimal weathering of labile loessial minerals prior to pedogenic development; (7) pollen data indicate that by 10 ka this part of the valley had vegetation indicative of a cool temperate climate, with minimal cypress and no boreal components.

  7. Metal Transport, Heavy Metal Speciation and Microbial Fixation Through Fluvial Subenvironments, Lower Coeur D'Alene River Valley, Idaho

    NASA Astrophysics Data System (ADS)

    Hooper, R. L.; Mahoney, J. B.

    2001-12-01

    The lower Coeur d'Alene River Valley of northern Idaho is the site of extensive lead and zinc contamination resulting from both direct riverine tailings disposal and flood remobilization of contaminated sediments derived from the Coeur d'Alene mining district upstream. Variations in the hydrologic regime, redox conditions, porosity/permeability, organic content and microbial activity results in complicated metal transport pathways. Documentation of these pathways is a prerequisite to effective remediation, and requires accurate analysis of lateral and vertical variations. An analytical approach combining sequential extraction, electron microscopy, and microanalysis provides a comprehensive assessment of particulate speciation in this complex hydrologic system. Rigorously controlled sample preparation and a new sequential extraction protocol provide unprecedented insight into the role of metal sequestration in fluvial subenvironments. Four subenvironments were investigated: bedload, overbank (levee), marsh, and lacustrine. Periodic floods remobilize primary ore minerals and secondary minerals from upstream tailings (primarily oxyhydroxides, sulfides and carbonates). The bedload in the lower valley is a reducing environment and acts as a sink for detrital carbonates and sulfides moving downstream. In addition, authigenic/biogenic Fe, Pb and Zn sulfides and phosphates are common in bedload sediments near the sediment/water interface. Flood redistribution of oxide, sulfide and carbonate phases results in periodic contaminant recharge generating a complex system of metal dissolution, mobilization, migration and precipitation. In levee environments, authigenic sulfides from flood scouring are quickly oxidized resulting in development of oxide coated grain surfaces. Stability of detrital minerals on the levee is variable depending on sediment permeability, grain size and mineralogy resulting in a complex stratigraphy of oxide zones mottled with zones dominated by detrital

  8. Do post-glacial river valleys in northern New England store mill-dam legacy sediments?

    NASA Astrophysics Data System (ADS)

    Strouse, S.; Snyder, N. P.

    2010-12-01

    Dam-influenced floodplain morphology has not been studied extensively in post-glacial rivers with high densities of colonial-era milldams. Fluvial restoration in the eastern U.S. often focuses on understanding the natural, or pre-Colonial, floodplain processes. Recent work by Walter and Merritts (2008) in the piedmont of the U.S. Mid-Atlantic region suggests milldams significantly impact sedimentation by creating surfaces composed of post-dam legacy sediment that are often abandoned by the river and function as fill terraces. This work has not yet been tested in a post-glacial environment. I analyze channel morphology and sedimentation patterns upstream of two breached dams on the Sheepscot River in Mid-Coastal Maine using lidar digital elevation models, historical aerial photographs, radiocarbon dating, and hydraulic modeling. In the past several decades, observable channel morphologic changes occurred at the two study sites: Maxcy’s Mills dam (built in 1809, it was 4-m high and breached in the late 1950s), and at Head Tide dam (built in the 1760s, it is 6-m high and was partially breached in 1952). The Sheepscot River is one of Maine’s eight rivers with native anadromous Atlantic salmon populations. Because Atlantic salmon are a federally listed endangered species, understanding the existence and transport of legacy sediment has become an important component of habitat restoration efforts in the region. The goal of this investigation is to determine the extent of legacy sediment in order to better understand how historical dam sites affect morphology and sediment transport in a post-glacial, low-gradient river system. Field and remote sensing analyses indicate that surfaces (up to 2-m high) composed of mud and sand function as floodplains 1.5-2.5 km upstream of both former dam sites. Preliminary analysis of seven radiocarbon dates from pieces of tree bark sampled from the stratigraphy (58-187 cm below the surface) of the two study sites suggest at least 1.8 m

  9. Effects of the 1997 flood on the transport and storage of sediment and mercury within the Carson River Valley, west-central Nevada

    SciTech Connect

    Miller, J.; Barr, R.; Grow, D.; Richardson, D.; Waltman, K.; Lechler, P.; Warwick, J.

    1999-05-01

    Intense, warm rains falling on a heavy snowpack in the Sierra Nevada at the end of December 1996 produced some of the largest floods on record in west-central Nevada. Within the Carson River basin, a peak discharge of 632 cm was recorded at the Fort Churchill gaging station on January 3, 1997, a flow exceeding the 100-yr event. Geomorphic impacts of the event, and the redistribution of mercury (Hg) released to the Carson River valley by Comstock mining operations during the mid- to late-1800s, were assessed by combining field data with the interpretation of aerial photographs. Geomorphic impacts included significant increases in channel width, measuring up to 280% of preflood conditions, and large-scale shifts in channel position, ranging from < 10 to 110 m. Both changes in channel width and position vary as a function of valley morphometry (width and slope) and differ from the long-term trends measured from 1965 to 1991. The 1997 flood also produced widespread overbank deposits that vary morphologically and sedimentologically according to distance from the channel and the nature of the vegetation on the valley floor. Within the overbank deposits, Hg is primarily associated with the fine-grained (< 63 {micro}m) sediment fraction, which makes up a larger percentage of the deposits immediately adjacent to the channel and at the extremities of overbank deposition. Mass balance calculations demonstrate that, along reaches with narrow valleys (< 450 m), approximately 10%--65% of the sediment eroded from the channel banks was stored in overbank deposits, whereas more than 90% of the sediment eroded along reaches with wider valleys was stored on the valley floor. Locally, however, storage exceeded 650% where meander cutoff was extensive. The above data indicate that the erosion, redeposition, and storage of sediment and sediment-bound Hg were greater along reaches characterized by low gradients and wide valley floors. Downstream trends in Hg concentration within the

  10. Appraisal of the surficial aquifers in the Pomme de Terre and Chippewa River Valleys, western Minnesota

    USGS Publications Warehouse

    Soukup, W.G.; Gillies, D.C.; Myette, C.F.

    1984-01-01

    In the Cyrus-Benson area/ model results indicate that tinder 1980 development and average area! recharge/ dynamic equilibrium would be reached in less than 4 years and additional drawdown would be less than 2 feet. A 3-year drought coupled with increased pumping from irrigation wells operated during 1980 would lower water levels as much as 6 feet and reduce flow in the Chippewa River by about 26 cubic feet per second. At maximum hypothetical development in terms of the number of wells and normal area! recharge/ water levels would be lowered as much as 9 feet and streamflow would be reduced about 12 cubic feet per second. At maximum hypothetical development/ drought conditions and increased pumping would lower water levels as much as 12 feet and reduce flow in the Chippewa River by about 30 cubic feet per second/ which equals about 75 percent of available streamflow at the 70-percent flow duration.

  11. Initial-phase investigation of multi-dimensional streamflow simulations in the Colorado River, Moab Valley, Grand County, Utah, 2004

    USGS Publications Warehouse

    Kenney, Terry A.

    2005-01-01

    A multi-dimensional hydrodynamic model was applied to aid in the assessment of the potential hazard posed to the uranium mill tailings near Moab, Utah, by flooding in the Colorado River as it flows through Moab Valley. Discharge estimates for the 100- and 500-year recurrence interval and for the Probable Maximum Flood (PMF) were evaluated with the model for the existing channel geometry. These discharges also were modeled for three other channel-deepening configurations representing hypothetical scour of the channel at the downstream portal of Moab Valley. Water-surface elevation, velocity distribution, and shear-stress distribution were predicted for each simulation. The hydrodynamic model was developed from measured channel topography and over-bank topographic data acquired from several sources. A limited calibration of the hydrodynamic model was conducted. The extensive presence of tamarisk or salt cedar in the over-bank regions of the study reach presented challenges for determining roughness coefficients. Predicted water-surface elevations for the current channel geometry indicated that the toe of the tailings pile would be inundated by about 4 feet by the 100-year discharge and 25 feet by the PMF discharge. A small area at the toe of the tailings pile was characterized by velocities of about 1 to 2 feet per second for the 100-year discharge. Predicted velocities near the toe for the PMF discharge increased to between 2 and 4 feet per second over a somewhat larger area. The manner to which velocities progress from the 100-year discharge to the PMF discharge in the area of the tailings pile indicates that the tailings pile obstructs the over-bank flow of flood discharges. The predicted path of flow for all simulations along the existing Colorado River channel indicates that the current distribution of tamarisk in the over-bank region affects how flood-flow velocities are spatially distributed. Shear-stress distributions were predicted throughout the study reach

  12. Summary of public water-supply withdrawals and geohydrologic data for the lower Connecticut River valley from Windsor to Vernon, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph

    1989-01-01

    Public water supply withdrawal data and geohydrologic data were collected along a 50 mile segment of the Connecticut River valley from Windsor to Vernon, Vermont. An inventory of wells indicates that domestic groundwater supplies come primarily from bedrock, whereas public water supplies are derived from discontinuous, glacial sand and gravel deposits. Self supplied industries generally use surface water supplies. Data from eight seismic-refraction surveys, and from a seismic-reflection survey along this 50-mile reach of the Connecticut River, were compared with stratigraphic information from 217 drillers ' logs. Stratified-drift deposits range from 0 to 270 ft and average about 65 ft. Stratigraphic information from drillers ' logs and seismic-reflection records show that predominantly fine-grained stratified drift fills the valley and that coarse sand and gravel deposits exist discontinuously within this area. (USGS)

  13. Late Vistulian and Holocene changes in the Ner river valley in light of geological and palaeoecological data from the Ner-Zawada peatland

    NASA Astrophysics Data System (ADS)

    Forysiak, Jacek; Obremska, Milena; Pawłowski, Dominik; Kittel, Piotr

    2010-12-01

    The Ner-Zawada peatland is located in the valley of the Ner River in Central Poland. It is a small fen peatland that was formed in the Alleröd Period. In the Younger Dryas, it was transformed into a lake and became a peatland again in the Holocene. Within the peatland and around it, geological and archaeological research was carried out. A sediment core collected in the central part of the peatland was subjected to the analysis of pollen, fossil Cladocera, and absolute dating. This study allows a reconstruction of palaeoecological changes in the peatland and drawing conclusions about the palaeogeography of the middle section of the Ner River valley during the past 13 000 years.

  14. Development of Hydrological Model of Klang River Valley for flood forecasting

    NASA Astrophysics Data System (ADS)

    Mohammad, M.; Andras, B.

    2012-12-01

    This study is to review the impact of climate change and land used on flooding through the Klang River and to compare the changes in the existing river system in Klang River Basin with the Storm water Management and Road Tunnel (SMART) which is now already operating in the city centre of Kuala Lumpur. Klang River Basin is the most urbanized region in Malaysia. More than half of the basin has been urbanized on the land that is prone to flooding. Numerous flood mitigation projects and studies have been carried out to enhance the existing flood forecasting and mitigation project. The objective of this study is to develop a hydrological model for flood forecasting in Klang Basin Malaysia. Hydrological modelling generally requires large set of input data and this is more often a challenge for a developing country. Due to this limitation, the Tropical Rainfall Measuring Mission (TRMM) rainfall measurement, initiated by the US space agency NASA and Japanese space agency JAXA was used in this study. TRMM data was transformed and corrected by quantile to quantile transformation. However, transforming the data based on ground measurement doesn't make any significant improvement and the statistical comparison shows only 10% difference. The conceptual HYMOD model was used in this study and calibrated using ROPE algorithm. But, using the whole time series of the observation period in this area resulted in insufficient performance. The depth function which used in ROPE algorithm are then used to identified and calibrated using only unusual event to observed the improvement and efficiency of the model.

  15. Public support for ecosystem restoration in the Hudson River Valley, USA.

    PubMed

    Connelly, Nancy A; Knuth, Barbara A; Kay, David L

    2002-04-01

    We applied the Theory of Planned Behavior to help understand the relationships between environmental beliefs, support for ecosystem restoration actions, and willingness to pay (WTP) for restoration and protection goals in the Hudson River estuary, New York State, USA. We conducted a mail survey with 3,000 randomly-chosen local residents of the Hudson River estuary in the fall of 1999. As hypothesized, the broad ecosystem restoration goals of the Hudson River Estuary Action Plan were more strongly supported than the corresponding specific implementation actions. We found that beliefs and past behavior were better explanatory variables than sociodemographic characteristics for explaining people's support for ecosystem restoration actions and WTP for restoration and protection goals. Because ecosystem restoration goals appear to be more generally acceptable than specific restoration actions, proponents of restoration programs should not become complacent about the need for active public outreach and involvement even if initial restoration program discussions have been low in controversy. Efforts to assess and foster support for ecosystem restoration should be targeted toward audiences identified on the basis of beliefs and past behaviors rather than on sociodemographic characteristics. PMID:12071498

  16. Two-dimensional hydrodynamic flood modelling for populated valley areas of Russian rivers

    NASA Astrophysics Data System (ADS)

    Belikov, V. V.; Krylenko, I. N.; Alabyan, A. M.; Sazonov, A. A.; Glotko, A. V.

    2015-06-01

    Results of flood modelling for three cities located in different parts of Russia: (1) Veliky Ustyug at the Northern Dvina river (Europe); (2) Mezhdurechensk at the Tom river (Siberia); and (3) Blagoveschensk at the Amur river (Far East) are presented. The two-dimensional hydrodynamic model of flow in channels and on floodplain STREAM_2D on the basis of the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh was used for the simulations. Verification of the model through a comparison of simulated inundated areas with outlines of flooded zones from satellite images for known hydrologic situations demonstrate close correspondence (relative errors of 7-12% in terms of the area for peaks of the analysed floods). Analyses of embankment influence of large-scale levees on the water flow demonstrate that, in some cases, water levels could rise by more than 1 m and the patterns of the flooding zones could significantly differ.

  17. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley, and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald Edward; Gates, J.S.; Smith, Joe T.; Fry, B.J.

    1978-01-01

    From October 1971 through October 1974, the U.S. Geological Survey collected groundwater data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. The data collection program consisted of an inventory of all major irrigation, municipal-supply, and industrial wells; selected stock and domestic wells; and selected springs. Water samples were collected from representative wells and springs for chemical analyses. (Woodard-USGS)

  18. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald E.; Gates, Joseph S.; Smith, James T.; Fry, Bonnie J.

    1980-01-01

    From October 1971 through October 1974. the U.S. Geological Survey collected ground-water data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. These data, which were collected in cooperation with the Texas Department of Water Resources (formerly Texas Water Development Board), will provide information for a continuing assessment of water availability within the State.

  19. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes) Part II. Spatial trends and possible sources of organic composition

    NASA Astrophysics Data System (ADS)

    Szopińska, Małgorzata; Dymerski, Tomasz; Polkowska, Żaneta; Szumińska, Danuta; Wolska, Lidia

    2016-07-01

    The chemistry of river-lake systems located in Central Mongolia near the southern border of permafrost occurrence has not been well studied. The main aim of this paper is to summarize patterns in water chemistry in supply springs, rivers and lakes in relation to permafrost occurrence, as well as other natural and anthropogenic impacts. The analyses involved water samples taken from two river-lake systems: the Baydrag River-Böön Tsagaan Lake system and the Shargalyuut/Tuyn Rivers-Orog Lake system. Total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) were detected and quantified. Other organic compounds, such as organic halogen compounds, phthalates, and higher alkanes were also noted. The main factors which influence differences in TOC concentrations in the water bodies involve permafrost occurrence, mainly because compounds are released during active layer degradation (in the upper reach of the Tuyn river), and by intensive livestock farming in river valleys and in the vicinity of lakes. In relation to the concentrations of PAHs, high variability between samples (> 300 ng L- 1), indicates the influence of thermal water and local geology structures (e.g., volcanic and sedimentary deposits), as well as accumulation of suspended matter in lakes transported during rapid surface runoff events. The monitoring of TOC as well as individual PAHs is particularly important to future environmental studies, as they may potentially reflect the degradation of the environment. Therefore, monitoring in the Valley of the Lakes should be continued, particularly in the light of the anticipated permafrost degradation in the 21st century, in order to collect more data and be able to anticipate the response of river-lake water chemistry to changes in permafrost occurrence.

  20. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    USGS Publications Warehouse

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  1. Features of the short-term position variation of the west Pacific subtropical high during the torrential rain in Yangtze-Huaihe river valley and its possible cause

    NASA Astrophysics Data System (ADS)

    Guan, Zhaoyong; Yu, Bo; Wang, Lijuan; He, Jielin; Zeng, Gang

    2009-08-01

    By using the NCEP/NCAR daily reanalysis data, CMAP precipitation data , daily precipitation data of 740 stations in China and some remote sensing data, features of the short-term position variation of the west Pacific subtropical high(WPSH) during the torrential rain in Yangtze-Huaihe river valley and its possible cause are analyzed. Results show that the short-term position variation of WPSH is closely associated with the diabatic heating. During the torrential rain period, the apparent heating source and apparent moisture sink are exceptionally strong over Yangtze-Huaihe river valley( on the northwest side of WPSH )and the Bay of Bengal (to the west of WPSH). Based on the complete form of vertical vorticity tendency equation, it is found that the heating field over Yangtze-Huaihe river valley during the torrential rain period, which is in favor of the increase of cyclonic vorticity on the north side of WPSH, is unfavorable to the WPSH moving northward. And the heat source over the Bay of Bengal ,which is in favor of the increase of anti-cyclonic vorticity on the west of WPSH, may induce the westward extension of WPSH.

  2. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    USGS Publications Warehouse

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  3. Post-earthquake modification of 2015 Gorkha Earthquake landslides in the Bhote Koshi River valley

    NASA Astrophysics Data System (ADS)

    Cook, Kristen; Andermann, Christoff; Adhikari, Basanta; Schmitt, Clemens; Marc, Odin

    2016-04-01

    Large earthquakes trigger widespread mass failures, and the estimated volumes of landslide material are often used to estimate seismically triggered erosion, assuming that all landslide material is transported out of the affected area. The expectation that earthquakes can generate a pulse of sediment output from the affected area can also potentially be used to recognize large seismic events in the sedimentary record. However, in order to properly understand the relationship between earthquake triggered landslides, sediment flux, and erosion, we need to consider how and when the landslide debris is mobilized in the fluvial system and exported from the catchment. We present observations from three field excursions to the upper Bhote Koshi River following the April 25 2015 Gorkha earthquake, which triggered extensive landsliding in this region. Our observations, from early June, late July, and Oct 2015, cover the pre-monsoon, mid-monsoon, and post-monsoon periods, allowing us to constrain monsoon-driven changes to seismically triggered landslides.In order to quantify post-earthquake modification of individual landslides and of the transport of landslide materials to the main trunk rivers, we conducted surveys using both terrestrial lidar and SfM. Immediately following the earthquake, a large number of landslides were disconnected from the channels, with significant amounts of material stored on the hillslopes. This was facilitated by the widespread presence of a two-step topography, with steep slopes adjacent to the main river channels and a section of lower gradient hillslope above. The landslides above this step typically did not reach the channel, or only delivered material via preexisting narrow debris flow chutes. As expected, the monsoon caused new landslides, the expansion of existing landslides, and the modification of coseisimic landslide deposits. In late July we observed ongoing mobilization of this stored material, with repeated downslope delivery of

  4. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    NASA Astrophysics Data System (ADS)

    Wulf, H.; Bookhagen, B.; Scherler, D.

    2012-07-01

    The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (≥ 99th SSC percentile) coincide frequently (57-80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent

  5. Alder (alnus crispa) effects on soils in ecosystems of the agashashok river valley, northwest Alaska

    USGS Publications Warehouse

    Rhoades, C.; Oskarsson, H.; Binkley, D.; Stottlemyer, B.

    2001-01-01

    At the northern limit of the boreal forest biome, alder (Alnus crispa [Ait.] Pursh) shrubs occur in a variety of ecosystems. We assessed the effects of individual alder shrubs on soil properties and understory plant tissue nitrogen in floodplain terraces, valley slopes and tussock tundra ridges. The three ecosystems differed with respect to soil properties and abiotic conditions and supported distinct plant communities. Alder increased resin-exchangeable soil N and NO3 production significantly in each ecosystem. The greatest difference between alder canopy and surrounding soil NO3 measured both under field and laboratory conditions occured in floodplain sites. The shrub effect on soil pH and soil organic matter was greatest on tundra ridges. Alder shrubs also influenced the nitrogen nutrition of plants growing beneath their canopies. Plants growing below alder canopies had higher foliar nitrogen concentration and natural abundance 15N composition and lower carbon to nitrogen ratio than open-grown plants. Similar to soil N availability, understory plant leaf chemistry responded more to alder on floodplains than on slope or tundra ecosystems. This pattern suggests that understory plants rely more heavily on alder-fixed-N in this resource-poor ecosystem.

  6. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    SciTech Connect

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  7. Boomtown blues: a community history of oil shale booms in the Colorado River Valley

    SciTech Connect

    Gulliford, A.J.

    1986-01-01

    The routes of early surveyors and explorers and the mining and agricultural history of the valley are examined in detail as are the ethnic origins of family networks that emerged over generations and were affected by the first oil shale boom between 1915-1925 when major oil companies acquired ranchland, water rights, and oil-shale claims in Garfield County, Colorado. The first boom faded and community equilibrium and solidarity were regained during the depression. By the mid-1970s, major national and international forces again focused on Garfield County and its three trillion barrels of oil locked in shale. President Carter's push for energy self-sufficiency as the moral equivalent of war, and loans made by the synthetic Fuels Corporation for oil shale development, came into direct conflict with national environmental groups and federal environmental laws. Local ranching communities became urbanized boomtowns, especially after Exxon, USA embarked on the $5 billion dollar Colony Oil Shale Project. Less than two years later, on May 2, 1982, Exxon announced the immediate closure of Colony and threw 2100 people out of work and eliminated $85 million in annual payroll from western Colorado. Social and psychological community effects of the oil shale boom and bust are vividly chronicled here.

  8. Diurnal variation of rainfall in the Yangtze River Valley during the spring-summer transition from TRMM measurements

    NASA Astrophysics Data System (ADS)

    Chen, Guixing; Sha, Weiming; Iwasaki, Toshiki; Ueno, Kenichi

    2012-03-01

    A 12 year archive of the Tropical Rainfall Measuring Mission (TRMM) rain rate is used to document the regionality of diurnal rainfall cycle in the Yangtze River Valley (YRV). The regional rain peaks, local phase shifts, rain event's behavior, and related seasonal change from March to August are examined. In the middle reach of YRV, rainfall appears mainly in early morning and displays a distinct local shift of diurnal phase. Such features are well established at each presummer (from May to June) and result from the eastward migrating events with a late night growth in size. They are supported by the low-level convergence that moves from the east slope of the Tibetan Plateau to the middle reach of YRV, as the deviated wind vector rotates clockwise to enhance southerlies at late night and southwesterlies in the morning. In the lower reach of YRV, however, one observes an eruption of morning rainfall with less local difference in diurnal phase. Morning rainfall is active in presummers of some years but suppressed in some others, contributing greatly to the variance of rainfall budget and resulting in anomalous wet/dry seasons. It is found to arise from a local growth of rain events rather than the migrating events from the middle reach. A majority of these organized convections prefer to form and develop in a belt-shaped zone where the nocturnal southwesterlies of warm/moist air impinge on the Meiyu front in the lower troposphere.

  9. Preliminary assessment of the ground-water resources of the alluvial aquifer, White River valley, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Van Liew, W. P.; Gesink, M.L.

    1985-01-01

    A preliminary study of the alluvial aquifer in the White River Valley was conducted to assess aquifer extent and the occurrence , availability, and chemical quality of water in the aquifer. The aquifer in the study area underlies 35 square miles. Aquifer width ranges from 0.1 to 1.5 miles and averages 0.5 miles. Saturated thickness ranges from zero to more than 140 feet and averages 22 feet. The aquifer is unconfined except west of the Grand Hogback, where artesian conditions were observed at several locations. Well yields usually are less than 25 gallons per minute. At the Meeker municipal well field in Agency Park, wells reportedly could yield more than 1,000 gallons per minute each. Based on nine aquifer tests, transmissivity ranges from 860 to 93,000 feet squared per day, and hydraulic conductivity ranges from 70 to 1,550 feet per day. The estimated total volume of water in storage in the aquifer in the study area is 103,000 acre-feet. Groundwater type in the eastern part of the study area is calcium bicarbonate; to the west, water type is sodium sulfate. Water in the aquifer is classified as very hard throughout the study area. Specific conductance generally increases from east to west. (USGS)

  10. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley

    PubMed Central

    Rahul, P. R. C.; Bhawar, R. L.; Ayantika, D. C.; Panicker, A. S.; Safai, P. D.; Tharaprabhakaran, V.; Padmakumari, B.; Raju, M. P.

    2014-01-01

    First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30th August, 4th and 6th September 2009 over Guwahati (26°11′N, 91°44′E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4–6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region. PMID:24419075

  11. Geohydrology of the valley-fill aquifer in the Bath area, Lower Cohocton River, Steuben County, New York

    USGS Publications Warehouse

    Pagano, Timothy S.; Terry, D.B.; Shaw, M.L.; Ingram, A.W.

    1984-01-01

    The Bath valley-fill aquifer, southern New York, composed of outwash, ice-contact, and ice-disintegration sand and gravel, is highly productive and is in many areas in hydraulic contact with the Cohocton River. Potential well yields range 50 to more than 1,000 gallons per minute. Most of the aquifer is under shallow water-table conditions and vulnerable to surface contamination. Thickness ranges from 20 to 40 feet. Buried aquifers are present locally. The aquifer system underlies an area containing only a few small communities and therefore is not heavily pumped. Geohydrologic data are compiled on six maps at 1:24,000 scale and on a sheet of geologic sections. The maps depict surficial geology, soil-infiltration capacity, potentiometric surface, aquifer thickness, well yields, and land use. This map report set is one in a series of four that depict selected aquifers in Wester New York. It supplements a series that is being done by the U.S. Geological Survey in cooperation with State agencies. The maps are based largely on published reports, data filled in several State agencies, and some additional field data collection. (USGS)

  12. Geohydrology of the valley-fill aquifer in the Cohocton area, upper Cohocton River, Steuben County, New York

    USGS Publications Warehouse

    Terry, David B.; Pagano, Timothy S.; Shaw, Martha L.; Ingram, Arlynn W.

    1984-01-01

    The Cohocton valley-fill aquifer, composed of outwash, kame, and alluvial sand and gravel, is highly productive and is in hydraulic contact with the Cohocton River. Potential well yields range from 50 to more than 1,000 gallons per minute. Most of the aquifer is under shallow water-table conditions and vulnerable to surface contamination. Thickness ranges from 20 to 100 feet. The aquifer lies in an area containing only small communities and therefore is not heavily pumped. Geohydrologic data are compiled on six maps at 1:24,000 scale and in geologic sections. The maps depict surficial geology, soil-infiltration capacity, potentiometric surface, aquifer thickness, well yields, and land use. The maps are designed to help planners evaluate developments that may affect the aquifer, particularly potential contamination sources. This set is one in a series of four that depict selected aquifers in western New York. It supplements a series that is being done by the U.S. Geological Survey in cooperation with State agencies. The maps are based largely on published reports, file data in several State agencies, and field notes. (USGS)

  13. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhai, Panmao

    2015-11-01

    Concurrent position shifts of the mid-level western Pacific subtropical high (WPSH) and the upper-level South Asia high (SAH) are regarded as significant precursors for persistent extreme precipitation events (PEPEs) in the Yangtze River Valley (YRV). By performing composite analyses, accountable vorticity genesis and dissipation are diagnosed based on a potential vorticity-diabatic heating theory. The results indicate that about 1 week preceding precipitation onset, a wave-like pattern of anomalous diabatic heating (Q) initiates its northwestward propagation from equatorial central Pacific. Subsequently, this wave-like pattern induces substantial changes in both horizontal and vertical structure of local Q along the propagating route. Forced negative vorticities in key areas result in the zonal approach between the SAH and the WPSH. During PEPEs, two thermal-induced vertical circulation cells take shape, with common strong ascent centered in the YRV. These anomalous cells are capable of self-maintaining for a few days via positive feedback processes. The WPSH and the SAH are therefore anchored in respective favorable positions for PEPEs. Simultaneously, descending motion of these two cells increases local solar radiation and decreases upward latent heat flux from surface, facilitating warmer underlying surface and swift accumulation of lower-level moisture. Correspondingly, enhanced heating to the north and rapid developing cyclone over warmer sea surface to the south combine to terminate above positive feedback processes. Finally, both the WPSH and the SAH retreat to their normal positions, accompanied by a quick decay of PEPEs.

  14. Influence of grazing and available moisture on breeding densities of grassland birds in the central platte river valley, Nebraska

    USGS Publications Warehouse

    Kim, D.H.; Newton, W.E.; Lingle, G.R.; Chavez-Ramirez, F.

    2008-01-01

    We investigated the relationship between grassland breeding bird densities and both grazing and available moisture in the central Platte River Valley. Nebraska between 1980 and 1996. We also compared species richness and community similarity of breeding birds in sedge (Carex spp.) meadows and mesic grasslands. Densities of two species had a significant relationship with grazing and six of seven focal species had a significant relationship with available moisture. Bobolink (Dolichonyx oryzivorus) and Brown-headed Cowbird (Molothrus ater) densities were lower in grazed plots compared to ungrazed plots, whereas Red-winged Blackbird (Agelaius phoeniceus) densities were greater in sedge-meadow plots compared to mesic grassland plots. Bobolink, Dickcissel (Spiza americana). and Brown-headed Cowbird were negatively associated with available moisture with breeding densities peaking during the driest conditions. Our results suggest that wet conditions increase species richness for the community through addition of wetland-dependant and wetland-associated birds, but decrease densities of ground-nesting grassland birds in wet-meadow habitats, whereas dry conditions reduce species richness but increase the density of the avian assemblage. We propose that wet-meadow habitats serve as local refugia for grassland-nesting birds during local or regional droughts.

  15. Variation of spring climate in lower-middle Yangtse River Valley and its relation with solar-cycle length

    SciTech Connect

    Hameed, S.; Gaofa Gong

    1994-12-01

    The relatively large number of historical records originating from the area of the Middle and Lower Yangtse River Valley in the late Ming dynasty and the Qing dynasty allows an estimation of the long term fluctuations of phenological dates. Dates of blossoming of plants, found in personal diaries and other documents, and used in this reconstruction are available, with some gaps, for 1580-1920. Independent estimates of spring conditions during the 18th century using data on last day of snowfall, and during 20th and late 19th centuries using accumulated temperatures in Shanghai are also presented. The results show that the spring weather in this region was colder than present in the 17th century and during 1790-1820 and 1870-1920. Spring temperature warmer than the present prevailed during 1720-1770 and 1840-1860. This variation agrees in its broad outline with that of the solar cycle length presented by Friis-Christensen and Lassen. 13 refs., 2 figs., 1 tab.

  16. Variation of spring climate in lower-middle Yangtse River Valley and its relation with solar-cycle length

    NASA Astrophysics Data System (ADS)

    Hameed, Sultan; Gong, Gaofa

    1994-12-01

    The relatively large number of historical records originating from the area of the Middle and Lower Yangtse River Valley in the late Ming dynasty and the Qing dynasty allows an estimation of the long term fluctuations of phenological dates. Dates of blossoming of plants, found in personal diaries and other documents, and used in this reconstruction are available, with some gaps, for 1580-1920. Independent estimates of spring conditions during the 18th century using data on last day of snowfall, and during 20th and late 19th centuries using accumulated temperatures in Shanghai are also presented. The results show that the spring weather in this region was colder than present in the 17th century and during 1790-1820 and 1870-1920. Spring temperature warmer than the present prevailed during 1720-1770 and 1840-1860. This variation agrees in its broad outline with that of the solar cycle length presented by Friis-Christensen and Lassen (1991).

  17. Limited Genetic Diversity of Hepatitis B Virus in the General Population of the Offin River Valley in Ghana

    PubMed Central

    Ampah, Kobina Assan; Pinho-Nascimento, Carlos Augusto; Kerber, Sarah; Asare, Prince; De-Graft, Daniel; Adu-Nti, Frank; Paixão, Izabel C. N. P.; Niel, Christian; Yeboah-Manu, Dorothy; Pluschke, Gerd; Röltgen, Katharina

    2016-01-01

    Hepatitis B virus (HBV) infections account for approximately 780,000 deaths per year, most of which occur in the developing world. Co-infection with HBV and hepatitis delta virus (HDV) may lead to the most severe form of viral hepatitis. In Ghana, knowledge on the prevalence of HBV and HDV in the general population is scanty and the few genetic analyses of the prevailing HBV genotypes are dating back more than a decade. In the present study, 1,323 serum samples from individuals living in a rural area (Offin river valley) of Ghana were analyzed for the presence of the hepatitis B surface antigen (HBsAg). Positive sera were subsequently tested for the presence of anti-HDV antibodies. A total of 107 (8%) sera were HBsAg positive with an 8.4% prevalence of anti-HDV antibodies among the HBsAg positives. Phylogenetic analysis based on HBV pre-S/S sequences, attributed all 52 typable samples to genotype E. All belonged to serotype ayw4. While 19 sequences clustered with those from a number of African countries, the other 33 formed a separate cluster distinguished by an intergroup mean distance of 1.5% from the pan-African HBV/E cluster. Successful implementation of HBV vaccination in the region was reflected by the low HBsAg carrier rate of 1.8% among children ≤11 years. PMID:27271290

  18. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhai, Panmao

    2016-08-01

    Concurrent position shifts of the mid-level western Pacific subtropical high (WPSH) and the upper-level South Asia high (SAH) are regarded as significant precursors for persistent extreme precipitation events (PEPEs) in the Yangtze River Valley (YRV). By performing composite analyses, accountable vorticity genesis and dissipation are diagnosed based on a potential vorticity-diabatic heating theory. The results indicate that about 1 week preceding precipitation onset, a wave-like pattern of anomalous diabatic heating (Q) initiates its northwestward propagation from equatorial central Pacific. Subsequently, this wave-like pattern induces substantial changes in both horizontal and vertical structure of local Q along the propagating route. Forced negative vorticities in key areas result in the zonal approach between the SAH and the WPSH. During PEPEs, two thermal-induced vertical circulation cells take shape, with common strong ascent centered in the YRV. These anomalous cells are capable of self-maintaining for a few days via positive feedback processes. The WPSH and the SAH are therefore anchored in respective favorable positions for PEPEs. Simultaneously, descending motion of these two cells increases local solar radiation and decreases upward latent heat flux from surface, facilitating warmer underlying surface and swift accumulation of lower-level moisture. Correspondingly, enhanced heating to the north and rapid developing cyclone over warmer sea surface to the south combine to terminate above positive feedback processes. Finally, both the WPSH and the SAH retreat to their normal positions, accompanied by a quick decay of PEPEs.

  19. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, J.; Zidong, L.; Kado, T.; Tsumura, Y.; Middleton, B.A.; Tachida, H.

    2010-01-01

    Premise of the Study: Studies of the geographic patterns of genetic variation can give important insights into the past population structure of species. Our study species, Taxodium distichum L. (bald-cypress), prefers riparian and wetland habitats and is widely distributed in southeastern North America and Mexico. We compared the genetic variation of T. distichum with that of its close relative, Cryptomeria japonica, which is endemic to Japan. Methods: Nucleotide polymorphisms of T. distichum in the lower Mississippi River alluvial valley, USA, were examined at 10 nuclear loci. Key Results: The average nucleotide diversity at silent sites, 7sil, across the 10 loci in T. distichum was higher than that of C. japonica (7sil = 0.00732 and 0.00322, respectively). In T. distichum, Tajima's D values were each negative at 9 out of 10 loci, which suggests a recent population expansion. Maximum-likelihood and Bayesian estimations of the exponential population growth rate (g) of T. distichum populations indicated that this species had expanded approximately at the rate of 1.7 - 1.0 10 -6 per year in the past. Conclusions: Taxodium distichum had signifi cantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  20. Ancient DNA from the Schild site in Illinois: Implications for the Mississippian transition in the Lower Illinois River Valley.

    PubMed

    Reynolds, Austin W; Raff, Jennifer A; Bolnick, Deborah A; Cook, Della C; Kaestle, Frederika A

    2015-03-01

    Archaeologists have long debated whether rapid cultural change in the archaeological record is due to in situ developments, migration of a new group into the region, or the spread of new cultural practices into an area through existing social networks, with the local peoples adopting and adapting practices from elsewhere as they see fit (acculturation). Researchers have suggested each of these explanations for the major cultural transition that occurred at the beginning of the Mississippian period (AD 1050) across eastern North America. In this study, we used ancient DNA to test competing hypotheses of migration and acculturation for the culture change that occurred between the Late Woodland (AD 400-1050) and Mississippian (AD 1050-1500) periods in the Lower Illinois River Valley. We obtained sequences of the first hypervariable segment of the mitochondrial genome (mtDNA) from 39 individuals (17 Late Woodland, 22 Mississippian) interred in the Schild cemetery in western Illinois, and compared these lineages to ancient mtDNA lineages present at other sites in the region. Computer simulations were used to test a null hypothesis of population continuity from Late Woodland to Mississippian times at the Schild site and to investigate the possibility of gene flow from elsewhere in the region. Our results suggest that the Late Woodland to Mississippian cultural transition at Schild was not due to an influx of people from elsewhere. Instead, it is more likely that the transition to Mississippian cultural practices at this site was due to a process of acculturation. PMID:25418693

  1. Hyperspectral Proximal Sensing of Salix Alba Trees in the Sacco River Valley (Latium, Italy)

    PubMed Central

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-01-01

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are ‘healthier’ than those downstream. PMID:24172281

  2. Geothermal resource analysis in the Big Wood River Valley, Blaine County, Idaho

    SciTech Connect

    Street, L.V.

    1990-10-01

    A geochemical investigation of both thermal and nonthermal springs in the Wood River area was conducted to determine possible flowpaths, ages of the waters, and environmental implications. Seven thermal springs and five cold springs were sampled for major cations and anions along with arsenic, lithium, boron, deuterium and oxygen-18. Eight rocks, representative of outcrops at or near the thermal occurrences were sampled and analyzed for major and trace elements. The Wood River area hydrothermal springs are dilute Na-HCO{sub 3}-SiO{sub 2} type waters. Calculated reservoir temperatures do not exceed 100{degree}C, except for Magic Hot Springs Landing well (108{degree}C with Mg correction). The isotope data suggest that the thermal water is not derived from present-day precipitation, but from precipitation when the climate was much colder and wetter. Intrusive igneous rocks of the Idaho batholith have reacted with the hydrothermal fluids at depth. The co-location of the thermal springs and mining districts suggests that the structures acting as conduits for the present-day hydrothermal fluids were also active during the emplacement of the ore bodies.

  3. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  4. A river system to watch: documenting the effects of saltcedar (Tamarix spp.) biocontrol in the Virgin River valley

    USGS Publications Warehouse

    Bateman, Heather L.; Dudley, Tom L.; Bean, Dan W.; Ostoja, Steven M.; Hultine, Kevin R.; Kuehn, Michael J.

    2010-01-01

    Throughout riparian areas of the southwestern United States, non-native saltcedar (also known as tamarisk; Tamarix spp.) can form dense, monotypic stands and is often reported to have detrimental effects on native plants and habitat quality (Everitt 1980; Shafroth et al. 2005). Natural resource managers of these riparian areas spend considerable time and resources controlling saltcedar using a variety of techniques, including chemical (Duncan and McDaniel 1998), mechanical, and burning methods (Shafroth et al. 2005). Approximately one billion dollars are spent each year on river restoration projects nationally (Bernhardt et al. 2005), and a majority of these projects focus on invasive species control in the Southwest (Follstad Shah et al. 2007). A technique that has drawn much attention is the use of the saltcedar leaf beetle (Diorhabda spp.), a specialist herbivore, as biological control of saltcedar (Lewis et al. 2003). Research testing was conducted with beetles housed in secure enclosures in six states in 1998 and 1999 (Dudley et al. 2001), followed by open release at some of those sites starting in 2001 (DeLoach et al. 2004). By 2005, full-scale saltcedar biocontrol was implemented in 13 states, led by the USDA Animal and Plant Health Inspection Service (APHIS), the agency that oversees biological control programs, and with the participation and support of the U.S. Fish and Wildlife Service (USFWS). Despite the widespread application of Diorhabda, however, only limited research has quantified the consequences (benefits and costs) on biotic communities and ecosystem services. Alterations to riparian areas caused by various non-native species control activities have the potential to affect a variety of habitat types used by wildlife (Bateman et al. 2008a); processes like water availability, fluvial deposition, and erosion; and the establishment of other non-native species (Carruthers and D'Antonio 2005, Shafroth et al. 2005, DeLoach et al. 2006). Similarly

  5. Flooding of the Great River during the Common Era: A Paleohydrological Record of High Magnitude Flood Events from the Central Mississippi River Valley

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Munoz, S. E.; Gruley, K. E.; Massie, A.

    2014-12-01

    Streamflow characteristics are known to be sensitive to changes in climate, but few continuous records of flooding exist to evaluate the response of hydrological systems to centennial- and millennia-scale climate changes. Here, we present sedimentary records from two oxbow lakes (Horseshoe Lake and Grassy Lake, Illinois, USA) in the central Mississippi River valley (CMRV) that display abrupt shifts in sediment composition and particle-size consistent with deposition by floodwaters immediately following inundation of the floodplain. The sedimentary record at Horseshoe Lake begins ca. AD 100 and displays five major flood events, with four of these occurring after ca. AD 1100. Situated 200 km downstream, the record from Grassy Lake begins later, ca. AD 800, and also shows four major flood events after ca. AD 1100. An analysis of synchronicity using Bayesian age modelling software shows high likelihoods that the four overlapping flood events occurred at the same time, confirming that these events resulted from flooding of the Mississippi River. The most recent event we record at AD 1840 ± 50 corresponds to the AD 1844 flood, the largest flood by discharge (37 m3/s) measured by the gauging station at St. Louis, Missouri, indicating that our sedimentary records document high magnitude flood events. Together, our two sedimentary records show a major shift in the frequency of high magnitude flooding in the central Mississippi River at ca. AD 1100. From AD 100 - AD 1100, only one relatively subtle flood event is recorded, but from AD 1100 - AD 1900, four high magnitude floods deposited distinctive sediment at both sites. The period of infrequent flooding corresponds to a time of agricultural intensification and population growth in the CMRV, while the entire region was abandoned when flood frequency increased. The pronounced shift in flood frequency we observe in our records at ca. AD 1100 begins during the Medieval Climate Anomaly (MCA; AD 950 - AD 1250), a period of

  6. Geohydrology and simulated response to groundwater pumpage in Carson Valley, a river-dominated basin in Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, D.K.

    1986-01-01

    A numerical model was used to simulate the effect of development of the groundwater reservoir in Carson Valley on Carson River outflow, evapotranspiration, and groundwater levels and storage. The basin-fill groundwater reservoir consists of: (1) confined and unconfined sedimentary deposits of Quaternary age that underlie the valley floor, and (2) sedimentary deposits of Tertiary age that are exposed mainly on the east side of the valley. Water levels indicate the presence of two confined aquifer systems: one < 100 ft deep, and the other, generally deeper than 200 ft. The basin-fill reservoir is surrounded by bedrock that transmits recharge to the basin through weathered and fractured zones near the contact between bedrock and valley fill. Estimates were made of the distribution of hydraulic properties of aquifer materials, and of the components of inflow to and outflow from the basin-fill reservoir. Inflow components consisted of the following approximate quantities, in acre-ft/yr: (1) mainstem Carson River flow, 360,000; (2) direct precipitation, 70,000; (3) runoff from perennial and ephemeral streams, 24,000: and (4) subsurface inflow, 38,000. Approximate estimates of outflow components were, in acre-ft/yr; (1) mainstem Carson River flow, 291,000; (2) potential evapotranspiration, 200,000. Both inflow and outflow totaled about 490,000 acre-ft/yr. These flow volumes show that the hydrologic regimen of the basin is dominated by surface water flow of the Carson River. Steady-state and transient calibration of the model provided an unacceptable fit of observed versus simulated groundwater level fluctuations and storage, and surface water outflow from the valley. These values provide a reasonable balance for the simulated steady-state water budget. Simulations show that surface water flow is the ultimate source of about 75% of pumped water for six scenarios of possible future ground-water development. Model simulations indicate that changes from agricultural to urban

  7. Multipurpose bedrock surficial, and environmental geologic maps, New River valley, southwest Virginia

    SciTech Connect

    Schultz, A. ); Collins, T. )

    1994-03-01

    Multipurpose bedrock, surficial, and environmental geologic maps have recently been completed for portions of the Valley and Ridge province of southwest VA. The maps, at both 1:100,000 and 1:24,000 scales, show generalized and detailed bedrock geology grouped by lithology and environmental hazard associations. Also shown are a variety of alluvial, colluvial, debris flow, and landslide deposits, as well as karst features. Multidisciplinary research topics addressed during the mapping included slope evolution and geomorphology, drainage history and terrace distribution, ancient large-scale landsliding, and sinkhole development. The maps have been used by land-use planners and engineering firms in an evaluation of Appalachian paleoseismicity and to assess potential groundwater contamination and subsidence in karst areas. The maps are being used for environmental hazard assessment and site selection of a proposed large electric powerline that crosses the Jefferson National Forest. Also, the maps are proving useful in planning for a public access interpretive geologic enter focused on large-scale slope failures. Some of the largest known landslides in eastern North America took place within the map area. Field comparisons and detailed structure mapping of similar features along the Front Range of the Colorado Rockies indicate that the landslides were probably emplaced during a single catastrophic event of short duration. Although the giles County seismic zone is nearby, stability analyses of slopes in the map area have shown that failure need not have been initiated by a seismic event. Several distinct colluvial units mapped within the area of landslides document a period of extensive weathering that postdates slide emplacement. Radiocarbon dates from landslide sag ponds indicate a minimum age of 9,860 B.P. for emplacement of some of the landslides. These results indicate that pre-slide colluvial and debris flow deposits are at least Pleistocene in age.

  8. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  9. Late Holocene dune activity in the Eastern Platte River Valley, Nebraska

    NASA Astrophysics Data System (ADS)

    Hanson, P. R.; Joeckel, R. M.; Young, A. R.; Horn, J.

    2009-02-01

    Large-scale dune activity in the Nebraska Sand Hills and elsewhere on the western Great Plains has been linked to prehistoric "megadroughts" that triggered the activation of regional dune fields. The effect of megadroughts on the smaller dune fields east of the Nebraska Sand Hills has never been assessed, however. This study focuses on the Duncan dune field near the confluence of the Loup and Platte rivers in eastern Nebraska. Seventeen optically stimulated luminescence age estimates were obtained and reveal two periods of dune activation that occurred between 4.4 to 3.4 ka and 0.8 to 0.5 ka. Significantly, both periods chronologically overlap large-scale dune activity identified in the Nebraska Sand Hills. Geochemical evidence indicates that the Duncan dunes received sand not only from the terrace underlying them, but also from the Loup River. These data link dune activity in the Duncan area, at least indirectly, to increased sediment supply from streams that drain the Sand Hills during megadroughts, implying the activation of the dunes occurred as an indirect response to regional megadroughts. Calculations of dune migration rates, however, argue in favor of local, drought-driven hydrologic changes as a causative factor in dune activation, in other words, a direct effect of megadroughts. Whether the impact was direct or indirect, it is highly likely that the repeated reactivation of the Duncan dunes resulted in some way from regional, large-magnitude droughts. Other paleoclimate proxies from the Great Plains tend to support this conclusion. We conclude that the megadroughts that have been identified in the Sand Hills and other Great Plains dune fields were indeed regional events with far-reaching effects.

  10. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    NASA Astrophysics Data System (ADS)

    Wulf, H.; Bookhagen, B.; Scherler, D.

    2012-01-01

    The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature, earthquake records, and Schmidt hammer rock strength measurements, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (≥99th SSC percentile) coincide frequently (57-80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments we find an anticlockwise hysteresis loop of annual sediment flux, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions.

  11. Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Piccini, Leonardo; De Waele, Jo; Galli, Ermanno; Polyak, Victor J.; Bernasconi, Stefano M.; Asmerom, Yemane

    2015-01-01

    Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300 mg l- 1. The cave hosts large gypsum deposits from 40 to 100 m below the entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents. Sulphur isotopes of gypsum have negative δ34S values (from - 28.3 to - 24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsum both yield young U/Th ages varying from 68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsum precipitation in aerate environment. This fast water table lowering is related to a rapid incision of the nearby Albegna river, and was followed by a 20-30 m fluctuation of the thermal water table, as recorded in the calcite raft deposits and gypsum crusts.

  12. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower-Colorado River valley, Arizona, California, and Nevada

    USGS Publications Warehouse

    Radtke, D.B.; Kepner, W.G.; Effertz, R.J.

    1988-01-01

    The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)

  13. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    USGS Publications Warehouse

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  14. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth

  15. Hydrologic data for the San Juan and Animas River valleys in the Farmington, Aztec, Bloomfield, and Cedar Hill areas, San Juan County, New Mexico

    USGS Publications Warehouse

    McAda, D.P.; Shelton, S.G.

    1987-01-01

    In July 1985, the U.S. Geological Survey initiated a three-year study in San Juan County, New Mexico, to determine the concentrations of chemical constituents in the groundwater in the San Juan and Animas River valleys and to determine the direction and rate of groundwater flow and its relation to river stage. The study was conducted in cooperation with the San Juan County Commission and the New Mexico Oil Conservation Division. The data that was collected during the first 1-1/2 yr of the study is completed. The report includes well records for 51 wells and water levels from 23 wells, hydrographs from four observation wells and one river stage site, and available chemical analyses from 50 wells and 14 surface water sites. Water samples from six wells and one surface-water site were analyzed for purgeable organic chemicals; none were detected. (Lantz-PTT)

  16. Barren area evapotranspiration estimates generated from energy budget measurements in the Gila River valley of Arizona

    USGS Publications Warehouse

    Leppanen, O.E.

    1980-01-01

    Estimates of evapotranspiration for 479 successive days were created by using energy budget measurements. The measurement point was on the 2-kilometer wide flood plain of the Gila River in east-central Arizona, about 18 kilometers above Coolidge Dam. The flood plain had been cleared of all tall vegetation for distances of about 20 kilometers upstream and 5 kilometers downstream from the measurement site. Chaining, raking, and burning had been used to clear the area immediately surrounding the measurement site about 6 months before measurements began. Ground cover was sparse volunteer Bermudagrass and scattered seepwillow for a distance of at least 1 kilometer in all directions from the measurement point . The water table was deep , so most of the evaporated water came from rainfall, but some came from soil moisture deeper than 2 meters. The March to March water loss (evapotranspiration less rain) was about 47 millimeters, evapotranspiration demand was 377 millimeters. Daily rates varied from very small amounts of condensation to almost 5 millimeters of evapotranspiration. (USGS)

  17. Distribution of Ticks and Prevalence of Borrelia burgdorferi in the Upper Connecticut River Valley of Vermont

    PubMed Central

    Serra, Abigail C.; Warden, Paul S.; Fricker, Colin R.; Giese, Alan R.

    2014-01-01

    Ixodes scapularis (Black-legged Tick) has expanded its range in recent decades. To establish baseline data on the abundance of the Black-legged Tick and Borrelia burgdorferi (causative agent of Lyme disease) at the edge of a putative range expansion we collected 1398 ticks from five locations along the Connecticut River in Vermont. Collection locations were approximately evenly distributed between the villages of Ascutney and Guildhall. Relative abundance and distribution by species varied across sites. Black-legged Ticks dominated our collections (n = 1348, 96%), followed by Haemaphysalis leporispalustris (Rabbit Tick, n = 45, 3%) and Dermacentor variabilis (American Dog Tick, n = 5, <1%). Black-legged Tick abundance ranged from 6198 ticks per survey hectare (all life stages combined) at the Thetford site to zero at the Guildhall site. There was little to no overlap of tick species across sites. Phenology of Black-legged Ticks matched published information from other regions of the northeastern USA. Prevalence of B. burgdorferi in adult Black-legged Ticks was 8.9% (n = 112). PMID:25473255

  18. Regression models of ecological streamflow characteristics in the Cumberland and Tennessee River Valleys

    USGS Publications Warehouse

    Knight, Rodney R.; Gain, W. Scott; Wolfe, William J.

    2011-01-01

    Predictive equations were developed using stepbackward regression for 19 ecologically relevant streamflow characteristics grouped in five major classes (magnitude, ratio, frequency, variability, and date) for use in the Tennessee and Cumberland River watersheds. Basin characteristics explain 50 percent or more of the variation for 10 of the 19 equations. Independent variables identified through stepbackward regression were statistically significant in 81 of 304 coefficients tested across 19 models (⬚ < 0.0001) and represent four major groups: climate, physical landscape features, regional indicators, and land use. The most influential variables for determining hydrologic response were in the land-use and climate groups: daily temperature range, percent agricultural land use, and monthly mean precipitation. These three variables were major explanatory factors in 17, 15, and 13 models, respectively. The equations and independent datasets were used to explore the broad relation between basin properties and streamflow and its implications for the study of ecological flow requirements. Key results include a high degree of hydrologic variability among least disturbed Blue Ridge streams, similar hydrologic behavior for watersheds with widely varying degrees of forest cover, and distinct hydrologic profiles for streams in different geographic regions.

  19. Number and size of last-glacial Missoula floods in the Columbia River valley between the Pasco Basin, Washington, and Portland, Oregon

    USGS Publications Warehouse

    Benito, G.; O'Connor, J. E.

    2003-01-01

    Field evidence and radiocarbon age dating, combined with hydraulic flow modeling, provide new information on the magnitude, frequency, and chronology of late Pleistocene Missoula floods in the Columbia River valley between the Pasco Basin, Washington, and Portland, Oregon. More than 25 floods had discharges of > 1.0 ?? 106 m3/s. At least 15 floods had discharges of >3.0 ?? 106 m3/s. At least six or seven had peak discharges of >6.5 ?? 106 m3/s, and at least one flood had a peak discharge of ???10 ?? 106 m3/s, a value consistent with earlier results from near Wallula Gap, but better defined because of the strong hydraulic controls imposed by critical flow at constrictions near Crown and Mitchell Points in the Columbia River Gorge. Stratigraphy and geomorphic position, combined with 25 radiocarbon ages and the widespread occurrence of the ca. 13 ka (radiocarbon years) Mount St. Helens set-S tephra, show that most if not all the Missoula flood deposits exposed in the study area were emplaced after 19 ka (radiocarbon years), and many were emplaced after 15 ka. More than 13 floods perhaps postdate ca. 13 ka, including at least two with discharges of >6 ?? 106 m3/s. From discharge and stratigraphic relationships upstream, we hypothesize that the largest flood in the study reach resulted from a Missoula flood that predated blockage of the Columbia River valley by the Cordilleran ice sheet. Multiple later floods, probably including the majority of floods recorded by fine- and coarse-grained deposits in the study area, resulted from multiple releases of glacial Lake Missoula that spilled into a blocked and inundated Columbia River valley upstream of the Okanogan lobe and were shunted south across the Channeled Scabland.

  20. The Eastern Lower Tagus Valley Fault Zone in central Portugal: Active faulting in a low-deformation region within a major river environment

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana P.; Besana-Ostman, Glenda M.; Carvalho, João; Heleno, Sandra; Fonseca, Joao

    2015-10-01

    Active faulting in the Lower Tagus Valley, Central Portugal, poses a significant seismic hazard that is not well understood. Although the area has been affected by damaging earthquakes during historical times, only recently has definitive evidence of Quaternary surface faulting been found along the western side of the Tagus River. The location, geometry and kinematics of active faults along the eastern side of the Tagus valley have not been previously studied. We present the first results of mapping and paleoseismic analysis of the eastern strand of the Lower Tagus Valley Fault Zone (LTVFZ). Geomorphological, paleoseismological, and seismic reflection studies indicate that the Eastern LTVFZ is a left-lateral strike-slip fault. The detailed mapping of geomorphic features and studies in two paleoseismic trenches show that surface fault rupture has occurred at least six times during the past 10 ka. The river offsets indicate a minimum slip rate on the order of 0.14-0.24 mm/yr for the fault zone. Fault trace mapping, geomorphic analysis, and paleoseismic studies suggest a maximum magnitude for the Eastern LTVFZ of Mw ~ 7.3 with a recurrence interval for surface ruptures ~ 1.7 ka. At least two events occurred after 1175 ± 95 cal yr BP. Single-event displacements are unlikely to be resolved in the paleoseismic trenches, thus our observations most probably represent the minimum number of events identified in the trenches.

  1. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  2. Pesticides in the atmosphere of the Mississippi River Valley, part I - Rain

    USGS Publications Warehouse

    Majewski, M.S.; Foreman, W.T.; Goolsby, D.A.

    2000-01-01

    Weekly composite rainfall samples were collected in three paired urban and agricultural regions of the Midwestern United States and along the Mississippi River during April-September 1995. The paired sampling sites were located in Mississippi, Iowa, and Minnesota. A background site, removed from dense urban and agriculture areas, was located near Lake Superior in Michigan. Herbicides were the predominant type of pesticide detected at every site. Each sample was analyzed for 47 compounds and 23 of 26 herbicides, 13 of 18 insecticides, and three of three related transformation products were detected in one or more sample from each paired site. The detection frequency of herbicides and insecticides were nearly equivalent at the paired Iowa and Minnesota sites. In Mississippi, herbicides were detected more frequently at the agricultural site and insecticides were detected more frequently at the urban site. The highest total wet depositional amounts (??g pesticide/m2 per season) occurred at the agricultural sites in Mississippi (1980 ??g/m2) and Iowa (490 ??g/m2) and at the urban site in Iowa (696 ??g/m2). Herbicides accounted for the majority of the wet depositional loading at the Iowa and Minnesota sites, but methyl parathion (1740 ??g/m2) was the dominant compound contributing to the total loading at the agricultural site in Mississippi. Atrazine, CIAT (a transformation product of atrazine and propazine) and dacthal were detected most frequently (76, 53, and 53%, respectively) at the background site indicating their propensity for long-range atmospheric transport. Copyright (C) 2000 Elsevier Science B.V.

  3. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River basin

    SciTech Connect

    Ahlbrandt, T.S.; Fox, J.E.

    1997-07-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine {open_quotes}Limestone Marker{close_quotes} and estuarine {open_quotes}Brown Shale{close_quotes}. The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming.

  4. Channel and landscape dynamics in the alluvial forest mosaic of the Carmanah River valley, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Little, Patrick J.; Richardson, John S.; Alila, Younes

    2013-11-01

    The highly diverse shifting-mosaic of forest patches of an alluvial forest within the Carmanah River valley on the west coast of Vancouver Island, British Columbia was studied to examine the hydrogeomorphic disturbance regime that structures it. We used a landscape-scale analysis to quantify historical channel migrations and changes in the extent of specific forest types. This GIS-based analysis using a 70-year aerial photographic record was complemented by field-based research. Thirty-eight plots containing 4509 trees were sampled for forest structure, age, and elevation above the contemporary channel. These data, including a vegetation chronosequence spanning over 500 years, were used to examine channel and landscape dynamics. Our findings support a general conceptual model that describes cycles of patch development and destruction in unconfined alluvial forests of the Pacific Coastal Ecoregion. Over the past century, Carmanah River has eroded nearly 30% of the alluvial forest in this study area, and approximately 65% over the past 500 years. At least 80% of the 2007 channel was forested area within the past 70 years. Younger landforms were disturbed more frequently than mature forest patches, which suggest that as biogeomorphic succession progresses the likelihood of future disturbance decreases. Estimated half lives of landforms ranged from 24 years for pioneer bars to over 1500 years for old growth terraces. Years of regional high magnitude floods resulted in a net loss of floodplain forest area indicating that disturbance was climate driven in this pluvial watershed, whereby rain events result in flood disturbance that converted forests to channel. These events initiate a subsequent course of vegetation succession and geomorphic development, and often result in the deposition of large wood that modifies the channel environment and contributes to channel avulsion and further hydrogeomorphic disturbance. The composition of the landscape is a reflection of the

  5. Interdecadal Connection Between Artic Temperature and Summer Precipitation Over the Yangtze River Valley in the CMIP5 Historical Simulations

    SciTech Connect

    Li, Yuefeng; Leung, Lai-Yung R.; Xiao, Ziniu; Wei, Min; Li, Qingquan

    2013-10-01

    This study assesses the ability of the Phase 5 Coupled Model Intercomparison Project (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from Canada (CCCma), China (BCC), Germany (MPI-M), Japan (MRI), United Kingdom (MOHC), and United States (NCAR) are used. The NCEP/NCAR reanalysis and observed precipitation are also used for comparison. Among the six CMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990-2005 relative to 1960-1975, and the relationships between the summer precipitation with surface temperature (Ts), the 850hPa winds, and 500hPa height field (H500), and between Ts and H500 using regression, correlation, and SVD analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid-to high latitudes and the Arctic in winter, spring and summer. The summer Baikal blocking appears to be the bridge that links the winter and spring surface warming over the mid-to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of high latitude and Arctic processes on interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages.

  6. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia

    USGS Publications Warehouse

    Vidic, N.; Pavich, M.; Lobnik, F.

    1991-01-01

    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  7. Arsenic occurrence, mobility, and retardation in sandstone and dolomite formations of the Fox River Valley, Eastern Wisconsin.

    PubMed

    Thornburg, Katie; Sahai, Nita

    2004-10-01

    Elevated levels of groundwater arsenic (approximately 100 microg L(-1) = 1.3 x 10(-6) M) are found in the Fox River Valley, eastern Wisconsin. The goals of this study were to identifythe sources of As contamination and to determine the reactions responsible for As mobilization and retardation in areas lacking a discrete zone of As-enriched sulfides, shown previouslyto cause elevated arsenic in groundwater. Detailed mineralogical and chemical analyses were conducted on samples from the Sinnipee Group dolomite and St. Peter sandstone in eastern Wisconsin. Solution chemistry was monitored in batch reactions of dolomite, quartz, and sulfide mineral fractions with a 0.01 M CsCl solution at pH 7 for 3 weeks in air. Results indicate that arsenic is present in isomorphous substitution with pyrite/marcasite (FeS2), which occurs as disseminated veins, grains, and nodules in the dolomite and sandstone. The released As subsequently sorbs on the ferric oxyhydroxides formed or coprecipitates in a scorodite-like phase. Significantly, oxidative dissolution of the disseminated As-rich FeS2 grains and nodules is sufficient to explain the elevated As levels observed in eastern Wisconsin groundwater. Although complete uptake of As is observed in the batch experiments, persistent elevated As levels with spatial and temporal variations in regional groundwaters are attributed to differences in the type of sulfide occurrence (discrete horizon vs dispersed grains, veins, and nodules), variations in the dissolved oxygen content of the groundwater, and variable (limited) buildup of reacted surface layers on sulfide grains in the natural flow-through system. Discrete nanoparticulate As phases, As surface precipitates on sulfides, and sorbed As on dolomite and quartz are eliminated as major sources, and sorption of arsenic on dolomite and quartz is deemed less important than association with ferric oxyhydroxides for retardation in the regional system. PMID:15506203

  8. Evidence for biologic response to pedogenesis along the Merced River chronosequence, Central Valley, California

    NASA Astrophysics Data System (ADS)

    Reed, S. E.; Amundson, R.

    2010-12-01

    Long-term soil weathering results in accumulations of clay and reduced hydraulic conductivity. How biology responds to these changes in the physical environment and how the response, in turn, influences landscape development are crucial questions in the effort to elucidate the links between the biologic and physical earth surface domains. Mima mounds are small, circular half-domes of soil that are suspected of being formed by burrowing rodents, as an adaption to saturated soil conditions. In the swales between the mounds, ephemeral wetlands called vernal pools, support a suite of endemic and endangered plant and animal species. Mima mounds, then, may provide a useful model by which to examine the complex feedbacks between landscape and life. In this study, changes in mound characteristics and in biological activity (pocket gopher, Thomomys bottae) are investigated across the Merced River chronosequence, a series of alluvial terraces which have been shown to exhibit an increasing degree of soil and hardpan development with landform age. Mound morphology (size, slope, curvature, concentration, elongation, dispersion) and relation to environmental parameters were analyzed using airborne LIDAR (light detection and ranging) imagery of the mounds. The high-resolution (1m) LIDAR surveys (conducted in 2006 and 2010) cover 65km2 and comprise seven different-aged landforms, ranging from several hundred years to several million years. Minimal filtering was performed on the dataset given the absence of large vegetation or other obstructions. A 20x20m moving window filter was used to smooth out the low frequency signals and accentuate mounded features. To test how and whether the subterranean mammals modify their burrowing habits in response to soil age, biotic sediment transport was measured monthly on 0.01, 0.5, and 2 m.y.o. terraces using RFID (radio frequency identification) technology. Half-liter portions of soil containing five RFID tags were implanted in active gopher

  9. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  10. Unraveling the Quaternary river incision in the Moselle valley (Rhenish Massif, Germany): new insights from cosmogenic nuclide dating (10Be/26Al) of the Main Terrace complex

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; Cordier, Stéphane; Harmand, Dominique; May, Simon Matthias; Kelterbaum, Daniel; Dunai, Tibor; Binnie, Steven; Brückner, Helmut

    2014-05-01

    Throughout the whole river network of the Rhenish Massif, the terrace complex of the so-called Main Terrace forms the morphological transition between a wide upper palaeovalley (plateau valley) and a deeply incised lower valley. The youngest level of this Main Terrace complex (YMT), directly located at the edge of the incised valley, represents a dominant geomorphic feature in the terrace flight; it is often used as a reference level to identify the start of the main middle Pleistocene incision episode (Demoulin & Hallot, 2009). The latter probably reflects the major tectonic pulse that affected the whole Massif and was related to an acceleration of the uplift rates (Demoulin & Hallot, 2009). The Main terraces are particularly well preserved in the lower Moselle valley and are characterized by a constant absolute elevation of their base along a 150 km-long reach. Despite that various hypotheses have been proposed to explain this horizontality (updoming, faulting...), all studies assumed an age of ca. 800 ka for the YMT, mainly based on the questionable extrapolation of palaeomagnetic data obtained in the Rhine valley. Therefore, a reliable chronological framework is still required to unravel the spatio-temporal characteristics of the Pleistocene evolution of the Moselle valley. In this study, we apply cosmogenic nuclide dating (10Be/26Al) to fluvial sediments pertaining to the Main Terrace complex or to the upper Middle Terraces. Several sites along the lower Moselle were sampled following two distinct sampling strategies: (i) depth profiles where the original terrace (palaeo-)surface is well preserved and did not experience much postdepositional burial (e.g., loess cover); and (ii) the isochron technique where the sediment thickness exceeds 3 m. Cosmogenic nuclide ages recently obtained for three rivers in the Meuse catchment in the western Rhenish Massif demonstrated that the Main Terraces were younger than expected and their abandonment was diachronic along the

  11. Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool

    NASA Astrophysics Data System (ADS)

    Delgado, J.; López Casado, C.; Estévez, A.; Giner, J.; Cuenca, A.; Molina, S.

    2000-08-01

    This study analyses the spatial distribution of soft soils in a valley with a significant amount of recently accumulated (Late Pleistocene-Holocene) sediments, but where the available geotechnical information on the subsurface is inadequate to study the entire valley. To analyse this distribution, we have used a new geophysical prospecting technique, which consists of estimating the thickness of soft soils based on their resonance frequency. This frequency has been determined from the H/V ratios of microtremors measured at 180 sites in the valley. The results indicate the generalised presence of soft soils along almost the entire valley, with thicknesses of up to 67 m. Based on the interpolation of the results, we have drawn up a map showing the spatial distribution and thickness of the soft soils in the valley. This map is of great interest both for future plans regarding the use of the soil in the region as well as for seismic zoning and soil-response studies.

  12. Contaminant Pathways and Metal Sequestration Patterns in the Lower Coeur d'Alene River Valley, Idaho: Mechanics of Trace Metal Mobility

    NASA Astrophysics Data System (ADS)

    Strumness, L. A.; Hooper, R. L.; Mahoney, J. B.

    2004-05-01

    Remediating fluvial systems impacted by sulfide mining requires characterization of contaminant mobility and the pathways of trace metal transport. Variations in sediment mobility, mineral stability, organic content, redox conditions, microbial activity and other factors between fluvial subenvironments leads to complex metal sequestration patterns. Precise characterization of contaminants requires a detailed assessment of the physical characteristics of mineral species together with an understanding of the chemical stability of these species under various conditions. An integrated analytical methodology including calibrated sequential extraction and electron microscopy (SEM and TEM) provides unprecedented insight into metal speciation and behavior in different fluvial subenvironments. Three transects, including river channel, levee, wetland and lacustrine environments, along the 30km length of the lower Coeur d'Alene (CdA) River valley demonstrate both the lateral consistency within various fluvial subenvironments and the dramatic variations between subenvironments. The lower CdA River valley is a low gradient (<5m/km) meandering stream with a well-developed river channel contained by 1-3m levees. The combination of low gradient and an artificially controlled base level results in a quiescent, stratified water mass and anaerobic river channel sediments. The river channel sediments contain abundant detrital and authigenic sulfide minerals (PbS, FeS2, ZnS) and carbonates (PbCO3, FeCO3) and locally, sulfide encrusted organic matter. The river is the main conduit of contaminated sediment derived from the mining district upstream, but more importantly, remobilized anoxic river bottom sediments are responsible for ongoing trace metal contamination throughout the fluvial system. Sulfide rich channel sediments are remobilized during flood events, and redistributed into adjacent levee, wetland, and lacustrine environments. Detrital and authigenic sulfides are rapidly

  13. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  14. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  15. Linking Grain Size and Sedimentary Structure to Autogenic and Allogenic Processes Associated with Holocene Valley Infill and Evolution, Brazos River, TX

    NASA Astrophysics Data System (ADS)

    Moran, K. E.; Nittrouer, J.; Lorenzo-Trueba, J.; Anderson, J. B.

    2014-12-01

    The Brazos River exhibits extraordinarily well-constrained allogenic processes including sea level and climate change, and our understanding of these variables prime the Brazos River to be an excellent natural laboratory for the examination of fluvial morphodynamics under the influence of allogenic and autogenic processes. This research seeks to elucidate an understanding of autogenic and allogenic signatures on stratigraphy through morphodynamic modeling of aggradation and avulsions of the Brazos River in conjunction with climate and sea level changes throughout Holocene time. Backwater length scales are hypothesized to propel autogenic responses of the Brazos system by dictating the loci of aggradation, which back-step and fill the valley as sea level rises. The backwater length scale and sea level covary, thus inducing an intrinsic, but historically complex, relationship between autogenic and allogenic processes that is sought to be discerned using the morphodynamic model presented herein. We simulate Brazos fluvial evolution via changes in fluid flow, sediment transport, and bed topography under the influence of allogenic perturbations. The results are used to characterize and quantify the stratigraphic evolution of the Brazos incised valley fill and are readily comparable to numerous previous studies of the system. The infill model is informed by grain size data collected from modern deposits and by modern channel dimensions. This research attempts to link rising Holocene sea level with a backwater length scale which coincides with the extent of back-stepping aggradation within the Brazos incised valley. Modeling responses to perturbations of the Brazos fluvial system can be applied, more holistically, to predict future coastal dynamics and to inform interpretations of paleo-fluvial systems and hydrocarbon reservoirs.

  16. Use of Remotely Piloted Aircraft System (RPAS) in the analysis of historical landslide occurred in 1885 in the Rječina River Valley, Croatia

    NASA Astrophysics Data System (ADS)

    Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir

    2016-04-01

    Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry

  17. Groundwater components in the alluvial aquifer of the alpine Rhone River valley, Bois de Finges area, Wallis Canton, Switzerland

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Vuataz, François-D.

    2000-09-01

    Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Résumé. Origine, type et quantité de nombreux composants d'eau de l'aquifère alluvial dans la vallée supérieure du Rhône, Bois de Finges, Valais, Suisse, ainsi que leurs variations spatiales et temporelles ont été déterminés par différentes méthodes hydrochimiques. Les méthodes utilisées sont la modélisation hydrochimique, les isotopes stables, ainsi que l'échantillonnage en période de hautes eaux et de basses eaux pour étudier la distribution spatiale de la composition chimique, alors qu'un échantillonnage mensuel pendant trois ans sert à comprendre les processus de la variabilité saisonnière. Les paramètres physico-chimiques des eaux souterraines montrent des variations spatiales et saisonnières. La composition chimique de l'aquifère alluvial du Rhône indique un mélange entre une eau peu minéralisée venant du Rhône et une eau sulfatée s

  18. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas

    USGS Publications Warehouse

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Twenty one of 118 irrigation water wells in the shallow (25-30??m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (< 0.5 to 77????g/L) exceeding 10????g/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO3-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25??M hydroxylamine hydrochloride in 0.25??M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO3 extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70????g/kg) exchangeable As is only present at shallow depth (0-1??m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r = 0.83) and hot HNO3 (r = 0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO3. Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO3) is positively correlated (r = 0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include

  19. Greenhouse gas fluxes and budget for an annual cropping system in the Red River Valley, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Glenn, Aaron James

    Agriculture contributes significantly to national and global greenhouse gas (GHG) inventories but there is considerable control over management decisions and changes in production methods could lead to a significant reduction and possible mitigation of emissions from the sector. For example, conservation tillage practices have been suggested as a method of sequestering atmospheric carbon dioxide (CO2), however, many questions remain unanswered regarding the short-term efficacy of the production method and knowledge gaps exist regarding possible interactions with essential nutrient cycles, and the production of non-CO2 GHGs, such as nitrous oxide (N2O). Between autumn 2005 and 2009, a micrometeorological flux system was used to determine net CO2 and (N2O exchange from an annual cropping system situated on clay soil in the Red River Valley of southern Manitoba. Four plots (4-ha each) were independently evaluated and planted to corn in 2006 and faba bean in 2007; in 2008, two spring wheat plots were monitored. As well, during the non-growing season in 2006-2007 following corn harvest, a second micrometeorological flux system capable of simultaneously measuring stable C isotopologue (12CO2 and 13CO 2) fluxes was operated at the site. Tillage intensity and crop management practices were examined for their influence on GHG emissions. Significant inter-annual variability in CO2 and (N2O fluxes as a function of crop and related management activities was observed. Tillage intensity did not affect GHG emissions from the site. After accounting for harvest removals, the net ecosystem C budgets were 510 (source), 3140 (source) and -480 (sink) kg C/ha/year for the three respective crop years, summing to a three-year loss of 3170 kg C/ha. Stable C isotope flux measurements during the non-growing season following corn harvest indicated that approximately 70 % and 20 -- 30 % of the total respiration flux originated from crop residue C during the fall of 2006 and spring of 2007

  20. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)

    USGS Publications Warehouse

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from <0.5 to 77 ??g/L. Twenty percent total As was complexed with Fe and Mn oxyhydroxides. The redox environment, chemical data of sediments and groundwater, and the results of inverse geochemical modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.

  1. Calcite strains, kinematic indicators, and magnetic flow fabric of a Proterozoic pseudotachylyte swarm, Minnesota River valley, USA

    NASA Astrophysics Data System (ADS)

    Craddock, John P.; Magloughlin, Jerry F.

    2005-06-01

    Near Granite Falls, Minnesota sub-parallel pseudotachylyte, mafic dikes, and calcite veins crosscut Archean granulite facies rocks in the Minnesota River valley adjacent to the north-dipping Yellow Medicine Shear Zone (YMSZ; N80°E) that separates the Montevideo and Morton tectonic terranes. The docking of these two Archean terranes occurred prior to intrusion of the 2.067 Ga Kenora-Kabetogama dike swarm as demonstrated by aeromagnetic anomalies (correlated with field exposures) that cross the YMSZ without offset. Tectonic adjustments along the YMSZ associated with the Penokean Orogeny (˜ 1.8 Ga) are likely responsible for pseudotachylyte formation. Pseudotachylyte is exposed in 22 sub-parallel veins (˜ N80°E, 90°) each less than 2 cm wide across an outcrop width of 45 m. The pseudotachylyte matrix is commonly banded, and contains crystal fragments (quartz, plagioclase, amphibole, rutile, apatite, ilmenite, ulvöspinel), magnetite microlites, flow banding swirls, amygdules (filled with calcite, ankerite and siderite), collapsed vesicles, and abundant lithic clasts. Pseudotachylyte formed in a number of phases. Kinematic reconstruction is complex, utilizing winged porphyroclasts, S-C structures in the country rock, and fault drag indicators along the pseudotachylyte zones. Dextral motion along the YMSZ is the most common observation. Mechanically twinned calcite within amygdules in the pseudotachylyte preserves horizontal shortening normal to the pseudotachylyte strike. Calcite veins are apparently contemporaneous with the pseudotachylyte; one set preserves twinning strains identical to the calcite amygdule strains, and the second set contains a horizontal, vein-parallel (N70°E) shortening strain. The pseudotachylyte contains a flow fabric, as determined by AMS techniques, that is a proxy for vertical flow ( Kmax is vertical). The Kenora-Kabetogama dikes, identified geochemically, are locally parallel to the pseudotachylyte and the adjacent YMSZ tectonic suture

  2. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas

    NASA Astrophysics Data System (ADS)

    Sharif, M. U.; Davis, R. K.; Steele, K. F.; Kim, B.; Hays, P. D.; Kresse, T. M.; Fazio, J. A.

    2008-07-01

    Twenty one of 118 irrigation water wells in the shallow (25-30 m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (< 0.5 to 77 µg/L) exceeding 10 µg/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO3-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25 M hydroxylamine hydrochloride in 0.25 M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO3 extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70 µg/kg) exchangeable As is only present at shallow depth (0-1 m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r = 0.83) and hot HNO3 (r = 0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO3. Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO3) is positively correlated (r = 0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic

  3. Analysis of links between groundwater recharge and discharge areas and wetland plant communities distribution in Middle Biebrza Basin, Poland

    NASA Astrophysics Data System (ADS)

    Grygoruk, Mateusz; Batelaan, Okke; Okruszko, Tomasz; Kotowski, Wiktor; Rycharski, Marek; Chormanski, Jaroslaw; Miroslaw-Swiatek, Dorota

    2010-05-01

    Natural evolution of wetlands is strongly dependent on groundwater dynamics, soil aeration and climate. These environmental factors determine the constant development of wetland plant communities and peat forming processes. Depending on spatial distribution of groundwater flow systems and recharge and discharge conditions, shallow groundwater can also be influenced by phreatophytic plants. Such feedback plays an important role in wetland development, especially when landuse or climate changes occur. Thus, understanding the links between dynamics of biotopic and biocenotic relations is crucial for wetland management aimed at the comprehensive set of conservation strategies. Main aim of this study was to review links between valuable wetland plant communities and the groundwater recharge/discharge conditions of particular habitats of Middle Biebrza Basin, Poland. The study area consists of various types of wetland landscapes, of which the dominant are fens. Organogenic top layer is intersected locally by sandy dunes and glaci-fluvial residual plateaus. The northern boundary of the study area is covered with an outwash plateau. A three-dimensional regional groundwater flow model was set up to quantify groundwater system and flow paths. Model calibration involved measured heads of the unconfined organogenic top layer and the underlaying, confined sandy aquifer. Measured thickness of unsaturated zone as well as physical parameters of organogenic layer were taken into account in interpretation of shallow groundwater dynamics. Recharge to groundwater was spatially distributed in accordance to analysis of measured precipitation-groundwater level relationships. Cell-by-cell flow analysis and groundwater exfiltration analysis were applied to map groundwater recharge and discharge areas within the modelled area. Results of groundwater modelling were validated with phytosociologic research combined with remote-sensing based spatial analysis of wetland habitats distribution

  4. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    NASA Astrophysics Data System (ADS)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  5. Spatial relations between floodplain environments and land use - land cover of a large lowland tropical river valley: Pánuco basin, México.

    PubMed

    Hudson, Paul F; Colditz, René R; Aguilar-Robledo, Miguel

    2006-09-01

    Large lowland river valleys include a variety of floodplain environments that represent opportunities and constraints for human activities. This study integrates extensive field observations and geomorphic data with analysis of satellite remote sensing data to examine spatial relations between land use/land cover (LULC) and floodplain environments in the lower Pánuco basin of eastern Mexico. The floodplain of the lower Pánuco basin was delineated by combining a digital elevation model with a satellite image of a large flood event. The LULC was classified by combining a hybrid classification strategy with image stratification, applied to 15-m-resolution ASTER data. A geomorphic classification of floodplain environments was performed using a dry-stage image (ASTER data) and a 1993 Landsat image acquired during a large flood event. Accuracy assessment was based on aerial photographs (1:38,000), global positioning satellite ground-truthing, and a Landsat 7ETM(+) image from 2000, which resulted in an overall accuracy of 82.9% and a KHAT of 79.8% for the LULC classification. The geomorphic classification yielded 83.5% overall accuracy, whereas the KHAT was 81.5%. LULC analysis was performed for the entire floodplain and individually within four valley segments. The analysis indicates that the study area is primarily utilized for grazing and farming. Agriculture is primarily associated with coarse-grained (sandy/silty) natural levee and point bar units close to the river channel, whereas cattle grazing occurs in distal and lower-lying reaches dominated by cohesive fine-grained (clayey) deposits, such as backswamps. In the Pánuco valley, wetlands and lakes occur within backswamp environments, whereas in the Moctezuma segments, wetlands and lakes are associated with relict channels. This study reveals considerable variation in LULC related to spatial differences in floodplain environments and illustrates the importance of considering older anthropogenic influences on the

  6. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    USGS Publications Warehouse

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  7. Development of an Interactive Shoreline Management Tool for the Lower Wood River Valley, Oregon - Phase I: Stage-Volume and Stage-Area Relations

    USGS Publications Warehouse

    Haluska, Tana L.; Snyder, Daniel T.

    2007-01-01

    This report presents the parcel and inundation area geographic information system (GIS) layers for various surface-water stages. It also presents data tables containing the water stage, inundation area, and water volume relations developed from analysis of detailed land surface elevation derived from Light Detection and Ranging (LiDAR) data recently collected for the Wood River Valley at the northern margin of Agency Lake in Klamath County, Oregon. Former shoreline wetlands that have been cut off from Upper Klamath and Agency Lakes by dikes might in the future be reconnected to Upper Klamath and Agency Lakes by breaching the dikes. Issues of interest associated with restoring wetlands in this way include the area that will be inundated, the volume of water that may be stored, the change in wetland habitat, and the variation in these characteristics as surface-water stage is changed. Products from this analysis can assist water managers in assessing the effect of breaching dikes and changing surface-water stage. The study area is in the approximate former northern margins of Upper Klamath and Agency Lakes in the Wood River Valley.

  8. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  9. Analysis of frequency and duration of the functional periods on the basis of long-term variability of limnetic processes within the Bug River valley

    NASA Astrophysics Data System (ADS)

    Dawidek, J.; Ferencz, B.

    2014-12-01

    Floodplain lakes (FPLs) constitute a very important element of river valleys, both in terms of ecology and hydrology. Dynamic physicochemical, morphometric and biological changes of lake waters are determined by the variability of the functional periods of lakes: limnophases, potamophases and inundations. This paper presents factors that shape long-term dynamics of the frequencies and durations of potamophases and limnophases in 20 selected FPLs. The study area included the left fraction of the Bug River valley located at the European Union's eastern border stretched along countries like Poland, Ukraine, and Belarus. The analysis covered the water years 1952 to 2013. Assigning the value of Limnological Effective Rise (LER) was essential for determining the functional periods for each of the study lakes. The dynamics of the phenomenon was analysed using volatility indicators, while factors determining functional periods were distinguished using Principal Component Analysis (PCA). Results showed that short (0-8 days) and medium-length limnophases were observed most frequently during the study period. In the case of potamophases they most often lasted from 8 to 30 days, continuously. Double-mass curves showed four periods of increasing significance of one of the functional phases: 1952-1962 (limnophases), 1963-1982 (potamophases), 1983-1997 (limnophases) and 1998-2013 (potamophases). A variability that was observed in each floodplain lake under study resulted from two main factors: water input and lake basin morphometry. The major role in FPLs' input was played by potamic supply (inflow of water from the parent river), which was a derivative of Bug River water stages and discharge. Atmospheric precipitation played a smaller role. However, the role of local precipitation was marginal in relation to precipitation in the upper part of the Bug River catchment. Spatial variability of the frequencies and durations of potamophases and limnophases was also associated with the

  10. Water-Resource Trends and Comparisons Between Partial-Development and October 2006 Hydrologic Conditions, Wood River Valley, South-Central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.

    2007-01-01

    This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly

  11. Development of a coupled Thermo-Hydro model and study of the evolution of a river-valley-talik system in the context of climate change

    NASA Astrophysics Data System (ADS)

    Regnier, Damien; Grenier, Christophe; Davy, Philippe; Benabderrahmane, Hakim

    2010-05-01

    Boreal regions have been subject to recent and intensive studies within the field of the impact of climate change. A vast number of the modeling approaches correspond to large scale modeling firstly oriented to thermal field and permafrost evolution. We consider the evolution of smaller scale units of the landscape, in particular here the river-valley unit. In cold environments, we know that some rivers have at their bottoms a talik or a non frozen zone. Such systems have been poorly studied until now should it be as such or in relation with their surroundings, as major thermal conductors potentially impacting a larger portion of a region. The present work is part of a more global study implying the Lena river (Siberia) evolution under climate change in collaboration with the IDES laboratory (Interaction et Dynamique des Environnements de Surface at Orsay University, see e.g. Costard and Gautier, 2007) where the study of the system involves a threefold approach including in situ field work (near Yakutsk), experimental modeling (in a cold room at Orsay University) and numerical modeling. The river-valley system is a case where thermal evolution is coupled with water flow (hydrology and hydrogeology in the talik). The thermal field is impacted by and modifies the water flow conditions when freezing. We first present the development of our numerical simulation procedure. A novel 2D-3D simulation approach was developed in the Cast3M code (www-cast3m.cea.fr/cast3m) with a mixed hybrid finite element approach. It couples Darcy equations for flow (permeability depending on temperature) with heat transfer equations (conductive, advective and phase change process) with a Picard iterations algorithm for coupling. Then we present the validation of the code against 1D analytical solutions (Stefan problem) and 2D cases issued from the literature (McKenzie et al. 2007, Bense et al. 2009). We finally study by means of numeric simulations the installation of permafrost in an

  12. Archaeological site stabilization in the Tennessee River Valley: Phase 3, Research Paper No. 7, Tennessee Valley Authority Publications in Anthropology No. 49

    SciTech Connect

    Fay, P.M.

    1987-01-01

    Destruction of archaeological properties within the Tennessee River system, particularly along its main stem, has been a problem almost since TVA was established. In an attempt to stop the loss of massive portions of our cultural resources, the TVA contracted in 1983 to establish a program of site stabilization using experimental techniques. This report is the first installation of observations on the site protection measures placed during 1983. This report also contains pertinent observations on preserved sites not within TVA holdings. 20 refs., 25 figs.

  13. Local Farmers' Perceptions of Climate Change and Local Adaptive Strategies: A Case Study from the Middle Yarlung Zangbo River Valley, Tibet, China

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and government

  14. Importance of migrants infected with Onchocerca volvulus in west African river valleys protected by 14 to 15 years of Simulium control.

    PubMed

    De Sole, G; Remme, J

    1991-06-01

    A study was done to determine the importance of human migration from non-controlled endemic onchocerciasis foci to the river valleys that have been protected for the past 14 to 15 years by the vector control operations of the Onchocerciasis Control Programme in West Africa. The aim of the study was to assess the contribution of migrants to the prevalence and intensity of infection in villages from 5 major river valleys and their potential role in causing relapse of transmission once the vector is allowed to return. In Burkina Faso the migrant population varied from 0.0% to 18.1% of the village population, and averaged 4.9%. Migrants accounted only for 0.6% of the population in Ghanaian and Ivorian villages along the Black Volta river. The prevalence of infection was significantly higher in migrants (8.2%) than in non migrants (1.1%) in the surveyed villages in Burkina Faso, and 1.5% of migrants had infections with more than 16 microfilariae per snip as against 0.2% of non migrants. Nearly all infected migrants came from the south of the Côte d'Ivoire. The study shows that human migration has caused the importation of Onchocerca volvulus from non-controlled areas. However, the epidemiological importance of this phenomenon is limited because of the very small number of infected migrants per village while two-third of the infected migrants are believed to be infected with the less pathogenic forest strain of the parasite. Because migration patterns changes geographically and over time similar studies will be continued on a regular basis. PMID:1654591

  15. Application of LANDSAT Data for Field-Scale Comparisons and Basin-Scale Estimates of Evapotranspiration in the Wood River Valley, Upper Klamath Basin, Oregon.

    NASA Astrophysics Data System (ADS)

    Peterson, S. T.; Cuenca, R. H.

    2006-12-01

    30 meter resolution LANDSAT data were used to evaluate the effects of irrigation management decisions in the Wood River Valley, Upper Klamath Basin, Oregon. The Klamath Basin is well known as an over-allocated system that strains to provide adequate water for agriculture, recreational, and wildlife needs. In an effort to provide increased stream flows after the water shutoff to irrigators in 2001 and disastrous fish kills in 2002, a program was established with cooperative ranchers to withhold irrigation from their cattle pastures in the Wood River Valley, just above Upper Klamath Lake. From 2003 to 2006, ground-based measurements over one irrigated and one unirrigated pasture site were used to monitor the difference in evapotranspiration using the Bowen ratio energy balance method. These data sets represent point measurements of the response to irrigation, but do not allow for the spatial integration of effects of irrigated versus unirrigated lands. The SEBAL and later METRIC algorithms were developed to evaluate evapotranspiration on a field- or basin-wide scale using LANDSAT data. Four LANDSAT scenes of the Wood River basin during the 2004 growing season were evaluated using re-derived and updated METRIC algorithms. The Bowen ratio station micrometeorological data were utilized in the METRIC algorithms. Comparisons of METRIC algorithm output with ground-based data for all components of the energy balance, including net radiation, soil heat flux, sensible heat flux and evapotranspiration, were made for the four scenes. The excellent net radiation estimates, along with less accurate estimates of the other components, is demonstrated. The ability to integrate the effects of withholding irrigation on evapotranspiration and the water balance on irrigated and unirrigated lands within the basin is demonstrated. The results exhibit application of the METRIC algorithms to partition water balance components at the watershed scale.

  16. Analysis of the inversion monitoring capabilities of a monostatic acoustic radar in complex terrain. [Tennessee River Valley

    NASA Technical Reports Server (NTRS)

    Koepf, D.; Frost, W.

    1981-01-01

    A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain.

  17. Concentrations and Loads of Selenium in Selected Tributaries to the Colorado River in the Grand Valley, Western Colorado, 2004-2006

    USGS Publications Warehouse

    Leib, Kenneth J.

    2008-01-01

    The reach of the Colorado River from the Gunnison River confluence to the Utah Border, and tributaries in the Grand Valley, are on the State of Colorado 303(d) list of impaired water bodies because the concentrations of dissolved selenium in these streams exceed the State of Colorado chronic standard of 4.6 micrograms per liter at the 85th percentile level. In response to concerns raised by a local watershed initiative about the issue of selenium in the Grand Valley, the U.S. Geological Survey, in cooperation with Mesa County and the City of Grand Junction, developed a study to characterize and determine the sources of selenium and how these sources are related to changes in land use. This report describes the methods and results of a study of concentrations and loads of selenium in three tributaries to the Colorado River in the Grand Valley. The study area consists of three subbasins, Persigo Wash, Adobe Creek, and Lewis Wash, each representing transitional agricultural to residential, agricultural, and residential land-use types, respectively. These subbasins represent different land-use types and the tributaries that drain each subbasin contribute moderate to high concentrations and loads of selenium to the Colorado River. Two synoptic-sampling events were conducted in each tributary to characterize variations in water quality during the nonirrigation season. Water samples were collected for analysis of dissolved selenium, total nitrogen, and total dissolved solids (salinity). Streamflow was measured by either the tracer-dilution or standard current-meter method. In Persigo Wash selenium concentrations generally decreased or remained constant in a downstream direction whereas selenium loads increased. Effluent from the Persigo Wash wastewater treatment plant diluted selenium concentrations in Persigo Wash and increased the selenium load. The concentrations and loads of salinity and total nitrogen generally increased downstream in Persigo Wash. Concentrations and

  18. Comparison of land-atmosphere interaction at different surface types in the mid- to lower Yangzi River Valley

    NASA Astrophysics Data System (ADS)

    Guo, Weidong; Wang, Xueqian; Sun, Jianning; Ding, Aijun; Zou, Jun

    2016-04-01

    The mid- to lower Yangzi River Valley is located within the typical monsoon zone. Rapid urbanization, industrialization, and development of agriculture have led to fast and complicated land use and land cover changes in this region. To investigate land-atmosphere interaction in this region where human activities and monsoon climate are highly interactive with each other, micro-meteorological elements over four different surface types, i.e. urban surface represented by the observational site at Communist Party School in Nanjing (hereafter DX), suburban surface represented by the ground site at Xianling (XL), and grassland and farmland represented by field sites at Lishui County (LS-grass and LS-crop), are analyzed and their differences are revealed. Impacts of different surface parameters applied for different surface types on the radiation budget and surface-atmosphere heat, water, and mass exchanges are investigated. Results indicate that (1) the largest differences in daily average surface air temperature (Ta), surface skin temperature (Ts), and relative humidity (RH) , which are found during the dry periods between DX and LS-crop, can be up to 3.21°C, 7.26°C, and 22.79% respectively. During the growing season, the diurnal ranges of the above three elements are the smallest at DX and the largest at LS-grass, XL and LS-crop; (2) differences in radiative fluxes are mainly reflected in upward shortwave radiation (USR) that is related to surface albedo and upward longwave radiation (ULR) that is related to Ts. USR is the smallest and ULR is the largest at DX. During the growing season, the average difference in ULR between the DX site and other sites with vegetation cover can be up to 20Wm-2. The USR variability is the largest at LS-crop, while the diurnal variation of ULR is the same as that of Ts at all the four sites; (3) the differences in daily average sensible heat (H) and latent heat (LE) between DX and LS-crop are larger than 45 and 95Wm-2, respectively

  19. A new model of river dynamics, hydroclimatic change and human settlement in the Nile Valley derived from meta-analysis of the Holocene fluvial archive

    NASA Astrophysics Data System (ADS)

    Macklin, Mark G.; Toonen, Willem H. J.; Woodward, Jamie C.; Williams, Martin A. J.; Flaux, Clément; Marriner, Nick; Nicoll, Kathleen; Verstraeten, Gert; Spencer, Neal; Welsby, Derek

    2015-12-01

    In the Nile catchment, a growing number of site- and reach-based studies employ radiocarbon and, more recently, OSL dating to reconstruct Holocene river histories, but there has been no attempt to critically evaluate and synthesise these data at the catchment scale. We present the first meta-analysis of published and publically available radiocarbon and OSL dated Holocene fluvial units in the Nile catchment, including the delta region, and relate this to changing climate and river dynamics. Dated fluvial units are separated both geographically (into the Nile Delta and White, Blue, and Desert Nile sub-regions) and into depositional environment (floodplain and palaeochannel fills). Cumulative probability density frequency (CPDF) plots of floodplain and palaeochannel units show a striking inverse relationship during the Holocene, reflecting abrupt (<100 years) climate-related changes in flooding regime. The CPDF plot of dated floodplain units is interpreted as a record of over-bank river flows, whilst the CPDF plot of palaeochannel units reflect periods of major flooding associated with channel abandonment and contraction, as well as transitions to multi-centennial length episodes of greater aridity and low river flow. This analysis has identified major changes in river flow and dynamics in the Nile catchment with phases of channel and floodplain contraction at c. 6150-5750, 4400-4150, 3700-3450, 2700-2250, 1350-900, 800-550 cal. BC and cal. AD 1600, timeframes that mark shifts to new hydrological and geomorphological regimes. We discuss the impacts of these changing hydromorphological regimes upon riverine civilizations in the Nile Valley.

  20. Channelization and floodplain forests: Impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    USGS Publications Warehouse

    Oswalt, S.N.; King, S.L.

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased overbank flooding, a rise in the groundwater table, and ponding of upstream timber. Our objectives were to: (1) determine the composition of floodplain vegetation communities along the degraded river reach, (2) to isolate relationships among these communities, geomorphic features, and environmental variables and (3) evaluate successional changes based on current stand conditions. Vegetation communities were not specifically associated with predefined geomorphic features; nevertheless, hydrologic and geomorphic processes as a result of channelization have clearly affected vegetation communities. The presence of valley plugs and continued degradation of upstream reaches and tributaries on the impacted study reach has arrested recovery of floodplain plant communities. Historically common species like Liquidambar styraciflua L. and Quercus spp. L. were not important, with importance values (IV) less than 1, and occurred in less than 20% of forested plots, while Acer rubrum L., a disturbance-tolerant species, was the most important species on the site (IV = 78.1) and occurred in 87% of forested plots. The results of this study also indicate that channelization impacts on the Middle Fork Forked Deer River are more temporally and spatially complex than previously described for other river systems. Rehabilitation of this system necessitates a long-term, landscape-scale solution that addresses watershed rehabilitation in a spatially and temporally hierarchical manner. ?? 2005 Elsevier B.V. All rights reserved.

  1. Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur D'Alene River Valley, Idaho

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Harsanyi, Joseph C.

    1995-01-01

    The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron

  2. The Effects of Drip Irrigation and Fertilizer Rate on Corn Yield and Soil Salinity in the Arkansas River Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted at the Arkansas Valley Research Center (AVRC) in 2005 to test the effects of irrigation type and scheduling and fertilizer rate on corn yield and soil salinity. Four N (0, 60, 120, and 180 lb N/acre) and four manure (0, 10, 20, and 30 t/acre) application rates were ...

  3. Geometry of the Paleo-Nueces River Incised-Valley, Corpus Christi Bay, Texas as it Relates to Quaternary Sea Level History

    NASA Astrophysics Data System (ADS)

    Lugrin, L.; Gulick, S. S.; Goff, J. A.

    2012-12-01

    CHIRP subbottom seismic data were collected on the 2009 and 2011 Marine Geophysics Field courses at the University of Texas at Austin within the Corpus Christi Bay along the central Texas coast in order to study the geometry of the ancestral Nueces River incised valley and its evolution over Quaternary sea level history. Since the late Pleistocene, the Nueces River valley experienced a gradual infill due to sea level rise, interrupted by two major flooding events that represent periods of rapid sediment influx. These flooding events are recognizable based on abrupt changes in seismic facies. Discontinuous, chaotic fluvial lag deposits present underneath a fairly continuous, stratified, sub-horizontal estuarine coastal plain facies mark what is interpreted to be the Pleistocene/Holocene unconformity. Above the P/H boundary, oyster reefs thrive within the estuary until capped by a strong reflector, marking the second flooding surface that allowed enough incoming sediment to discontinue oyster reef growth. The estuarine deposits within the paleo-Nueces river valley exhibit a landward migration as the Holocene transgression proceeded. As infill continued, the bay-head delta prograded seaward and the flood-tidal delta extended progressively further up the estuary until the central estuarine basin was capped. The earlier flooding events provide strong reflectors that can be linked to the draining of Lake Agassiz around 8.2 k.a.. This event flooded the Gulf of Mexico with freshwater, and interrupted the estuarine infilling of the Nueces paleo-channel. Cores from previous studies have found at least two species of oyster reefs in Corpus Christi Bay: euryhaline species Crassostrea virginica, and Ostrea equestris, a species known to thrive in higher salinity waters. The presence of both species at the flooding boundary suggests the sudden pulse of freshwater mixed with higher salinity oceanic water. The second flooding surface is interpreted to be associated with an increase

  4. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. PMID:25617998

  5. Time of travel, water quality, and bed-material quality in the Cuyahoga River within the Cuyahoga Valley National Recreation area, Ohio

    USGS Publications Warehouse

    Childress, C.J.

    1985-01-01

    Three studies were conducted in the Cuyahoga Valley National Recreation by the U. S. Geological Survey to (1) establish the relationship between time of travel and discharge through the park reach of the Cuyahoga River, (2) characterize water quality of the Cuyahoga River within the park over a 24-hour period, and (3) determine general areas where the streambed might be contaminated by trace metals. Time of Travel between Botzum and Independence is described by the equation T = 46.9-0.038Q, where T = time, in hours, and Q = discharge at Independence, in cubic feet per second. On the main stem of the Cuyahoga River, dissolved-oxygen saturation was highest and ultimate carbonaceous biochemical oxygen demand was lowest on the upstream and downstream ends of the reach. Dissolved-oxygen saturation was more than 80 percent in all the tributaries except Furnace Run, Brandywine Creek, and Langes Run. The number of fecal coliform counts per 100 milliliters of sample was high throughout the study area and ranged from 38 to 1,200,000. Concentrations of all metals and non-metals investigated by means of analysis of bed material were not anomalously high. (USGS)

  6. ENDOMETRIOSIS IN A COHORT OF WOMEN LIVING IN THE KANAWHA RIVER VALLEY IN WEST VIRGINIA: BLOOD LEVELS OF NON-DIOXIN-LIKE PCBs AND RELATIONSHIP WITH BMI AND AGE

    EPA Science Inventory

    Industrial activities, specifically from petroleum and chemical manufacturing facilities, in the Kanawha River Valley (KRV) of West Virginia have resulted in releases of dioxin and dioxin-like chemicals (DLCs). I Most of the dioxin found in this region has resulted from the produ...

  7. Current tufa sedimentation in a changing-slope valley: The River Añamaza (Iberian Range, NE Spain)

    NASA Astrophysics Data System (ADS)

    Auqué, L.; Arenas, C.; Osácar, C.; Pardo, G.; Sancho, C.; Vázquez-Urbez, M.

    2014-04-01

    A three-year study of modern carbonate sedimentation was conducted through analysis of sedimentological and hydrochemical parameters measured every six months at 10 sites along a high-slope river in northeastern Spain (River Añamaza). Three stretches of the river were characterised. The dominant water inputs from the upstream karstic springs, primarily from the Jurassic rock aquifer, determined the SO4-HCO3-Ca composition of the river water. From this area, decreasing trends in alkalinity, calcium and total dissolved inorganic carbon occurred downstream in both the warm and cool periods as a result of calcite precipitation. Tufa thickness variations were consistent with such hydrochemical evolution. Deposition rates increased downstream, primarily where the gradient is steeper (middle stretch), and subsequently decreased at the downstream gently sloped stretch. Therefore, the slope along the river and the distance from the main upstream springs conditioned the spatial distribution of tufa deposits by determining the chemical characteristics of the water.

  8. SHRIMP study of zircons from Early Archean rocks in the Minnesota River Valley: Implications for the tectonic history of the Superior Province

    USGS Publications Warehouse

    Bickford, M.E.; Wooden, J.L.; Bauer, R.L.

    2006-01-01

    Interest in Paleoarchean to early Mesoarchean crust in North America has been sparked by the recent identification of ca. 3800-3500 Ma rocks on the northern margin of the Superior craton in the Assean Lake region of northern Manitoba and the Porpoise Cove terrane in northern Quebec. It has long been known that similarly ancient gneisses are exposed on the southern margin of the Superior craton in the Minnesota River Valley and in northern Michigan, but the ages of these rocks have been poorly constrained, because methods applied in the 1960s through late 1970s were inadequate to unravel the complexities of their thermotectonic history. Rocks exposed in the Minnesota River Valley include a complex of migmatitic granitic gneisses, schistose to gneissic amphibolite, metagabbro, and paragneisses. The best-known units are the Morton Gneiss and the Montevideo Gneiss. The complex of ancient gneisses is intruded by a major younger, weakly deformed granite body, the Sacred Heart granite. Regional geophysical anomalies that extend across the Minnesota River Valley have been interpreted as defining boundaries between distinct blocks containing the various gneissic units. New sensitive high-resolution ion microprobe (SHRIMP) U-Pb data from complex zircons yielded the following ages: Montevideo Gneiss near Montevideo, 3485 ?? 10 Ma, granodiorite intrusion, 3385 ?? 8 Ma; Montevideo Gneiss at Granite Falls, 3497 ?? 9 Ma, metamorphic event, 3300-3350 Ma, mafic intrusion, 3141 ?? 2 Ma, metamorphic overprint (rims), 2606 ?? 4 Ma; Morton Gneiss: 3524 ?? 9 Ma, granodiorite intrusion, 3370 ?? 8 Ma, metamorphic overprints (growth of rims), 3140 ?? 2 Ma and 2595 ?? 4 Ma; biotite-garnet paragneiss, 2619 ?? 20 Ma; and Sacred Heart granite, 2604 ?? 4 Ma. Zircons from a cordierite-bearing feldspar-biotite schist overlying the Morton Gneiss yielded well-defined age peaks at 3520, 3480, 3380, and 3140 Ma, showing detrital input from most of the older rock units; 2600 Ma rims on these zircons

  9. Isolation and Characterization of Microsatellite Loci for Hibiscus aridicola (Malvaceae), an Endangered Plant Endemic to the Dry-Hot Valleys of Jinsha River in Southwest China

    PubMed Central

    Zhang, Le; Sun, Weibang; Wang, Zhonglang; Guan, Kaiyun; Yang, Junbo

    2011-01-01

    Hibiscus aridicola (Malvaceae) is an endangered ornamental shrub endemic to the dry-hot valleys of Jinsha River in southwest China. Only four natural populations of H. aridicola exist in the wild according to our field investigation. It can be inferred that H. aridicola is facing a very high risk of extinction in the wild and an urgent conservation strategy is required. By using a modified biotin-streptavidin capture method, a total of 40 microsatellite markers were developed and characterized in H. aridicola for the first time. Polymorphisms were evaluated in 39 individuals from four natural populations. Fifteen of the markers showed polymorphisms with two to six alleles per locus; the observed heterozygosity ranged from 0.19 to 0.72. These microsatellite loci would be useful tools for population genetics studies on H. aridicola and other con-generic species which are important to the conservation and development of endangered species. PMID:22016620

  10. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  11. Preconstruction and postconstruction ground-water levels, Lock and Dam 5 and 6, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.; Terry, J.E.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 5 at mile 243 (kilometer 390) above the mouth of the Red River call for a pool elevation of 145 feet (44 meters) and will cause an average increase in river stage of 23 feet (7.0 meters). As a result, ground-water levels in the pool area will be raised to near land surface in much of the area between the river and Bayou Pierre and as much as 2 miles (3.2 kilometers) east of the river from the dam upstream to realined mile 220 (kilometer 350). Areas of Barksdale Air Force Base where levels are now near land surface would be enlarged and extend downstream along Flat River to near Curtis. The potentiometric surface may be above land surface near Howard, Anderson Island, and Dixie Gardens. (Woodard-USGS)

  12. Maps of the Bonsall area of the San Luis Rey River valley, San Diego County, California, showing geology, hydrology, and ground-water quality

    USGS Publications Warehouse

    Izbicki, John A.

    1985-01-01

    In November 1984, 84 wells and 1 spring in the Bonsall area of the San Luis Rey River valley were inventoried by U.S. Geological Survey personnel. Depth to water in 38 wells ranged from 1.3 to 38 ft and 23 wells had depths to water less than 10 feet. Dissolved solids concentration of water from 29 wells and 1 spring sampled in autumn 1983 and spring 1984 ranged from 574 to 2,370 mgs/L. Groundwater with a dissolved solids concentration less than 1,000 mgs/L was generally restricted to the eastern part of the aquifer. The total volume of alluvial fill in the Bonsall area is 113,000 acre-feet; the amount of groundwater storage available in the alluvial aquifer is 18,000 acre-feet. The alluvial aquifer is, in part, surrounded and underlain by colluvium and weathered crystalline rock that add some additional groundwater storage capacity to the system. Data in this report are presented on five maps showing well locations , thickness of alluvial fill, water level contours in November 1983 and hydrographs of selected wells, groundwater quality in spring 1960 and graphs showing changes in dissolved solids concentrations of water from selected wells with time, and groundwater quality in spring 1984. This report is part of a larger cooperative project between the Rainbow Municipal Irrigation District and the U.S. Geological Survey. The purpose of the larger project is to develop an appropriate groundwater management plan for the Bonsall area of the San Luis Rey River valley. (USGS)

  13. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-10-15

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day.

  14. Geologic map and profiles of the north wall of the Snake River Canyon, Pasadena Valley and Ticeska quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snaked River underlies the most of the eastern plain. The aquifer is composed of basaltic ricks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in few areas. The Snake River had excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges from the north canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  15. Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Barclay, David J.; Yager, Elowyn M.; Graves, Jason; Kloczko, Michael; Calkin, Parker E.

    2013-12-01

    Fluctuations of four valley glaciers in coastal south-central Alaska are reconstructed for the past two millennia. Tree-ring crossdates on 216 glacially killed stumps and logs provide the primary age control, and are integrated with glacial stratigraphy, ages of living trees on extant landforms, and historic forefield photographs to constrain former ice margin positions. Sheridan Glacier shows four distinct phases of advance: in the 530s to c.640s in the First Millennium A.D., and the 1240s to 1280s, 1510s to 1700s, and c.1810s to 1860s during the Little Ice Age (LIA). The latter two LIA advances are also recorded on the forefields of nearby Scott, Sherman and Saddlebag glaciers. Comparison of the Sheridan record with other two-millennia long tree-ring constrained valley glacier histories from south-central Alaska and Switzerland shows the same four intervals of advance. These expansions were coeval with decreases in insolation, supporting solar irradiance as the primary pacemaker for centennial-scale fluctuations of mid-latitude valley glaciers prior to the 20th century. Volcanic aerosols, coupled atmospheric-oceanic systems, and local glacier-specific effects may be important to glacier fluctuations as supplemental forcing factors, for causing decadal-scale differences between regions, and as a climatic filter affecting the magnitude of advances.

  16. Trend analysis of selected water-quality data associated with salinity-control projects in the Grand Valley, in the lower Gunnison River basin, and at Meeker Dome, western Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1996-01-01

    To decrease salt loading to the Colorado River from irrigated agriculture, salinity-control projects have been under construction since 1979 by the Bureau of Reclamation and the U.S. Department of Agriculture in the Grand Valley and since 1988 in the lower Gunnison River Basin of western Colorado. In 1980, a salinity-control project was initiated at Meeker Dome, which involved plugging three abandoned oil wells that were discharging saline water to the White River. Trend analysis was used to determine if the salinity-control projects had affected salinity in the Colorado and White Rivers. The mean annual dissolved-solids load in the Colorado River near the Colorado-Utah State line for water years 1970-93 was about 3.32 million tons. About 46 percent of that load was from the Colorado River upstream from the Grand Valley and about 38 percent was from the Gunnison River. About 16 percent of the dissolved-solids load in the Colorado River near the State line was discharged from the Grand Valley, and most of the Grand Valley dissolved-solids load was from irrigation-induced sources. Monotonic trend analysis of dissolved-solids and major-ion data for the Colorado and Gunnison Rivers was used for determining if salinity-control projects had affected salinity (dissolved solids) in the Colorado River. Data collected in water years 1970-93 at gaging stations on the Colorado River-one near Cameo and the other near the Colorado-Utah State line, and at the station on the Gunnison River near Grand Junction-were analyzed for trends. A computerized procedure developed by the U.S. Geological Survey that uses the nonparametric seasonal Kendall test with adjustment for streamflow was used for trend analysis of periodic and monthly data, and linear regression was used for trend analysis of annual data. Three time periods were tested, including periods that were concurrent with work on salinity-control projects. Many of the trends in unadjusted concentration and load data were not

  17. Change in biochemical and morphological characteristics of Lonicera caerulea in tectonically active zone of the Dzhazator River Valley (Altai Mountains)

    NASA Astrophysics Data System (ADS)

    Boyarskikh, I. G.; Khudyaev, S. A.; Platonova, S. G.; Kolotukhin, S. P.; Shitov, A. V.; Kukushkina, T. A.; Chankina, O. V.

    2012-12-01

    Local geophysical and geochemical anomalies affect the polymorphism of taste variations, berry shape, and content of some biologically active substances in Lonicera caerulea leaves in the tectonically active Altai Mountains (Dzhazator River basin).

  18. Capacitively Coupled Resistivity Survey of Selected Irrigation Canals Within the North Platte River Valley, Western Nebraska and Eastern Wyoming, 2004 and 2007-2009

    USGS Publications Warehouse

    Burton, Bethany L.; Johnson, Michaela R.; Vrabel, Joseph; Imig, Brian H.; Payne, Jason D.; Tompkins, Ryan E.

    2009-01-01

    Due to water resources of portions of the North Platte River basin being designated as over-appropriated by the State of Nebraska Department of Natural Resources (DNR), the North Platte Natural Resources District (NPNRD), in cooperation with the DNR, is developing an Integrated Management Plan (IMP) for groundwater and surface water in the NPNRD. As part of the IMP, a three-dimensional numerical finite difference groundwater-flow model is being developed to evaluate the effectiveness of using leakage of water from selected irrigation canal systems to manage groundwater recharge. To determine the relative leakage potential of the upper 8 m of the selected irrigation canals within the North Platte River valley in western Nebraska and eastern Wyoming, the U.S. Geological Survey performed a land-based capacitively coupled (CC) resistivity survey along nearly 630 km of 13 canals and 2 laterals in 2004 and from 2007 to 2009. These 13 canals were selected from the 27 irrigation canals in the North Platte valley due to their location, size, irrigated area, and relation to the active North Platte valley flood plain and related paleochannels and terrace deposits where most of the saturated thickness in the alluvium exists. The resistivity data were then compared to continuous cores at 62 test holes down to a maximum depth of 8 m. Borehole electrical conductivity (EC) measurements at 36 of those test holes were done to correlate resistivity values with grain sizes in order to determine potential vertical leakage along the canals as recharge to the underlying alluvial aquifer. The data acquired in 2004, as well as the 25 test hole cores from 2004, are presented elsewhere. These data were reprocessed using the same updated processing and inversion algorithms used on the 2007 through 2009 datasets, providing a consistent and complete dataset for all collection periods. Thirty-seven test hole cores and borehole electrical conductivity measurements were acquired based on the 2008

  19. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    article title:  Mississippi River Flooding during Spring 2001     ... South TIFF: 1024 x 724 The Mississippi River, from its source at Lake Itasca Minnesota to the Gulf of Mexico is ... 2348 miles long. Over the course of it's history, the mighty river has flooded many times. The largest flood recorded in the lower valley ...

  20. Population genetic structure of a widespread coniferous tree, Taxodium distichum [L.] Rich. (Cupressaceae), in the Mississippi River Alluvial Valley and Florida

    USGS Publications Warehouse

    Tanaka, Ayako; Ohtani, Masato; Suyama, Yoshihisa; Inomata, Nobuyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori; Kusumi, Junko

    2012-01-01

    Studies of genetic variation can elucidate the structure of present and past populations as well as the genetic basis of the phenotypic variability of species. Taxodium distichum is a coniferous tree dominant in lowland river flood plains and swamps of the southeastern USA which exhibits morphological variability and adaption to stressful habitats. This study provides a survey of the Mississippi River Alluvial Valley (MAV) and Florida to elucidate their population structure and the extent of genetic differentiation between the two regions and sympatric varieties, including bald cypress (var. distichum) and pond cypress (var. imbricatum). We determined the genotypes of 12 simple sequence repeat loci totaling 444 adult individuals from 18 natural populations. Bayesian clustering analysis revealed high levels of differentiation between the MAV and the Florida regions. Within the MAV region, there was a significant correlation between genetic and geographical distances. In addition, we found that there was almost no genetic differentiation between the varieties. Most genetic variation was found within individuals (76.73 %), 1.67 % among individuals within population, 15.36 % among populations within the regions, and 9.23 % between regions within the variety. Our results suggest that (1) the populations of the MAV and the Florida regions are divided into two major genetic groups, which might originate from different glacial refugia, and (2) the patterns of genetic differentiation and phenotypic differentiation were not parallel in this species.

  1. Indicators used to assess the quantity and quality of water in Special Area of Conservation located in the valleys of large lowland rivers - case study

    NASA Astrophysics Data System (ADS)

    Utratna, Marta; Okruszko, Tomasz

    2016-04-01

    One of the aims of Ecological network Natura 2000 is to protect rare habitats from complete disappearance in Europe. That is why natural and transformed river valleys were and still are often included into this form of protection. The problem of influences on Natura 2000 areas an their impact on the conservation status of protected habitats within the network is well known. Solving this issue may have a significant impact on the planning of protection tasks, as well as on assessing the impact of new and existing investments on protected areas. The aim of this study was to build a statistical model for assessing the impact of selected external factors related to the quantity and quality of water on the conservation status of habitats in large lowland river areas protected under the Natura 2000 network. The method used in the study is based on a structural study which uses the knowledge and experience of experts in the field of Phytosociology as well as indicators used to assess the quantity and quality of water in the analyzed area.

  2. Late Pleistocene and Holocene palaeoflood events recorded by slackwater deposits in the upper Hanjiang River valley, China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Zhou, Yali; Zhang, Yuzhu; Ji, Lin

    2015-10-01

    Slackwater palaeoflood deposits (SWDs) were identified in a bedrock gorge in the upper reaches of the Hanjiang River of central China. The Hanjiang River is the longest tributary of the Yangtze River, one of the most flood-prone rivers in China, and the main source of water for the South-to-North Water Transfer Project (SNWTP). Three main loess-soil profiles with late Pleistocene and Holocene palaeoflood SWD bedsets were found. Palaeoflood SWDs identified interbedded in the loess-soil sequence of late Pleistocene and Holocene age within the cliff riverbanks were studied by field observations and laboratory analysis, including particle-size distribution and Optically Stimulated Luminescence (OSL) dating. At least eight extreme flood events documented by palaeoflood SWDs occurred in the Wufeng reaches of the upper Hanjiang River. The discharge estimation associated with palaeoflood SWDs, indicates that the minimum flood peak discharges of these flood episodes range from 42,220 to 63,400 m3/s. The SWDs were OSL dated to between 12,600-12,400, 4200-4000, 3200-2800 and 1900-1700 a BP and these dates were corroborated with pottery remains retrieved from the profiles and dated by archaeological methods. These periods of increased flood magnitude coincide with contemporaneous global climatic events dated to 12,500, 4200, 3100 and 1900 a BP worldwide. These findings are of great significance in understanding the interactions between hydrological systems and climatic change in monsoonal zones.

  3. Deglacial Record in the Illinois River Valley Explains Asynchronous Phases of Meltwater Pulses and Clay Mineral Excursions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2014-12-01

    One prominent event of the Bølling/Allerød (B/A) interstadial was the large meltwater release to global oceans. The Laurentide Ice Sheet (LIS) is usually considered the main source. But, the large LIS meltwater discharge conflicts with the marine record showing an active North Atlantic meridional overturning circulation (AMOC) during the B/A interval. Continuous dune-lacustrine successions in the Illinois River Valley (IRV) have shown complete records of the last deglacial chronozones. Their grain-size distributions and accurate B/A age 14C dates of plant fossils from 15 m deep lacustrine sediment in the IRV suggest that most of the IRV and parts of the adjacent upland were inundated by water. The inundation was caused by a sediment dam interpreted to have been constructed and followed by a breach at the confluence of the Mississippi and Illinois Rivers during the B/A interval due to sediment mobilization by the large meltwater release. The grain size distributions correlate with meltwater pulses and mineralogical excursions in sediments from the Gulf of Mexico (GOM) very well. The blockage and release of illite and chlorite rich fine-grained sediments from the Lake Michigan basin changed the relative abundance of clay minerals and thus the ratio of smectite/(illite + chlorite) in the sediment of the GOM. This finding explains why the meltwater episodes from the LIS and the associated detrital discharges are not synchronous in the sediments in the GOM. The finding also ties meltwater pulses and associated detrital discharges in the GOM closely to the LIS discharges via the Mississippi River Valley on chronozonal scales. Three arguments can be made from this result: 1) unaffected AMOC during B/A interval resulted potentially from the hyperpycnal inflow into the GOM floor; 2) limited volume of the meltwater discharge did not significantly influence the AMOC; and 3) the freshwater input into the GOM from the LIS at this particular location did not significantly

  4. Comparison of West Valley and Savannah River waste glass: Part I, Durability of non-radioactive waste glass

    SciTech Connect

    Jantzen, C.M.

    1986-09-29

    Simulated West Valley glass was prepared by Catholic University of America (CUA) and then tested at SRL. The simulated glass was non- radioactive (WV-205) and had ZrO/sub 2/ substituted for the ThO/sub 2/ component of the waste. The durability experiments demonstrated that WV-205 glass is of similar durability and composition to SRL-200 interim precipitate hydrolysis product (PHP) waste glass; WV-205 glass is not as durable as sludge-only SRL-165 but more durable than sludge-only SRL-131 waste glass formulations, and the relative durability of WV-205 glass can be assessed by hydration thermodynamics. 12 refs., 3 figs., 11 tabs.

  5. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  6. Effect of activities at the Idaho National Engineering and Environmental Laboratory on the water quality of the Snake River Plain aquifer in the Magic Valley study

    USGS Publications Warehouse

    Bartholomay, Roy C.

    1998-01-01

    Radiochemical and chemical constituents in wastewater generated at facilities of the Idaho National Engineering and Environmental Laboratory (INEEL) (figure 1) have been discharged to waste-disposal ponds and wells since the early 1950 s. Public concern has been expressed that some of these constituents could migrate through the Snake River Plain aquifer to the Snake River in the Twin Falls-Hagerman area Because of these concerns the U.S. Department of Energy (DOE) requested that the U.S. Geological Survey (USGS) conduct three studies to gain a greater understanding of the chemical quality of water in the aquifer. One study described a one-time sampling effort for radionuclides, trace elements, and organic compounds in the eastern part of the A&B Irrigation District in Minidoka County (Mann and Knobel, 1990). Another ongoing study involves sampling for tritium from 19 springs on the north side of the Snake River in the Twin Falls-Hagerman area (Mann, 1989; Mann and Low, 1994). A third study an ongoing annual sampling effort in the area between the southern boundary of the INEEL and Hagerman (figure 1) (hereafter referred to as the Magic Valley study area), is being conducted with the Idaho Department of Water Resources in cooperation with the DOE. Data for a variety of radiochemical and chemical constituents from this study have been published by Wegner and Campbell (1991); Bartholomay, Edwards, and Campbell (1992, 1993, 1994a, 1994b); and Bartholomay, Williams, and Campbell (1995, 1996, 1997b). Data discussed in this fact sheet were taken from these reports. An evaluation of data collected during the first four years of this study (Bartholomay Williams, and Campbell, 1997a) showed no pattern of water-quality change for radionuclide data as concentrations randomly increased or decreased. The inorganic constituent data showed no statistical change between sample rounds.

  7. Probable hydrologic effects of a hypothetical failure of Mackay Dam on the Big Lost River Valley from Mackay, Idaho to the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Druffel, Leroy; Stiltner, Gloria J.; Keefer, Thomas N.

    1979-01-01

    Mackay Dam is an irrigation reservoir on the Big Lost River, Idaho, approximately 7.2 kilometers northwest of Mackay, Idaho. Consequences of possible rupture of the dam have long concerned the residents of the river valley. The presence of reactors and of a management complex for nuclear wastes on the reservation of the Idaho National Engineering Laboratory (INEL), near the river , give additional cause for concern over the consequences of a rupture of Mackay Dam. The objective of this report is to calculate and route the flood wave resulting from the hypothetical failure of Mackay Dam downstream to the INEL. Both a full and a 50 percent partial breach of this dam are investigated. Two techniques are used to develop the dam-break model. The method of characteristics is used to propagate the shock wave after the dam fails. The linear implicit finite-difference solution is used to route the flood wave after the shock wave has dissipated. The time of travel of the flood wave, duration of flooding, and magnitude of the flood are determined for eight selected sites from Mackay Dam, Idaho, through the INEL diversion. At 4.2 kilometers above the INEL diversion, peak discharges of 1,550.2 and 1,275 cubic meters per second and peak flood elevations of 1,550.3 and 1,550.2 meters were calculated for the full and partial breach, respectively. Flood discharges and flood peaks were not compared for the area downstream of the diversion because of the lack of detailed flood plain geometry. (Kosco-USGS)

  8. Late Pleistocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River valley, Central Precordillera, Argentina

    NASA Astrophysics Data System (ADS)

    Perucca, Laura P.; Godoy, Enrique; Pantano, Ana

    2014-07-01

    Evidence of earthquake-induced liquefaction features in the Acequión river valley, central western Argentina, is analysed. Well-preserved soft-sediment deformation structures are present in Late Pleistocene deposits; they include two large slumps and several sand dikes, convolutions, pseudonodules, faults, dish structures and diapirs in the basal part of a shallow-lacustrine succession in the El Acequión River area. The water-saturated state of these sediments favoured deformation. All structures were studied in a natural trench created as a result of erosion by a tributary of the Acequión River, called El Mono Creek. They form part of a large-scale slump system. Two slumps occur in the western portion of the trench and must have moved towards the ENE (70°), where the depocentre of the Boca del Acequión area is situated. Considering the spatial relationship with Quaternary faults, the slumps are interpreted as being due to a seismic event. The thickest dikes in the El Mono Creek trench occur in the eastern portion of the trench, indicating that the responsible earthquake was located to the east of the study area, probably at the Cerro Salinas fault system zone. The slumps, sand dikes and other soft-sediment deformation features are interpreted as having been triggered by earthquakes, thus providing a preliminary palaeoseismic record of the Cerro Salinas fault system and extending the record of moderate-to high-magnitude earthquakes in central western Argentina to the Late Pleistocene.

  9. An Induced Infiltration and Groundwater Transfer Project to Enhance Recharge in the Lower Mississippi River Valley Alluvial Aquifer: Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Haugh, C. J.; Barlow, J.

    2015-12-01

    The Lower Mississippi River Basin is one of the major agricultural production regions in the United States producing over two-thirds of the rice, nearly half of sugarcane produced in the U.S., as well as significant amounts of soybeans, corn, and cotton. While the region experiences over 50 inches of precipitation annually, reaching yield potential for crops requires irrigation. Approximately 75% of crop acres in the alluvial valley are irrigated, and the expectation is that all acreage will eventually be irrigated. Currently over 90% of water for crop irrigation is derived from the shallow alluvial aquifer outpacing net recharge by several million acre-feet per year. This has resulted in severe groundwater declines in Arkansas and an increasingly threatening situation in northwestern Mississippi. In Mississippi, direct injection has received increasing attention as a means of artificial recharge, though water quality remains a concern both for the integrity of the aquifer and efficiency of injection. This project considers the use of pumping wells near major rivers known to be in connection with the aquifer to induce additional infiltration of surface water by steepening local gradients. The pumped water would be transferred by pipeline to areas within the regional cone of depression where it is then injected to enhance groundwater recharge. Groundwater flow modeling with zone budget analysis is used to evaluate the potential for net supply gains from induced infiltration at potential sites along major rivers in the region. The groundwater model will further evaluate the impact of the transfer and direct injection on regional water tables.

  10. Development, calibration, and testing of ground-water flow models for the Mississippi River Valley alluvial aquifer in eastern Arkansas using one-square-mile cells

    USGS Publications Warehouse

    Mahon, G.L.; Poynter, D.T.

    1993-01-01

    Significant water-level declines in the Mississippi River Valley alluvial aquifer prompted the need to better understand the flow system in the aquifer which, in turn, led to the development of digital groundwater flow models of the alluvial aquifer. Two models were developed in the eastern Arkansas study area with the Arkansas River dividing the study area and functioning as a hydrologic boundary to the models. Both models simulate groundwater flow in one layer with recharge entering the aquifer from head-dependent surface infiltration through the overlying confining unit and from seepage through river beds. Digital models were used to simulate flow in the aquifer during seven stress periods between 1918 and 1987. Pumpage used in the simulations ranged from 83,400,000 to 412,000,000 cu ft/d in the north model and from 12,800,000 to 58,500,000 cu ft/d in the south model. Three different spatial and temporal pumpage scenarios were tested to simulate pumpage stress in the models. The pumpage distribution used in the calibrated model was based on a combination of all three scenarios. Several criteria were used during model development to determine how well the model simulated conditions in the aquifer. Potentiometric maps of model-computed water levels were compared to measured data to check the computed water levels and direction of flow. Hydrographs of observation wells were compared to computed water levels at corresponding model cells to assess the temporal distribution of pumpage. A root-mean-square error analysis was performed during calibration by comparing observation-well and model-computed water levels for 1972. Sensitivity analyses were performed to determine the effects of changes in input parameters on computed heads (water levels). Both models were sensitive to changes in recharge and pumpage but the south model generally was less sensitive than the north model.

  11. Some possibilities of using the analysis of land surface digital terrain model for the interpretation of morphometric characteristics - a case study from the Boloživka river valley (Ukraine)

    NASA Astrophysics Data System (ADS)

    Hołub, Beata; Jacyszyn, Andrij

    2008-01-01

    The study is focused on spatial analysis of qualitative data describing relief of the Boloživka river valley. Numerical model of land surface was taken as the main database of the valley relief. At first, it was subjected to preliminary visual analysis, and then to other analytical operations in order to identify and describe point, linear and spatial morphometric characteristics of the examined area. The spline interpolation method was used to obtain a simulated model of the bottom surface of alluvial deposits and to calculate their approximate thickness. Interpretation of the relief of the sub-Quaternary basement permits to distinguish three large depressions following the orientation NW-SE, which were probably used by fluvioglacial waters of the Sanian 2 (= Oka) ice sheet. Morphometric analysis of the morphological elements of the Boloživka river valley indicates that transverse linear structures (steps) occurring at its bottom reproduce the surface relief of the alluvia's substratum. Diversified physiographical parameters of the Boloživka river catchment permit to distinguish three domains: the western, central, and eastern. The paper reports the preliminary results of continued investigations, and will be followed by a more extensive study of the geomorphological development of the Boloživka river catchment.

  12. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Shubhra; Bartarya, S. K.; Marh, B. S.

    2016-04-01

    Late Quaternary landform evolution in monsoon-dominated middle Satluj valley is reconstructed using the fragmentary records of fluvial terraces, alluvial fans, debris flows, paleo-flood deposits, and epigenetic gorges. Based on detailed field mapping, alluvial stratigraphy, sedimentology and optical chronology, two phases of fluvial aggradations are identified. The older aggradation event dated between ˜13 and 11 ka (early-Holocene), occurred in the pre-existing topography carved by multiple events of erosion and incision. Climatically, the event corresponds to the post-glacial strengthened Indian summer monsoon (ISM). The younger aggradation event dated between ˜5 and 0.4 ka (mid- to late-Holocene), was during the declining phase of ISM. The terrain witnessed high magnitude floods during transitional climate (˜6.5-7 ka). The fluvial sedimentation was punctuated by short-lived debris flows and alluvial fans during the LGM (weak ISM), early to mid-Holocene transition climate and mid- to late-Holocene declining ISM. Based on the terrace morphology, an event of relatively enhanced surface uplift is inferred after late Holocene. The present study suggests that post-glacial landforms in the middle Satluj valley owe their genesis to the interplay between the climate variability and local/regional tectonic interactions.

  13. Discovery of a Balkan fresh-water fauna in the Idaho formation of Snake River Valley, Idaho

    USGS Publications Warehouse

    Dall, W.H.

    1925-01-01

    In 1866 Gabb described Melania taylori and Lithasia antiqua "from a fresh-water deposit on Snake River, Idaho Territory, on the road from Fort Boise to the Owyhee mining country. Collected by A. Taylor." He states that a small bivalve, perhaps a Sphaerium, was associated with them.

  14. River contract in Wallonia (Belgium) and its application for water management in the Sourou valley (Burkina Faso).

    PubMed

    Rosillon, F; Vander Borght, P; Bado Sama, H

    2005-01-01

    Inspired by the experience of a river contract in Wallonia (Belgium) since 1990, the implementation of a first river contract has been initiated in a West African country, Burkina Faso. This application is not limited to a simple transposition of the Walloon model. The Burkina context calls for adaptation to the local environmental and socio-economical realities with an adequate partnership management. The importance of the mobilization around this project of institutional partners, as well as local collectivities, agricultural producers and water users in general reveals the great expectations of the actors concerning this new tool of water participative management. But will the latter be equal to the task? A first assessment has been drawn up one year after the launch. During the first year of the project, a participative diagnostic was implemented but the understanding of basic notions of water management such as 'river' (not translatable in the local language), 'watershed', 'contract' were not obvious. After the identification of functions and uses of water in the basin, an environmental survey was started. This approach allows study with the river committees of the priority actions to be developed as a first project of restoration of the gallery forest alongside the stream to fight against desertification. This project of integrated and participative management of water at sub-basin level is a concrete example of solidarity and exchange know-how between North and South in the context of a sustainable development. PMID:16445177

  15. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    USGS Publications Warehouse

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  16. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  17. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  18. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  19. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  20. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  1. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  2. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2003-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  3. Eco-epidemiological survey of Leishmania (Viannia) braziliensis American cutaneous and mucocutaneous leishmaniasis in Ribeira Valley River, Paraná State, Brazil.

    PubMed

    de Castro, Edilene Alcântara; Luz, Ennio; Telles, Flávio Queiroz; Pandey, Ashok; Biseto, Alceu; Dinaiski, Marlene; Sbalqueiro, Ives; Soccol, Vanete Thomaz

    2005-02-01

    Leishmaniasis is endemic since last century in Adrianópolis Municipality, Ribeira Valley and is a serious public health. A study carried out during 1993-2003 on epidemiological surveys conducted in rural communities showed 339 new cases of cutaneous leishmaniasis (CL) detected from four municipalities (Adrianópolis, Cerro Azul, Doutor Ulysses and Rio Branco do Sul). A larger prevalence of cutaneous lesions was observed in rural workers (36%), women with domestic activities (18%), and younger students (31%). Multiple lesions were noticed in 53% of patients, but only one case of mucocutaneous leishmaniasis was reported. Twenty stocks were isolated from patients with characteristics lesions and were identified as Leishmania (Viannia) braziliensis using multi-locus enzyme electrophoresis (MLEE) and Random Amplified DNA (RAPD). In Phlebotominae survey, five species were obtained. Lutzomyia intermedia sl. represented 97.5% in peridomiciliar area and 100% in domicile. A canine serological survey made (Indirect Immunofluorescence Antibody Test, IFAT and Enzyme Linked Immunosorbent Assay, ELISA) in six rural county of Adrianópolis Municipality during 1998-1999 showed that 15.1% (24/159) of dogs were sera reactive. No lesions were observed in dogs and no parasite was isolated from lymph node aspirates and biopsies. In wild reservoirs study, only seven animals (Cricetidae, Desmodus sp. and edentates) were captured, but no parasites were found in culture from deep organs. The paper presents results of our 10 years study on cutaneous leishmaniasis survey in the Ribeira River Valley, East Region of Paraná State, Brazil. Environment changes in this region are also discussed. PMID:15652328

  4. Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows

    USGS Publications Warehouse

    Stock, Jonathan D.; Montgomery, David R.; Collins, Brian D.; Dietrich, William E.; Sklar, Leonard

    2005-01-01

    Until recently, published rates of incision of bedrock valleys came from indirect dating of incised surfaces. A small but growing literature based on direct measurement reports short-term bedrock lowering at geologically unsustainable rates. We report observations of bedrock lowering from erosion pins monitored over 1–7 yr in 10 valleys that cut indurated volcanic and sedimentary rocks in Washington, Oregon, California, and Taiwan. Most of these channels have historically been stripped of sediment. Their bedrock is exposed to bed-load abrasion, plucking, and seasonal wetting and drying that comminutes hard, intact rock into plates or equant fragments that are removed by higher flows. Consequent incision rates are proportional to the square of rock tensile strength, in agreement with experimental results of others. Measured rates up to centimeters per year far exceed regional long-term erosion-rate estimates, even for apparently minor sediment-transport rates. Cultural artifacts on adjoining strath terraces in Washington and Taiwan indicate at least several decades of lowering at these extreme rates. Lacking sediment cover, lithologies at these sites lower at rates that far exceed long-term rock-uplift rates. This rate disparity makes it unlikely that the long profiles of these rivers are directly adjusted to either bedrock hardness or rock-uplift rate in the manner predicted by the stream power law, despite the observation that their profiles are well fit by power-law plots of drainage area vs. slope. We hypothesize that the threshold of motion of a thin sediment mantle, rather than bedrock hardness or rock-uplift rate, controls channel slope in weak bedrock lithologies with tensile strengths below ∼3–5 MPa. To illustrate this hypothesis and to provide an alternative interpretation for power-law plots of area vs. slope, we combine Shields' threshold transport concept with measured hydraulic relationships and downstream fining rates. In contrast to fluvial

  5. Native American prehistory of the middle Savannah River Valley. A synthesis of archaeological investigations on the Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect

    Sassaman, K.E.; Brooks, M.J.; Hanson, G.T.; Anderson, D.G.

    1990-12-31

    Archaeological investigations on the United States Department of Energy`s (DOE) Savannah River Site (SRS) in South Carolina span 17 years and continue today through a cooperative agreement between DOE and the South Carolina Institute of Archaeology and Anthropology (SCIAA), University of South Carolina. The Savannah River Archaeological Research Program (SRARP) of SCIAA has been and continues to be the sole archaeological consultant for DOE-SRS. This report documents technical aspects of all prehistoric archaeological research conducted by the SRARP between 1973 and 1987. Further, this report provides interpretative contexts for archaeological resources as a basis for an archaeological resource plan reported elsewhere (SRARP 1989), and as a comprehensive statement of our current understanding of Native American prehistory. 400 refs., 130 figs., 39 tabs.

  6. Data on ground-water levels and ground-water/surface-water relations in the Great Miami River and Little Miami River valleys, southwestern Ohio

    USGS Publications Warehouse

    Yost, William P.

    1995-01-01

    Hydrogeologic data were collected in September, October, and November 1993 to define the ground-water levels and the ground-water/surface-water relations in the vicinity of Dayton, Ohio. In this report, water levels are listed for 678 wells completed in sand and gravel. Data from 101 streamflow measurements made at selected sites along the Great Miami, Stillwater, Mad, and Little Miami Rivers and their tributaries during 2-day gain-loss study also are listed. Surface-water altitudes were determined at 11 stream-gaging stations and 39 other streamflow measurement sites. Discharge data for measurements made at 30 storm-sewer outfalls are given. Streamflow and discharge data obtained during the study were used to calculate the gain or loss of streamflow along 16 selected reaches of the Great Miami, Stillwater, Mad, and Little Miami Rivers. Streambed-conductivity data obtained by use of seepage meters at nine different sites also are given.

  7. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-12-27

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted

  8. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-04-15

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations

  9. Geochronology of cave deposits at Liang Bua and of adjacent river terraces in the Wae Racang valley, western Flores, Indonesia: a synthesis of age estimates for the type locality of Homo floresiensis.

    PubMed

    Roberts, R G; Westaway, K E; Zhao, J-x; Turney, C S M; Bird, M I; Rink, W J; Fifield, L K

    2009-11-01

    A robust timeframe for the extant cave deposits at Liang Bua, and for the river terraces in the adjoining Wae Racang valley, is essential to constrain the period of existence and time of extinction of Homo floresiensis and other biota that have been excavated at this hominin type locality. Reliable age control is also required for the variety of artifacts excavated from these deposits, and to assist in environmental reconstructions for this river valley and for the region more broadly. In this paper, we summarize the available geochronological information for Liang Bua and its immediate environs, obtained using seven numerical-age methods: radiocarbon, thermoluminescence, optically- and infrared-stimulated luminescence (collectively known as optical dating), uranium-series, electron spin resonance, and coupled electron spin resonance/uranium-series. We synthesize the large number of numerical age determinations reported previously and present additional age estimates germane to questions of hominin evolution and extinction. PMID:19254806

  10. Valley Fever

    MedlinePlus

    Valley Fever is a disease caused by a fungus (or mold) called Coccidioides. The fungi live in the soil ... from person to person. Anyone can get Valley Fever. But it's most common among older adults, especially ...

  11. Historic hydro-bio-morphological change (1855-2010) and control factors on an upper alpine valley floor (Guil river, Southern French Alps)

    NASA Astrophysics Data System (ADS)

    Arnaud-Fassetta, Gilles; Fort, Monique

    2013-04-01

    Much research carried out along mountain rivers has concluded that the general trend of decreasing bedload supply is primarily a result of human action, and only secondarily a response to changes in climate and vegetation. In contrast, we have recently shown that, in the upper reaches of alpine valleys, the shaping of active channels has been mostly dependent upon hydroclimatic variability, at least during the last fifty years. We propose to apply this hypothesis within a broader temporal framework so as to include the Little Ice Age period. The upper Guil river extends in the internal, « schistes lustrés » part of the Alps, and it is characterized by a strong hillslope-channel coupling, and by alternating sequences of fluvial and/or debris-flow. Our analysis rests on several types of data: longitudinal and cross profiles, old topographical maps, and aerial photographs. We took account of active channel width and area, sinuosity and incision index, and engineering structures. We used dendrochronology to improve constraints upon the age of terraces and to help to assess the impact of high magnitude floods on riparian forest development. We assert that, whereas the general trend is dominated by channel incision (tectonic uplift, reforestation), the overall instability of the active channel is mainly controlled by the passage of high-magnitude low-frequency hydroclimatic events (1897, 1957, 2000, 2002). We go on to show that, provided that flood control structures are generally efficient, the last 50-years of land-use changes have reduced the channel capacity of the Guil, and so have increased the vulnerability of human installations to damage.

  12. Impacts of future changes on groundwater recharge and flow in highly-connected river-aquifer systems: A case study of the Spokane Valley-Rathdrum Prairie Aquifer

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Baxter, H.; Barber, M. E.; Hossain, A.; Orr, C. H.; Adam, J. C.

    2013-12-01

    The Spokane, Washington-Coeur d'Alene, Idaho Corridor is well-known for its Spokane Valley-Rathdrum Prairie (SVRP) Aquifer which is a sole source of drinking water for more than 500,000 people. The aquifer is highly connected to the Spokane River and responds very fast to natural and human perturbations, making it relatively vulnerable to climate and anthropogenic changes in future decades. Recent studies have indicated a decline in minimum daily flow in the Spokane River in the last 100 years, while projecting an increase in cool-season precipitation into the future. We investigated the potential impacts of these projected future climate-driven hydrologic changes on groundwater recharge and flow in the SVRP. A distributed, physically-based hydrological model, the Precipitation Runoff Modeling System (PRMS), was coupled with an existing Modular three-dimensional finite-difference ground-water model (MODFLOW) to have better estimates of recharge into the SVRP as well as the interaction of surface water and groundwater. The couple model was calibrated and validated at a daily time-step within the Model-Independent Parameter Estimation (PEST) framework using 16 years of both observed streamflow and observed well data (1990 - 2005). To assess future climate change impacts, statistically downscaled climate projections of temperature and precipitation between 2010 and 2050 from four general circulation models were used. The results from the coupled model provide insight on the interplay between snowmelt, streamflow, groundwater recharge and discharge in such a highly-connected system. Moreover, the relative sensitivities of groundwater recharge and flow with respect to changes in climate and land cover are also examined. These results can be used as good references for long term water resources management and planning in the region.

  13. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland.

    PubMed

    Magiera, Tadeusz; Mendakiewicz, Maria; Szuszkiewicz, Marcin; Jabłońska, Mariola; Chróst, Leszek

    2016-10-01

    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas. PMID:27236619

  14. Landscape pattern of seed banks and anthropogenic impacts in forested wetlands of the northern Mississippi River Alluvial Valley

    USGS Publications Warehouse

    Middleton, B.; Wu, X.B.

    2008-01-01

    Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may

  15. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico

    PubMed Central

    Ranere, Anthony J.; Piperno, Dolores R.; Holst, Irene; Dickau, Ruth; Iriarte, José

    2009-01-01

    Molecular evidence indicates that the wild ancestor of maize is presently native to the seasonally dry tropical forest of the Central Balsas watershed in southwestern Mexico. We report here on archaeological investigations in a region of the Central Balsas located near the Iguala Valley in Guerrero state that show for the first time a long sequence of human occupation and plant exploitation reaching back to the early Holocene. One of the sites excavated, the Xihuatoxtla Shelter, contains well-stratified deposits and a stone tool assemblage of bifacially flaked points, simple flake tools, and numerous handstones and milling stone bases radiocarbon dated to at least 8700 calendrical years B.P. As reported in a companion paper (Piperno DR, et al., in this issue of PNAS), starch grain and phytolith residues from the ground and chipped stone tools, plus phytoliths from directly associated sediments, provide evidence for maize (Zea mays L.) and domesticated squash (Cucurbita spp.) in contexts contemporaneous with and stratigraphically below the 8700 calendrical years B.P. date. The radiocarbon determinations, stratigraphic integrity of Xihuatoxtla's deposits, and characteristics of the stone tool assemblages associated with the maize and squash remains all indicate that these plants were early Holocene domesticates. Early agriculture in this region of Mexico appears to have involved small groups of cultivators who were shifting their settlements seasonally and engaging in a variety of subsistence pursuits. PMID:19307573

  16. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico.

    PubMed

    Ranere, Anthony J; Piperno, Dolores R; Holst, Irene; Dickau, Ruth; Iriarte, José

    2009-03-31

    Molecular evidence indicates that the wild ancestor of maize is presently native to the seasonally dry tropical forest of the Central Balsas watershed in southwestern Mexico. We report here on archaeological investigations in a region of the Central Balsas located near the Iguala Valley in Guerrero state that show for the first time a long sequence of human occupation and plant exploitation reaching back to the early Holocene. One of the sites excavated, the Xihuatoxtla Shelter, contains well-stratified deposits and a stone tool assemblage of bifacially flaked points, simple flake tools, and numerous handstones and milling stone bases radiocarbon dated to at least 8700 calendrical years B.P. As reported in a companion paper (Piperno DR, et al., in this issue of PNAS), starch grain and phytolith residues from the ground and chipped stone tools, plus phytoliths from directly associated sediments, provide evidence for maize (Zea mays L.) and domesticated squash (Cucurbita spp.) in contexts contemporaneous with and stratigraphically below the 8700 calendrical years B.P. date. The radiocarbon determinations, stratigraphic integrity of Xihuatoxtla's deposits, and characteristics of the stone tool assemblages associated with the maize and squash remains all indicate that these plants were early Holocene domesticates. Early agriculture in this region of Mexico appears to have involved small groups of cultivators who were shifting their settlements seasonally and engaging in a variety of subsistence pursuits. PMID:19307573

  17. Surnames and genetic structure of a high-altitude Quechua community from the Ichu River Valley, Peruvian Central Andes, 1825-1914.

    PubMed

    Pettener, D; Pastor, S; Tarazona-Santos, E

    1998-10-01

    Changes in isolation, inbreeding, population subdivision, and isonymous relationships are examined in six Quechua communities from the upper valley of the Ichu River in the Peruvian Central Andes (3700 m). All marriages registered between 1825 and 1914 in the Parish of Santa Ana were analyzed. The data (1680 marriages) were divided into 2 periods (1825-1870 and 1871-1914) and into the 6 villages that constitute the parish. Endogamy rates are between 81% and 100%, indicating high levels of reproductive isolation. The inbreeding indicated by isonymy (Ft, Fr, and Fn) is lower than in other mountain populations studied. Isonymy values, calculated from the different surname combinations made possible by the Ibero-American Surnames System, indicate a strong rejection of consanguineous marriages, particularly between patrilineal relatives, in agreement with the parental structure typical of Andean populations. The comparison between observed and expected repeated-pair values reveals a moderate level of subdivision within populations, which could be related to cultural and socioeconomic factors. Nonmetric multidimensional scaling was used to investigate temporal changes in the isonymous relationships among the communities. The results reveal a decrease in the interpopulational variability measured by surnames, in agreement with an increase in exogamy. Surnames and data contained in historical and demographic records yield reliable information, and they can be used to reconstruct the biological history of Amerindian populations over the last few centuries. PMID:9780516

  18. Inter-Simple Sequence Repeat Data Reveals High Genetic Diversity in Wild Populations of the Narrowly Distributed Endemic Lilium regale in the Minjiang River Valley of China

    PubMed Central

    Wu, Zhu-hua; Shi, Jisen; Xi, Meng-li; Jiang, Fu-xing; Deng, Ming-wen; Dayanandan, Selvadurai

    2015-01-01

    Lilium regale E.H. Wilson is endemic to a narrow geographic area in the Minjiang River valley in southwestern China, and is considered an important germplasm for breeding commercially valuable lily varieties, due to its vigorous growth, resistance to diseases and tolerance for low moisture. We analyzed the genetic diversity of eight populations of L. regale sampled across the entire natural distribution range of the species using Inter-Simple Sequence Repeat markers. The genetic diversity (expected heterozygosity= 0.3356) was higher than those reported for other narrowly distributed endemic plants. The levels of inbreeding (Fst = 0.1897) were low, and most of the genetic variability was found to be within (80.91%) than amongpopulations (19.09%). An indirect estimate of historical levels of gene flow (Nm =1.0678) indicated high levels of gene flow among populations. The eight analyzed populations clustered into three genetically distinct groups. Based on these results, we recommend conservation of large populations representing these three genetically distinct groups. PMID:25799495

  19. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    USGS Publications Warehouse

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  20. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    USGS Publications Warehouse

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  1. Assessment of the sand and gravel resources of the Lower Boise River Valley area, Idaho: part one: geological framework of the sand and gravel deposits

    USGS Publications Warehouse

    Bliss, James D.; Moyle, Phillip R.

    2001-01-01

    The USGS has undertaken a first order evaluation of sand & gravel resources in the Lower Boise River Valley in response to rapid urban expansion in the Boise-Nampa-Caldwell corridor in southwest Idaho. The study is intended to provide land-use planners and managers, particularly in the Bureau of Land Management, with a foundation of knowledge that will allow them to anticipate and plan for demand for and development of sand and gravel resources on public lands in response to the urban growth. Attributes under study include: regional geology of both alluvial source areas as well as deposits; fluvial processes that led to deposition of the sand and gravel deposits; spatial distribution of the deposits; quantity and quality of materials in the deposits; and the suitability of the deposits for a range of applications. The study will also examine and attempt to model the association between fluvial processes, deposit characteristics, and physical specifications for various applications of sand and gravel. The results will be presented in a series of sand and gravel assessment reports of which this is the first.

  2. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River].

    PubMed

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting

    2014-02-01

    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content. PMID:24830233

  3. Evaluation of criteria for selecting the spectral attributes of digital LANDSAT MSS imagery for discriminating lithological units in the lower Curaca River Valley, Bahia. [Brazil

    NASA Technical Reports Server (NTRS)

    Paradella, W. R. (Principal Investigator)

    1984-01-01

    The use of spectral attributes criteria was investigated, based on measures of statistical distance of separability between thematic classes in MSS digital LANDSAT imagery, in order to select the best subsets of channels in composite colors for the detection and discrimination of lithological units in the lower valley of Curaca River, State of Bahia, Brazil. Three situations were investigated: (1) selection of the three best channels, considering all of the original bands (channels 4, 5, 6, and 7); (2) selection of the three best bands, considering the six MSS band-ratios (channels 4/5, 4/6. 4/7, 5/6, 5/7, and 6/7); and (3) selection of the three best bands in a hybrid approach (the four original bands and the six ratios). A visual analysis was done on color composite images using the selected sets. Results show that the hybrid product (bands 4, 5/7, and 7 with green, blue, and red respectively) and the Normal Color Composite (bands 4, 5, and 7 with blue, green, and red colors respectively) had the best performance.

  4. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    PubMed

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption. PMID:21883071

  5. Influence of Ohio River Valley Emissions on Fine Particle Sulfate Measured from Aircraft over Large Regions of the Eastern United States and Canada during INTEX-NA

    NASA Technical Reports Server (NTRS)

    Hennigan, Christopher J.; Sandholm, Scott; Kim, Saewung; Stickel, Robert E.; Huey, L. Gregory; Weber, Rodney J.

    2006-01-01

    Aircraft measurements of fine inorganic aerosol composition were made with a particle-into-liquid sampler coupled to dual ion chromatographs (PILS-IC) as part of the NASA INTEX-NA study. The sampling campaign, which lasted from 1 July to 14 August 2004, centered over the eastern United States and Canada and showed that sulfate was the dominant inorganic species measured. The highest sulfate concentrations were observed at altitudes below 2 km, and back trajectory analyses showed a distinct difference between air masses that had or had not intercepted the Ohio River valley (ORV) region. Air masses encountered below 2 km with a history over the ORV had sulfate concentrations that were higher by a factor of 3.2 and total sulfur (S) concentrations higher by 2.5. The study's highest sulfate concentrations were found in these air masses. The sulfur of the ORV air masses was also more processed with a mean sulfate to total sulfur molar ratio of 0.5 compared to 0.3 in non-ORV measurements. Results from a second, independent trajectory model agreed well with those from the primary analysis. These ORV-influenced air masses were encountered on multiple days and were widely spread across the eastern United States and western Atlantic region.

  6. Mafic and pelitic xenoliths in the Kinnaur Kailash Granite, Baspa river valley, NW Himalaya: Evidence of pre-Himalayan granulite metamorphism followed by cooling event

    NASA Astrophysics Data System (ADS)

    Thakur, S. S.; Patel, S. C.

    2012-08-01

    Mafic and pelitic xenoliths occurring within the early Palaeozoic Kinnaur Kailash Granite (KKG) in the Baspa river valley, NW Himalaya record pre-Himalayan regional metamorphism at a range of pressure (P)-temperature (T) conditions that span amphibolite to granulite facies. The key evidence of granulite metamorphism is a xenolith of two-pyroxene mafic granulite in which orthopyroxene occurs as both discrete grains and microscopic needles exsolved parallel to prismatic cleavage of the clinopyroxene host. The rock records an average peak metamorphic temperature of 840 °C. Garnetiferous mafic xenoliths display coronae of garnet around plagioclase and clinopyroxene, and of sphene around ilmenite. These coronae were developed by near-isobaric cooling after peak metamorphism at 730 °C and 8 kbar. Pelitic xenoliths have the assemblage biotite-plagioclase-quartz ± garnet ± K-feldspar ± muscovite, and record P-T ranges of 7.0-9.0 kbar and 500-700 °C which indicate lower to middle amphibolite facies metamorphism of these rocks. Quartz, feldspar and mica in the pelitic xenoliths commonly show optical evidences of crystalloplastic deformation which indicate that the rocks were sheared before being engulfed as xenoliths in the KKG. The findings of this study imply that the present day metamorphic assemblages and shear fabrics in HHCS rocks need not be attributed solely to the Himalayan orogeny.

  7. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    PubMed

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability. PMID:25371912

  8. Dynamics of spatial clustering of schistosomiasis in the Yangtze River Valley at the end of and following the World Bank Loan Project.

    PubMed

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Ward, Michael; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-06-01

    The 10-year (1992-2001) World Bank Loan Project (WBLP) contributed greatly to schistosomiasis control in China. However, the re-emergence of schistosomiasis in recent years challenged the long-term progress of the WBLP strategy. In order to gain insight in the long-term progress of the WBLP, the spatial pattern of the epidemic was investigated in the Yangtze River Valley between 1999-2001 and 2007-2008. Two spatial cluster methods were jointly used to identify spatial clusters of cases. The magnitude and number of clusters varied during 1999-2001. It was found that prevalence of schistosomiasis had been greatly reduced and maintained at a low level during 2007-2008, with little change. Besides, spatial clusters most frequently occurred within 16 counties in the Dongting Lake region and within 5 counties in the Poyang Lake region. These findings precisely pointed out the prior places for future public health planning and resource allocation of schistosomiasis. PMID:24530858

  9. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    SciTech Connect

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  10. Vegetation and geomorphic significance of the riparian greenline in the Sprague River basin, southern Oregon: implications for biogeomorphic monitoring of riparian corridors in semi-arid mountain valleys

    NASA Astrophysics Data System (ADS)

    Hughes, M. L.; Leeseberg, C.

    2009-12-01

    Like many regions in the western U.S., valley-floor environments of the semi-arid Sprague River basin of southern Oregon are heavily irrigated and widely grazed by cattle. To better understand the impacts of grazing and other land uses on river quality, the Klamath Tribes have begun a long-term, basin-wide program aimed at: (1) establishing baseline geomorphic and vegetative conditions along the Sprague River and its tributaries, and (2) monitoring changes in these conditions over time. Because of its widespread use and ease of application, determining the composition of the lowest line of perennial vegetation above baseflow, or the “greenline,” has been included. The goal of this paper is to summarize results of 38 greenline surveys conducted at 19 sites in 2008-9 and to explore geomorphic hypotheses that may explain vegetation patterns evident in the surveys. Spikerush (Eleocharis ssp.) and reed-canary grass (Phalaris arudinacea) were the most commonly occurring vegetation in the greenline across all sites. Because these species are aggressive colonizers, they indicate high availability of fresh alluvium, which may be associated with sustained channel-bank disturbance. Sedges dominated some portions of the greenline at most of the sites, but occurred in less abundance. The late successional or early-to-late transitional state of these sedges, combined with their relatively low frequency, further supports the hypothesis that channel-bank systems remain chronically disturbed and dynamic. Grazing is common, but variable in intensity, at nearly all of the study sites, likely contributing to the persistence of channel-bank disturbance. Among meandering channels, the richness of dominant species (i.e., “community diversity”) was higher on the outer bends than on the inner bends of meanders at 10 of 12 sites. The variability of geomorphic surfaces (old floodplain, new floodplain, failed bank, accreted toe, etc.) incorporated in the greenline by the spatially

  11. Hydrogeology of the Scioto River Valley near Piketon, South-Central Ohio a quantitative study of ground-water yield and induced infiltration in a glacial outwash aquifer

    USGS Publications Warehouse

    Norris, Stanley Eugene; Fidler, Richard E.