Science.gov

Sample records for big bend region

  1. Reconciliation and interpretation of Big Bend National Park particulate sulfur source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part I.

    PubMed

    Schichtel, Bret A; Gebhart, Kristi A; Malm, William C; Barna, Michael G; Pitchford, Marc L; Knipping, Eladio M; Tombach, Ivar H

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was an intensive monitoring study from July through October 1999 followed by extensive assessments to determine the causes and sources of haze in Big Bend National Park, located in Southwestern Texas. Particulate sulfate compounds are the largest contributor of haze at Big Bend, and chemical transport models (CTMs) and receptor models were used to apportion the sulfate concentrations at Big Bend to North American source regions and the Carbón power plants, located 225 km southeast of Big Bend in Mexico. Initial source attribution methods had contributions that varied by a factor of > or =2. The evaluation and comparison of methods identified opposing biases between the CTMs and receptor models, indicating that the ensemble of results bounds the true source attribution results. The reconciliation of these differences led to the development of a hybrid receptor model merging the CTM results and air quality data, which allowed a nearly daily source apportionment of the sulfate at Big Bend during the BRAVO study. The best estimates from the reconciliation process resulted in sulfur dioxide (SO2) emissions from U.S. and Mexican sources contributing approximately 55% and 38%, respectively, of sulfate at Big Bend. The distribution among U.S. source regions was Texas, 16%; the Eastern United States, 30%; and the Western United States, 9%. The Carbón facilities contributed 19%, making them the largest single contributing facility. Sources in Mexico contributed to the sulfate at Big Bend on most days, whereas contributions from Texas and Eastern U.S. sources were episodic, with their largest contributions during Big Bend sulfate episodes. On the 20% of the days with the highest sulfate concentrations, U.S. and Mexican sources contributed approximately 71% and 26% of the sulfate, respectively. However, on the 20% of days with the lowest sulfate concentrations, Mexico contributed 48% compared with 40

  2. Results of new petrologic and remote sensing studies in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Benker, Stevan Christian

    The initial section of this manuscript involves the South Rim Formation, a series of 32.2-32 Ma comenditic quartz trachytic-rhyolitic volcanics and associated intrusives, erupted and was emplaced in Big Bend National Park, Texas. Magmatic parameters have only been interpreted for one of the two diverse petrogenetic suites comprising this formation. Here, new mineralogic data for the South Rim Formation rocks are presented. Magmatic parameters interpreted from these data assist in deciphering lithospheric characteristics during the mid-Tertiary. Results indicate low temperatures (< 750 °C), reduced conditions (generally below the FMQ buffer), and low pressures (≤ 100 MPa) associated with South Rim Formation magmatism with slight conditional differences between the two suites. Newly discovered fayalite microphenocrysts allowed determination of oxygen fugacity values (between -0.14 and -0.25 DeltaFMQ over temperature ranges of 680-700 °C), via mineral equilibria based QUILF95 calculations, for Emory Peak Suite. Petrologic information is correlated with structural evidence from Trans-Pecos Texas and adjacent regions to evaluate debated timing of tectonic transition (Laramide compression to Basin and Range extension) and onset of the southern Rio Grande Rift during the mid-Tertiary. The A-type and peralkaline characteristics of the South Rim Formation and other pre-31 Ma magmatism in Trans-Pecos Texas, in addition to evidence implying earlier Rio Grande Rift onset in Colorado and New Mexico, promotes a near-neutral to transtensional setting in Trans-Pecos Texas by 32 Ma. This idea sharply contrasts with interpretations of tectonic compression and arc-related magmatism until 31 Ma as suggested by some authors. However, evidence discussed cannot preclude a pre-36 Ma proposed by other authors. The later section of this manuscript involves research in the Big Bend area using Google Earth. At present there is high interest in using Google Earth in a variety of scientific

  3. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    SciTech Connect

    Lehman, T.M. )

    1990-04-01

    A marked change in paleosols coincides with Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  4. Results of new petrologic and remote sensing studies in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Benker, Stevan Christian

    The initial section of this manuscript involves the South Rim Formation, a series of 32.2-32 Ma comenditic quartz trachytic-rhyolitic volcanics and associated intrusives, erupted and was emplaced in Big Bend National Park, Texas. Magmatic parameters have only been interpreted for one of the two diverse petrogenetic suites comprising this formation. Here, new mineralogic data for the South Rim Formation rocks are presented. Magmatic parameters interpreted from these data assist in deciphering lithospheric characteristics during the mid-Tertiary. Results indicate low temperatures (< 750 °C), reduced conditions (generally below the FMQ buffer), and low pressures (≤ 100 MPa) associated with South Rim Formation magmatism with slight conditional differences between the two suites. Newly discovered fayalite microphenocrysts allowed determination of oxygen fugacity values (between -0.14 and -0.25 DeltaFMQ over temperature ranges of 680-700 °C), via mineral equilibria based QUILF95 calculations, for Emory Peak Suite. Petrologic information is correlated with structural evidence from Trans-Pecos Texas and adjacent regions to evaluate debated timing of tectonic transition (Laramide compression to Basin and Range extension) and onset of the southern Rio Grande Rift during the mid-Tertiary. The A-type and peralkaline characteristics of the South Rim Formation and other pre-31 Ma magmatism in Trans-Pecos Texas, in addition to evidence implying earlier Rio Grande Rift onset in Colorado and New Mexico, promotes a near-neutral to transtensional setting in Trans-Pecos Texas by 32 Ma. This idea sharply contrasts with interpretations of tectonic compression and arc-related magmatism until 31 Ma as suggested by some authors. However, evidence discussed cannot preclude a pre-36 Ma proposed by other authors. The later section of this manuscript involves research in the Big Bend area using Google Earth. At present there is high interest in using Google Earth in a variety of scientific

  5. Water quality and amphibian health in the Big Bend region of the Rio Grande Basin

    USGS Publications Warehouse

    Sharma, Bibek; Hu, F.; Carr, J.A.; Patino, Reynaldo

    2011-01-01

    Male and female Rio Grande leopard frogs (Rana berlandieri) were collected in May 2005 from the main stem and tributaries of the Rio Grande in the Big Bend region of Texas. Frogs were examined for (1) incidence of testicular ovarian follicles in males; (2) thyroid epithelial cell height, a potential index of exposure to thyroid-disrupting contaminants; and (3) incidence of liver melanomacrophage aggregates, a general index of exposure to contaminants. Standard parameters of surface water quality and concentrations of selected elements, including heavy metals, were determined at each frog collection site. Heavy metals also were measured in whole-frog composite extracts. Water cadmium concentrations in most sites and chloride concentrations in the main stem exceeded federal criteria for freshwater aquatic life. Mercury was detected in frogs from the two collection sites in Terlingua Creek. There was a seventeen percent incidence of testicular ovarian follicles in male frogs. Mean thyroid epithelial cell height was greater in frogs from one of the Terlingua Creek sites (Terlingua Abajo). No differences were observed in the incidence of hepatic macrophage aggregates among sites. In conclusion, although potential cause-effect relationships between indices of habitat quality and amphibian health could not be established, the results of this study raise concerns about the general quality of the aquatic habitat and the potential long-term consequences to the aquatic biota of the Big Bend region. The presence of ovarian follicles in male frogs is noteworthy but further study is necessary to determine whether this phenomenon is natural or anthropogenically induced.

  6. Environmental contaminants in prey and tissues of the peregrine falcon in the Big Bend Region, Texas, USA.

    USGS Publications Warehouse

    Mora, M.; Skiles, R.; McKinney, B.; Paredes, M.; Buckler, D.; Papoulias, D.; Klein, D.

    2002-01-01

    Peregrine falcons (Falco peregrinus) have been recorded nesting in Big Bend National Park, Texas, USA and other areas of the Chihuahuan Desert since the early 1900s. From 1993 to 1996, peregrine falcon productivity rates were very low and coincided with periods of low rainfall. However, low productivity also was suspected to be caused by environmental contaminants. To evaluate potential impacts of contaminants on peregrine falcon populations, likely avian and bat prey species were collected during 1994 and 1997 breeding seasons in selected regions of western Texas, primarily in Big Bend National Park. Tissues of three peregrine falcons found injured or dead and feathers of one live fledgling also were analyzed. Overall, mean concentrations of DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], a metabolite of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], were low in all prey species except for northern rough-winged swallows (Stelgidopteryx serripennis, mean = 5.1 microg/g ww). Concentrations of mercury and selenium were elevated in some species, up to 2.5 microg/g dw, and 15 microg/g dw, respectively, which upon consumption could seriously affect reproduction of top predators. DDE levels near 5 microg/g ww were detected in carcass of one peregrine falcon found dead but the cause of death was unknown. Mercury, selenium, and DDE to some extent, may be contributing to low reproductive rates of peregrine falcons in the Big Bend region.

  7. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    PubMed

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  8. Development of a United States - Mexico emissions inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study

    SciTech Connect

    Hampden Kuhns; Eladio M. Knipping; Jeffrey M. Vukovich,

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study investigated the sources of haze at Big Bend National Park in southwest Texas. The modeling domain includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) {lt}10 {mu}m in aerodynamic diameter, and PM {lt}2.5 {mu}m in aerodynamic diameter. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty. 65 refs., 4 figs., 9 tabs.

  9. Application of the tracer-aerosol gradient interpretive technique to sulfur attribution for the big bend regional aerosol and visibility observational study.

    PubMed

    Green, Mark; Kuhns, Hampden; Pitchford, Marc; Dietz, Russell; Ashbaugh, Lowell; Watson, Tom

    2003-05-01

    A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary. PMID:12774992

  10. Remotely Sensed Optical Water Quality for Water Quality Assessment and Seagrass Protection in Florida's Big Bend Region

    NASA Astrophysics Data System (ADS)

    Carlson, P. R.; Hu, C.; Cannizarro, J.; Yarbro, L. A.; English, D. C.; Magley, W.; Charbonneau, M.; Barnes, B.

    2012-12-01

    Florida's Big Bend coastal region contains the second largest contiguous seagrass bed in the continental US. Approximately 250,000 ha of seagrass have been mapped in the region, but the total area of offshore seagrass beds might be several times greater. The Suwannee River drains a largely agricultural watershed (26,000 km2) in Georgia and Florida, and its discharge (x= 280 m3/s) affects water clarity over most of the Big Bend seagrass beds. Seagrass density, species composition and areal extent were severely affected by discharge associated with tropical cyclones in 2004 and 2005, focusing attention on this important resource and the near- and far-field impacts of the Suwannee River discharge. The Lower Suwannee River also has been identified by the Florida Department of Environmental Protection as an impaired water body due to high nitrogen and algal biomass. This project attempts to improve water quality and to protect Big Bend seagrasses by making remotely sensed optical water quality data more accessible to managers and stakeholders involved in the process of regulating nutrient loads in the Suwannee River and to provide data to assess effectiveness of management actions. To accomplish these goals, we have developed and tested new algorithms for retrieval of Kd, chlorophyll, and CDOM from Modis imagery, created a time series of optical water quality (OWQ) for the Suwannee River Estuary (SRE), and related seagrass gains and losses to annual variations in optical water quality. During two years of bimonthly ground-truth cruises, chlorophyll concentrations, Aph, Ad, and Acdom in the SRE were 0.3-38.3 mgm-3, 0.013-1.056, 0.013-0.735, and 0.042-7.24, respectively. For most locations and most cruises, CDOM was the dominant determinant of Kd. In the Modis time series, Kd488 estimates (calculated using the Quasi-Analytic Algorithm of Lee et al. 2006) covaried with Suwannee River discharge between 2002 and 2011 with an overall r2 value of 0.64. This relationship is

  11. The role of feedback mechanisms in historic channel changes of the lower Rio Grande in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Dean, David J.; Schmidt, John C.

    2011-03-01

    Over the last century, large-scale water development of the upper Rio Grande in the U.S. and Mexico, and of the Rio Conchos in Mexico, has resulted in progressive channel narrowing of the lower Rio Grande in the Big Bend region. We used methods operating at multiple spatial and temporal scales to analyze the rate, magnitude, and processes responsible for channel narrowing. These methods included: hydrologic analysis of historic stream gage data, analysis of notes of measured discharges, historic oblique and aerial photograph analysis, and stratigraphic and dendrogeomorphic analysis of inset floodplain deposits. Our analyses indicate that frequent large floods between 1900 and the mid-1940s acted as a negative feedback mechanism and maintained a wide, sandy, multi-threaded river. Declines in mean and peak flow in the mid-1940s resulted in progressive channel narrowing. Channel narrowing has been temporarily interrupted by occasional large floods that widened the channel, however, channel narrowing has always resumed. After large floods in 1990 and 1991, the active channel width of the lower Rio Grande has narrowed by 36-52%. Narrowing has occurred by the vertical accretion of fine-grained deposits on top of sand and gravel bars, inset within natural levees. Channel narrowing by vertical accretion occurred simultaneously with a rapid invasion of non-native riparian vegetation ( Tamarix spp., Arundo donax) which created a positive feedback and exacerbated the processes of channel narrowing and vertical accretion. In two floodplain trenches, we measured 2.75 and 3.5 m of vertical accretion between 1993 and 2008. In some localities, nearly 90% of bare, active channel bars were converted to vegetated floodplain during the same period. Upward shifts of stage-discharge relations occurred resulting in over-bank flooding at lower discharges, and continued vertical accretion despite a progressive reduction in stream flow. Thus, although the magnitude of the average annual

  12. UV - BIG BEND NATIONAL PARK TX

    EPA Science Inventory

    Brewer 130 is located in Big Bend NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc. of...

  13. Big Bend National Park, TX, USA, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Sierra del Carmen of Mexico, across the Rio Grande River from Big Bend National Park, TX, (28.5N, 104.0W) is centered in this photo. The Rio Grande River bisects the scene; Mexico to the east, USA to the west. The thousand ft. Boquillas limestone cliff on the Mexican side of the river changes colors from white to pink to lavender at sunset. This severely eroded sedimentary landscape was once an ancient seabed later overlaid with volcanic activity.

  14. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  15. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA

    USGS Publications Warehouse

    Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.

    2015-01-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690–82,000 ng/m3) were highly elevated compared to soil gas collected from baseline sites (1.2–77 ng/m3). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9–64 ng/m3) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air

  16. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the

  17. Bat ectoparasites from the Trans-Pecos region of Texas, including notes from Big Bend National Park.

    PubMed

    Ritzi, C M; Ammerman, L K; Dixon, M T; Richerson, J V

    2001-05-01

    Ectoparasites of 13 species of molossid, mormoopid, and vespertilionid bats from the Trans-Pecos region of Texas were studied, as follows: Antrozous pallidus (LeConte), Corynorhinus townsendii (Cooper), Eptesicus fuscus (Palisot de Beauvois), Lasiurus cinereus (Palisot de Beauvois), Mormoops megalophylla (Peters), Myotis thysanodes G. S. Miller, Myotis velifer (J. A. Allen), Myotis volans (H. Allen), Myotis yumanensis (H. Allen), Nyctinomops femorosaccus (Merriam), Nyctinomops macrotis (Gray), Pipistrellus hesperus (H. Allen), and Tadarida brasiliensis (I. Geof. St.-Hilaire). The bats were netted, examined for ectoparasites and released. Ectoparasites recovered included three species of flea, three species of streblid, three species of nycteribiid, two species of cimicid, two species of tick, and 17 species of mite. New ectoparasite records are given for hosts in seven instances and for the Trans-Pecos region of Texas in three instances. PMID:11372965

  18. Association of airmass transport patterns and particulate sulfur concentrations at Big Bend National Park, Texas

    NASA Astrophysics Data System (ADS)

    Schichtel, Bret A.; Gebhart, Kristi A.; Barna, Michael G.; Malm, William C.

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was initiated to understand the causes of haze at Big Bend National Park. BRAVO included the measurement of aerosols throughout Texas from July to October 1999 and extensive modeling of these aerosols. In support of BRAVO, the potential contributions from source regions to particulate sulfur at Big Bend during the BRAVO period were examined via an airmass history analysis. This was done using residence time analysis and a new technique of decomposing the residence time probability density function into its basic components, an airmass transport directional frequency and inverse characteristic transport speed. Trajectory heights over potential source regions were also examined. The system was validated using inert perfluorocarbon tracers that were released from four Texas sites. Airmass transport to Big Bend was examined on days with high (>80th percentile), and days with low (<20th percentile), particulate sulfur. High particulate sulfur concentrations were associated with low-level and low-speed airmass transport from the eastern United States, eastern Texas, and northeastern Mexico. All three of these regions have high SO 2 emissions that could contribute to Big Bend's haze. Examination of individual trajectories showed that the highest particulate sulfur concentrations occurred when transport over several of these regions coincided. Low particulate sulfur concentrations coincided with low-level but high-speed airmass transport from the Gulf of Mexico and along the Mexico-Texas border. Precipitation often occurred along these trajectories. Low sulfur was also associated with transport from low SO 2 emission regions north and west of Big Bend. Days with high SO 2 or selenium concentrations were also examined. High SO 2 concentrations were associated with prior transport from nearby sources, particularly the Carbón power plants located in Mexico ˜230 km southeast of Big Bend. High selenium

  19. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic response

    NASA Astrophysics Data System (ADS)

    Dean, David J.; Schmidt, John C.

    2013-11-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic

  20. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: insights on geomorphic controls and post-flood geomorphic response

    USGS Publications Warehouse

    Dean, David J.; Schmidt, John C.

    2013-01-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic

  1. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2004-08-01

    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered.

  2. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    USGS Publications Warehouse

    Fitzenz, D.D.; Miller, S.A.

    2004-01-01

    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  3. Preliminary survey of the mayflies (Ephemeroptera) and caddisflies (Trichoptera) of Big Bend Ranch State Park and Big Bend National Park

    PubMed Central

    Baumgardner, David E.; Bowles, David E.

    2005-01-01

    The mayfly (Insecta: Ephemeroptera) and caddisfly (Insecta: Trichoptera) fauna of Big Bend National Park and Big Bend Ranch State Park are reported based upon numerous records. For mayflies, sixteen species representing four families and twelve genera are reported. By comparison, thirty-five species of caddisflies were collected during this study representing seventeen genera and nine families. Although the Rio Grande supports the greatest diversity of mayflies (n=9) and caddisflies (n=14), numerous spring-fed creeks throughout the park also support a wide variety of species. A general lack of data on the distribution and abundance of invertebrates in Big Bend National and State Park is discussed, along with the importance of continuing this type of research. PMID:17119610

  4. Structural geology of the Big Bend anticline, Brooks Range Foothills, Alaska

    NASA Astrophysics Data System (ADS)

    Sanders, Cheryl M.

    Big Bend anticline is near the northern edge of the Brooks Range foothills of northern Alaska. The structure of the foothills is a low-taper triangle zone or passive-roof duplex within Brooks Range foreland basin deposits. The dominant structures are detachment folds locally cut by thrust faults and Big Bend anticline is one of these. This research combines detailed surface mapping (1:25,000) with interpretation of aerial photos and satellite imagery of the Big Bend anticline and seismic reflection data from the Umiat anticline to reconstruct its surface and subsurface geometry. The research area surrounds the Big Bend of the Chandler River and covers approximately 10 km2. The mechanical stratigraphy of the area consists of the competent Nanushuk sandstones between two incompetent units-the overlying Seabee and underlying Torok shales. The structure of the area consists of an east-trending anticline with a hinge that branches westward into two open, broad anticlines and an intervening syncline. A forethrust near the southern hinge and a backthrust near the northern hinge have broken through the anticline west of the branch point. Subsurface data of Umiat anticline combined with surface projected cross sections from the study area provide an analog of the subsurface structure in the Big Bend area. These cross sections show gentle anticlines separated by flat bottomed synclines in competent Nanushuk Formation sandstone. The anticlines overly Torok Formation thickened by north vergent folds and thrust faults above a detachment zone. Collectively, these structures form a low-taper triangle zone. Cross section restoration suggests more shortening in the Torok duplex than in the overlying folds and breakthrough faults. Results of this research provide an analog for other anticlines in the region that are currently the focus of oil and gas exploration.

  5. Assessment of acreage and vegetation change in Florida's Big Bend tidal wetlands using satellite imagery

    USGS Publications Warehouse

    Raabe, Ellen A.; Stumpf, Richard P.

    1997-01-01

    Fluctuations in sea level and impending development on the west coast of Florida have aroused concern for the relatively pristine tidal marshes of the Big Bend. Landsat Thematic Mapper (TM) images for 1986 and 1995 are processed and evaluated for signs of change. The images cover 250 km of Florida's Big Bend Gulf Coast, encompassing 160,000 acres of tidal marshes. Change is detected using the normalized difference vegetation index (NDVI) and land cover classification. The imagery shows negligible net loss or gain in the marsh over the 9-year period. However, regional changes in biomass are apparent and are due to natural disturbances such as low winter temperatures, fire, storm surge, and the conversion of forest to march. Within the marsh, the most prominent changes in NDVI and in land cover result from the recovery of mangroves from freezes, a decline of transitional upland vegetation, and susceptibility of the marsh edge and interior to variations in tidal flooding.

  6. MANUAL FOR IDENTIFICATION OF MARINE INVERTEBRATES: A GUIDE TO SOME COMMON ESTUARINE MACROINVERTEBRATES OF THE BIG BEND REGION, TAMPA BAY, FLORIDA

    EPA Science Inventory

    In the guide, fourteen of the most commonly encountered marine animal phyla are presented by 233 taxa (196 species). Many of the species have wide distribution, including large regions of the Gulf of Mexico as well as portions of the southeast Atlantic coast. The guide presents t...

  7. Further assessment of environmental contaminants in avian prey of the peregrine falcon in big bend National Park, Texas

    USGS Publications Warehouse

    Mora, M.A.; Skiles, R.S.; Paredes, M.

    2007-01-01

    A small resident population of peregrine falcons (Falco peregrinus anatum) in the Big Bend region of Texas has suffered reproductive failures since 1990. To continue our assessment of the effects of environmental contaminants on the peregrine falcon, we collected representative avian prey species during 2001 at Mariscal Canyon, Big Bend National Park. The avian carcasses were analyzed for inorganic and organochlorine contaminants. Concentrations of Se and Hg were present at high levels (up to 11 and 2.2 ??g/g dry weight, respectively) in some avian prey and could be implicated in reproductive failures of the peregrine falcon in Big Bend National Park. All other inorganic elements were below concentrations known to affect reproduction or to be associated with other deleterious effects in birds. Of all the organochlorines analyzed, only DDE and total PCBs were present above detection limits in all species, although at low concentrations. Our study provides further support to the hypothesis that contaminants in potential avian prey of the peregrine falcon in the Big Bend region are implicated in the productivity failures observed in this species since 1990.

  8. Quantitative back-trajectory apportionment of sources of particulate sulfate at Big Bend National Park, TX

    NASA Astrophysics Data System (ADS)

    Gebhart, Kristi A.; Schichtel, Bret A.; Barna, Michael G.; Malm, William C.

    As part of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) study, a quantitative back-trajectory-based receptor model, Trajectory Mass Balance (TrMB) was used to estimate source apportionment of particulate sulfur measured at Big Bend National Park, Texas, during July-October 1999. The model was exercised using a number of sets of trajectories generated by three different trajectory models, with three different sets of input gridded meteorology, and tracked for 5, 7, and 10 days back in time. The performance of the TrMB model with the different trajectory inputs was first evaluated against perfluorocarbon tracers and synthetically generated sulfate concentrations from a regional air quality model, both of which had known attributions. These tests were used to determine which trajectories were adequate for the TrMB modeling of measured sulfate concentrations, illustrated the magnitude of the daily uncertainties as compared to the uncertainties in the mean attributions, and demonstrated the value of a robust evaluation process. Depending on trajectories, mean sulfate source apportionment results were 39-50% from Mexico, 7-26% from the eastern US, 12-45% from Texas, and 3-25% from the western US. These ranges were inclusive of the best BRAVO attribution estimates for Mexico, Texas, and the western US, but TrMB underestimated the eastern US contribution as compared to the BRAVO best estimates.

  9. Geologic map of the Chisos Mountains, Big Bend National Park, Texas

    USGS Publications Warehouse

    Bohannon, Robert G.

    2011-01-01

    The Chisos Mountains form some of the highest ground in Texas, second only to Guadalupe Peak near the New Mexico border. The northern half of the range is mostly above 5,500 feet with Emory Peak the high point at 7,825 feet. The mountains are centrally located in Big Bend National Park between Panther Junction and Punta de la Sierra. Big Bend National Park lies near the diffuse border between the Great Plains Province to the northeast and the Sonoran section of the Basin-and-Range structural province to the west and southwest. These geologically unique regions are distinguished from one another by large differences in their landscape and by the amount and style of internal structural deformation. The Great Plains Province is characterized by flat-lying or gently dipping sedimentary strata, low topographic relief, shallow stream valleys, and by a general lack of faulting. Very little active deposition is occurring on the plains, except in the bottoms of active stream valleys. In southwestern Texas the plains stand at average elevations of 2,000 to 3,300 feet and slope gently east toward the Mississippi River and the Gulf of Mexico. The Great Plains have remained relatively unchanged for the last 65 million years, except that they have been uplifted to their present height from lower elevations probably in the last 5 million years. The Basin-and-Range province is characterized by linear parallel mountain ranges, deep sediment-filled valleys, and high structural and topographic relief. The eastern part of the province is at a slightly higher average elevation than the plains. The province is known for its complex patterns of Cenozoic faulting. Today it bears little resemblance to the way it was during the Paleocene when the entire Trans-Pecos region was a simple lowland that was near or slightly below sea level.

  10. Assessment of acreage and vegetation change in Florida`s Big Bend tidal wetlands using satellite imagery

    SciTech Connect

    Raabe, E.A.; Stumpf, R.P.

    1997-06-01

    Fluctuations in sea level and impending development on the west coast of Florida have aroused concern for the relatively pristine tidal marshes of the Big Bend. Landsat Thematic Mapper (TM) images for 1986 and 1995 are processed and evaluated for signs of change. The images cover 250 km of Florida`s Big Bend Gulf Coast, encompassing 160,000 acres of tidal marshes. Change is detected using the normalized difference vegetation index (NDVI) and land cover classification. The imagery shows negligible net loss or gain in the marsh over the 9-year period. However, regional changes in biomass are apparent and are due to natural disturbances such as low winter temperatures, fire, storm surge, and the conversion of forest to marsh. Within the marsh, the most prominent changes in NDVI and in land cover result from the recovery of mangroves from freezes, a decline of transitional upland vegetation, and susceptibility of the marsh edge and interior to variations in tidal flooding.

  11. Development of Competency-Based Articulated Automotive Program. Big Bend Community College and Area High Schools. Final Report.

    ERIC Educational Resources Information Center

    Buche, Fred; Cox, Charles

    A competency-based automotive mechanics curriculum was developed at Big Bend Community College (Washington) in order to provide the basis for an advanced placement procedure for high school graduates and experienced adults through a competency assessment. In order to create the curriculum, Big Bend Community College automotive mechanics…

  12. Provenance and depositional environments of middle Eocene Canoe Formation, Big Bend National Park, Brewster County, Texas

    SciTech Connect

    Rigsby, C.A.

    1984-04-01

    The middle Eocene Canoe Formation contains the first sedimentologic evidence of local volcanism in the Big Bend region. Sediments comprising the formation's lower member, the Big Yellow Sandstone, were deposited by sandy braided streams which were scoured by ancient carbonate highlands and volcanic terranes to the west. The unit represents a continuation of the depositional styles and compositional trends recorded in the Paleocene and early Eocene strata of the region. In contrast, sediments comprising the upper, unnamed member of the Canoe Formation were deposited as a volcanic sediment apron of the fringes of the newly forming Chisos Mountains volcanic center. The sandstones (feldspathic litharenites and lithic arkoses) are dominated by volcanic rock fragments and, as such, document an abrupt change in depositional style and sediment composition brought about by the onset of local volcanism. A comparison of Canoe Formation and earlier Tertiary sediment compositions results in the delineation of distinct petrologic trends which record the tectonic evolution of the early Tertiary sediment source area. The Paleocene sediments of the area were derived primarily from ancient magmatic arcs in northeastern Mexico. With the onset of the Laramide orogeny in late Paleocene-early Eocene, a new source of sediment - newly uplifted carbonate highlands - was added. Local volcanism in the middle Eocene produced yet another source of sediment, lava flows, ash flow tuffs, and sand-size pyroclastic materials from the Chisos Mountain volcanic center. Rapid erosion of these materials produced volcanic sediment aprons such as the one described here. As regional volcanic activity increased, typical Paleocene and early Eocene depositional styles may have been completely abandoned, especially in areas proximal to the volcanic centers.

  13. Historic topographic sheets to satellite imagery—A methodology for evaluating coastal change in Florida's Big Bend tidal marsh

    USGS Publications Warehouse

    Raabe, Ellen A.; Streck, Amy E.; Stumpf, Richard P.

    2004-01-01

    This open-file report details the methodology used to rectify, digitize, and mosaic nineteen 19th century topographic sheets on the marsh-dominated Big Bend Gulf coast of Florida. Historic charts of tidal marshes in Florida's Big Bend were prepared in a digital grid-based format for comparison with modern features derived from 1995 satellite imagery. The chart-by-chart rectification process produced a map accuracy of ± 8 m. An effort was made to evaluate secondary map features, such as tree islands, but changes during the intervening years exceed standard surveying errors and rendered the analysis ineffective. A map, at 1:300,000 comparing historic and modern features, is provided to illustrate major changes along the coastline. Shoreline erosion is exceeded by the inland migration of the intertidal zone onto adjoining coastal forest lands. While statements of mapping accuracy are provided in the text, graphic representation of changes in the intertidal zone may be inexact at any given location. Thus caution is advised for site-specific applications. Maps and digital files provided should be used to visualize overall trends and regional anomalies, and not used to critically assess features at a particular location. Final product includes mosaic of historic coastal features and comparison to modern features.

  14. Crustal velocity field near the big bend of California's San Andreas fault

    USGS Publications Warehouse

    Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.

    1996-01-01

    We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.

  15. Integrated Geologic, Geochemical, and Geophysical Studies of Big Bend National Park, Texas

    USGS Publications Warehouse

    Gray, John E.; Finn, Carol A.; Morgan, Lisa A.; Page, William R.; Shanks, Wayne C.

    2007-01-01

    Introduction Big Bend National Park (BBNP), Texas, covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mi (190-km) stretch of the Rio Grande at the United States border with Mexico. The U.S. Geological Survey (USGS) began a 5-year project in 2003 with the objective of studying a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP. This fact sheet describes results of some of the research by USGS scientists working in BBNP.

  16. Stratigraphy of the Cretaceous-Tertiary and Paleocene-Eocene transition rocks of Big Bend National Park, Texas

    SciTech Connect

    Schiebout, J.A.; Rigsby, C.A.; Rapp, S.D.; Hartnell, J.A.; Standhardt, B.R.

    1987-05-01

    The marine to terrestrial transition in the Big Bend area falls within the Late Cretaceous Aguja Formation, and, in light of new biostratigraphic data resulting from screening for small vertebrates and magneto-stratigraphic data, the Cretaceous-Tertiary boundary falls within the Javelina Formation, which includes the first red banding produced by oxidation of overbank fluvial mudstones. No record of a catastrophic event is apparent in the Javelina Formation. The Javelina, Black Peaks, and Hannold Hill Formations and the Big Yellow Sandstone Member of the Canoe Formation record increasing uplift in the region, culminating in uplift and volcanism in the Chisos mountains, the source for upper Canoe Formation sediments. The sequence of changes produced by this trend and by unroofing in source highlands to the west is sufficiently gradual that the Javelina through Black Peaks units are not lithostratigraphically distinct at the formation level and therefore are reduced to member status, and placed, along with the Big Yellow Sandstone Member, within the redefined Tornillo Formation. The Aguja Formation and the Tornillo Formation are united in the Chilicotal Group (new), which spans the deposits from the first significant influxes of terrestrial sediments, formed as the Cretaceous sea retreated, up to the beginning of local volcanism in the Chisos. The volcanic strata of the upper Canoe Formation are reassigned to the Chisos Formation. 46 references.

  17. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  18. Large-scale habitat associations of four desert anurans in Big Bend National Park, Texas

    USGS Publications Warehouse

    Dayton, G.H.; Jung, R.E.; Droege, S.

    2004-01-01

    We used night driving to examine large scale habitat associations of four common desert anurans in Big Bend National Park, Texas. We examined association of soil types and vegetation communities with abundance of Couch's Spadefoots (Scaphiopus couchii), Red-spotted Toads (Bufo punctatus), Texas Toads (Bufo speciosus), and Western Green Toads (Bufo debilis). All four species were disproportionately associated with frequently inundated soils that are relatively high in clay content. Bufo punctatus was associated with rocky soil types more frequently than the other three species. Association between all four species and vegetation types was disproportionate in relation to availability. Bufo debilis and Bufo punctatus were associated with creosote and mixed scrub vegetation. Bufo speciosus and Scaphiopus couchii were associated with mesquite scrub vegetation. Bufo debilis, Scaphiopus couchii, and B. speciosus were more tightly associated with specific habitat types, whereas B. punctatus exhibited a broader distribution across the habitat categories. Examining associations between large-scale habitat categories and species abundance is an important first step in understanding factors that influence species distributions and presence-absence across the landscape.

  19. Evaluation of canoe surveys for anurans along the Rio Grande in Big Bend National Park, Texas

    USGS Publications Warehouse

    Jung, R.E.; Bonine, K.E.; Rosenshield, M.L.; de la Reza, A.; Raimondo, S.; Droege, S.

    2002-01-01

    Surveys for amphibians along large rivers pose monitoring and sampling problems. We used canoes at night to spotlight and listen for anurans along four stretches of the Rio Grande in Big Bend National Park, Texas, in 1998 and 1999. We explored temporal and spatial variation in amphibian counts and species richness and assessed relationships between amphibian counts and environmental variables, as well as amphibian-habitat associations along the banks of the Rio Grande. We documented seven anuran species, but Rio Grande leopard frogs (Rana berlandieri) accounted for 96% of the visual counts. Chorus surveys along the river detected similar or fewer numbers of species, but orders of magnitude fewer individuals compared to visual surveys. The number of species varied on average by 37% across monthly and nightly surveys. We found similar average coefficients of variation in counts of Rio Grande leopard frogs on monthly and nightly bases (CVs = 42-44%), suggesting that canoe surveys are a fairly precise technique for counts of this species. Numbers of Rio Grande leopard frogs observed were influenced by river gage levels and air and water temperatures, suggesting that surveys should be conducted under certain environmental conditions to maximize counts and maintain consistency. We found significant differences in species richness and bullfrog (Rana catesbeiana) counts among the four river stretches. Four rare anuran species were found along certain stretches but not others, which could represent either sampling error or unmeasured environmental or habitat differences among the river stretches. We found a greater association of Rio Grande leopard frogs with mud banks compared to rock or cliff (canyon) areas and with seepwillow and open areas compared to giant reed and other vegetation types. Canoe surveys appear to be a useful survey technique for anurans along the Rio Grande and may work for other large river systems as well.

  20. Progressive deformation and degradation along the northern portion of the Big Bend of the San Andreas Fault

    SciTech Connect

    Arrowsmith, R. . Dept. of Geology)

    1992-01-01

    The 1-to-5-km-wide Elkhorn Hills in the southeastern Carrizo Plain, California (bounded by the San Andreas Fault (SAF) on the southwest and a series of reverse faults on the northeast), are progressively deformed as they are displaced along the SAF into the northern portion of the Big Bend. The structural development follows this sequence: (1) an alluvial fan surface is cut by reverse faults about 500 m northeast of the SAF, and grabens form in the foot-wall block of the faults; (2) a reverse fault striking 25 degrees counterclockwise from the SAF cuts the fan surface 2 to 3 km northeast of the SAF, left-stepping grabens form in the reverse fault hanging wall; their orientation is controlled by distributed SAF parallel shear and by dip variations in the reverse fault surface; (3) reverse faults accumulate displacement, increasing relief in the Elkhorn Hills, while hanging wall extension decreases; (4) slip on deeper thrusts accommodates contraction within the Big Bend, and Elkhorn Hills deformation decreases. Within the Northern Elkhorn Hills, the evidence for the development of deformation in time and space includes a southeastward increase in total displacement on the normal and reverse faults, a southeastward increase in the degradation of the normal fault scarps, and the beheading of a southwest flowing drainage by slip on the reverse fault, as well as cutting of that drainage by normal faults, implying contemporaneous propagation of normal and reverse faults. Based on a ground pattern age of 4 to 10 ka for the beheaded drainage and the present location of the reverse fault, a propagation rate of 3.5 to 10 cm/yr is calculated: consistent with the 3.5 cm/yr at which the Elkhorn Hills are displaced into the Big Bend by strike-slip motion along the SAF.

  1. Cretaceous basaltic phreatomagmatic volcanism in West Texas: Maar complex at Peña Mountain, Big Bend National Park

    NASA Astrophysics Data System (ADS)

    Befus, K. S.; Hanson, R. E.; Lehman, T. M.; Griffin, W. R.

    2008-06-01

    A structurally complex succession of basaltic pyroclastic deposits produced from overlapping phreatomagmatic volcanoes occurs within Upper Cretaceous floodplain deposits in the Aguja Formation in Big Bend National Park, West Texas. Together with similar basaltic deposits recently documented elsewhere in the Aguja Formation, these rocks provide evidence for an episode of phreatomagmatic volcanism that predates onset of arc magmatism in the region in the Paleogene. At Peña Mountain, the pyroclastic deposits are ≥ 70 m thick and consist dominantly of tabular beds of lapillistone and lapilli tuff containing angular to fluidal pyroclasts of altered sideromelane intermixed with abundant accidental terrigenous detritus derived from underlying Aguja sediments. Tephra characteristics indicate derivation from phreatomagmatic explosions involving fine-scale interaction between magma and sediment in the shallow subsurface. Deposition occurred by pyroclastic fall and base-surge processes in near-vent settings; most base-surge deposits lack tractional sedimentary structures and are inferred to have formed by suspension sedimentation from rapidly decelerating surges. Complexly deformed pyroclastic strata beneath a distinct truncation surface within the succession record construction and collapse of an initial volcano, followed by a shift in the location of the conduit and excavation of another maar crater into Aguja strata nearby. Preserved portions of the margin of this second crater are defined by a zone of intense soft-sediment disruption of pyroclastic and nonvolcanic strata. U-Pb isotopic analyses of zircon grains from three basaltic bombs in the succession reveal the presence of abundant xenocrysts, in some cases with ages > 1.0 Ga. The youngest concordant analyses for all three samples yield a weighted mean age of 76.9 ± 1.2 Ma, consistent with the presence of Late Campanian vertebrate fossils in the upper Aguja Formation. We infer that the volcanism is related to the

  2. Volcanic and magmatic evolution of a small trachytic vent complex, north Burro Mesa, Big Bend National Park, Texas

    USGS Publications Warehouse

    Morgan, Lisa A.; Shanks, Pat

    2009-01-01

    Volcanic rocks exposed on the northern end of Burro Mesa in Big Bend National Park portray the evolution of an Oligocene central volcanic vent complex that produced two generations of welded block and ash deposits associated with 1) initial dome collapse and 2) subsequent central spine collapse. Peripheral to the vent complex, isolated breccia deposit exposures overlie ignimbrites, tephras, and lavas. These blocks are a few meters to several hundred meters long and 30 m high and consist of monolithic angular and welded trachytic lava clasts in finer-grained matrix. Rheomorphic structures in the breccia deposit show ductile deformation and suggest it formed while above the glass transition temperature.

  3. Plant dieback under exceptional drought driven by elevation, not by plant traits, in Big Bend National Park, Texas, USA

    PubMed Central

    Waring, Elizabeth F.

    2014-01-01

    In 2011, Big Bend National Park, Texas, USA, experienced the most severe single year drought in its recorded history, resulting in significant plant mortality. We used this event to test how perennial plant response to drought varied across elevation, plant growth form and leaf traits. In October 2010 and October 2011, we measured plant cover by species at six evenly-spaced elevations ranging from Chihuahuan desert (666 m) to oak forest in the Chisos mountains (1,920 m). We asked the following questions: what was the relationship between elevation and stem dieback and did susceptibility to drought differ among functional groups or by leaf traits? In 2010, pre-drought, we measured leaf mass per area (LMA) on each species. In 2011, the percent of canopy dieback for each individual was visually estimated. Living canopy cover decreased significantly after the drought of 2011 and dieback decreased with elevation. There was no relationship between LMA and dieback within elevations. The negative relationship between proportional dieback and elevation was consistent in shrub and succulent species, which were the most common growth forms across elevations, indicating that dieback was largely driven by elevation and not by species traits. Growth form turnover did not influence canopy dieback; differences in canopy cover and proportional dieback among elevations were driven primarily by differences in drought severity. These results indicate that the 2011 drought in Big Bend National Park had a large effect on communities at all elevations with average dieback for all woody plants ranging from 8% dieback at the highest elevation to 83% dieback at lowest elevations. PMID:25083346

  4. The Clinch Bend Regional Industrial Site and economic development opportunities

    SciTech Connect

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  5. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false South Bend-Elkhart (Indiana)-Benton... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region. The South Bend-Elkhart (Indiana)-Benton...

  6. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false South Bend-Elkhart (Indiana)-Benton... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region. The South Bend-Elkhart (Indiana)-Benton...

  7. Constructing a near-continuous suspended-sediment budget using acoustic instrumentation on the Rio Grande in Big Bend National Park, USA

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Topping, D. J.; Griffiths, R. E.; Sabol, T. A.; Schmidt, J. C.; Bennett, J. B.

    2013-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, is in disequilibrium. The river in this reach rapidly narrows during low-flow years, and widens during rare, large magnitude floods. One management strategy to improve in-channel habitat for the native ecosystem is to limit the rate and magnitude of channel narrowing during low-flow years through water releases from re-operated upstream dams. The proposed purpose of these dam re-operations is to maximize fine-sediment transport downstream, thereby limiting fine-sediment deposition and channel narrowing. This management strategy requires extensive knowledge of the quantity of fine-sediment supplied to the river channel, the predominant source areas of the supplied sediment, and the suspended-sediment transport dynamics over a range of flow magnitudes and durations. To address these issues, a near-continuous suspended-sediment monitoring program consisting of two suspended-sediment gages was established at two sites in Big Bend National Park, Texas. Suspended-sediment gages consist of two single-frequency sideways-looking acoustic-Doppler profilers that collect data at 15-minute intervals. Acoustic attenuation is used to calculate silt-and-clay concentration, and acoustic backscatter adjusted for silt-and-clay concentration is used to calculate sand concentration in two size classes. Acoustic attenuation and backscatter are calibrated using standard depth-integrated samples and cross-section-calibrated automatic pump samples. Two types of floods affect the sediment budgets of the Rio Grande in Big Bend National Park, long-duration releases from upstream dams and short-duration flash floods originating in tributaries upstream or between the gages. Initial analyses of suspended-sediment dynamics during long-duration dam releases show that dam releases have the potential to export fine sediment from the national park reach. Dam releases transported approximately 8% of the total silt

  8. Near-continuous suspended sediment monitoring of the Rio Grande using multi-frequency acoustic instrumentation in Big Bend National Park, USA

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Topping, D. J.; Schmidt, J. C.; Sabol, T. A.; Griffiths, R. E.

    2011-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, is in disequilibrium. The river in this reach rapidly narrows during low-flow years, and widens during rare, large magnitude floods. One management strategy to improve in-channel habitat for the native ecosystem is to limit the rate and magnitude of channel narrowing during low-flow years through water releases from re-operated upstream dams. The proposed purpose of these dam re-operations is to maximize fine-sediment transport downstream, thereby limiting fine-sediment deposition within the channel and channel narrowing. A suspended-sediment monitoring program consisting of two suspended-sediment gages was established in November 2010 at two sites in Big Bend National Park (BBNP), Texas, to inform these management efforts. Suspended-sediment gages consist of two single-frequency sideways-looking acoustic-Doppler profilers that collect data at 15-minute intervals. Acoustic attenuation is used to calculate silt-and-clay concentration, and acoustic backscatter is used to calculate sand concentration in two size classes. Acoustic attenuation and backscatter are calibrated to velocity-weighted suspended silt-and-clay and sand concentrations in the cross sections near the acoustic instrumentation by using standard depth-integrating samplers deployed according to the Equal-Width-Increment (EWI) method. During flood periods, when depth-integrated samples cannot be collected, automatic pump samplers collect suspended-sediment samples to augment the EWI dataset. Initial analyses indicate that steady, long-duration dam releases are able to transport a consistent load of silt and clay through the study reach in BBNP. However, when tributary flash floods are superimposed on dam releases, the large influx of silt and clay from these tributary floods is not transported through the study reach, even though discharge remains high. When tributary flash floods occur during low-flow periods on

  9. Geological, Geochemical, and Geophysical Studies by the U.S. Geological Survey in Big Bend National Park, Texas

    USGS Publications Warehouse

    Gray, J. E., (Edited By); Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  10. Sedimentology and depositional history of Neogene gravel deposits in lower Tornillo Creek area of Big Bend National Park, Texas

    SciTech Connect

    Thurwachter, J.E.

    1984-04-01

    Neogene gravel deposits in the lower Tornillo Creek area of Big Bend National Park, Texas, record the filling of a small structural basin formed during Basin and Range tectonism. Four lithofacies are recognized in the Late Miocene La Noria member (informal name): (1) a medial braided-stream lithofacies consisting of upward-fining packages of cross-bedded gravel, sandstone, and siltstone; (2) a distal braided-stream lithofacies consisting of poorly-defined upward-fining packages of fine gravel, sandstone, and mudstone; (3) a calcrete-rich gravel and sandstone lithofacies representing strike-valley and alluvial-fan deposition, and (4) and ephemeral lake-plain lithofacies consisting of massive and burrowed mudstones with sheet-like sandstone interbeds. Upward-fining packages in the braided-stream lithofacies represent the lateral migration and avulsion of the stream tract across the basin; together with the strike-valley and alluvial-fan deposits, these record the initial stages of basin filling. Provenance studies show that much of this sediment was derived from northern Mexico. Overlying ephemeral-lake deposits record the structural tilting and closing of the downstream (north) end of the basin. Gravels and minor sandstones of the Pleistocene Estufa member (informal name) represent basinward progradation of alluvial fans. Deposition of the Estufa member resulted from: (1) Quaternary tectonic activity in the Chisos Mountains area; (2) lowering of local base level by post-Miocene development of the Rio Grande drainage through the area; and (3) Pleistocene pluvial-period climatic changes. Subsequent Quaternary faulting has caused minor deformation of the deposits.

  11. Eruptive vents for the Burro Mesa Rhyolite, Big Bend National Park, Trans-Pecos Texas

    SciTech Connect

    Holt, G.S.; Parker, D.F. . Dept. of Geology)

    1993-02-01

    Detailed mapping of field relations and flow direction of the Burro Mesa Rhyolite (BMR) have identified vent localities at Burro Mesa, Kit Mountain, Cerro Castellan, Trap Mountain, and Goat Mountain, and the suggest the presence of additional, as yet unlocated, centers of eruption. This work confirms recent interpretations that BMR rocks were not erupted from the Pine Canyon caldera, but were instead erupted from isolated feeder localities in the Burro Mesa-Cerro Castellan area. At the Burro Mesa locality, the BMR contains a lower sparsely-porphyritic lava, a central porphyritic ash-flow tuff, and an upper abundantly-porphyritic lava. At all other mapped localities, only sparsely-porphyritic lava and Wasp Springs Flow Breccia (WSFB) are present. Two vents at Burro Mesa represent sources for separate BMR flows, as well as WSFB, which consists of numerous surge deposits with interbedded ash-flow tuff. Flow directional data suggests a third unlocated vent for abundantly-porphyritic lava in the SE region of Burro Mesa. Flow direction data also suggest that the SW end of Kit Mountain was a source for sparsely-porphyritic lava. A feeder dike at Cerro Castellan cuts up through the WSFB, flaring near the top into a volcanic dome of sparsely-porphyritic lava at the top of the mountain. This cross-cutting relationship was present at most vent localities. Mapping and flow direction data of BMR from vents and other localities suggest that the BMR consists of a discontinuous belt of individual domes, which trend in a southwesterly direction from Burro Mesa to Cerro Castellan.

  12. Aeromagnetic mapping of the structure of Pine Canyon caldera and Chisos Mountains intrusion, Big Bend National Park, Texas

    USGS Publications Warehouse

    Drenth, B.J.; Finn, C.A.

    2007-01-01

    Analysis of aeromagnetic and gravity data reveals new details of the structure, igneous geology, and temporal evolution of the prominent, enigmatic ca.32 Ma Pine Canyon caldera and the Chisos Mountains (Big Bend National Park, Texas). The main caldera-filling Pine Canyon Rhyolite, the oldest member of the South Rim Formation, is reversely magnetized, allowing it to be used as a key marker bed for determining caldera fill thickness. Modeling of gravity and magnetic anomalies indicates that the Pine Canyon Rhyolite is probably thicker in the northeastern part of the caldera. Lineaments in the magnetic data suggest the presence of buried faults beneath the caldera that may have led to increased downdrop in the northeast versus the southwest, allowing a thicker section of caldera fill to accumulate there. The Pine Canyon caldera has been interpreted as a downsag caldera because it lacks surficial faulting, so these inferred faults are the first mapped features there that could be responsible for caldera collapse. The caldera boundary correlates well with the margins of a gravity low. General features of the caldera match well with basic models of downsag calderas, meaning that the Pine Canyon caldera may be a classic example of downsagging, of which few well-described examples exist, in terms of a geophysical signature. The source of a long-wavelength magnetic high over the Chisos Mountains is interpreted as a previously unknown broad intrusion, the long axis of which trends parallel to a major crustal boundary related to the Ouachita orogeny or an even earlier Precambrian margin. This feature represents the largest intrusion (28-34 km diameter, 1-4 km thick, 700-3000 km3 in volume) in an area where relatively small laccoliths are ubiquitous. The intrusion most likely represents a long-lived (>1 m.y.) reservoir replenished by small batches of magma of varying composition, as reflected in the variation of eruptive products from the Pine Canyon and Sierra Quemada

  13. Mechanisms of differentiation in shallow mafic alkaline intrusions, as illustrated in the Big Bend area, western Texas

    NASA Astrophysics Data System (ADS)

    Carman, Max F.

    1994-06-01

    Syenitic bodies are a common feature in alkaline sills and laccoliths that range in composition from syenogabbroic to syenodioritic. The syenitic bodies are generally accepted to be the result of in-situ differentiation. Such bodies are usually called segregations, but relatively little discussion is given to the actual ways they may form. Subhorizontal sheets or layers are most common, although rounded ocelli and vertically elongated cylindroidal forms are also common. These are all systematically arranged in the intrusions. Such features are found in at least ten sills in the Big Bend area of Texas, and are reported as well in Montana, Utah, Australia, Sakhalin, Scotland and New Zealand. Detailed chemical and mineralogical analyses demonstrate crystal fractionation very convincingly for the generation of syenitic liquids that form the bodies. The analyses also allow the calculation of viscosities, cooling time and mineral settling rates in the sill studied most thoroughly. These factors indicate, or are compatible with, proposed mechanisms for the formation of syenite bodies. In many intrusions there is a bimodal distribution of syenite compositions; one type is relatively plagioclase rich and the other type is plagioclase poor. Mass balance calculations on several intrusions show that a residual liquid of plagioclase-rich composition will form after about 30% of the parent magma has crystallized, whereas a residual liquid of plagioclase-poor composition will form only after about 50% of the original magma has crystallized. The several mechanisms by which plagioclase-rich residual liquids are aggregated into the different forms of syenite bodies include localized crystal settling and sagging of a crystaline framework on a scale of tens of centimeters to a meter, within an upper solidification front; formation of cylindroidal columns of syenitic differentiate in a crystal mush within a lower solidification front, and diapiric rise of such masses. After the amount

  14. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    SciTech Connect

    Shiheido, Hirokazu Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  15. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion

    NASA Astrophysics Data System (ADS)

    Altintas, Ali Can

    The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on

  16. Antimatter regions in the early universe and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kurki-Suonio, Hannu; Sihvola, Elina

    2000-11-01

    We have studied big bang nucleosynthesis in the presence of regions of antimatter. Depending on the distance scale of the antimatter region, and thus the epoch of their annihilation, the amount of antimatter in the early universe is constrained by the observed abundances. Small regions, which annihilate after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He yield, because of neutron annihilation. Large regions, which annihilate after nucleosynthesis, lead to an increased 3He yield. Deuterium production is also affected but not as much. The three most important production mechanisms of 3He are (1) photodisintegration of 4He by the annihilation radiation, (2) p¯4He annihilation, and (3) n¯4He annihilation by ``secondary'' antineutrons produced in 4He¯ annihilation. Although p¯4He annihilation produces more 3He than the secondary n¯4He annihilation, the products of the latter survive later annihilation much better, since they are distributed further away from the annihilation zone. Our results are in qualitative agreement with similar work by Rehm and Jedamzik, but we get a larger 3He yield.

  17. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. PMID:25600804

  18. [DNA bend sites in the promoter region of the human estrogen receptor alpha gene].

    PubMed

    Kuwabara, K; Sakuma, Y

    1998-12-01

    DNA bend sites in the promoter region of the human estrogen receptor a gene were determined by the circular permutation assay. Among a total of five sites (ERB -4 to -1, and ERB + 1) mapped in the 3 kb region, three matched with the positions of the predicted periodicity while the other two did not. Most of the sites were accompanied by the short poly (dA)-poly (dT) tracts including the potential bend core sequence A2N8A2N8A2 (A/A/A). Fine mapping of the ERB-2 site indicated that this A/A/A and the immediate franking sequences contained motifs for the estrogen response element. This region had a higher affinity for the nuclear scaffold and was included in the core region of the nucleosome structure. However, binding of the nuclear factor(s) to the motifs and disruption of nucleosome structure occurred without ATP. These results suggest that a class of periodic bent DNA could act as a site of multiple interactions among the nuclear scaffold, core histones and nuclear factors. PMID:9893449

  19. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics

    USGS Publications Warehouse

    Sophocleous, M.

    1992-01-01

    The results of a 6 year recharge study in the Great Bend Prairie of central Kansas are statistically analyzed to regionalize the limited number of site-specific but year-round measurements. Emphasis is placed on easily measured parameters and field-measured data. The results of the statistical analysis reveal that a typical recharge event in central Kansas lasts 5-7 days, out of which 3 or 4 days are precipitation days with total precipitation of ??? 83 mm. The maximum soil-profile water storage and the maximum groundwater level resulting from the recharge event exhibit the lowest coefficients of variation, whereas the amount of recharge exhibits the highest coefficient of variation. The yearly recharge in the Great Bend Prairie ranged from 0 to 177 mm with a mean of 56 mm. Most of the recharge events occur during the months of April, May, and June, which coincide with the months of highest precipitation in the region. A multiple regression analysis revealed that the most influential variables affecting recharge are, in order of decreasing importance, total annual precipitation average maximum soil-profile water storage during the spring months, average shallowest depth to water table during the same period, and spring rainfall rate. Classification methods, whereby relatively homogeneous hydrologic-unit areas based on the four recharge-affecting variables are identified, were combined with a Geographic Information Systems (ARC/INFO) overlay analysis to derive an area-wide map of differing recharge regions. This recharge zonation is in excellent agreement with the field-site recharge values. The resulting area-weighted average annual recharge for the region is 36 mm. ?? 1992.

  20. Earthquake Shakes ``Big Bend'' Region of North America-Caribbean Boundary Zone

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Calais, Eric; Huerfano, Victor

    2004-02-01

    At 12:45 pm on 22 September, a M6.5 earthquake severely shook the northern Dominican Republic on the island of Hispaniola. The earthquake caused extensive damage to buildings in the major cities of Puerto Plata and Santiago, along with landslides in outlying areas. The main shock was followed by a large aftershock of M5.1 1 hr and 45 min later. Unfortunately, one person died due to collapse of a building during the main shock, two elderly people died of heart attacks, and one person jumped out of a building and later died of injuries. Fortunately, two partially collapsed school buildings and several office buildings in Puerto Plata that were severely damaged were unoccupied at the time of the early morning main shock. Aftershocks ranging up to nearly M5 continued for over a month, alarming local inhabitants. The M6.5 earthquake is the strongest shock to affect the northern Dominican Republic since a series of thrust events ranging from M6.1-8.1 occurred offshore and northeast of the Dominican Republic between 1943 and 1953 [Dolan and Wald, 1998]. This article summarizes the tectonic setting of the recent earthquake, its focal mechanism and inferred fault plane, damage, and ongoing research.

  1. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation.

    PubMed

    Saksouk, Nehmé; Barth, Teresa K; Ziegler-Birling, Celine; Olova, Nelly; Nowak, Agnieszka; Rey, Elodie; Mateos-Langerak, Julio; Urbach, Serge; Reik, Wolf; Torres-Padilla, Maria-Elena; Imhof, Axel; Déjardin, Jérome; Simboeck, Elisabeth

    2014-11-20

    Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin. PMID:25457167

  2. Investigation of collisional effects within the bending magnet region of a DIII-D neutral beamline

    SciTech Connect

    Kessler, D.N.; Hong, R.; Kellman, D.H.

    1993-10-01

    The region between the pole faces of the DIII-D neutral beamline residual ion bending magnets is an area of transient high gas pressure which may cause beam defocusing and increased heating of beamline internal components due to collisional effects. An investigation of these effects helps in understanding residual ion trajectories and in providing information for studying in the beamline capability for operation with increased pulse duration. Examination of collisional effects, and of the possible existence of space charge blow-up, was carried out by injecting deuterium gas into the region between the magnet pole faces with rates varying from 0 to 18 torr-{ell}/sec. Thermocouple and waterflow calorimetry data were taken to measure the beamline component heating and beam powder deposition on the magnet pole shields, magnet louvers, ion dump, beam collimators, and calorimeter. Data was also taken at gas flow rates varying from 0 to 25 torr-{ell}/sec into the neutralizer cell and is compared with the magnet region gas injection data obtained. Results show that both collisional effects and space charge blow-up play a role in magnet region component heating and that neutralizer gas flow sufficiently reduces component heating without incurring unacceptable power losses through collisional effects.

  3. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth

    2013-01-01

    To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the

  4. Status of fish communities in the Rio Grande, Big Bend National Park, Texas - comparison before and after Spring 2003 period of low flow

    USGS Publications Warehouse

    Moring, J. Bruce

    2005-01-01

    During 2003–04 the U.S. Geological Survey, in cooperation with the National Park Service, re-evaluated the status of fish communities in three reaches of the Rio Grande in Big Bend National Park that originally were evaluated when the three reaches were established for study in 1999. The objective was to determine whether there were measurable differences between 1999 and 2003–04 (referred to as 2004) fish community status that likely are attributable to a rare 58-day period of low flow (less than 1 cubic meter per second) in spring 2003 at the Johnson Ranch gaging station on the Rio Grande in Big Bend National Park. The total number of fish species collected at all three sites (Boquillas, Johnson Ranch, and Santa Elena) in 1999 was greater than in 2004. The number of fish species collected at the Boquillas site in 1999 (10) was twice that collected in 2004; the number of species collected at the Johnson Ranch site in 1999 (nine) was almost twice that collected in 2004 (five). In contrast, the numbers at the Santa Elena site were nearly the same, 15 species in 1999, 14 in 2004. Percent community similarity for the Boquillas site is 8.04, for the Johnson Ranch site, 6.65, and for the Santa Elena site, 47.6, which indicates considerably more similarity between the 1999 and 2004 fish communities at the Santa Elena site than for the Boquillas and Johnson Ranch sites. At the Boquillas and Johnson Ranch sites, the fish communities shifted from small minnow (Cyprinidae) dominated in 1999 to largely gar (Lepisosteidae) and catfish (Ictaluridae) dominated in 2004. In contrast, no such shift occurred at the Santa Elena site between 1999 and 2004. Differences in flow conditions between the two downstream sites and the Santa Elena site might account for the dissimilar findings. The findings of the study provide some evidence that the spring 2003 period of low flow affected fish communities, but the findings are not definitive as other factors such as increased salinity

  5. Holocene sedimentation and coastal wetlands response to rising sea level at the Aucilla river mouth, a low energy coast in the Big Bend area of Florida

    USGS Publications Warehouse

    Garrett, Connie; Hertler, Heidi; Hoenstine, Ronald; Highley, Brad

    1993-01-01

    The shallow dip of the Florida carbonate platform results in low wave energy on Florida ???Big Bend??? coasts. Therefore sedimentation is dominated by river-and tidal-hydrodynamics near the Aucilla River mouth. Where present, Holocene sediments are thin and unconformably overlie Oligocene-aged Suwannee Limestone. The oldest unlithified sediments include reworked carbonate rubble with clay and wood fragments (seven thousand years old or less, based on wood radio-carbon dating). Although this basal sequence is observed in most areas, the sediments that overlie it vary. Sediment sequences from the outer littoral to submarine environments include organic-rich sands, oyster biotherm remains, and cleaner sands with organic-filled burrows. Inner littoral (salt-marsh) sequences generally consist of sandy, fining-upwards sequences in which dry weights of fine-grained clastics and organic components increase up-sequence at similar rates. Offshore sediments preserve greatly attenuated fluvial and salt-marsh facies, if these facies are preserved at all. With sea-level rise, erosion can result from insufficient sediment supply and down-cutting by tidal currents (Dolotov, 1992; and Dalrymple et al., 1992). Dolotov (1992) attributes displacement of original coastal stratigraphy to insufficient sediments for beach profile maintenance, while Dalrymple et al. (1992) attribute erosional truncation (ravinement) or complete removal of portions of typical estuarine sequences to headward migration of tidal channels.

  6. Baseline assessment of instream and riparian-zone biological resources on the Rio Grande in and near Big Bend National Park, Texas

    USGS Publications Warehouse

    Moring, James Bruce

    2002-01-01

    Five study sites, and a sampling reach within each site, were established on the Rio Grande in and near Big Bend National Park in 1999 to provide the National Park Service with data and information on the status of stream habitat, fish communities, and benthic macroinvertebrates. Differences in stream-habitat conditions and riparian vegetation reflect differences in surface geology among the five sampling reaches. In the most upstream reach, Colorado Canyon, where igneous rock predominates, streambed material is larger; and riparian vegetation is less diverse and not as dense as in the four other, mostly limestone reaches. Eighteen species of fish and a total of 474 individuals were collected among the five reaches; 348 of the 474 were minnows. The most fish species (15) were collected at the Santa Elena reach and the fewest species (9) at the Colorado Canyon and Johnson Ranch reaches. The fish community at Colorado Canyon was least like the fish communities at the four other reaches. Fish trophic structure reflected fish-community structure among the five reaches. Invertivores made up at least 60 percent of the trophic structure at all reaches except Colorado Canyon. Piscivores dominated the trophic structure at Colorado Canyon. At the four other reaches, piscivores were the smallest trophic group. Eighty percent of the benthic macroinvertebrate taxa collected were aquatic insects. Two species of blackfly were the most frequently collected invertebrate taxon. Net-spinning caddisflies were common at all reaches except Santa Elena. The aquatic-insect community at the Boquillas reach was least similar to the aquatic-insect community at the other reaches.

  7. Sequence determinants of DNA bending in the ilvlH promoter and regulatory region of Escherichia coli.

    PubMed Central

    Wang, Q; Albert, F G; Fitzgerald, D J; Calvo, J M; Anderson, J N

    1994-01-01

    Previous studies have shown that the promoter/regulatory region of the ilvlH operon displays intrinsic curvature, with the bend center located at position -120 relative to the transcription start site. In this report, a 57 bp sequence spanning the bend center was mutagenized in vitro in order to study the relationship between nucleotide sequence and curvature measured by electrophoresis. The strategy used for analyzing the results consisted of determining the strengths of the relationships between electrophoretic anomaly and predicted curvature calculated by computer programs that differ in wedge angle composition. The results revealed that programs which assume that bending occurs only at AA/TT display good predictive value, with correlation coefficients between electrophoretic anomaly and predicted curvature as high as 0.93. In contrast, a program which assumes that bending occurs at all 16 dinucleotide steps exhibited lower predictive value, while there were no significant relationships between the experimental data and curvature calculated by a program that was based on all non-AA/TT wedge values. These results show that the complete wedge model which incorporates values for all dinucleotide steps does not adequately describe the electrophoretic data in this report. PMID:7838732

  8. Oceanic plate weakened by flexural bending-induced faulting in the outer rise region of the Mariana subduction zone

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Zhan, W.

    2013-12-01

    Strong flexural bending near trenches could significantly weaken oceanic plates through development of trench-parallel extensional normal faults. We assessed the oceanic plate weakening near the outer rise region of the Mariana subduction zone by analyzing and modeling the plate deformation caused by flexural bending. We first obtained a 3-D deformation surface of the subducting plate by removing from seafloor bathymetry the topographic effects of sediments, seamounts, and age-related thermal subsidence. We then calculated theoretical models of plate deformation and inverted for along-trench changes in the vertical force and bending moment at the trench axis, as well as spatial variations in the effective elastic thickness of the subducting plate, that best explain the observations. We found that to replicate simultaneously the observed steep slope of the seafloor near the trench axis and the long-wavelength flexural profiles seaward of the outer rise region, the effective elastic thickness of the plate must change significantly. The best-fitting models reveal that the effective elastic thickness is about 45-55 km seaward of the outer rise (TeMax), but is reduced to only 19-40 km trench-ward of the outer rise region (TeMin); the transition from TeMax to TeMin occurs at Xr =70-120 km away from the trench axis. The resultant reduction in the calculated effective elastic thickness, i.e., 1 - (TeMin /TeMax), is in the range of 20-60%, being the greatest near the Challenger Deep area, where the plate deforms significantly within a narrow distance from the trench axis and the trench axis is the deepest. Our results revealed that reduction in Te along the Mariana trench does not exceed 60%, implying that an elastic core remains in the subducting plate despite pervasive faulting caused by flexural bending near the trench axis.

  9. Analysis of residual stress and hardness in regions of pre-manufactured and manual bends in fixation plates for maxillary advancement.

    PubMed

    Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes

    2015-12-01

    The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results. PMID:25944727

  10. Crustal strain near the Big Bend of the San Andreas Fault: analysis of the Los Padres-Tehachapi Trilateration Networks, California

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Lisowski, M.

    1990-01-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30?? from N40??W, close to that predicted by plate motion for a transform boundary, to N73??W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38??0.01??rad/yr at N63??W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19??0.01??rad/yr at N44??W. The best fitting Garlock fault model had computed left-lateral slip rate of 11??2mm/yr below 10km. Buried left-lateral slip of 15??6mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. -from Authors

  11. Crustal strain near the big bend of the San Andreas fault: Analysis of the Los Padres-Tehachapi trilateration networks, California

    SciTech Connect

    Eberhart-Phillips, D.; Lisowski, M. ); Zoback, M.D. )

    1990-02-10

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30{degree} from N 40{degree}W, close to that predicted by plate motion for a transform boundary, to N 73{degree}W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38 {plus minus} 0.01 {mu}rad/yr at N 63{degree}W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19 {plus minus} 0.01 {mu}rad/yr at N 44{degree}W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 {plus minus} 6 mm/yr is estimated. The authors also estimated buried slip for models that include the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11 {plus minus} 2 mm/yr below 10 km. Buried left-lateral slip of 15 {plus minus} 6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. The authors investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault zone located south of the surface trace.

  12. Southwest region solar pond study for three sites: Tularosa Basin, Malaga Bend, and Canadian River

    SciTech Connect

    Boegli, W.J.; Dahl, M.M.; Remmers, H.E.

    1984-08-01

    In the study, the Bureau of Reclamation investigated the technical and economic feasibility of using solar salt-gradient ponds to generate power and to produce freshwater in Bureau projects at three sites--the Canadian River at Logan, New Mexico; Malaga Bend on the Pecos River near Carlsbad, New Mexico; and the Tularosa Basin in the vicinity of Alamogordo, New Mexico. The ponds would be used to generate electric power that could be integrated with the Bureau's power grid or used in combination with thermal energy from the ponds to power commercially available desalination systems to produce freshwater. Results of the economic analysis, which concentrated primarily on the Tularosa Basin site, showed that solar-pond-generated intermediate load power would cost between 62 and 90 mills/kWh and between 52 and 83 mills/kWh for baseload power. This results in benefit-cost ratios of approximately 2.0 and 1.3 for intermediate and baseload, respectively, when compared to similar facilities powered by fossil fuels. The cost savings are even more pronounced when comparing the two (solar versus fossil fuel) as a source of power for conventional distillation and membrane-type desalination systems.

  13. Penstock inspection and safety assessment program: Big Thompson Powerplant Colorado-Big Thompson Project, Colorado. Review report, Great Plains region

    SciTech Connect

    1997-06-01

    On February 26-28, 1997, and June 16-17, 1997, the Big Thompson penstock was inspected. During the exam the following tasks were performed: (1) The condition of the exposed exterior coating and the interior lining of the penstock was inspected; (2) The wall thickness of the steel penstock was determined by ultrasonic testing; (3) Appurtenances where the penstock and piping connected to the penstock change in diameter or where the water flow changes in direction were inspected; (4) Joints, piping connections, and various associated operating equipment (gates, valves, etc.) were inspected; (5) Load rejection tests, unwatered governor testing, and emergency gate closure tests were performed.

  14. Effects of turn region treatments on pressure loss through sharp 180-degree bends

    NASA Astrophysics Data System (ADS)

    Plevich, C. W.; Metzger, D. E.

    An experimental study was conducted to evaluate the effect of geometric turn region inserts on pressure losses for flow through sharp 180-degree channel turns typical of internal cooling passages in gas turbine engine airfoils. The experiments were conducted in a rectangular cross-sectioned channel with 90-degree transverse rib roughening in both inlet and outlet legs, starting with completely smooth turn regions and progressing through various modifications including corner fillets, radial ribs, and turning vanes. The results show that modifications to the turn region geometry, particularly the inclusion of a single semi-circular turning vane, significantly reduce the pressure losses associated with coolant flows through sharp 180-degree turns and therefore can result in increased coolant flow for a given coolant supply pressure.

  15. Heat transport by fluids during late Cretaceous regional metamorphism in the Big Maria Mountains, southeastern California.

    USGS Publications Warehouse

    Hoisch, T.D.

    1987-01-01

    The Big Maria Mountains of SE California preserve evidence of a large-scale fluid flux that accompanied regional metamorphism in late Cretaceous time. Neither magmatism nor radioactive heat sources are adequate to explain the T of metamorphism. Simultaneously crystallizing plutons at different levels within the crust could have contributed to the overall hot fluid flux. A fluid:rock ratio of 17:1 may be calculated given average conditions of 3 kbar, 500oC, an infiltrating fluid of composition XH2O = 1.0, an equilibrium fluid composition of XH2O = 0.97, and 90% wollastonite in the final rock form the reaction quartz + calcite = CO2 + wollastonite. The minimum quantity of fluid of 1.7 rock volume was estimated to pass through the area if the fluid was approximately at granite solidus T at the start. Deep penetrative structures within the crust may have served to channel fluids. -L.C.H.

  16. Efficient swimmers use bending kinematics to generate low pressure regions for suction-based swimming thrust

    NASA Astrophysics Data System (ADS)

    Colin, Sean; Gemmell, Brad; Costello, John; Morgan, Jennifer; Dabiri, John

    2015-11-01

    A longstanding tenet in the conceptualization of animal swimming is that locomotion occurs by pushing against the surrounding water. Implicit in this perspective is the assumption that swimming involves lateral body accelerations that generate locally elevated pressures in the fluid, in order to achieve the expected downstream push of the surrounding water against the ambient pressure. Here we show that to the contrary, efficient swimming animals primarily pull themselves through the water by creating localized regions of low pressure via waves of body surface rotation that generate vortices. These effects are observed using laser diagnostics applied to normal and spinally-transected lampreys. The results suggest rethinking evolutionary adaptations observed in swimming animals as well as the mechanistic basis for bio-inspired underwater vehicles. NSF CBET (1510929).

  17. Regional jointing and hydrocarbon generation in Big Sandy gas field, Kentucky

    SciTech Connect

    Loar, S.J.

    1986-05-01

    Producing wells in the Big Sandy gas field depend on well-developed subsurface joint systems to enhance migration into the borehole. To examine the joint systems, the surface joints were studied. Statistical analysis revealed eight regional joint sets: N30/sup 0/W, N10/sup 0/W, N20/sup 0/E, N30/sup 0/E, N40/sup 0/E, N60/sup 0/E, N80/sup 0/E, and east-west. These sets have the same orientations as reservoir joints observed in oriented cores, indicating that they are part of the same systems. Field observations suggest that the regional joint sets formed in at least three phases, which can be classified as hydraulic, tectonic, and unloading. The timing of hydrocarbons was calculated from a subsidence curve for Devonian and younger formations, which was constructed on the basis of published isopach, conodont alteration index, and well data. Plotting the maturation of the Ohio Shale with the regional jointing phases shows that the hydraulic joint sets formed before hydrocarbon generation began, and that the tectonic joint sets formed while the Ohio Shale was in the oil window. The oil and wet gas generated from the Ohio Shale have since migrated through the subsurface joint systems into younger reservoirs.

  18. Cartilage loss patterns within femorotibial contact regions during deep knee bend.

    PubMed

    Michael Johnson, J; Mahfouz, Mohamed R

    2016-06-14

    Osteoarthritis (OA) can alter knee kinematics and stresses. The relationship between cartilage loss in OA and kinematics is unclear, with existing work focusing on static wear and morphology. In this work, femorotibial cartilage maps were coupled with kinematics to investigate the relationship between kinematics and cartilage loss, allowing for more precise treatment and intervention. Cartilage thickness maps were created from healthy and OA subgroups (varus, valgus, and neutral) and mapped to a statistical bone atlas. Video fluoroscopy determined contact regions from 0° to 120° flexion. Varus and valgus subgroups displayed different wear patterns across the range of flexion, with varus knees showing more loss in early flexion and valgus in deeper flexion. For the femur, varus knees had more wear in the medial compartment than neutral or valgus and most wear at both 0° and 20° flexion. In the lateral femoral compartment, the valgus subgroup showed significantly more wear from 20° to 60° flexion as compared to other angles, though varus knees displayed highest magnitude of wear. For the tibia, most medial wear occurred at 0-40° flexion and most lateral occurred after 60° flexion. Knowing more about cartilage changes in OA knees provides insight as to expected wear or stresses on implanted components after arthroplasty. Combining cartilage loss patterns with kinematics allows for pre-surgical intervention and treatments tailored to the patient׳s alignment and kinematics. Reported wear patterns may also serve as a gauge for post-operative loading to be considered when placing implant components. PMID:27173594

  19. Utilizing ERTS-A imagery for tectonic analysis through study of Big Horn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. MSS scene 1085-17294 of the Big Horn region has been subjected to detailed structural analysis. Band 7 is particularly good for revealing structural and drainage patterns because of enhance topographic detail and the subdued vegetational contrasts. Considerable stereo coverage through sidelap with adjoining scenes adds to the effectiveness of the study and has been used on both positive transparencies and enlarged prints. Negative prints of Band 7 positive transparencies have proven to be much more useful than positive prints because the higher resolution of the positive transparencies can be maintained. The Bighorn Mountains are crisscrossed by a number of prominent topographic linears, most of which can be correlated with known fault and shear zones in the Precambrian crystalline core. Many of these do not appear to continue into the flanking sedimentary rocks and a few that do (Tensleep, Tongue River lineaments) are very difficult to trace farther out into the basins. The Tongue River lineament, long a source of speculation and uncertainty as to its existence, appears as a very prominent discontinuity in the imagery.

  20. Mesohabitats, fish assemblage composition, and mesohabitat use of the Rio Grande silvery minnow over a range of seasonal flow regimes in the Rio Grande/Rio Bravo del Norte, in and near Big Bend National Park, Texas, 2010-11

    USGS Publications Warehouse

    Moring, J. Bruce; Braun, Christopher L.; Pearson, Daniel K.

    2014-01-01

    In 2010–11, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service, evaluated the physical characteristics and fish assemblage composition of mapped river mesohabitats at four sites on the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) in and near Big Bend National Park, Texas. The four sites used for the river habitat study were colocated with sites where the U.S. Fish and Wildlife Service has implemented an experimental reintroduction of the Rio Grande silvery minnow (Hybognathus amarus), a federally listed endangered species, into part of the historical range of this species. The four sites from upstream to downstream are USGS station 08374340 Rio Grande at Contrabando Canyon near Lajitas, Tex. (hereinafter the Contrabando site), USGS station 290956103363600 Rio Grande at Santa Elena Canyon, Big Bend National Park, Tex. (hereinafter the Santa Elena site), USGS station 291046102573900 Rio Grande near Ranger Station at Rio Grande Village, Tex. (hereinafter the Rio Grande Village site), and USGS station 292354102491100 Rio Grande above Stillwell Crossing near Big Bend National Park, Tex. (hereinafter the Stillwell Crossing site). In-channel river habitat was mapped at the mesohabitat scale over a range of seasonal streamflows. A late summer (August–September 2010) high-flow regime, an early spring (April–May 2010) intermediate flow regime, and a late spring (May 2011) low-flow regime were the seasonal flows used in the study. River habitat was mapped in the field by using a geographic information system and a Global Positioning System unit to characterize the sites at the mesohabitat scale. Physical characteristics of a subset of mesohabitats in a reach of the Rio Grande at each site were measured during each flow regime and included depth, velocity, type and size of the substrate, and percent embeddedness. Selected water-quality properties (dissolved oxygen, pH, specific conductance, and temperature) of a subset of

  1. Quality of Water and Sediment in Streams Affected by Historical Mining, and Quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    USGS Publications Warehouse

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  2. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  3. The Technological Impact of the E-Rate Program on a School District of the Texas Coastal Bend Region

    ERIC Educational Resources Information Center

    Vazquez-Cruz, Juan Diego

    2012-01-01

    The purpose of the study was to examine the impact of the E-Rate program on students, teachers, administrators, and the technology environment of a public school district in the Texas Gulf Coast Region. The study was conducted through a mixed methods design, utilizing both quantitative and qualitative data collection; the research design was a…

  4. Biodiversity, biosphere reserves, and the Big Apple: a study of the New York Metropolitan Region.

    PubMed

    Solecki, William D; Rosenzweig, Cynthia

    2004-06-01

    The objectives of this article were to assess the dimensions of biodiversity-urban society interactions within the New York Metropolitan Region, a 31-county area with a population of 21.5 million, and to explore pathways to reconcile dysfunctional relationships between these two ever-entwined systems. The article builds on the premise that urban biodiversity exists at a crucial nexus of ecological and societal interactions, linking local, regional, and global scales, and that urban ecologies are projected to become even more dynamic in the future, particularly as a result of global climate change. The pathway proposed to reconcile the biodiversity-urban society relationships is the incorporation of biosphere reserve strategies into regional environmental planning efforts focused on the New York/New Jersey Harbor/Estuary specifically and on the greater New York Metropolitan Region in general. The concepts of the "ecological footprint" and vulnerability to global environmental change are used to analyze the current interactions between biodiversity and urban society, and to evaluate the efficacy of adopting biosphere reserve strategies in the region. New York has long been at the forefront of American environmentalism and landscape planning. Coupled with this history is a still small but growing interest in regional environmental planning efforts (e.g., the U.S. EPA Harbor Estuary Program) and green infrastructure (e.g., the 2002 Humane Metropolis Conference organized by the Ecological Cities Project). The research presented here aims to contribute to these nascent activities. As a megacity, New York may serve as a model for other major cities of the world. PMID:15253901

  5. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  6. Grid-based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Müller, J.-F.

    2006-08-01

    The CO columns retrieved by the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument between May 2000 and April 2001 are used together with the Intermediate Model for the Annual and Global Evolution of Species (IMAGES) global chemistry transport model and its adjoint to provide top-down estimates for anthropogenic, biomass burning, and biogenic CO emissions on the global scale, as well as for the biogenic volatile organic compounds (VOC) fluxes, whose oxidation constitutes a major indirect CO source. For this purpose, the big region and grid-based Bayesian inversion methods are presented and compared. In the former setup, the monthly emissions over large geographical regions are quantified. In the grid-based setup, the fluxes are optimized at the spatial resolution of the model and on a monthly basis. Source-specific spatiotemporal correlations among errors on the prior emissions are introduced in order to better constrain the inversion problem. Both inversion techniques bring the model columns much closer to the measurements at all latitudes, but the grid-based analysis achieves a higher reduction of the overall model/data bias. Further comparisons with observed mixing ratios at NOAA Climate Monitoring and Diagnostics Laboratory and Global Atmosphere Watch sites, as well as with airborne measurements are also presented. The inferred emission estimates are weakly dependent on the prior errors and correlations. Our best estimate for the global CO source amounts to 2900 Tg CO/yr in both inversion approaches, about 5% higher than the prior. The global anthropogenic emission estimate is 18% larger than the prior, with the biggest increase for east Asia and a substantial decrease in south Asia. The vegetation fire emission estimates decrease as well, from the prior 467 Tg CO/yr to 450 Tg CO/yr in the grid-based solution and 434 Tg CO/yr in the monthly big region setup, mainly due to a significant reduction of African savanna fire emissions. The

  7. [Trends in mental health of residents in a big agricultural-industrial region].

    PubMed

    Treshutin, V A; Goldobina, O A; Shchepin, V O

    2003-01-01

    The dynamics of mental health of the population of the Altai Territory evaluated within a ten-year study (1991-2000) revealed pronounced negative processes with the most essential ones being in the children and teenagers category. The complicated social-and-economic transformations conducted in Russian society during the last decade of the past century, which entailed the misadjusted response in a majority of population, exerted an unfavorable influence on the mental health condition. The authors suggested a system of measures and arrangements targeted at neutralizing the detected negative trends in the population mental health; the above system can be successfully used in any country's region. PMID:14513492

  8. Reversal bending fatigue testing

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  9. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed. PMID:21730690

  10. The Central Regions of Local (U)LIRGs Viewed with Big Radio Eyes

    NASA Astrophysics Data System (ADS)

    Pérez-Torres, Miguel Ángel

    I review some of the main results obtained by our team in the last few years on high-angular resolution radio studies of nearby Luminous and Ultra-Luminous Infrared Galaxies (LIRGs and ULIRGs, respectively). These galaxies are expected to form stars at rates ≳ (10-100) M_{⊙} {year}^{-1}, and produce core-collapse supernovae at rates ≳ (0.3-3) year- 1. (U)LIRGs are also expected to be bright at radio wavelengths, thanks to the ubiquitous Far-Infrared Radio correlation, which makes high-angular resolution (≲ 0.1^'') radio observations an excellent tool for probing the inner ≃ 100 pc region of local (U)LIRGs. I justify the need for this high-angular resolution radio studies of local (U)LIRGs and, among other results, I present the impressive discovery of an extremely prolific supernova factory in the central ˜ 150 pc of the galaxy Arp 299-A (D = 45 Mpc) and the monitoring of a large number of very compact radio sources in it, the detection and precise location of the long-sought AGN in Arp 299-A and, more recently, the evidence for the existence of nuclear disks (≲ 100 pc in size) in starburst galaxies from their radial distribution of supernovae. All those results show that very-high angular resolution studies of nearby (U)LIRGs are of high relevance for the comprehension of both local and high-z starbursting galaxies.

  11. Too big to fail: The role of magnetic structure and dynamics in super active regions, on the Sun and Sun-like stars

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James

    2015-08-01

    Accurate and timely solar activity forecasting has proved to be illusive. Despite many decades of research, we are not much further advanced in our forecasting efforts of the occurrence of solar activity than we were two decades ago. However, one aspect has become clear - big, complex magnetic active regions on the Sun inevitably produce big, complex solar flares and coronal mass ejections. Here, I present observations and models that show why these super active regions are too big to fail.First I focus on studies of the largest active regions of solar cycle 23 and 24, comparing proxies of non-potential magnetic structure in these regions with similar proxies in less active regions of the Sun. This shows that the necessary and sufficient conditions exist in these super active regions to provide both the largest solar flares and large, fast, coronal mass ejections.Second I show why these conditions in super active regions differ so dramatically from the conditions in smaller, less active, regions of the Sun. This uses magnetic feature tracking to infer the Poynting flux injected into the corona, and DEM analysis to provide radiative and conductive loss estimates from the corona. The difference between energy injected, and energy lost, is stored in the coronal magnetic field structure in the super active regions.Finally, I apply this this research to Kepler starspots , showing why these regions must differ in a fundamental way in order to overcome the limitations that super granular flow places on solar active regions formation and energy storage.

  12. Southeast Regional Clearinghouse(SERCH)Mini-grants:Big Impacts on Future Explorers

    NASA Astrophysics Data System (ADS)

    Runyon, C.; Guimond, K.

    2004-12-01

    SERCH is one of seven regional Broker/Facilitator programs funded by NASA's Space Science Mission Directorate. Our purpose is to promote space science awareness and to enhance interest in science, math, and technology through the use of NASA's mission data, information, and educational products. We work closely with educators and NASA-funded scientists in 14 states (AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, PR, SC/VI, TN, and VA) throughout the southeastern U.S. to share what NASA is doing in space science. Every year SERCH dedicates money from its budget to support education/outreach initiatives that increase the awareness and understanding of the four major scientific themes, or forums from NASA's space science program: 1) Sun-Earth Connection, 2) Solar System Exploration, 3) Structure and Evolution of the Universe, and 4) Astronomical Search for Origins and Planetary Systems. SERCH is particularly interested in proposals for education/outreach efforts that establish strong and lasting partnerships between the space science and education communities and that support the NASA's education mission. We encourage innovative, inter-disciplinary teams involving both scientists and educators to apply. These peer-reviewed grants are awarded for a period of one year in amounts usually ranging from 5,000 to 10,000. Three examples of highly successful previous grant awards include: 1) Teaching Astronomy and Space Science in Kentucky (KY): Designed to improve knowledge of science core concepts and teaching skills in astronomy and space science and increased expertise in achieving current Kentucky academic expectations; 2) Development of Multi-media Space Science Education/Tutorial Modules (MD): The objective is the production of three "turn-key" internet-based multi-media student tutorial modules to enable the mostly part-time professors/instructors teaching introductory astronomy in community colleges to add exciting and cutting-edge topics to their existing astronomy courses

  13. Rotational and rovibrational spectrum of C 15NC 15N in the region of the bending modes ν4, ν5, the combination band ν4 + ν5 and the Fermi interacting modes ν3, 2 ν4

    NASA Astrophysics Data System (ADS)

    Seibert, J. W. Günter; Winnewisser, Manfred; Winnewisser, Brenda P.; Bickelhaupt, Friedrich

    1996-02-01

    The high-resolution gas-phase Fourier transform infrared spectrum of the doubly 15N-substituted isocyanogen, C 15NC 15N, has been measured in the spectral regions 160-240 cm -1 and 390-1110 cm -1 with unapodized resolutions of 0.0017 and 0.0021 cm -1 respectively. In these experiments we were able to measure the band systems due to the excitation of the bending modes ν5 and ν4 at 190.9 cm -1 and 458.1 cm -1, a combination band system of the two bending modes ν4 + ν5 at 649.7 cm -1, as well as two band systems arising from a Fermi interaction between the twofold excited bending mode 2 ν4 and the stretching mode ν3 at 869.9 cm -1 and 960.2 cm -1 respectively. Furthermore, we have measured and assigned pure rotational transitions of C 15NC 15N in the vibrational ground state and in excited vibrational bending states lying in the microwave and the millimeter wave region between 19.9 and 20.2 GHz, 29.9 and 30.4 GHz and 120 and 440 GHz. Constants of a power series in J( J + 1) for numerous rovibrational subbands, as well as accurate molecular constants using the effective hamiltonian for linear polyatomic molecules, defined by Yamada et al. [J. Mol. Spectrosc., 112 (1985) 347], were determined.

  14. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big-headed turtle, Platysternon megacephalum.

    PubMed

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum. PMID

  15. Recombination and Evolution of Duplicate Control Regions in the Mitochondrial Genome of the Asian Big-Headed Turtle, Platysternon megacephalum

    PubMed Central

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum. PMID

  16. The role of oroclinal bending in the structural evolution of the Central Anatolian Plateau: evidence of a regional changeover from shortening to extension

    NASA Astrophysics Data System (ADS)

    Özsayin, Erman; Dirik, Kadir

    2011-08-01

    The NW-SE striking extensional Inönü-Eskişehir Fault System is one of the most important active shear zones in Central Anatolia. This shear zone is comprised of semi-independent fault segments that constitute an integral array of crustal-scale faults that transverse the interior of the Anatolian plateau region. The WNW striking Eskişehir Fault Zone constitutes the western to central part of the system. Toward the southeast, this system splays into three fault zones. The NW striking Ilıca Fault Zone defines the northern branch of this splay. The middle and southern branches are the Yeniceoba and Cihanbeyli Fault Zones, which also constitute the western boundary of the tectonically active extensional Tuzgölü Basin. The Sultanhanı Fault Zone is the southeastern part of the system and also controls the southewestern margin of the Tuzgölü Basin. Structural observations and kinematic analysis of mesoscale faults in the Yeniceoba and Cihanbeyli Fault Zones clearly indicate a two-stage deformation history and kinematic changeover from contraction to extension. N-S compression was responsible for the development of the dextral Yeniceoba Fault Zone. Activity along this structure was superseded by normal faulting driven by NNE-SSW oriented tension that was accompanied by the reactivation of the Yeniceoba Fault Zone and the formation of the Cihanbeyli Fault Zone. The branching of the Inönü-Eskişehir Fault System into three fault zones (aligned with the apex of the Isparta Angle) and the formation of graben and halfgraben in the southeastern part of this system suggest ongoing asymmetric extension in the Anatolian Plateau. This extension is compatible with a clockwise rotation of the area, which may be associated with the eastern sector of the Isparta Angle, an oroclinal structure in the western central part of the plateau. As the initiation of extension in the central to southeastern part of the Inönü-Eskişehir Fault System has similarities with structures

  17. Discovering Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Johnson, Ann

    2008-01-01

    Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…

  18. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  19. Membrane Bending by Protein Crowding

    NASA Astrophysics Data System (ADS)

    Stachowiak, Jeanne

    2014-03-01

    From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.

  20. Where the Granular Flows Bend

    NASA Astrophysics Data System (ADS)

    Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Bonet, J. A.; Domingo, V.; Schmidt, W.; Barthol, P.; Knölker, M.

    2010-11-01

    Based on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes, the spectral line width of the Fe I 5250.2 Å line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/SUNRISE are important requisites to detect this interesting phenomenon.

  1. [Analysis of chemical speciation of heavy metals in L07-11 profile sediments of "Big Ear" Region of Lop Nor Lake].

    PubMed

    Zhu, Xin-ping; Zhang, Liang-hui; Jiang, Ping-an; Jia, Hong-tao; Zheng, Chun-xia; Fan, Shun-hui

    2014-12-01

    As playa is the typical characteristic in "Big Ear" Region of Lop Nor Lake, it is significant for enriching playa heavy metal earth environmental chemical data by analyzing species distribution of heavy metal among this district. In this thesis, heavy metal Cd, Pb, Ni, Cu in L07-11 Profile Sediments of "Big Ears" Region of Lop Nor Lake are considered as research objects. Tessier sequential extraction and Graphite furnace atomic absorption method (GF-990) are used to discuss and analyze five forms of Cd, Pb, Ni, Cu among sediments. The results show that the content of Cd, Pb, Ni and Cu is in the range from 1.10~2.54, 9.18~20.02, 9.88~17.15, 4.43~21.11 mg · kg(-1), respectively. The value of organic matter range from 8.71-54.72 g · kg(-1). The order of the bioavailable state in heavy metals is Cd>Pb>Cu>Ni. Pb and Cd mainly exist in exchangeable form including water-soluble, and that Ni is in residual form, and that Cu is mostly in Fe-Mn oxide bound iron-manganese oxides or in residual form. Among surface sediments, effective content of heavy metal is more than 80%. Except Cu, the content of heavy metal Cd, Pb, Ni in exchangeable form is more than 60%. Heavy metal Cd and Pb has higher secondary release potential. The content of heavy metal and organic material has some correlation. PMID:25881435

  2. The Big Sky Model: A Regional Collaboration for Participatory Research on Environmental Health in the Rural West

    PubMed Central

    Ward, Tony J.; Vanek, Diana; Marra, Nancy; Holian, Andrij; Adams, Earle; Jones, David; Knuth, Randy

    2010-01-01

    The case for inquiry-based, hands-on, meaningful science education continues to gain credence as an effective and appropriate pedagogical approach (Karukstis 2005; NSF 2000). An innovative community-based framework for science learning, hereinafter referred to as the Big Sky Model, successfully addresses these educational aims, guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools. PMID:20428505

  3. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  4. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  5. Right-angle slot waveguide bends with high bending efficiency.

    PubMed

    Ma, Changbao; Zhang, Qun; Van Keuren, Edward

    2008-09-15

    Two right-angle bends for nanoscale slot waveguides with high bending efficiency based on a corner mirror and different resonant cavities are presented, one with a triangular cavity and the other with a square cavity. Through two-dimensional parametric scanning of the position of the mirror and the dimension of the cavity, a maximum bending efficiency calculated using mode overlap integral (MOI) of 94.3% is achieved for the bend with the triangular cavity and 93.1% is achieved for the bend with the square cavity. Although they both have similar bending performance, the position of the mirror is different between the two cases. PMID:18794968

  6. The design of an agent to bend DNA.

    PubMed Central

    Akiyama, T; Hogan, M E

    1996-01-01

    An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phase-sensitive electrophoresis, and the directionality of the bend has been determined as a compression of the minor helix groove. The magnitude of the resulting duplex bend was found to be dependent on the length of the polymeric linker in a fashion consistent with a simple geometric model. Data suggested that a 50-70 degrees bend was achieved by binding of the TFO chimera with the shortest linker span (18 rotatable bonds). Equilibrium analysis showed that, relative to a chimera which did not bend the duplex, the stability of the triple helix possessing a 50-70 degrees bend was reduced by less than 1 kcal/mol of that of the unbent complex. Based upon this similarity, it is proposed that duplex DNA may be much more flexible with respect to minor groove compression than previously assumed. It is shown that this unusual flexibility is consistent with recent quantitation of protein-induced minor groove bending. Images Fig. 2 Fig. 3 PMID:8901543

  7. Big Dreams

    ERIC Educational Resources Information Center

    Benson, Michael T.

    2015-01-01

    The Keen Johnson Building is symbolic of Eastern Kentucky University's historic role as a School of Opportunity. It is a place that has inspired generations of students, many from disadvantaged backgrounds, to dream big dreams. The construction of the Keen Johnson Building was inspired by a desire to create a student union facility that would not…

  8. Big bluestem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big Bluestem (Andropogon gerardii) is a warm season grass native to North America, accounting for 40% of the herbaceous biomass of the tall grass prairie, and a candidate for bioenergy feedstock production. The goal of this study was to measure among and within population genetic variation of natura...

  9. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  10. Measuring graphene's bending stiffness

    NASA Astrophysics Data System (ADS)

    Blees, Melina; Barnard, Arthur; Roberts, Samantha; Kevek, Joshua W.; Ruyack, Alexander; Wardini, Jenna; Ong, Peijie; Zaretski, Aliaksandr; Wang, Siping; McEuen, Paul L.

    2013-03-01

    Graphene's unusual combination of in-plane strength and out-of-plane flexibility makes it promising for mechanical applications. A key value is the bending stiffness, which microscopic theories and measurements of phonon modes in graphite put at κ0 = 1.2 eV.1 However, theories of the effects of thermal fluctuations in 2D membranes predict that the bending stiffness at longer length scales could be orders of magnitude higher.2,3 This macroscopic value has not been measured. Here we present the first direct measurement of monolayer graphene's bending stiffness, made by mechanically lifting graphene off a surface in a liquid and observing both motion induced by thermal fluctuations and the deflection caused by gravity's effect on added weights. These experiments reveal a value κeff = 12 keV at room temperature -- four orders of magnitude higher than κ0. These results closely match theoretical predictions of the effects of thermally-induced fluctuations which effectively thicken the membrane, dramatically increasing its bending stiffness at macroscopic length scales.

  11. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Special ponds and springs reserved for species of rare fish are closed to fishing and bait collecting. The taking or release of any form of fish life in these ponds or springs is prohibited except by special authorization by the Superintendent. These ponds and springs will be posted as closed to fishing and...

  12. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Special ponds and springs reserved for species of rare fish are closed to fishing and bait collecting. The taking or release of any form of fish life in these ponds or springs is prohibited except by special authorization by the Superintendent. These ponds and springs will be posted as closed to fishing and...

  13. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Special ponds and springs reserved for species of rare fish are closed to fishing and bait collecting. The taking or release of any form of fish life in these ponds or springs is prohibited except by special authorization by the Superintendent. These ponds and springs will be posted as closed to fishing and...

  14. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Special ponds and springs reserved for species of rare fish are closed to fishing and bait collecting. The taking or release of any form of fish life in these ponds or springs is prohibited except by special authorization by the Superintendent. These ponds and springs will be posted as closed to fishing and...

  15. Lichens and air quality in Big Bend National Park, Texas

    SciTech Connect

    Wetmore, C.M.

    1981-01-01

    This study was undertaken because of reports of decreased visibility due to haze and the possibility of increased air pollution in the park. Numerous localities where lichens had been collected 10 years ago were revisited in 1980 to look for any changes in the lichen flora. Photographs were taken from scenic vistas where photographs had been taken earlier. Permanent photographic points for lichens were established for long term monitoring. It is argued that fruticose lichens are just as useful for monitoring air quality in arid areas as in wetter areas. There has been no loss of lichen species at any locality over the past 10 years and haze conditions have not changed much. It is concluded that no significant increase in air pollution has occurred within the park over the past 10 years. 17 references, 4 figures.

  16. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  17. Considerations on domain location according to the jump of resolution between the driving data and the nested regional climate model within the Big-Brother experiment.

    NASA Astrophysics Data System (ADS)

    Matte, D.; Laprise, R.; Theriault, J. M.; Lucas-Picher, P.

    2015-12-01

    Many studies have shown the importance of choosing the domain size adequately for dynamical downscaling with nested regional climate models. It is well known that domain should not be too large to avoid large departure from the driving data, and not be too small to provide sufficient distance from the lateral inflow to allow a full development of the small-scale features resolved by the increase resolution. Although practitioners of dynamical downscaling are well aware that the jump of resolution between the driving data and the nested regional climate model impacts the simulated climate, the issue has never been properly study. Larger is the jump of resolution, larger is the distance from the lateral inflow to fully develop the small-scale features permitted by the increase resolution. Our investigation compares direct nesting to achieve a grid mesh of 0.15o from driving data at 3.6°, 1.8o, 0.45° and 0.15° using the perfect-prognostic approach of the Big-Brother protocol. The results show that the small-scale transient-eddy component struggles to be fully developed with reduced resolution of the driving data. Overall, this study suggests that domain location (i.e. domain of interest or subsequent nested domains) must be chosen carefully according to the jump of resolution to allow the optimal development of small-scale features allowed by the increase resolution of the nested model.

  18. Big Bang, Big Data, Big Computers

    NASA Astrophysics Data System (ADS)

    Conference website: http://www.apc.univ-paris7.fr/APC/Conferences/Workshop_Big3/Home.html Observations of the Cosmic Microwave Background (CMB) radiation have transformed modern cosmology propelling it into high-precision, data-driven science it is today. CMB data analysis has been a cornerstone of this transformation and it continues in this role preparing currently to meet its possibly ultimate challenge as posed by ever-growing in size and complexity forthcoming data sets required by new science goals posed for the field. These include providing key pieces of information about the very early Universe: Gaussianity of the initial conditions, the presence of the primordial gravity waves, as well as constraints on the large-scale structure formation and possibly properties of dark energy. The sophistication of the involved data models is matched by precision levels, which have to be attained to deliver robust detections and result in firm conclusions. The overall challenge is indeed breathtaking and, without a doubt, the success will be only possible if the data analysis effort becomes truly interdisciplinary and capitalizes on the latest advances in statistics, applied mathematics, and computer science - all of which constitute veritable foundations of the contemporary data analysis work.

  19. Infrared spectra and tunneling dynamics of the N{sub 2}–D{sub 2}O and OC–D{sub 2}O complexes in the v{sub 2} bend region of D{sub 2}O

    SciTech Connect

    Zhu, Yu; Zheng, Rui; Li, Song; Yang, Yu; Duan, Chuanxi

    2013-12-07

    The rovibrational spectra of the N{sub 2}–D{sub 2}O and OC–D{sub 2}O complexes in the v{sub 2} bend region of D{sub 2}O have been measured in a supersonic slit jet expansion using a rapid-scan tunable diode laser spectrometer. Both a-type and b-type transitions were observed for these two complexes. All transitions are doubled, due to the heavy water tunneling within the complexes. Assuming the tunneling splittings are the same in K{sub a} = 0 and K{sub a} = 1, the band origins, all three rotational and several distortion constants of each tunneling state were determined for N{sub 2}–D{sub 2}O in the ground and excited vibrational states, and for OC–D{sub 2}O in the excited vibrational state, respectively. The averaged band origin of OC–D{sub 2}O is blueshifted by 2.241 cm{sup −1} from that of the v{sub 2} band of the D{sub 2}O monomer, compared with 1.247 cm{sup −1} for N{sub 2}–D{sub 2}O. The tunneling splitting of N{sub 2}–D{sub 2}O in the ground state is 0.16359(28) cm{sup −1}, which is about five times that of OC–D{sub 2}O. The tunneling splittings decrease by about 26% for N{sub 2}–D{sub 2}O and 23% for OC–D{sub 2}O, respectively, upon excitation of the D{sub 2}O bending vibration, indicating an increase of the tunneling barrier in the excited vibrational state. The tunneling splittings are found to have a strong dependence on intramolecular vibrational excitation as well as a weak dependence on quantum number K{sub a}.

  20. Gravitropic bending of fruit bodies

    NASA Astrophysics Data System (ADS)

    Hock, Bertold

    Fruit bodies of basidiomycetes exhibit a unique mechanism of gravitropic bending, related to their specific architecture. The gravisensitive region of the stipe directly below the cap coincides with the bending zone. The hyphae of this region are equipped with the ability to generate positional information and translate it into differential growth. A model is introduced with the fundamental characteristics of agent-based modeling as it is applied in robotics and artificial intelligence. The hyphae are equivalent to autonomous decision-making agents on the basis of a simple set of rules. Repetitive interactions between the agents, i.e. the hyphae, permit the correct adjustment of the fruit body independent from its relative position in space. This model is based on the following structural as well as biochemical data derived from the basidiomycete Flammulina velutipes. A statolith-mediated mechanism in each individual hypha of the gravisensitive region accounts for graviperception. Cell nuclei with a density of 1.22 g cm-3 are considered the most likely candidates for gravity-induced sedimentation (statoliths). The number of nuclei in this zone is increased from 2 to up to 10 individual nuclei within each hyphal compartment. The nuclei are suspended in a web of actin filaments anchored in the plasma membrane. Any shift from the vertical position is converted into a change in the gravitational pull exerted on the plasma membrane. This leads to a functional distinction of the upper and lower flanks of each hypha. Each hypha is equipped with the ability to generate and amplify a positional signal perpendicular to the axis of the gravisensitive zone. This signal coordinates different hyphal extension of the upper and lower flank of the stipe: upper flank hyphae grow slower than lower flank hyphae. Hyphal growth requires continued turgor pressure and depends on the expansion of the vacuolar compartment. This vacuolation is conspicuously increased in lower flank

  1. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  2. Nonlinear Bending Stiffness of Plates Clamped by Bolted Joints under Bending Moment

    NASA Astrophysics Data System (ADS)

    Naruse, Tomohiro; Shibutani, Yoji

    Equivalent stiffness of plates clamped by bolted joints for designing should be evaluated according to not only the strength of bolted joints but also the deformation and vibration characteristics of the structures. When the applied external axial load or the bending moment is sufficiently small, the contact surfaces of the bolted joint are stuck together, and thus both the bolt and the clamped plates deform linearly. Although the sophisticated VDI 2230 code gives the appropriate stiffness of clamped plates for the infinitesimal deformation, the stiffness may vary nonlinearly with increasing the loading because of changing the contact state. Therefore, the present paper focuses on the nonlinear behaviour of the bending stiffness of clamped plates by using Finite Element (FE) analyses, taking the contact condition on bearing surfaces and between the plates into account. The FE models of the plates with thicknesses of 3.2, 4.5, 6.0 and 9.0 mm tightened with M8, 10, 12 and 16 bolts were constructed. The relation between bending moment and bending compliance of clamped plates is found to be categorized into three regions, namely, (i) constant compliance with fully stuck contact surfaces, (ii) transition showing the nonlinear compliance, and (iii) constant compliance with one-side contact surfaces. The mechanical models for these three regions are proposed and compared with FEM solutions. The prediction on the bounds of three regions is in a fairly good agreement except the case with smaller bolts and thicker plates.

  3. PLUME DEFINITION IN REGIONS OF STRONG BENDING

    EPA Science Inventory

    In recent years most of the emphasis in plume modeling has been directed at improving the entrainment equations while the non-entrainment equations (momentum, energy, state, etc.) have been thought to be firmly established. t is shown that serious deficiencies remain in the non-e...

  4. Business and Science - Big Data, Big Picture

    NASA Astrophysics Data System (ADS)

    Rosati, A.

    2013-12-01

    Data Science is more than the creation, manipulation, and transformation of data. It is more than Big Data. The business world seems to have a hold on the term 'data science' and, for now, they define what it means. But business is very different than science. In this talk, I address how large datasets, Big Data, and data science are conceptually different in business and science worlds. I focus on the types of questions each realm asks, the data needed, and the consequences of findings. Gone are the days of datasets being created or collected to serve only one purpose or project. The trick with data reuse is to become familiar enough with a dataset to be able to combine it with other data and extract accurate results. As a Data Curator for the Advanced Cooperative Arctic Data and Information Service (ACADIS), my specialty is communication. Our team enables Arctic sciences by ensuring datasets are well documented and can be understood by reusers. Previously, I served as a data community liaison for the North American Regional Climate Change Assessment Program (NARCCAP). Again, my specialty was communicating complex instructions and ideas to a broad audience of data users. Before entering the science world, I was an entrepreneur. I have a bachelor's degree in economics and a master's degree in environmental social science. I am currently pursuing a Ph.D. in Geography. Because my background has embraced both the business and science worlds, I would like to share my perspectives on data, data reuse, data documentation, and the presentation or communication of findings. My experiences show that each can inform and support the other.

  5. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  6. Big Burst

    NASA Technical Reports Server (NTRS)

    2007-01-01

    What would a starburst look like if you could see it up close? Probably a lot like the Carina Nebula, a rather small region of one of the Galaxy's spiral arms, a complex of massive clouds of gas and dust, and a region where, about a million or two years ago, for some reason and extraordinary amount of very massive stars formed. And at only some 8500 lightyears distant, it's relatively nearby. Such regions are of great interest to astronomers, since they are very young, and they show how massive stars form and how they create and disperse the elements necessary for life. The image above is a beautiful new study of the Carina Nebula in X-rays, taken by the XMM Newton X-ray observatory. The X-ray colors represent X-ray energy, as usual: red means low energy X-ray emission, green is somewhat higher in energy than red, and blue somewhat higher than green. Thus blue objects are either very high energy objects, or else very absorbed objects. Most of the point sources are massive stars, some X-ray emitting binaries, and some objects still to be identified. The clustering of the X-ray point sources is very evident, showing how massive stars like to form in groups. A number of interesting sources are identified. Interestingly, the Carina Nebula is immersed in a large diffuse glow of X-radiation. This X-ray glow might be produced by the combined winds of the massive stars colliding with the dense cold clouds in the nebula. Another interesting possibility: perhaps this emission represents an old supernova. But if so which star died?

  7. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  8. Self-bending symmetric cusp beams

    SciTech Connect

    Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan

    2015-12-07

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  9. Self-bending symmetric cusp beams

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Liu, Wei-Wei; Ren, Yu-Xuan; Lu, Yao; Li, Yin-Mei

    2015-12-01

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  10. Bending rules for animal propulsion.

    PubMed

    Lucas, Kelsey N; Johnson, Nathan; Beaulieu, Wesley T; Cathcart, Eric; Tirrell, Gregory; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Costello, John H

    2014-01-01

    Animal propulsors such as wings and fins bend during motion and these bending patterns are believed to contribute to the high efficiency of animal movements compared with those of man-made designs. However, efforts to implement flexible designs have been met with contradictory performance results. Consequently, there is no clear understanding of the role played by propulsor flexibility or, more fundamentally, how flexible propulsors should be designed for optimal performance. Here we demonstrate that during steady-state motion by a wide range of animals, from fruit flies to humpback whales, operating in either air or water, natural propulsors bend in similar ways within a highly predictable range of characteristic motions. By providing empirical design criteria derived from natural propulsors that have convergently arrived at a limited design space, these results provide a new framework from which to understand and design flexible propulsors. PMID:24548870

  11. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  12. Characterization of bending EAP beams

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart

    2004-01-01

    Electroactive polymers are attractive actuation materials because of their large deformation, flexibility, and lightweight. A CCD camera system was constructed to record the curved shapes of bending during the activation of EAP films and image-processing software was developed to digitize the bending curves. A computer program was developed to solve the invese problem of cantilever EAP beams with tip position limiter. using the developed program and acquired curves without tip position limiter as well as the corresponding tip force, the EAP material properties of voltage-strain sensitivity and Young's modulus were determined.

  13. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  14. Bending behavior of lapped plastic ehv cables

    SciTech Connect

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  15. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  16. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  17. Improved Method Of Bending Concentric Pipes

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1995-01-01

    Proposed method for bending two concentric pipes simultaneously while maintaining void between them replaces present tedious, messy, and labor-intensive method. Array of rubber tubes inserted in gap between concentric pipes. Tubes then inflated with relatively incompressible liquid to fill gap. Enables bending to be done faster and more cleanly, and amenable to automation of significant portion of bending process on computer numerically controlled (CNC) tube-bending machinery.

  18. Dual of big bang and big crunch

    SciTech Connect

    Bak, Dongsu

    2007-01-15

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory.

  19. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  20. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  1. Big Ideas in Art

    ERIC Educational Resources Information Center

    Day, Kathleen

    2008-01-01

    In this article, the author shares how she was able to discover some big ideas about art education. She relates how she found great ideas to improve her teaching from the book "Rethinking Curriculum in Art." She also shares how she designed a "Big Idea" unit in her class.

  2. Bending Stiffness of Multiwall Sandwich

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1983-01-01

    An analytical and experimental study was carried out to understand the extensional and flexural behavior of multiwall sandwich, a metallic insulation composed of alternate layers of flat and dimpled foil. The multiwall sandwich was structurally analyzed by using several simplifying assumptions combined with a finite element analysis. The simplifying assumptions made in this analysis were evaluated by bending and tensile tests. Test results validate the assumption that flat sheets in compression do not significantly contribute to the flexural stiffness of multiwall sandwich for the multiwall geometry tested. However, calculations show that thicker flat sheets may contribute significantly to bending stiffness and cannot be ignored. Results of this analytical approach compare well with test data; both show that the extensional stiffness of the dimpled sheet in he 0 deg direction is about 30 percent of that for a flat sheet, and that in the 45 deg direction, it is about 10 percent. The analytical and experimental multiwall bending stiffness showed good agreement for the particular geometry tested.

  3. Big data for health.

    PubMed

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled. PMID:26173222

  4. Strain localization and damage development in 2060 alloy during bending

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Fu, Bao-qin; Zhang, Cheng-lu; Liu, Wei

    2015-12-01

    The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.

  5. Platonic Scattering Cancellation for Bending Waves in a Thin Plate

    PubMed Central

    Farhat, M.; Chen, P.-Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alù, A.

    2014-01-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry. PMID:24844801

  6. Platonic Scattering Cancellation for Bending Waves in a Thin Plate

    NASA Astrophysics Data System (ADS)

    Farhat, M.; Chen, P.-Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alù, A.

    2014-04-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  7. Big data, big knowledge: big data for personalized healthcare.

    PubMed

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority. PMID:26218867

  8. Rapid Intradeformational Emplacement of the Big Hole Canyon Pluton Into the Sevier Fold-Thrust Belt, Southwest Montana.

    NASA Astrophysics Data System (ADS)

    Hespenheide, M. A.

    2002-12-01

    The Big Hole Canyon pluton (BHCp) is a Late Cretaceous pluton emplaced within the Sevier fold-and-thrust belt of the western North American Cordillera. The pluton is exposed over 60km2 and a thickness of ~1400m. Combined anisotropy of magnetic susceptibility (AMS), structural, and field studies document a clear pattern of magmatic flow radiating from at least three subvertical conduits <100m wide and ~300 to ~800m long. Interpreted flow plunges change rapidly to subhorizontal fabrics across the rest of the pluton, matching the expected pattern for laccolithic emplacement. Ascent conduits within the Big Hole Canyon pluton are coincident with the fold axis of an anticline above a thrust ramp, suggesting that the magma ascended up the fault of the fault-bend-fold. Geobarometry and stratigraphic reconstructions indicate an emplacement depth of approximately ~3km. Preliminary thermal modeling indicates that the BHCp was emplaced in 250,000 years, likely between periods of regional shortening deformation. Rapid magma ascent rates calculated by dike flow modeling and implied by entrained wall-rock xenoliths may indicate sequential magma injection into the pluton; an absence of chill margins between phases within the pluton indicates that sequential injections must have taken place quickly enough that the magmas did not have time to cool below the solidus temperature. The geometry and location of the BHCp suggest that magma used a pre-existing fault as a mechanical discontinuity for both ascent and emplacement. Continued intrusion of magma had a sufficient amount of driving pressure to stretch, shear, and lift the roof of the pluton. Detailed field mapping, structural studies, AMS, and thermobarometry indicate that the Late Cretaceous Big Hole Canyon pluton was emplaced as a laccolith at the top of a pre-existing fault-bend-fold in the frontal portion of the Sevier fold-thrust belt.

  9. BigDog

    NASA Astrophysics Data System (ADS)

    Playter, R.; Buehler, M.; Raibert, M.

    2006-05-01

    BigDog's goal is to be the world's most advanced quadruped robot for outdoor applications. BigDog is aimed at the mission of a mechanical mule - a category with few competitors to date: power autonomous quadrupeds capable of carrying significant payloads, operating outdoors, with static and dynamic mobility, and fully integrated sensing. BigDog is about 1 m tall, 1 m long and 0.3 m wide, and weighs about 90 kg. BigDog has demonstrated walking and trotting gaits, as well as standing up and sitting down. Since its creation in the fall of 2004, BigDog has logged tens of hours of walking, climbing and running time. It has walked up and down 25 & 35 degree inclines and trotted at speeds up to 1.8 m/s. BigDog has walked at 0.7 m/s over loose rock beds and carried over 50 kg of payload. We are currently working to expand BigDog's rough terrain mobility through the creation of robust locomotion strategies and terrain sensing capabilities.

  10. Big Data in industry

    NASA Astrophysics Data System (ADS)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  11. Big bang darkleosynthesis

    NASA Astrophysics Data System (ADS)

    Krnjaic, Gordan; Sigurdson, Kris

    2015-12-01

    In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis, a dark-sector version of big-bang nucleosynthesis (BBN), in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD, which generically yields large (≫MeV /dark-nucleon) binding energies. These bounds further suggest the mediator is relatively weakly coupled, so repulsive forces between dark-sector nuclei are much weaker than Coulomb repulsion between standard-model nuclei, which results in an exponential barrier-tunneling enhancement over standard BBN. Thus, darklei are easier to make and harder to break than visible species with comparable mass numbers. This process can efficiently yield a dominant population of states with masses significantly greater than the confinement scale and, in contrast to dark matter that is a fundamental particle, may allow the dominant form of dark matter to have high spin (S ≫ 3 / 2), whose discovery would be smoking gun evidence for dark nuclei.

  12. The Big Bang Theory

    SciTech Connect

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  13. The Titan -1:0 Nodal Bending Wave in Saturn's Ring C.

    PubMed

    Rosen, P A; Lissauer, J J

    1988-08-01

    The most prominent oscillatory feature observed in the Voyager 1 radio occultation of Saturn's rings is identified as a one-armed spiral bending wave excited by Titan's -1:0 nodal inner vertical resonance. Ring partides in a bending wave move in coherently inclined orbits, warping the local mean plane of the rings. The Titan -1:0 wave is the only known bending wave that propagates outward, away from Saturn, and the only spiral wave yet observed in which the wave pattern rotates opposite to the orbital direction of the ring particles. It is also the first bending wave identified in ring C. Modeling the observed feature with existing bending wave theory gives a surface mass density of approximately 0.4 g/cm(2) outside the wave region and a local ring thickness of [unknown]5 meters, and suggests that surface mass density is not constant in the wave region. PMID:17839081

  14. The Titan-1:0 nodal bending wave in Saturn's Ring C

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Lissauer, Jack J.

    1988-01-01

    The most prominent oscillatory feature observed in the Voyager 1 radio occultation of Saturn's rings is identified as a one-armed spiral bending wave excited by Titan's-1:0 nodal inner vertical resonance. Ring particles in a bending wave move in coherently inclined orbits, warping the local mean plane of the rings. The Titan-1:0 wave is the only known bending wave that propagates outward, away from Saturn, and the only spiral wave yet observed in which the wave pattern rotates opposite to the orbital direction of the ring particles. It is also the first bending wave identified in ring C. Modeling the observed feature with existing bending wave theory gives a surface mass density of about 0.4 g/sq cm outside the wave region and a local ring thickness of less than about 5 meters, and suggests that surface mass density is not constant in the wave region.

  15. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  16. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    ERIC Educational Resources Information Center

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own "big" words and dreams. During the one…

  17. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution. [Big Sioux River Basin, SOuth Dakota

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J. L.

    1979-01-01

    The author has identified the following significant results. Evidence of a heat sink produced by perched water tables was detected with HCMM night thermal data. The region of shallow water was not visible on HCMM visible or day IR imagery. The results are consistant with previous aircraft investigations.

  18. Solution structure of an A-tract DNA bend.

    PubMed

    MacDonald, D; Herbert, K; Zhang, X; Pologruto, T; Lu, P; Polgruto, T

    2001-03-01

    The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d

  19. Peeling, sliding, pulling and bending

    NASA Astrophysics Data System (ADS)

    Lister, John; Peng, Gunnar

    2015-11-01

    The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.

  20. HYDRODYNAMICS AND SEDIMENT TRANSPORT IN LOWER MISSISSIPPI RIVER MEANDER BENDS (LOUISIANA): IMPLICATIONS FOR LARGE SEDIMENT DIVERSIONS

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; McCorquodale, A.; Meselhe, E. A.

    2009-12-01

    Field data collection and numerical modeling is being conducted in the lower Mississippi River in the region of a meander bend at Myrtle Grove, LA (river km 96 above Head of Passes) in support of a proposed large water and sediment diversion (1,130-2,830 cms) for coastal wetland restoration. Field studies in October 2008, April and May 2009, at discharges ranging from 11,000-21,000 cms, examined the role of bend dynamics on sediment transport through this reach relative to control sites further downriver and USGS monitoring stations upriver. Suspended loads and grain size character measured by ADCP (velocities and backscatter), isokinetic point sampler (P-63), and optical sensors (LISST, OBS, transmissometer) indicate that during the rising-to-high discharge phase, sand lifting off from the downstream edge of the lateral bar upriver of the bend augments that carried from further upriver, and is entrained in the upper 10-25m of the water column. This excess suspended sand is advected around the bend before concentrations are reduced to background levels over the lateral bar downstream of the bend. Bedload transport rates measured by repeat swath bathymetric mapping of migrating dunes are comparable upstream of the bend, downstream, and in the control sites. However, no bedforms are observed in the bend thalweg (up to 60 m deep) supporting the dominance of suspended sand transport in the bend. Both 1D (HEC-RAS and HEC6-T) and 3D (Flow3D) numerical hydrodynamic and sediment transport modeling is underway to simulate this process and the large-scale eddy present in the bend that generates upriver transport along the inside of the meander bend at all observed discharges. Our preliminary results suggest that the outside of meander bends might be an appropriate site for sediment diversions that draw near-surface water from this sediment-rich layer.

  1. Elbow- and hinge-bending motions of IgG: Dielectric response and dynamic feature.

    PubMed

    Hayashi, Yoshihito; Yagihara, Shin

    2016-09-01

    Immunoglobulin G (IgG) is a Y-shaped globular protein consisting of two Fab segments connecting to an Fc segment with a flexible hinge region, in which the Fab segments show secondary flexibility at an "elbow" region. In the present work, the hinge-bending and elbow-bending motions of aqueous solutions of IgG by microwave dielectric measurements below the freezing point of bulk water was observed. The presence of unfreezable water around the macromolecules reduced the effects of steric hindrance normally generated by ice and enabled the intramolecular motions of IgG. At the same time, the overall IgG molecule rotation was restricted by ice. Papain digestion and reduction of the disulfide linkage at the hinge region was used to generate Fab and Fc fragments. In solutions of these fragments, the dielectric relaxation process of the hinge-bending motion was absent, although the elbow-bending motion remained. Three relaxation processes were observed for papain-digested IgG. The high, middle, and low frequency processes were attributed to unfrozen water, local peptide motions cooperating with bound water, and the elbow-bending motion, respectively. In the case of the intact IgG, an additional relaxation process due to the hinge-bending motion was observed at frequencies lower than that of the elbow-bending motion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 626-632, 2016. PMID:27018805

  2. Development of a new model for plane strain bending and springback analysis

    SciTech Connect

    Zhang, Z.T.; Lee, D.

    1995-06-01

    A new mathematical model is presented for plane strain bending and springback analysis in sheet metal forming. This model combines effects associated with bending and stretching, considers stress and strain distributions and different thickness variations in the thickness direction, and takes force equilibrium into account. An elastic-plastic material model and Hill`s nonquadratic yield function are incorporated in the model. The model is used to obtain force, bending moment, and springback curvature. A typical two-dimensional draw bending part is divided into five regions along the strip, and the forces and moments acting on each region and the deformation history of each region are examined. Three different methods are applied to the two-dimensional draw bending problems: the first using the new model, the second using the new model but also including a kinematic directional hardening material model to consider the bending and unbending deformation in the wall, and the third using membrane theory plus bending strain. Results from these methods, including those from the recent benchmark program, are compared.

  3. Twist and writhe of a DNA loop containing intrinsic bends.

    PubMed Central

    Bauer, W R; Lund, R A; White, J H

    1993-01-01

    The finite-element method of solid mechanics is applied to calculation of the three-dimensional structure of closed circular DNA, modeled as an elastic rod subject to large motions. The results predict the minimum elastic energy conformation of a closed loop of DNA as a function of relaxed equilibrium configuration and linking number (Lk). We apply the method to four different starting states: a straight rod, two rods containing either one or two 20 degrees bends, and a circular O-ring. The results, here at low superhelix density, show the changes in writhe (Wr) and in twist (Tw) as Lk is progressively lowered. The presence of even a single intrinsic bend reduces significantly the linking number change at which Wr first appears, compared to an initially straight, bend-free rod. The presence of two in-phase bends, situated at opposite ends of a diameter, leads to the formation of at least two distinct regions of different but relatively uniform Tw increment. The O-ring begins to writhe immediately upon reduction of Lk, and the Tw increment distribution is sinusoidal along the rod. The mechanics calculations, unlike other theoretical approaches, permit us to calculate Tw and Wr independent of the constraint of constant Lk. Images PMID:8430093

  4. Twist and writhe of a DNA loop containing intrinsic bends.

    PubMed

    Bauer, W R; Lund, R A; White, J H

    1993-02-01

    The finite-element method of solid mechanics is applied to calculation of the three-dimensional structure of closed circular DNA, modeled as an elastic rod subject to large motions. The results predict the minimum elastic energy conformation of a closed loop of DNA as a function of relaxed equilibrium configuration and linking number (Lk). We apply the method to four different starting states: a straight rod, two rods containing either one or two 20 degrees bends, and a circular O-ring. The results, here at low superhelix density, show the changes in writhe (Wr) and in twist (Tw) as Lk is progressively lowered. The presence of even a single intrinsic bend reduces significantly the linking number change at which Wr first appears, compared to an initially straight, bend-free rod. The presence of two in-phase bends, situated at opposite ends of a diameter, leads to the formation of at least two distinct regions of different but relatively uniform Tw increment. The O-ring begins to writhe immediately upon reduction of Lk, and the Tw increment distribution is sinusoidal along the rod. The mechanics calculations, unlike other theoretical approaches, permit us to calculate Tw and Wr independent of the constraint of constant Lk. PMID:8430093

  5. Performance study of macro-bending EDFA/Raman hybrid optical fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Mahran, O.

    2015-10-01

    In this paper, we present an analytical study of a (macro-bending EDFA)/Raman hybrid optical amplifier. The bending radius is 4 mm with EDFA length 10 m with forward pump power in the range (100-500 mW) and Raman amplifier length (12-55 km) with backward pump power variations (80-200 mW) is considered in our model. Due to bending loss in EDFA, the gain of hybrid amplifier is increased to ~7 dB more than the normal EDFA/Raman hybrid amplifier and the noise figure is decreased by ~2 dB rather than without macro-bending EDFA/Raman hybrid amplifier. The signal to noise ratio (OSNR) calculations shows a better performance of macro-bending EDFA/Raman hybrid amplifier than without macro-bending one. A flat gain is obtained in the signal wavelength region (1560-1600 nm), which is the L-band. The calculated results for macro-bending case are compared with experimental results of normal case by Lee et al., in the L-band showing an increase in the gain, reduction in the noise figure and more gain flatness at the input signal -20 dBm for macro-bending EDFA/Raman hybrid amplifier.

  6. Big Questions: Missing Antimatter

    ScienceCinema

    Lincoln, Don

    2014-08-07

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  7. Big Questions: Missing Antimatter

    SciTech Connect

    Lincoln, Don

    2013-08-27

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  8. Big data in biomedicine.

    PubMed

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science. PMID:24183925

  9. Bayesian big bang

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show that the flow of particles corresponding to Bayes' rule has a number of striking similarities with the big bang, including cosmic inflation and cosmic acceleration. We derive a PDE for this flow using a log-homotopy from the prior probability density to the posteriori probability density. We solve this PDE using the gradient of the solution to Poisson's equation, which is computed using an exact Green's function and the standard Monte Carlo approximation of integrals. The resulting flow is analogous to Coulomb's law in electromagnetics. We have used no physics per se to derive this flow, but rather we have only used Bayes' rule and the definition of normalized probability and a loghomotopy parameter that could be interpreted as time. The details of this big bang resemble very recent theories much more closely than the so-called new inflation models, which postulate enormous inflation immediately after the big bang.

  10. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....1 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). This shall not prohibit the use of..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...

  11. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  12. Bending of light in conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2010-06-01

    We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term γr in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.

  13. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  14. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  15. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  16. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  17. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  18. 49 CFR 195.212 - Bending of pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2)...

  19. How Big Is Your Y? A Genome Sequence-Based Estimate of the Size of the Male-Specific Region in Megaselia scalaris

    PubMed Central

    Hoehn, Kenneth B.; Noor, Mohamed A. F.

    2014-01-01

    The scuttle fly, Megaselia scalaris, is often cited as a model in which to study early sex chromosome evolution because of its homomorphic sex chromosomes, low but measurable molecular differentiation between sex chromosomes, and occasional transposition of the male-determining element to different chromosomes in laboratory cultures. Counterintuitively, natural isolates consistently show sex linkage to the second chromosome. Frequent natural transposition of the male-determining element should lead to the loss of male specificity of any nontransposed material on the previous sex-linked chromosome pair. Using next-generation sequencing data from a newly obtained natural isolate of M. scalaris, we show that even highly conservative estimates for the size of the male-specific genome are likely too large to be contained within a transposable element. This result strongly suggests that transposition of the male-determining region either is extremely rare or has not persisted recently in natural populations, allowing for differentiation of the sex chromosomes of this species. PMID:25380730

  20. Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Sayir, Haluk

    1995-01-01

    The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.

  1. Metal atom dynamics in superbulky metallocenes: a comparison of (Cp(BIG))2Sn and (Cp(BIG))2Eu.

    PubMed

    Harder, Sjoerd; Naglav, Dominik; Schwerdtfeger, Peter; Nowik, Israel; Herber, Rolfe H

    2014-02-17

    Cp(BIG)2Sn (Cp(BIG) = (4-n-Bu-C6H4)5cyclopentadienyl), prepared by reaction of 2 equiv of Cp(BIG)Na with SnCl2, crystallized isomorphous to other known metallocenes with this ligand (Ca, Sr, Ba, Sm, Eu, Yb). Similarly, it shows perfect linearity, C-H···C(π) bonding between the Cp(BIG) rings and out-of-plane bending of the aryl substituents toward the metal. Whereas all other Cp(BIG)2M complexes show large disorder in the metal position, the Sn atom in Cp(BIG)2Sn is perfectly ordered. In contrast, (119)Sn and (151)Eu Mößbauer investigations on the corresponding Cp(BIG)2M metallocenes show that Sn(II) is more dynamic and loosely bound than Eu(II). The large displacement factors in the group 2 and especially in the lanthanide(II) metallocenes Cp(BIG)2M can be explained by static metal disorder in a plane parallel to the Cp(BIG) rings. Despite parallel Cp(BIG) rings, these metallocenes have a nonlinear Cpcenter-M-Cpcenter geometry. This is explained by an ionic model in which metal atoms are polarized by the negatively charged Cp rings. The extent of nonlinearity is in line with trends found in M(2+) ion polarizabilities. The range of known calculated dipole polarizabilities at the Douglas-Kroll CCSD(T) level was extended with values (atomic units) for Sn(2+) 15.35, Sm(2+)(4f(6) (7)F) 9.82, Eu(2+)(4f(7) (8)S) 8.99, and Yb(2+)(4f(14) (1)S) 6.55. This polarizability model cannot be applied to predominantly covalently bound Cp(BIG)2Sn, which shows a perfectly ordered structure. The bent geometry of Cp*2Sn should therefore not be explained by metal polarizability but is due to van der Waals Cp*···Cp* attraction and (to some extent) to a small p-character component in the Sn lone pair. PMID:24495311

  2. Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis'

    SciTech Connect

    Rauscher, Thomas

    2007-03-15

    The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005)] claims that heavy nuclei could have been produced in a combined p- and r-process in very high baryon density regions of an inhomogeneous big bang. However, they do not account for observational constraints and previous studies which show that such high baryon density regions did not significantly contribute to big bang abundances.

  3. Thinking Big, Aiming High

    ERIC Educational Resources Information Center

    Berkeley, Viv

    2010-01-01

    What do teachers, providers and policymakers need to do in order to support disabled learners to "think big and aim high"? That was the question put to delegates at NIACE's annual disability conference. Some clear themes emerged, with delegates raising concerns about funding, teacher training, partnership-working and employment for disabled…

  4. The Big Empty.

    ERIC Educational Resources Information Center

    Brook, Richard; Smith, Shelley; Tisdale, Mary

    1995-01-01

    Discusses "The Big Empty" or, the Great Basin. Suggests that it is not empty but rather a great ecosystem rich in plants, animals, and minerals. Presents information and activities to guide students in exploring the Great Basin in order to understand the ways in which such an arid and seemingly harsh environment can support so many living things.…

  5. A Sobering Big Idea

    ERIC Educational Resources Information Center

    Wineburg, Sam

    2006-01-01

    Since Susan Adler, Alberta Dougan, and Jesus Garcia like "big ideas," the author offers one to ponder: young people in this country can not read with comprehension. The saddest thing about this crisis is that it is no secret. The 2001 results of the National Assessment of Educational Progress (NAEP) for reading, published in every major newspaper,…

  6. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  7. Big Bang Theory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory which asserts that the universe originated a finite time ago by expanding from an infinitely compressed state. According to this model, space, time and matter originated together, and the universe has been expanding ever since. Key stages in the history of the Big Bang universe are summarized below....

  8. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  9. Big-City Rules

    ERIC Educational Resources Information Center

    Gordon, Dan

    2011-01-01

    When it comes to implementing innovative classroom technology programs, urban school districts face significant challenges stemming from their big-city status. These range from large bureaucracies, to scalability, to how to meet the needs of a more diverse group of students. Because of their size, urban districts tend to have greater distance…

  10. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The government aims to put…

  11. The big bang

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.

  12. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  13. An analysis of bending waves in Saturn's rings using Voyager radio occultation data

    NASA Technical Reports Server (NTRS)

    Gresh, Donna L.; Rosen, Paul A.; Tyler, G. Leonard; Lissauer, Jack J.

    1986-01-01

    Three oscillatory features in the Voyager 1 radio occultation map of Saturn's rings have been identified as the 5:3, 7:4, and 4:2 spiral bending waves excited by the satellite Mimas. The observations are presented and the wave properties are investigated. It is found that the Mimas 7:4 wave is consistent with the linear theory of bending waves, while the Mimas 5:3 wave may not be. A detailed analysis of the Mimas 4:2 bending wave was not possible due to the large optical depth in the region in which it propagates.

  14. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  15. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  16. Geomorpho-tectonic evolution of the Jamaican restraining bend

    NASA Astrophysics Data System (ADS)

    Domínguez-González, Leomaris; Andreani, Louis; Stanek, Klaus P.; Gloaguen, Richard

    2015-01-01

    This work applies recent advances in tectonic geomorphology in order to understand the geomorphic evolution of the Jamaican restraining bend located along the Caribbean-Gonâve-North American plate boundary. We propose a classification of landscapes according to their erosional stages. The approach is mainly based on the combination of two DEM-based geomorphic indices: the hypsometric integral which highlights elevated surfaces, and the surface roughness which increases when the relief is incised by the drainage network. River longitudinal profiles were also analyzed as the drainage network responds quickly to base-level change triggered by external forcing such as tectonics. Anomalies in river profiles (knickpoints and convex segments) were mapped using stream length-gradient (SL) and normalized steepness (ksn) indices. The results provide new insights for understanding the complex evolution of the Jamaican restraining bend. Three main morphotectonic regions were identified in Jamaica: (1) the Blue Mountain-Wagwater unit located at the eastern tip of the island, (2) the Jamaican highlands plateau which covers most of the northern and central areas and (3) the tilted block province located along the southern part of Jamaica. Each region has a specific morphological signature which marks a different stage in the Late Miocene to present evolution of the Jamaican restraining bend. The evolution of the bend is mainly associated with the western propagation of major E-trending strike-slip faults and NW-trending thrusts. In the western and central parts of Jamaica the present-day motion between the Caribbean plate and the Gonâve microplate is broadly distributed along several structures, while in the easternmost part of the island this motion seems to be almost completely accommodated along the Blue Mountain range and the Plantain-Garden Fault.

  17. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  18. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  19. Turbulent flow analysis on bend and downstream of the bend for different curvature ratio

    NASA Astrophysics Data System (ADS)

    Chowdhury, Rana Roy; Biswas, Suranjan; Alam, Md. Mahbubul; Islam, A. K. M. Sadrul

    2016-07-01

    A CFD analysis on the bend and downstream of the bend has been carried out for turbulent flow through 90 degree bend pipe with different curvature ratios using standard k-epsilon turbulence model. Numerical results are compared with the existing experimental results, and then a detailed study has been performed to investigate the flow characteristics. For different curvature ratios, the static pressure distributions along inner, outer wall and pressure loss factor with different Reynolds number is analyzed. The obtained results show that pressure distribution and pressure loss factor are dependent for different Reynolds number and curvature ratio throughout the bend. Again, It is observed that the disturbance of the flow due to bend exists for a downstream distance of 50D from the central plane of the bend.

  20. Feature guided waves (FGW) in fiber reinforced composite plates with 90° transverse bends

    NASA Astrophysics Data System (ADS)

    Yu, Xudong; Ratassepp, Madis; Fan, Zheng; Manogharan, Prabhakaran; Rajagopal, Prabhu

    2016-02-01

    Fiber reinforced composite materials have been increasingly used in high performance structures such as aircraft and large wind turbine blades. 90◦ composite bends are common in reinforcing structural elements, which are prone to defects such as delamination, crack, fatigue, etc. Current techniques are based on local inspection which makes the whole bend area scanning time consuming and tedious. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of 90◦ composite laminated bends. In this study, the behavior of the bend-guided wave in the anisotropic composite material is investigated through modal studies by applying the Semi-Analytical Finite Element (SAFE) method, also 3D Finite Element (FE) simulations are performed to visualize the results and to obtain cross validation. To understand the influence of the anisotropy, three-dimensional dispersion surfaces of the guided modes in flat laminated plates are obtained, showing the dependence of the phase velocity with the frequency and the fiber orientation. S H0-like and S 0-like bend-guided modes are identified with energy concentrated in the bend region, limiting energy radiation into adjacent plates and thus achieving increased inspection length. Finally, parametric studies are carried out to further investigate the properties of these two bend-guided modes, demonstrating the variation of the group velocity, the energy concentration, and the attenuation with the frequency.

  1. A holographic big bang?

    NASA Astrophysics Data System (ADS)

    Afshordi, N.; Mann, R. B.; Pourhasan, R.

    2015-11-01

    We present a cosmological model in which the Universe emerges out of the collapse of a five-dimensional (5D) star as a spherical three-brane. The initial singularity of the big bang becomes hidden behind a causal horizon. Near scale-invariant primordial curvature perturbations can be induced on the brane via a thermal atmosphere that is in equilibrium with the brane, circumventing the need for a separate inflationary process and providing an important test of the model.

  2. DARPA's Big Mechanism program.

    PubMed

    Cohen, Paul R

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers. PMID:26178259

  3. DARPA's Big Mechanism program

    NASA Astrophysics Data System (ADS)

    Cohen, Paul R.

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  4. Big3. Editorial

    PubMed Central

    Lehmann, Christoph U.; Séroussi, Brigitte; Jaulent, Marie-Christine

    2014-01-01

    Summary Objectives To provide an editorial introduction into the 2014 IMIA Yearbook of Medical Informatics with an overview of the content, the new publishing scheme, and upcoming 25th anniversary. Methods A brief overview of the 2014 special topic, Big Data - Smart Health Strategies, and an outline of the novel publishing model is provided in conjunction with a call for proposals to celebrate the 25th anniversary of the Yearbook. Results ‘Big Data’ has become the latest buzzword in informatics and promise new approaches and interventions that can improve health, well-being, and quality of life. This edition of the Yearbook acknowledges the fact that we just started to explore the opportunities that ‘Big Data’ will bring. However, it will become apparent to the reader that its pervasive nature has invaded all aspects of biomedical informatics – some to a higher degree than others. It was our goal to provide a comprehensive view at the state of ‘Big Data’ today, explore its strengths and weaknesses, as well as its risks, discuss emerging trends, tools, and applications, and stimulate the development of the field through the aggregation of excellent survey papers and working group contributions to the topic. Conclusions For the first time in history will the IMIA Yearbook be published in an open access online format allowing a broader readership especially in resource poor countries. For the first time, thanks to the online format, will the IMIA Yearbook be published twice in the year, with two different tracks of papers. We anticipate that the important role of the IMIA yearbook will further increase with these changes just in time for its 25th anniversary in 2016. PMID:24853037

  5. Small turbines, big unknown

    SciTech Connect

    Gipe, P.

    1995-07-01

    While financial markets focus on the wheeling and dealing of the big wind companies, the small wind turbine industry quietly keeps churning out its smaller but effective machines. Some, the micro turbines, are so small they can be carried by hand. Though worldwide sales of small wind turbines fall far short of even one large windpower plant, figures reach $8 million to $10 million annually and could be as much as twice that if batteries and engineering services are included.

  6. The Next Big Idea

    PubMed Central

    2013-01-01

    Abstract George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed. PMID:23786296

  7. Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Big Bear Solar Observatory (BBSO) is located at the end of a causeway in a mountain lake more than 2 km above sea level. The site has more than 300 sunny days a year and a natural inversion caused by the lake which makes for very clean images. BBSO is the only university observatory in the US making high-resolution observations of the Sun. Its daily images are posted at http://www.bbso.njit.e...

  8. Big Bang Circus

    NASA Astrophysics Data System (ADS)

    Ambrosini, C.

    2011-06-01

    Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…

  9. Bending rigidity of composite resin coating clasps.

    PubMed

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  10. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  11. A transparent bending-insensitive pressure sensor.

    PubMed

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions. PMID:26809055

  12. Big Data Technologies

    PubMed Central

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-01-01

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient’s care processes and of single patient’s behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, able to gather large amounts of real-time data, requires the implementation of distributed platforms for data analysis and decision support. Finally, the inclusion of geographical and environmental information into such complex IT systems may further increase the capability of interpreting the data gathered and extract new knowledge from them. This article reviews the main concepts and definitions related to big data, it presents some efforts in health care, and discusses the potential role of big data in diabetes care. Finally, as an example, it describes the research efforts carried on in the MOSAIC project, funded by the European Commission. PMID:25910540

  13. Big data integration for regional hydrostratigraphic mapping

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.

    2013-12-01

    Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in devising these models remains subjective, nonunique, and uncertain. A novel geophysical-hydrogeologic data integration scheme is proposed to constrain the estimation of continuous HSUs. First, machine-learning and multivariate statistical techniques are used to simultaneously integrate borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Second, airborne electromagnetic measurements are numerically inverted to obtain subsurface resistivity structure at randomly selected locations. Third, the machine-learning algorithm is trained using the borehole hydrostratigraphic units and inverted airborne resistivity profiles. The trained machine-learning algorithm is then used to estimate HSUs at independent resistivity profile locations. We demonstrate efficacy of the proposed approach to map the hydrostratigraphy of a heterogeneous surficial aquifer in northwestern Nebraska.

  14. Analysis of Surface Roughening in AA6111 Automotive Sheet Under Pure Bending

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Zhao, P. Z.; Jin, H.; Wu, P. D.; Lloyd, D. J.

    2016-02-01

    The finite element method is used to numerically simulate the topographic development in an aluminum sheet, AA6111, under pure bending. The measured electron backscatter diffraction data are directly incorporated into the finite element model, and the constitutive response at an integration point is described by the single crystal plasticity theory. The effects of strain-rate sensitivity, work hardening, and imposed initial surface roughness on surface roughening are studied. It is found that the grains in top surface layers of the sheet play a big role in controlling the outer surface roughness due to the strain gradient across sheet thickness in bending, while the grain size and texture of the surface layers have a direct impact on finishing surface qualities.

  15. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple

  16. Stretching and Bending Fluctuations of Short DNA Molecules

    PubMed Central

    Padinhateeri, Ranjith; Menon, Gautam I.

    2013-01-01

    Recent measurements of the distribution of end-to-end distance in short DNA molecules infer cooperative stretching fluctuations. The assumptions underlying the analysis can be questioned if transient, thermally induced defects producing a localized decrease in bending stiffness are present in thermal equilibrium, such as regions in which DNA melts locally (bubbles), sustains large-angle bends (kinks), or can locally transform into an alternative (S-DNA) state. We study a generalized discrete worm-like chain model for DNA, capable of describing these experiments, showing that the model yields accurate fits to available experimental data. Our results indicate that DNA bending arising from such localized defects, rather than solely stretching, can be an equal contributor to end-to-end distance fluctuations for 35-bp DNA and contributes nontrivially to such fluctuations at all scales below the persistence length. The analysis suggests that such fluctuations should exhibit a scale-dependent cooperativity, specifically relevant in determining the behavior of short chains, but which saturates rapidly to a length-independent value for longer DNA, to ensure a consistent physical description of DNA across multiple scales. Our approach provides a minimal, yet accurate, coarse-grained description of DNA at the subpersistence length scales of current experimental interest. PMID:23442868

  17. Coherent thermoelectric transport in single, double, and U-bend structures

    SciTech Connect

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2015-02-14

    Coherent, i.e., ballistic, thermoelectric transport in electron waveguide structures containing right-angle bends in single, double, and U-bend configurations is investigated. A theory based on Green's functions is used to derive the transmission function (and from that the transport coefficients) and allows for the inclusion of realistic models of spatially distributed imperfections. The results for the single and double-bend structures are presented in more detail than elsewhere in the literature. In the U-bend structure, sharp resonances in the stop-band region of the transmission function lead to large-magnitude peaks in the thermopower and consequently a large thermoelectric figure of merit (of order ten in some instances). These properties are still readily apparent even in the presence of moderate edge roughness or Anderson disorder.

  18. Form of developing bends in reactivated sperm flagella.

    PubMed

    Goldstein, S F

    1976-02-01

    1. Dark-field, multiple-exposure photographs of reactivated tritonated sea urchin sperm flagella swimming under a variety of conditions were analysed. 2. The length, radius and subtended angle of bends increased during bend development. The pattern of development was essentially the same under all conditions observed. 3. The angles of the two bends nearest the base tend to increase at the same rate, cancelling one another, so that the development of new bends causes little if any net microtubular sliding. 4. The direction of microtubular sliding within a bend is initially in the same direction as that within the preceding bend, and reverses as the bend develops. PMID:1270988

  19. The trashing of Big Green

    SciTech Connect

    Felten, E.

    1990-11-26

    The Big Green initiative on California's ballot lost by a margin of 2-to-1. Green measures lost in five other states, shocking ecology-minded groups. According to the postmortem by environmentalists, Big Green was a victim of poor timing and big spending by the opposition. Now its supporters plan to break up the bill and try to pass some provisions in the Legislature.

  20. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  1. Sharp bends of phononic crystal surface modes

    NASA Astrophysics Data System (ADS)

    Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent

    2015-12-01

    Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated.

  2. Tunable thermoelectric properties in bended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chang-Ning, Pan; Jun, He; Mao-Fa, Fang

    2016-07-01

    The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic–semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic–metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene. Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).

  3. A Novel Circular TE01-Mode Bend

    SciTech Connect

    Tantawi, S

    2004-04-19

    Future Linear Colliders and Accelerators require rf systems and components that are capable of handling hundreds of megawatts power levels at x-band frequencies and higher. Standard rf components that have been in use for a long time such as waveguide bends, directional couplers and hybrids, can not be used because of peak field considerations. Indeed, one has to reinvent most of these components taking into account the constraints imposed by ultra-high-power operation. Here, we present a new design for circular waveguides bends propagating the low-loss TE{sub 01} mode. The bend has smooth walls and low field levels. We present a simple synthesis process for designing such device. The general philosophy of this technique can be applied to other components as well. We describe the detailed design of the bend and compare our design with finite element simulations and experimental data. The bend has very low ohmic losses, and the TE{sub 01} mode is transmitted with virtually perfect mode purity.

  4. Proposal of improvement of debonding bending moment for pre-stressed CFRP bonded steel member

    NASA Astrophysics Data System (ADS)

    Shimizu, Masaru; Ishikawa, Toshiyuki; Hattori, Atsushi; Kawano, Hirotaka

    Recently, some research reports on the application of pre-stressed CFRP plate on steel members have been published. However, the shear and peeling stresses in adhesive at the end of CFRP plates are induced by releasing the pre-tension as well as bending moment. Therefore, in the strengthening of steel members with the pre-stressed CFRP plate, the CFRP plate tends to have debonding in the lower bending moment. In this study, to reduce the shear and peeling stresses in adhesive by releasing the pre-tension of CFRP plates, installation of non pre-stressed regions in CFRP plate was proposed. By installing the non pre-stressed regions in CFRP plate, dividing the locations of higher stresses in adhesive by releasing the pre-tension and bending moment were revealed. Additionally, the design equation of length of non pre-stressed regions was also presented.

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  7. Mechanism of bending electrostriction in thermoplastic polyurethane

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Wong, Y. W.; Shin, F. G.

    2004-07-01

    The mechanism of bending electrostriction in polyurethane films is discussed and elucidated through a numerical calculation. The simulations are carried out on a model in which charge carriers are assumed to be electrons injected from the cathode by the Schottky effect, and the positive charges are immobile. Under a dc field, our simulation results show that the electrons go out of the anode, leaving behind a large quantity of positive charge around the anode. As a result, the electric field near the anode eventually becomes much larger than that near the cathode. The asymmetrical electric field distribution leads to an asymmetrical stress distribution through the electrostriction effect and thus to bending of the polyurethane film under the application of a dc electric field. The results can also explain the gradual change in bending direction after reversing the polarity of the electric field.

  8. The dropped big toe.

    PubMed

    Satku, K; Wee, J T; Kumar, V P; Ong, B; Pho, R W

    1992-03-01

    Surgical procedures for exposure of the upper third of the fibula have been known to cause weakness of the long extensor of the big toe post-operatively. The authors present three representative cases of surgically induced dropped big toe. From cadaveric dissection, an anatomic basis was found for this phenomenon. The tibialis anterior and extensor digitorum longus muscles have their origin at the proximal end of the leg and receive their first motor innervation from a branch that arises from the common peroneal or deep peroneal nerve at about the level of the neck of the fibula. However, the extensor hallucis longus muscle originates in the middle one-third of the leg and the nerves innervating this muscle run a long course in close proximity to the fibula for up to ten centimeters from a level below the neck of the fibula before entering the muscle. Surgical intervention in the proximal one-third of the fibula just distal to the origin of the first motor branch to the tibialis anterior and extensor digitorum longus muscles carries a risk of injury to the nerves innervating the extensor hallucis longus. PMID:1519891

  9. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  10. Faunal communities and habitat characteristics of the Big Bend seagrass meadows, 2009-2010.

    EPA Science Inventory

    Seagrass meadows are important habitats that serve as nursery, feeding, and sheltering grounds for many marine species. In addition to the ecosystem functions and services they provide, seagrass habitats and associated fauna are commonly observed to have naturally high levels of...

  11. Spatial distribution and risk assessment of Johnsongrass (sorghum halepense) in Big Bend National Park, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used Landsat 7 ETM+ imagery to illustrate how remotely sensed data can model predicted Johnsongrass habitat. We used spectral reflectance values for three seasons of data across 5 years (fall 1999, summer and fall 2000, spring and fall 2001, spring 2002, and spring 2003) to capture Johnsongrass v...

  12. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  13. Robotic Arm Comprising Two Bending Segments

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.

    2010-01-01

    The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to

  14. Linear, non-linear and plastic bending deformation of cellulose nanocrystals.

    PubMed

    Chen, Pan; Ogawa, Yu; Nishiyama, Yoshiharu; Ismail, Ahmed E; Mazeau, Karim

    2016-07-20

    The deformation behaviour of cellulose nanocrystals under bending loads was investigated by using atomistic molecular dynamics (MD) simulations and finite element analysis (FEA), and compared with electron micrographs of ultrasonicated microfibrils. The linear elastic, non-linear elastic, and plastic deformation regions were observed with increasing bending displacements. In the linear elastic region, the deformation behaviour was highly anisotropic with respect to the bending direction. This was due to the difference in shear modulus, and the deformation could be approximated by standard continuum mechanics using the corresponding elastic tensors. Above the linear elastic region, the shear deformation became a dominant factor as the amplitude of shear strain drastically increased. Plastic deformation limit was observed at the bending angle above about 60°, independent of the bending direction. The morphology of the atomistic model of plastically deformed cellulose crystals showed a considerable similarity to the kinked cellulose microfibrils observed by transmission electron microscopy. Our observations highlight the importance of shear during deformation of cellulose crystals and provide an understanding of basic deformations occurring during the processing of cellulose materials. PMID:27388579

  15. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments.

    PubMed

    Berg-Johansen, Britta; Liebenberg, Ellen C; Li, Alfred; Macias, Brandon R; Hargens, Alan R; Lotz, Jeffrey C

    2016-01-01

    Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (μCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts. PMID:26285046

  16. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    NASA Astrophysics Data System (ADS)

    Takayasu, Makoto; Chiesa, Luisa

    2015-12-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour.

  17. Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends.

    PubMed

    Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu

    2016-02-01

    Antisymmetric and symmetric Lamb-type feature guided waves (FGW) have recently been shown to exist in small angle plate bends. This paper reports Semi-Analytical Finite Element (SAFE) method simulations revealing the existence of a new family of Shear Horizontal (SHB) type of FGW mode in 90° bends in plate structures. Mode shapes and velocity dispersion curves are extracted, demonstrating the SH-like nature of a bend-confined mode identified in studies of power flow across the bend. The SHB mode is shown to have reduced attenuation in the higher frequency range, making it an ideal choice for high-resolution inspection of such bends. Further modal studies examine the physical basis for mode confinement, and argue that this is strongly related to FGW phenomena reported earlier, and also linked to the curvature at the bend region. Wedge acoustic waves discussed widely in literature are shown as arising from surface-limiting of the SHB mode at higher frequencies. The results are validated by experiments and supported by 3D Finite Element (FE) simulations. PMID:26409768

  18. Whole Language Using Big Books.

    ERIC Educational Resources Information Center

    Whyte, Sarah

    Designed as thematic units around Wright Company Big Books, the lessons in this guide demonstrate ways that Big Books can be used in a whole language first grade program. Each lesson indicates skill focus, needed materials, procedures, and additional thoughts or suggestions about the lesson. Units consist of: "Bedtime" (five lessons); "Monsters…

  19. Think Big, Bigger ... and Smaller

    ERIC Educational Resources Information Center

    Nisbett, Richard E.

    2010-01-01

    One important principle of social psychology, writes Nisbett, is that some big-seeming interventions have little or no effect. This article discusses a number of cases from the field of education that confirm this principle. For example, Head Start seems like a big intervention, but research has indicated that its effects on academic achievement…

  20. The International Big History Association

    ERIC Educational Resources Information Center

    Duffy, Michael; Duffy, D'Neil

    2013-01-01

    IBHA, the International Big History Association, was organized in 2010 and "promotes the unified, interdisciplinary study and teaching of history of the Cosmos, Earth, Life, and Humanity." This is the vision that Montessori embraced long before the discoveries of modern science fleshed out the story of the evolving universe. "Big History" is a…

  1. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  2. Big Sisters: An Experimental Evaluation.

    ERIC Educational Resources Information Center

    Seidl, Fredrick W.

    1982-01-01

    Assessed the effects of participation in a Big Sisters' Program. The first part consisted of interviews (N=20) with pairs of Big Sisters-Little Sisters. The second part evaluated program effectiveness experimentally. Findings indicated positive relationships between pairs, and improved behavior of experimental girls versus controls. (RC)

  3. A superconducting bending magnet system for a compact synchrotron light source

    SciTech Connect

    Green, M.A.; Garren, A.A.; Leung, E.M.; Madura, D.D.; Cline, D.B.; Kolonko, J.J.; Schachinger, L.C.

    1995-07-01

    High intensity, high energy X-rays for use in protein crystallography, nano-machining and medical applications, such as non invasive coronary angiography, can be produced by a 1.2 to 1.5 GeV electron storage ring compact light source with 6 to 8 tesla superconducting bending magnets. Because the bending magnets are to be superconducting, the storage ring energy can be over factor of two lower than a conventional storage ring that delivers same photon energy. The ring, which has superconducting bending magnets, is smaller in circumference and has the advantage of having fewer particles in the ring for a given x ray source intensity. The proposed storage ring is a separated function accelerator ring with six superconducting bending magnet units. Conventional quadruples and correction elements would be located between the bending magnets. Because the synchrotron radiation is generated in the bend, the superconducting bending magnets must have a warm vacuum chamber for the electron beam. Variations of a superferric magnet design have been studied for this application. This report presents a superferric H magnet design that can produce good quality magnetic field in a region that is 50 mm high by 100 mm wide. This modified superferric H magnet design has saturated iron poles but the magnetic flux is returned from one pole to the other through an unsaturated iron return path. The dipole magnet required for a compact storage ring must be physically short (380 mm long), and the field must fall off rapidly at the ends of the magnet. This report describes a preliminary design for a pair of 6.894 tesia, thirty degree bending magnets in a common vacuum vessel for use in a 1.5 GeV compact storage ring light source.

  4. The Rise of Big Data in Neurorehabilitation.

    PubMed

    Faroqi-Shah, Yasmeen

    2016-02-01

    In some fields, Big Data has been instrumental in analyzing, predicting, and influencing human behavior. However, Big Data approaches have so far been less central in speech-language pathology. This article introduces the concept of Big Data and provides examples of Big Data initiatives pertaining to adult neurorehabilitation. It also discusses the potential theoretical and clinical contributions that Big Data can make. The article also recognizes some impediments in building and using Big Data for scientific and clinical inquiry. PMID:26882360

  5. Bending of skew plates of variable rigidity.

    NASA Technical Reports Server (NTRS)

    Willems, N.; Mahmood, S. S.

    1972-01-01

    Description of an analytical procedure for studying the bending of thin skew plates of a thickness varying in one direction, under arbitrary lateral loading. The analysis was programmed for execution on an electronic computer for various conditions and types of loading. The results obtained suggest that the proposed analytical procedure is more accurate than the finite-difference technique used in earlier investigations.

  6. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  7. Probing the elastic limit of DNA bending

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA. PMID:25122748

  8. Interdisciplinary Invitations: Exploring Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; Whitin, Phyllis; Whitin, David

    2012-01-01

    Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…

  9. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  10. The Hungarian-Americans of South Bend.

    ERIC Educational Resources Information Center

    Scherer, Darlene; Rasmussen, Karen, Ed.

    Developed as part of an ethnic heritage studies program, this historical narrative of Hungarian Americans in South Bend, Indiana, is intended to increase cultural awareness and appreciation. The document is divided into three sections. Section I offers a brief history of Hungary and describes the background of the three emigrant groups; lower…