Science.gov

Sample records for big rock point reactor

  1. 78 FR 58570 - Environmental Assessment; Entergy Nuclear Operations, Inc., Big Rock Point

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ...) requirements in Sec. Sec. 50.47 and 50.54, and Aapendix E of 10 CFR part 50 (76 FR 72560; November 23, 2011... COMMISSION Environmental Assessment; Entergy Nuclear Operations, Inc., Big Rock Point AGENCY: Nuclear... Nuclear Operations, Inc. (ENO) (the applicant or the licensee), for the Big Rock Point (BRP)...

  2. 78 FR 61401 - Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing an exemption in response to a request submitted by Entergy Nuclear Operations, Inc. (ENO) on June 20, 2012, for the Big Rock Point (BRP) Independent Spent Fuel Storage Installation...

  3. Big Bang Day : Physics Rocks

    ScienceCinema

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  4. Big Bang Day : Physics Rocks

    SciTech Connect

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  5. Morning Water on the Big Round Rock in the Sky

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.

    2015-12-01

    There is a little bit of water on the Big Round Rock in the sky. The Rock turns slowly and so it has morning and day and night. The little bit of water sticks to the rocks on the Rock at night, when it is very cold and the water makes ice. When the Sun puts light on it, the water gets hot and goes up in the air. Really, the water is the air. The wind moves the water back the way it came, so the water goes to where the ground is cold and then it sticks to the very cold ground again. Then, the turning Rock slowly carries it back to the morning and it goes over and over like that. This keeps all of the Big Rock's water close to the morning, even though the Big Rock turns all the time. A box on the ground on the Big Rock that is three feet long on each side could catch enough water each month for one drink of water, but a box that is way big could catch a lot more water. We know that the water is there because we can find very little tiny rocks that hit the tiny water bits. Where there is more water, there are not so many of the little tiny rocks and where there is less water, there are more of the little tiny rocks.

  6. Turning points in reactor design

    SciTech Connect

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  7. Ripples in Rocks Point to Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the rock nicknamed 'Last Chance,' which lies within the outcrop near the rover's landing site at Meridiani Planum, Mars. The image provides evidence for a geologic feature known as ripple cross-stratification. At the base of the rock, layers can be seen dipping downward to the right. The bedding that contains these dipping layers is only one to two centimeters (0.4 to 0.8 inches) thick. In the upper right corner of the rock, layers also dip to the right, but exhibit a weak 'concave-up' geometry. These two features -- the thin, cross-stratified bedding combined with the possible concave geometry -- suggest small ripples with sinuous crest lines. Although wind can produce ripples, they rarely have sinuous crest lines and never form steep, dipping layers at this small scale. The most probable explanation for these ripples is that they were formed in the presence of moving water.

    Crossbedding Evidence for Underwater Origin Interpretations of cross-lamination patterns presented as clues to this martian rock's origin under flowing water are marked on images taken by the panoramic camera and microscopic imager on NASA's Opportunity.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The red arrows (Figure 1) point to features suggesting cross-lamination within the rock called 'Last Chance' taken at a distance of 4.5 meters (15 feet) during Opportunity's 17th sol (February 10, 2004). The inferred sets of fine layers at angles to each other (cross-laminae) are up to 1.4 centimeters (half an inch) thick. For scale, the distance between two vertical cracks in the rock is about 7 centimeters (2.8 inches). The feature indicated by the middle red arrow suggests a pattern called trough cross-lamination, likely produced when flowing water shaped sinuous ripples in underwater sediment and pushed the ripples to migrate

  8. Floods on Big Rock, Collins, and Snake Creeks and Capps, Loyd, and Snell Branches in the vicinity of Lewisburg, Tennessee

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the extent and severity of the flood potential along selected reaches of Big Rock, Collins, and Snake Creeks and Capps, Loyd, and Snell Branches in the vicinity of Lewisburg, Tennessee.

  9. Sideloading - Ingestion of Large Point Clouds Into the Apache Spark Big Data Engine

    NASA Astrophysics Data System (ADS)

    Boehm, J.; Liu, K.; Alis, C.

    2016-06-01

    In the geospatial domain we have now reached the point where data volumes we handle have clearly grown beyond the capacity of most desktop computers. This is particularly true in the area of point cloud processing. It is therefore naturally lucrative to explore established big data frameworks for big geospatial data. The very first hurdle is the import of geospatial data into big data frameworks, commonly referred to as data ingestion. Geospatial data is typically encoded in specialised binary file formats, which are not naturally supported by the existing big data frameworks. Instead such file formats are supported by software libraries that are restricted to single CPU execution. We present an approach that allows the use of existing point cloud file format libraries on the Apache Spark big data framework. We demonstrate the ingestion of large volumes of point cloud data into a compute cluster. The approach uses a map function to distribute the data ingestion across the nodes of a cluster. We test the capabilities of the proposed method to load billions of points into a commodity hardware compute cluster and we discuss the implications on scalability and performance. The performance is benchmarked against an existing native Apache Spark data import implementation.

  10. Rock falls from Glacier Point above Camp Curry, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.

    1999-01-01

    A series of rock falls from the north face of Glacier Point above Camp Curry, Yosemite National Park, California, have caused reexamination of the rock-fall hazard because beginning in June, 1999 a system of cracks propagated through a nearby rock mass outlining a future potential rock fall. If the estimated volume of the potential rock fall fails as a single piece, there could be a risk from rock-fall impact and airborne rock debris to cabins in Camp Curry. The role of joint plane orientation and groundwater pressure in the fractured rock mass are discussed in light of the pattern of developing cracks and potential modes of failure.

  11. Rock fall dynamics and deposition: an integrated analysis of the 2009 Ahwiyah Point rock fall, Yosemite National Park, USA.

    USGS Publications Warehouse

    Valerie L. Zimmer; Collins, Brian; Greg M. Stock; Nicholas Sitar

    2012-01-01

    We analyzed a combination of airborne and terrestrial LiDAR, high-resolution photography, seismic, and acoustic data in order to gain insights into the initiation, dynamics, and talus deposition of a complex rock fall. A large (46 700 m3) rock fall originated from near Ahwiyah Point in eastern Yosemite Valley and fell a total of 730 m to the valley floor on 28 March 2009. Analyses of remote sensing, seismic, and acoustic data were integrated to reconstruct the rock fall, which consisted of (1) the triggering of a 25 400 m3 rock block in an area of intersecting and sometimes highly weathered joint planes, (2) the sliding and subsequent ballistic trajectory of the block from a steeply dipping ledge, (3) dislodging of additional rock from the cliff surface from beneath the rock fall source area, (4) a mid-cliff ledge impact that detached a volume of rock nearly equivalent in volume to the initial block, (5) sliding of the deteriorating rock mass down the remainder of the cliff, and (6) final impact at the base of the cliff that remobilized the existing talus downward and outward and produced an airblast that knocked down hundreds of trees. The depositional geomorphology indicates that the porosity of the fresh talus is significantly lower than that expected for typical blocky talus slopes, likely because the rock debris from this event was pulverized into smaller, more poorly sorted fragments and densified via dynamic compaction when compared to less energetic, fragmental-type rock falls. These results suggest that accumulation of individual rock-fall boulders tends to steepen talus slopes, whereas large, energetic rock falls tend to flatten them. Detachment and impact signals were recorded by seismic and acoustic instruments and highlight the potential use of this type of instrumentation for generalized rock fall monitoring, while LiDAR and photography data were able to quantify the cliff geometry, rock fall volume, source and impact locations, and

  12. Parallel Processing of Big Point Clouds Using Z-Order Partitioning

    NASA Astrophysics Data System (ADS)

    Alis, C.; Boehm, J.; Liu, K.

    2016-06-01

    As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112) is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest neighbour algorithm

  13. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72... Islands. (b) A north-south line drawn through Steinhatchee River Light 21. (c) A line drawn...

  14. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72... Islands. (b) A north-south line drawn through Steinhatchee River Light 21. (c) A line drawn...

  15. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72... Islands. (b) A north-south line drawn through Steinhatchee River Light 21. (c) A line drawn...

  16. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72... Islands. (b) A north-south line drawn through Steinhatchee River Light 21. (c) A line drawn...

  17. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72... Islands. (b) A north-south line drawn through Steinhatchee River Light 21. (c) A line drawn...

  18. Rocks in a Box: A Three-Point Problem.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1981-01-01

    Describes a simulation drilling core activity involving the use of a physical model from which students gather data and solve a three-point problem to determine the strike and dip of a buried stratum. Includes descriptions of model making, data plots, and additional problems involving strike and dip. (DS)

  19. Downstream-migrating fluvial point bars in the rock record

    NASA Astrophysics Data System (ADS)

    Ghinassi, Massimiliano; Ielpi, Alessandro; Aldinucci, Mauro; Fustic, Milovan

    2016-04-01

    Classical models developed for ancient fluvial point bars are based on the assumption that meander bends invariably increase their radius as meander-bend apices migrate in a direction transverse to the channel-belt axis (i.e., meander bend expansion). However, many modern meandering rivers are also characterized by down-valley migration of the bend apex, a mechanism that takes place without a significant change in meander radius and wavelength. Downstream-migrating fluvial point bars (DMFPB) are the dominant architectural element of these types of meander belts. Yet they are poorly known from ancient fluvial-channel belts, since their disambiguation from expansional point bars often requires fully-3D perspectives. This study aims to review DMFPB deposits spanning in age from Devonian to Holocene, and to discuss their main architectural and sedimentological features from published outcrop, borehole and 3D-seismic datasets. Fluvial successions hosting DMFPB mainly accumulated in low accommodation conditions, where channel belts were affected by different degrees of morphological (e.g., valleys) or tectonic (e.g., axial drainage of shortening basins) confinement. In confined settings, bends migrate downstream along the erosion-resistant valley flanks and little or no floodplain deposits are preserved. Progressive floor aggradation (e.g., valley filling) allow meander belts with DMFPB to decrease their degree of confinement. In less confined settings, meander bends migrate downstream mainly after impinging against older, erosion-resistant channel fill mud. By contrast, tectonic confinement is commonly associated with uplifted alluvial plains that prevented meander-bend expansion, in turn triggering downstream translation. At the scale of individual point bars, translational morphodynamics promote the preservation of downstream-bar deposits, whereas the coarser-grained upstream and central beds are less frequently preserved. However, enhanced preservation of upstream

  20. Seafloor Rocks and Sediments of the Continental Shelf From Monterey Bay to Point Sur, California

    USGS Publications Warehouse

    Eittreim, Stephen L.; Anima, Roberto J.; Stevenson, Andrew J.; Wong, Florence L.

    2000-01-01

    Introduction Acoustic swath mapping of the greater Monterey Bay area continental shelf from Point Ano Nuevo to Point Sur reveals complex patterns of rock outcrops on the shelf, and coarse sand bodies that occur in distinct depressions on the inner and mid-shelves. This publication portrays the seafloor components in a 36- by 48-inch map sheet at 1:100,000 scale.

  1. End point control of an actinide precipitation reactor

    SciTech Connect

    Muske, K.R.; Palmer, M.J.

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  2. Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Kork, John O.

    1978-01-01

    The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

  3. Seismic and Acoustic Records of the March 2009 Ahwiyah Point Rock Fall, Yosemite Valley, California

    NASA Astrophysics Data System (ADS)

    Zimmer, V.; Stock, G. M.; Sitar, N.

    2009-12-01

    During the winter of 2008-2009, a seismic network was installed in Yosemite Valley for the purpose of rock fall monitoring. The network consisted of several 8 Hz geophones, accelerometers, and infrasound acoustic sensors recorded at sampling rates of 500 and 1000 samples-per-second. On March 28, 2009, at 5:26am, a very large rock fall occurred at Ahwiyah Point, near Half Dome. This rock fall originated near the summit of Ahwiyah Point and fell approximately 600 m, sliding down the steeply (70 degree) dipping cliff face and striking ledges along the way. Rock debris knocked down hundreds of trees and buried 300 meters of the southern portion of the Mirror Lake trail. Detachment and impact seismic signals were recorded by the local seismic network at a distance of 4.4 to 6.8 kilometers, as well as by regional seismic stations up to 400 kilometers away, registering as a local magnitude 2.4 earthquake. The volume of the rock fall is estimated to be ~43,000 cubic meters, the largest to occur in Yosemite Valley in 22 years, a fact reflected in the magnitude of recorded shaking. The detachment portion of the signal represents several weak impacts of the falling rock mass which can be correlated across different stations. The impact portion of the signal contains distinct P and Rayleigh wave phases. The first infrasound signal arrives later than expected to correlate with the first detachment seismic signal. The main acoustic signal correlates well with the main impact. In addition, there is a lower (0.5 Hz) signal that arrives later than the main impact and may be correlated with a small airblast that knocked over trees outside of the debris field. Data collected from this rock fall event provides an important opportunity to evaluate the ability of seismic and acoustic sensors to detect rock falls, learn about the dynamics of rock falls, and explore the mechanisms by which seismic waves are generated during rock fall events and travel locally in mountainous terrain.

  4. Reactor physics and safety aspects of various design options of a Russian light water reactor with rock-like fuels

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. V.; Komissarov, O. V.; Kozmenkov, Ya. K.; Matveev, Yu. V.; Orekhov, Yu. I.; Pivovarov, V. A.; Sharapov, V. N.

    2003-06-01

    This paper presents results of analytical studies on weapons grade plutonium incineration in VVER (640) medium size light water reactors using a special composition of rock-like fuel (ROX-fuel) to assure spent fuel long-term storage without its reprocessing. The main goal is to achieve high degree of plutonium incineration in once-through cycle. In this paper we considered two fuel compositions. In both compositions weapons grade plutonium is used as fissile material. Spinel (MgAl 2O 4) is used as the 'preserving' material assuring safe storage of the spent fuel. Besides an inert matrix, the option of rock-like fuel with thorium dioxide was studied. One of principal problems in the realization of the proposed approach is the substantial change of properties of the light water reactor core when passing to the use of the ROX-fuel, in particular: (i) due to the absence of 238U the Doppler effect playing a crucial role in reactor's self-regulation and limiting the consequences of reactivity accidents, decreases significantly, (ii) no fuel breeding on one hand, and the quest to attain the maximum plutonium burnup on the other hand, would result in a drastical change of the fuel assembly power during the lifetime and, as a consequence, the rise in irregularity of the power density of fuel assemblies, (iii) both the control rods worth and dissolved boron worth decrease in view of neutron spectrum hardening brought on by the larger absorption cross-section of plutonium as compared to uranium, (iv) βeff is markedly reduced. All these distinctive features are potentially detrimental to the reactor nuclear safety. The principal objective of this work is that to identify a variant of the fuel composition and the reactor layout, which would permit neutralize the negative effect of the above-mentioned distinctive features.

  5. PBF Reactor Building (PER620). Construction view shows native lava rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Construction view shows native lava rock surrounding basement excavation and general complexity of planning required to build the PBF. A three-inch low-pressure air line protrudes from wall just below left center. Date: February 21, 1967. Photographer: Larry Page. INEEL negative no. 67-1125 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  7. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  8. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  9. Design of a telescope pointing and tracking subsystem for the Big Bear Solar Observatory New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Varsik, J. R.; Yang, G.

    2006-06-01

    The New Solar Telescope at Big Bear Solar Observatory will use a distributed system to control the telescope, dome, adaptive optics, thermal environment and instrumentation. The Telescope Pointing and Tracking Subsystem has the tasks of controlling the telescope dome and acting as a wrapper for the telescope mount software (provided by the mount manufacturer) and adding the specific control features needed for a large solar telescope. These include features for offset pointing to specific regions on the solar disk, safety interlock systems for the primary mirror, and provision for the alignment of the relatively small dome opening with the telescope optical axis.

  10. Kinks in subducted slabs: Petrological evidence points to additional hindrance to the exhumation of UHP rocks

    NASA Astrophysics Data System (ADS)

    John, T.; Klemd, R.; Scherer, E. E.; Rondenay, S.; Gao, J.

    2012-12-01

    Sudden changes in the dip of subducted oceanic plates have been resolved by seismic imaging [1, 2]. Such kinking often coincides with the seismic disappearance of the low-velocity subducted oceanic crust, i.e., at a depth where eclogitization (dehydration) of the upper oceanic crust is nearly complete and the oceanic crust becomes almost seismically indistinguishable from mantle peridotite. We present petrological evidence for this phenomenon derived from oceanic blueschist- and eclogite-facies rocks from the Chinese Tianshan. The peak-metamorphic conditions of the samples range between 330 and 580°C at 1.5 to 2.3 GPa. Such a wide range of peak conditions for intercalated high- and ultrahigh-pressure rocks has also been reported from other Tianshan localities. These observations suggest that the rocks were derived from different depths within the subduction zone and later juxtaposed during exhumation within the subduction channel. Multi-point Lu-Hf isochrons from four high-pressure rocks yield consistent garnet-growth ages of around ~315 Ma, confirming that the eclogite-facies metamorphism of the Tianshan high-pressure rocks resulted from a single subduction event in the Late Carboniferous. These ages, in conjunction with the ~311 Ma cluster of 40Ar-39Ar and Rb-Sr white mica ages from the same localities imply rapid exhumation. Previously reported peak P-T estimates from UHP metasediments and eclogites all lie on a lower geothermal gradient—and thus on a colder P-T path at the slab-wedge interface—than that defined by the HP eclogites and meta-volcaniclastic rocks studied here. This suggests that the slab-subduction angle steepened sharply at approximately 90 km depth, just between the depths at which the HP and UHP rocks equilibrated. The increase in subduction angle may result from a greater slab pull resulting from eclogitization densification. An additional factor may be an ephemeral weakening of the slab as it undergoes eclogitization reactions [3, 4]. We

  11. Water-quality, phytoplankton, and trophic-status characteristics of Big Base and Little Base lakes, Little Rock Air Force Base, Arkansas, 2003-2004

    USGS Publications Warehouse

    Justus, B.G.

    2005-01-01

    Little Rock Air Force Base is the largest C-130 base in the Air Force and is the only C-130 training base in the Department of Defense. Little Rock Air Force Base is located in central Arkansas near the eastern edge of the Ouachita Mountains, near the Mississippi Alluvial Plain, and within the Arkansas Valley Ecoregion. Habitats include upland pine forests, upland deciduous forest, broad-leaved deciduous swamps, and two small freshwater lakes?Big Base Lake and Little Base Lake. Big Base and Little Base Lakes are used primarily for recreational fishing by base personnel and the civilian public. Under normal (rainfall) conditions, Big Base Lake has a surface area of approximately 39 acres while surface area of Little Base Lake is approximately 1 acre. Little Rock Air Force Base personnel are responsible for managing the fishery in these two lakes and since 1999 have started a nutrient enhancement program that involves sporadically adding fertilizer to Big Base Lake. As a means of determining the relations between water quality and primary production, Little Rock Air Force Base personnel have a need for biological (phytoplankton density), chemical (dissolved-oxygen and nutrient concentrations), and physical (water temperature and light transparency) data. To address these monitoring needs, the U.S. Geological Survey in cooperation with Little Rock Air Force Base, conducted a study to collect and analyze biological, chemical, and physical data. The U.S. Geological Survey sampled water quality in Big Base Lake and Little Base Lake on nine occasions from July 2003 through June 2004. Because of the difference in size, two sampling sites were established on Big Base Lake, while only one site was established on Little Base Lake. Lake profile data for Big Base Lake indicate that low dissolved- oxygen concentrations in the hypolimnion probably constrain most fish species to the upper 5-6 feet of depth during the summer stratification period. Dissolved-oxygen concentrations in

  12. Balancing on the Edge: An Approach to Leadership and Resiliency that Combines Rock Climbing with Four Key Touch Points

    ERIC Educational Resources Information Center

    Winkler, Harold E.

    2005-01-01

    In this article, the author compares leadership and resiliency with rock climbing. It describes the author's personal experience on a rock climbing adventure with his family and how it required application of similar elements as that of leadership and resiliency. The article contains the following sections: (1) Being Resilient; (2) Points of…

  13. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  14. Supergene destruction of a hydrothermal replacement alunite deposit at Big Rock Candy Mountain, Utah: Mineralogy, spectroscopic remote sensing, stable-isotope, and argon-age evidences

    USGS Publications Warehouse

    Cunningham, C.G.; Rye, R.O.; Rockwell, B.W.; Kunk, M.J.; Councell, T.B.

    2005-01-01

    Big Rock Candy Mountain is a prominent center of variegated altered volcanic rocks in west-central Utah. It consists of the eroded remnants of a hypogene alunite deposit that, at ???21 Ma, replaced intermediate-composition lava flows. The alunite formed in steam-heated conditions above the upwelling limb of a convection cell that was one of at least six spaced at 3- to 4-km intervals around the margin of a monzonite stock. Big Rock Candy Mountain is horizontally zoned outward from an alunite core to respective kaolinite, dickite, and propylite envelopes. The altered rocks are also vertically zoned from a lower pyrite-propylite assemblage upward through assemblages successively dominated by hypogene alunite, jarosite, and hematite, to a flooded silica cap. This hydrothermal assemblage is undergoing natural destruction in a steep canyon downcut by the Sevier River in Marysvale Canyon. Integrated geological, mineralogical, spectroscopic remote sensing using AVIRIS data, Ar radiometric, and stable isotopic studies trace the hypogene origin and supergene destruction of the deposit and permit distinction of primary (hydrothermal) and secondary (weathering) processes. This destruction has led to the formation of widespread supergene gypsum in cross-cutting fractures and as surficial crusts, and to natrojarosite, that gives the mountain its buff coloration along ridges facing the canyon. A small spring, Lemonade Spring, with a pH of 2.6 and containing Ca, Mg, Si, Al, Fe, Mn, Cl, and SO4, also occurs near the bottom of the canyon. The 40Ar/39 Ar age (21.32??0.07 Ma) of the alunite is similar to that for other replacement alunites at Marysvale. However, the age spectrum contains evidence of a 6.6-Ma thermal event that can be related to the tectonic activity responsible for the uplift that led to the downcutting of Big Rock Candy Mountain by the Sevier River. This ???6.6 Ma event also is present in the age spectrum of supergene natrojarosite forming today, and probably dates

  15. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A., Jr.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  16. The TITAN Reversed-Field Pinch Reactor: Design-point determination and parametric studies

    SciTech Connect

    Miller, R.L.

    1987-01-01

    The multi-institutional TITAN study has examined the physics, technology, safety, and economics issues associated with the operation of a Reversed-Field Pinch (RFP) magnetic fusion reactor at high power density. A comprehensive system and trade study have been conducted as an integral and ongoing part of the reactor assessment. Attractive design points emerging from these parametric studies are subjected to more detailed analysis and design integration, the results of which are used to refine the parametric systems model. The design points and tradeoffs for two TITAN/RFP reactor embodiments are discussed. 14 refs.

  17. Monte Carlo verification of point kinetics for safety analysis of nuclear reactors

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.

    1995-06-01

    Monte Carlo neutron transport methods can be used to verify the applicability of point kinetics for safety analysis of nuclear reactors. KENO-NR was used to obtain the transfer function of the Advanced Neutron Source reactor and the time delay between the core power production and the external detectors, a parameter of interest to the safety systems design. The good agreement between the Monte Carlo generated transfer function and the point kinetics transfer function validates that the uncommon ANS geometry does not preclude the use of point kinetics in the frequency range that was investigated. Various features of the power spectral densities also demonstrated the applicability of point kinetics. The time delay was obtained from the cross-power spectral density (CPSD) and is {approximately}15 ms. These analyses show that frequency analysis can be used experimentally to investigate the validity of the use of point kinetics models in critical experiments or zero power testing of reactors.

  18. Innovations and enhancements in neutronic analysis of the Big-10 university research and training reactors based on the AGENT code system

    SciTech Connect

    Hursin, M.; Shanjie, X.; Burns, A.; Hopkins, J.; Satvat, N.; Gert, G.; Tsoukalas, L. H.; Jevremovic, T.

    2006-07-01

    Introduction. This paper summarizes salient aspects of the 'virtual' reactor system developed at Purdue Univ. emphasizing efficient neutronic modeling through AGENT (Arbitrary Geometry Neutron Transport) a deterministic neutron transport code. DOE's Big-10 Innovations in Nuclear Infrastructure and Education (INIE) Consortium was launched in 2002 to enhance scholarship activities pertaining to university research and training reactors (URTRs). Existing and next generation URTRs are powerful campus tools for nuclear engineering as well as a number of disciplines that include, but are not limited to, medicine, biology, material science, and food science. Advancing new computational environments for the analysis and configuration of URTRs is an important Big-10 INIE aim. Specifically, Big-10 INIE has pursued development of a 'virtual' reactor, an advanced computational environment to serve as a platform on which to build operations, utilization (research and education), and systemic analysis of URTRs physics. The 'virtual' reactor computational system will integrate computational tools addressing the URTR core and near core physics (transport, dynamics, fuel management and fuel configuration); thermal-hydraulics; beam line, in-core and near-core experiments; instrumentation and controls; confinement/containment and security issues. Such integrated computational environment does not currently exist. The 'virtual' reactor is designed to allow researchers and educators to configure and analyze their systems to optimize experiments, fuel locations for flux shaping, as well as detector selection and configuration. (authors)

  19. Thermal runaway limit of tubular reactors, defined at the inflection point of the temperature profile

    SciTech Connect

    Bashir, S.; Chovan, T.; Masri, B.J.; Mukherjee, A.; Pant, A.; Sen, S.; Vijayaragharvan, P. . Dept. of Chemical Engineering); Berty, J.M. )

    1992-09-01

    The predicted maximum temperature difference between reacting fluid and wall to avoid thermal runaways can be exceeded in production reactors. This has been known for some time but the explanation has been lacking. The reason for this deviation was found in that the traditional approximation of the sensitivity criterion by [Delta]T [le] RT[sup 2]/E is correct for a limiting value at the inflection point but not at the hot spot, where it can be much higher. The exact expression for the limiting value at the inflection point is the total temperature derivative of the rate, and this is proven in this paper mathematically. The total temperature derivative of a rate can be measured in a few, well-designed recycle reactor experiments. Results were checked by computer simulation of tubular reactors. Matching to those predicted from CSTR or recycle reactor (RR) measurements was excellent. The proposed interpretation explains why previously predicted limits could be exceeded in practice.

  20. Stratigraphy of the Cretaceous-Tertiary and Paleocene-Eocene transition rocks of Big Bend National Park, Texas

    SciTech Connect

    Schiebout, J.A.; Rigsby, C.A.; Rapp, S.D.; Hartnell, J.A.; Standhardt, B.R.

    1987-05-01

    The marine to terrestrial transition in the Big Bend area falls within the Late Cretaceous Aguja Formation, and, in light of new biostratigraphic data resulting from screening for small vertebrates and magneto-stratigraphic data, the Cretaceous-Tertiary boundary falls within the Javelina Formation, which includes the first red banding produced by oxidation of overbank fluvial mudstones. No record of a catastrophic event is apparent in the Javelina Formation. The Javelina, Black Peaks, and Hannold Hill Formations and the Big Yellow Sandstone Member of the Canoe Formation record increasing uplift in the region, culminating in uplift and volcanism in the Chisos mountains, the source for upper Canoe Formation sediments. The sequence of changes produced by this trend and by unroofing in source highlands to the west is sufficiently gradual that the Javelina through Black Peaks units are not lithostratigraphically distinct at the formation level and therefore are reduced to member status, and placed, along with the Big Yellow Sandstone Member, within the redefined Tornillo Formation. The Aguja Formation and the Tornillo Formation are united in the Chilicotal Group (new), which spans the deposits from the first significant influxes of terrestrial sediments, formed as the Cretaceous sea retreated, up to the beginning of local volcanism in the Chisos. The volcanic strata of the upper Canoe Formation are reassigned to the Chisos Formation. 46 references.

  1. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect

    Qualls, A. L.; Betzler, Benjamin R.; Brown, Nicholas R.; Carbajo, Juan; Greenwood, Michael Scott; Hale, Richard Edward; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry W.

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  2. Semi-automatic characterization of fractured rock masses using 3D point clouds: discontinuity orientation, spacing and SMR geomechanical classification

    NASA Astrophysics Data System (ADS)

    Riquelme, Adrian; Tomas, Roberto; Abellan, Antonio; Cano, Miguel; Jaboyedoff, Michel

    2015-04-01

    Investigation of fractured rock masses for different geological applications (e.g. fractured reservoir exploitation, rock slope instability, rock engineering, etc.) requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in 3D data acquisition using photogrammetric and/or LiDAR techniques currently allow a quick and an accurate characterization of rock mass discontinuities. This contribution presents a methodology for: (a) use of 3D point clouds for the identification and analysis of planar surfaces outcropping in a rocky slope; (b) calculation of the spacing between different discontinuity sets; (c) semi-automatic calculation of the parameters that play a capital role in the Slope Mass Rating geomechanical classification. As for the part a) (discontinuity orientation), our proposal identifies and defines the algebraic equations of the different discontinuity sets of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test. Additionally, the procedure finds principal orientations by Kernel Density Estimation and identifies clusters (Riquelme et al., 2014). As a result of this analysis, each point is classified with a discontinuity set and with an outcrop plane (cluster). Regarding the part b) (discontinuity spacing) our proposal utilises the previously classified point cloud to investigate how different outcropping planes are linked in space. Discontinuity spacing is calculated for each pair of linked clusters within the same discontinuity set, and then spacing values are analysed calculating their statistic values. Finally, as for the part c) the previous results are used to calculate parameters F_1, F2 and F3 of the Slope Mass Rating geomechanical classification. This analysis is carried out for each discontinuity set using their respective orientation extracted in part a). The open access tool SMRTool (Riquelme et al., 2014) is then used to calculate F1 to F3 correction

  3. Physics and thermal hydraulics design of a small water cooled reactor fuelled with plutonium in rock-like oxide (ROX) form

    SciTech Connect

    Gaultier, M.; Danguy, G.; Perry, A.; Williams, A.; Brushwood, J.; Thompson, A.; Beeley, P. A.

    2006-07-01

    This paper describes the Physics and Thermal Hydraulics areas of a design study for a small water-cooled reactor. The aim was to design a Pressurised Water Reactor (PWR) of maximum power 80 MWt, using a dispersed layout, capable of maximising primary natural circulation flow. The reactor fuel consists of plutonium contained in granular form within a Rock-like Oxide (ROX) pellet structure. (authors)

  4. Petrofabrics of High-Pressure Rocks Exhumed at the Slab-Mantle Interface from the 'Point of No Return'

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Teyssier, C. P.; Seaton, N. C.; Fornash, K.

    2014-12-01

    The highest pressure typically recorded by metamorphic rocks exhumed from oceanic subduction zones is ~2.5±1 GPa, corresponding to the maximum decoupling depth (MDD) (80±10 km) identified in active subduction zones; beyond the MDD (the 'point of no return') exhumation is unlikely. One of the few places where rocks returned from the MDD largely unaltered is Sivrihisar, Turkey: a structurally coherent terrane of lawsonite eclogite and blueschist facies rocks in which assemblages and fabrics record P-T-fluid-deformation conditions during exhumation from ~80 to 45 km. Crystallographic fabrics and other structural features of high-pressure metasedimentary and metabasaltic rocks record transitions during exhumation. In quartzite, heterogeneous microstructures and crystallographic fabrics record deformation and dynamic recrystallization from ~2.6 GPa to ~1.5 GPa, as expressed by transition from prism c-axis patterns through progressive overprinting and activation of rhomb and basal slip. Omphacite, glaucophane, phengite, and lawsonite in quartzite remained stable during deformation. In marble, CaCO3 deformed in dislocation creep as aragonite, producing strong crystallographic fabrics. This fabric persisted through formation of calcite and destruction of the shape-preferred orientation, indicating the strength of aragonite marble. Omphacite in metabasalt and quartzite displays an L-type crystallographic fabric. Lawsonite kinematic vorticity data and other fabrics in metabasalt are consistent with exhumation involving increasing amounts of pure shear relative to simple shear and indicate strain localization and simple shear near the fault contact between the high-pressure unit and a serpentinite body. This large coaxial component multiplied the exhuming power of the subduction channel and forced rocks to return from the MDD.

  5. Toward a Learning Health-care System - Knowledge Delivery at the Point of Care Empowered by Big Data and NLP.

    PubMed

    Kaggal, Vinod C; Elayavilli, Ravikumar Komandur; Mehrabi, Saeed; Pankratz, Joshua J; Sohn, Sunghwan; Wang, Yanshan; Li, Dingcheng; Rastegar, Majid Mojarad; Murphy, Sean P; Ross, Jason L; Chaudhry, Rajeev; Buntrock, James D; Liu, Hongfang

    2016-01-01

    The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery. Additionally, significant clinical information is embedded in the free text, making natural language processing (NLP) an essential component in implementing an LHS. Herein, we share our institutional implementation of a big data-empowered clinical NLP infrastructure, which not only enables health-care analytics but also has real-time NLP processing capability. The infrastructure has been utilized for multiple institutional projects including the MayoExpertAdvisor, an individualized care recommendation solution for clinical care. We compared the advantages of big data over two other environments. Big data infrastructure significantly outperformed other infrastructure in terms of computing speed, demonstrating its value in making the LHS a possibility in the near future. PMID:27385912

  6. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    SciTech Connect

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  7. Development and analysis of some versions of the fractional-order point reactor kinetics model for a nuclear reactor with slab geometry

    NASA Astrophysics Data System (ADS)

    Vyawahare, Vishwesh A.; Nataraj, P. S. V.

    2013-07-01

    In this paper, we report the development and analysis of some novel versions and approximations of the fractional-order (FO) point reactor kinetics model for a nuclear reactor with slab geometry. A systematic development of the FO Inhour equation, Inverse FO point reactor kinetics model, and fractional-order versions of the constant delayed neutron rate approximation model and prompt jump approximation model is presented for the first time (for both one delayed group and six delayed groups). These models evolve from the FO point reactor kinetics model, which has been derived from the FO Neutron Telegraph Equation for the neutron transport considering the subdiffusive neutron transport. Various observations and the analysis results are reported and the corresponding justifications are addressed using the subdiffusive framework for the neutron transport. The FO Inhour equation is found out to be a pseudo-polynomial with its degree depending on the order of the fractional derivative in the FO model. The inverse FO point reactor kinetics model is derived and used to find the reactivity variation required to achieve exponential and sinusoidal power variation in the core. The situation of sudden insertion of negative reactivity is analyzed using the FO constant delayed neutron rate approximation. Use of FO model for representing the prompt jump in reactor power is advocated on the basis of subdiffusion. Comparison with the respective integer-order models is carried out for the practical data. Also, it has been shown analytically that integer-order models are a special case of FO models when the order of time-derivative is one. Development of these FO models plays a crucial role in reactor theory and operation as it is the first step towards achieving the FO control-oriented model for a nuclear reactor. The results presented here form an important step in the efforts to establish a step-by-step and systematic theory for the FO modeling of a nuclear reactor.

  8. A 3D clustering approach for point clouds to detect and quantify changes at a rock glacier front

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2016-04-01

    Terrestrial Laser Scanners (TLS) are extensively used in geomorphology to remotely-sense landforms and surfaces of any type and to derive digital elevation models (DEMs). Modern devices are able to collect many millions of points, so that working on the resulting dataset is often troublesome in terms of computational efforts. Indeed, it is not unusual that raw point clouds are filtered prior to DEM creation, so that only a subset of points is retained and the interpolation process becomes less of a burden. Whilst this procedure is in many cases necessary, it implicates a considerable loss of valuable information. First, and even without eliminating points, the common interpolation of points to a regular grid causes a loss of potentially useful detail. Second, it inevitably causes the transition from 3D information to only 2.5D data where each (x,y) pair must have a unique z-value. Vector-based DEMs (e.g. triangulated irregular networks) partially mitigate these issues, but still require a set of parameters to be set and a considerable burden in terms of calculation and storage. Because of the reasons above, being able to perform geomorphological research directly on point clouds would be profitable. Here, we propose an approach to identify erosion and deposition patterns on a very active rock glacier front in the Swiss Alps to monitor sediment dynamics. The general aim is to set up a semiautomatic method to isolate mass movements using 3D-feature identification directly from LiDAR data. An ultra-long range LiDAR RIEGL VZ-6000 scanner was employed to acquire point clouds during three consecutive summers. In order to isolate single clusters of erosion and deposition we applied the Density-Based Scan Algorithm with Noise (DBSCAN), previously successfully employed by Tonini and Abellan (2014) in a similar case for rockfall detection. DBSCAN requires two input parameters, strongly influencing the number, shape and size of the detected clusters: the minimum number of

  9. Nova-Scotia Power's Point Aconi plant overcomes CFB design problems to become rock of reliability

    SciTech Connect

    Peltier, R.

    2006-09-15

    Point Aconi's circulating fluidized-bed boiler experienced erosion, corrosion, and fouling problems from the day it went on-line in 1993. After several frustrating years of unreliable operation, in late 1999, Nova Scotia Power discovered the right combination of engineering and fuel modifications. Today, after a switch to 80% petroleum coke and major boiler modifications, Point Aconi's output exceeds its original nameplate rating. For having the vision and fortitude to plan and execute a multi year, $20 million project to revitalize North America's first in-service utility CFB boiler, Nova Scotia Power's Point Aconi plant is the well-deserved winner of POWER magazine's 2006 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshooter par excellence. 10 figs. 1 tab.

  10. Towards microfluidic reactors for cell-free protein synthesis at the point-of-care

    SciTech Connect

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-12-22

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.

  11. Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care.

    PubMed

    Timm, Andrea C; Shankles, Peter G; Foster, Carmen M; Doktycz, Mitchel J; Retterer, Scott T

    2016-02-10

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor. PMID:26690885

  12. Towards microfluidic reactors for cell-free protein synthesis at the point-of-care

    DOE PAGESBeta

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-12-22

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitatesmore » the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.« less

  13. A golden point rule in rock-paper-scissors-lizard-spock game

    NASA Astrophysics Data System (ADS)

    Kang, Yibin; Pan, Qiuhui; Wang, Xueting; He, Mingfeng

    2013-06-01

    We study a novel five-species system on two-dimensional lattices when each species have two superior and two inferior partners. Here we simplify the huge parameter space of predation probability to only two parameters. Both of Monte Carlo simulation and Mean Field Theory reveal that two of strategies may die out when the ratio of the two parameters is close to the golden point 0.618, and the remaining three strategies are provided a cyclic dominance system.

  14. Simple wastewater treatment (UASB reactor, shallow polishing ponds, coarse rock filter) allowing compliance with different reuse criteria.

    PubMed

    von Sperling, M; de Andrada, J G B

    2006-01-01

    UASB reactors followed by polishing ponds comprise simple and economic wastewater treatment systems, capable of reaching very high removal efficiencies of pathogenic organisms, leading to the potential use of the effluent for unrestricted irrigation. However, for other types of reuse (urban and industrial), ponds are limited in the sense of producing effluents with high suspended solids (algae) concentrations. The work investigates a system with coarse rock filters for polishing the pond effluent. The overall performance of the system is analyzed, together with the potential for different types of reuse. The excellent results obtained (mean effluent concentrations: BOD: 27 mg/L; SS: 26 mg/L; E. coli: 450 MPN/100 mL) indicate the possibility of unrestricted use of the effluent for agriculture and restricted urban and industrial uses, according to WHO and USEPA. PMID:17302321

  15. Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuya; Gokon, Nobuyuki; Cho, Hyun Seok; Matsubara, Koji; Etori, Tetsuro; Takeuchi, Akane; Yokota, Shin-nosuke; Ito, Sumie

    2016-05-01

    A novel concept of particles fluidized bed receiver/reactor with a beam-down solar concentrating optics was performed using a 30-kWth window type receiver by a big sun-simulator. A fluidized bed of quartz sand particles was created by passing air from the bottom distributor of the receiver, and about 30 kWth of high flux visible light from 19 xenon-arc lamps of the sun-simulator was directly irradiated on the top of the fluidized bed in the receiver through a quartz window. The particle bed temperature at the center position of the fluidized bed went up to a temperature range from 1050 to 1200°C by the visible light irradiation with the average heat flux of about 950 kW/m2, depending on the air flow rate. The output air temperature from the receiver reached 1000 - 1060°C.

  16. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  17. Integrated watershed economic model for non-point source pollution management in Upper Big Walnut Creek Watershed, OH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today, non-point source pollution (NPS) is one of the major sources of water quality impairments globally (UNEP, 2007). In the US, nutrient pollution is the leading cause of water quality issues in lakes and estuaries (USEPA, 2002). The maximum concentration of nutrients in streams is found to be in...

  18. Permafrost and snow monitoring at Rothera Point (Adelaide Island, Maritime Antarctica): Implications for rock weathering in cryotic conditions

    NASA Astrophysics Data System (ADS)

    Guglielmin, Mauro; Worland, M. Roger; Baio, Fabio; Convey, Peter

    2014-11-01

    In February 2009 a new permafrost borehole was installed close to the British Antarctic Survey Station at Rothera Point, Adelaide Island (67.57195°S 68.12068°W). The borehole is situated at 31 m asl on a granodiorite knob with scattered lichen cover. The spatial variability of snow cover and of ground surface temperature (GST) is characterised through the monitoring of snow depth on 5 stakes positioned around the borehole and with thermistors placed at three different rock surfaces (A, B and C). The borehole temperature is measured by 18 thermistors placed at different depths between 0.3 and 30 m. Snow persistence is very variable both spatially and temporally with snow free days per year ranging from 13 and more than 300, and maximum snow depths varying between 0.03 and 1.42 m. This variability is the main cause of high variability in GST, that ranged between - 3.7 and - 1.5 °C. The net effect of the snow cover is a cooling of the surface. Mean annual GST, mean summer GST, and the degree days of thawing and the n-factor of thawing were always much lower at sensor A where snow persistence and depth were greater than in the other sensor locations. At sensor A the potential freeze-thaw events were negligible (0-3) and the thermal stress was at least 40% less than in the other sensor locations. The zero curtain effect at the rock surface occurred only at surface A, favouring chemical weathering over mechanical action. The active layer thickness (ALT) ranged between 0.76 and 1.40 m. ALT was directly proportional to the mean air temperature in summer, and inversely proportional to the maximum snow depth in autumn. ALT temporal variability was greater than reported at other sites at similar latitude in the Northern Hemisphere, or with the similar mean annual air temperature in Maritime Antarctica, because vegetation and a soil organic horizon are absent at the study site. Zero annual amplitude in temperature was observed at about 16 m depth, where the mean annual

  19. BigDog

    NASA Astrophysics Data System (ADS)

    Playter, R.; Buehler, M.; Raibert, M.

    2006-05-01

    BigDog's goal is to be the world's most advanced quadruped robot for outdoor applications. BigDog is aimed at the mission of a mechanical mule - a category with few competitors to date: power autonomous quadrupeds capable of carrying significant payloads, operating outdoors, with static and dynamic mobility, and fully integrated sensing. BigDog is about 1 m tall, 1 m long and 0.3 m wide, and weighs about 90 kg. BigDog has demonstrated walking and trotting gaits, as well as standing up and sitting down. Since its creation in the fall of 2004, BigDog has logged tens of hours of walking, climbing and running time. It has walked up and down 25 & 35 degree inclines and trotted at speeds up to 1.8 m/s. BigDog has walked at 0.7 m/s over loose rock beds and carried over 50 kg of payload. We are currently working to expand BigDog's rough terrain mobility through the creation of robust locomotion strategies and terrain sensing capabilities.

  20. Life's little (and big) lessons: identity statuses and meaning-making in the turning point narratives of emerging adults.

    PubMed

    McLean, Kate C; Pratt, Michael W

    2006-07-01

    A longitudinal study examined relations between 2 approaches to identity development: the identity status model and the narrative life story model. Turning point narratives were collected from emerging adults at age 23 years. Identity statuses were collected at several points across adolescence and emerging adulthood, as were measures of generativity and optimism. Narratives were coded for the sophistication of meaning-making reported, the event type in the narrative, and the emotional tone of the narrative. Meaning-making was defined as connecting the turning point to some aspect of or understanding of oneself. Results showed that less sophisticated meaning was associated particularly with the less advanced diffusion and foreclosure statuses, and that more sophisticated meaning was associated with an overall identity maturity index. Meaning was also positively associated with generativity and optimism at age 23, with stories focused on mortality experiences, and with a redemptive story sequence. Meaning was negatively associated with achievement stories. Results are discussed in terms of the similarities and differences in the 2 approaches to identity development and the elaboration of meaning-making as an important component of narrative identity. PMID:16802903

  1. Extended Burnup Demonstration Reactor Fuels Program. Annual progress report, April 1983-March 1984. [BWR

    SciTech Connect

    Exarhos, C.A.

    1985-06-20

    The US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities Nuclear Corporation have participated since 1979 in a cooperative Extended Burnup Demonstration Program. Under the program, standard ENC-fabricated reload fuel in the Big Rock Point and Oyster Creek reactor cores has been irradiated to discharge burnups at or beyond 35,000 MWD/MTU, one to two cycles beyond its originally projected exposure life. The program provides for examination of the fuel at poolside before and after each extended burnup cycle as well as for limited destructive hot cell examination. The 1984 progress report covers work performed under the EBD program between April 1983 and March 1984. Major milestones reached during the period include completion of a hot cell examination on four high burnup rods from Big Rock Point and of a poolside on the Oyster Creek EBD fuel at discharge. The hot cell examination of four rods at burnups to 37.2 GWD/MTU confirmed poolside measurements on the same fuel, showing the urania and gadolinia-bearing fuel rods to be in excellent condition. No major cladding degradation, pellet restructuring, or pellet-clad interaction was found in any of the samples examined. The Oyster Creek fuel, examined at an assembly average exposure of 34.5 GWD/MTU, showed good performance with regard to both diametral creepdown and clad oxide accumulation.

  2. Performance evaluation of a simple wastewater treatment system comprised by UASB reactor, shallow polishing ponds and coarse rock filter.

    PubMed

    von Sperling, Marcos; Oliveira, Carolina Moreira; Andrada, Juliana G B; Godinho, Valéria M; Assunção, Fernando A L; Junior, Wilson R Melo

    2008-01-01

    The work investigates a small full-scale wastewater treatment system comprised by the following units in series: UASB reactor, three polishing ponds and one coarse rock filter. The overall performance of the system is analyzed based on three years of monitoring using physical-chemical and biological parameters. Good organic matter, suspended solids and ammonia removal is achieved, together with excellent coliform removal (5.70 log units). Mean effluent concentrations of the main parameters are: BOD: 39 mg/L; COD: 109 mg/L; SS = 41 mg/L; ammonia: 10 mg/L; E. coli: 540 MPN/100 mL, indicating compliance with many regulations for effluent discharge and reuse. Main algal classes found in the ponds and final effluent were chlorophyta and euglenophyta. The system is completely unmechanized and has a relatively small total hydraulic retention time (less than 13 days), compared with most natural treatment processes. No sludge removal from the ponds and filter has been necessary so far. PMID:18845872

  3. Reduction of VOC emissions from metal dip coating applications -- Canam Steel Corporation Point of Rocks, MD case study

    SciTech Connect

    Monfet, J.P.

    1997-12-31

    The reduction of VOC emissions from metal dip coating applications is not an environmental constraint, it is an economic opportunity. This case study shows how the industry can reap economic benefits from VOC reductions while improving air quality. The Canam Steel Corporation plant located in Point of Rocks, MD operates dip tanks for primer application on fabricated steel joists and joist girders. This process is presently subject to a regulation that limits the paint VOC content to 3.5 pounds per gallon of coating less water. As a result of the high paint viscosity associated with that regulation, the paint thickness of the dipped steel is thicker than the customers` specifications. Most of the VOC emissions can therefore be associated with the excess of paint applied to the products rather than to the required thickness of the coating. The higher paint usage rate has more than environmental consequences, it increases the cost of the applied coating. The project is to reduce the paint usage by controlling the viscosity of the coating in the tank. Experimental results as well as actual mass balance calculations show that using a higher VOC content paint would reduce the overall VOC emissions. The author explained the project to the Maryland Department of the Environment (MDE) Air and Radiation Management Administration. First, the MDE agreed to develop a new RACT determination for fabricated steel dipping operations. The new regulation would limit the amount of VOC than can be emitted to dip coat a ton of fabricated steel. Second, the MDE agreed to allow experimentation of the higher VOC content paint as a pilot project for the new regulation. This paper demonstrates the need for a RACT determination specific to fabricated steel dipping operations.

  4. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  5. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  6. SCoRe - Concepts of Liquid Metal Cooled Space Reactors for Avoidance of Single-Point Failure

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed; Hatton, Steven; Fox, Charles; Tournier, Jean-Michel

    2005-02-01

    Space nuclear Reactor Power Systems (SRPSs) are being developed to meet electrical power requirements for NASA's planetary exploration missions early next decade. In addition to enjoying some degree of autonomy, these systems need to operate reliably through the end of the mission, which could not be realized solely through a redundancy in the reactor's coolant loop. Besides increasing the total system mass, such hardware redundancy does not eliminate a single-point failure in the reactor and subsequent loss of coolant. This paper presents three concepts of the liquid metal cooled. Sectored, Compact Reactor (SCoRe) for the avoidance of single-point failure. The SCoRe-S, ScoRe-M, and SCoRe-L concepts are for small, medium, and large reactor cores, covering a wide range of electrical power requirements, from 10's of kWe to a few MWe. As a common feature in all SCoRe concepts, the reactor core is divided into six sectors that are neutronically coupled but thermal-hydraulically decoupled. The dividers of the sectors are liquid metal heat pipes, which facilitate cooling a sector experiencing a Loss of Coolant (LOC) by passively transporting the fission power generated in it to the two adjacent sectors without losing the mission. At the same time, the fission power of the reactor is reduced to avoid overheating the fuel in the sector experiencing a LOC. The SCoRe concepts have compact, hexagonal cores surrounded by a relatively thick (10 cm minimum) BeO reflector and axial BeO reflector that is 4 cm thick. The SCoRe is placed directly in front of the radiation shield, thus reducing the shield mass and that of the power system. In SCoRe-S cores, the UN fuel pins are arranged in a triangular lattice while in the SCoRe-M and SCoRe-L cores, the UN fuel pins arranged in a triangular lattice are assembled in 19-pin and 37-pin shrouded bundles, respectively.

  7. Petrofabrics of high-pressure rocks exhumed at the slab-mantle interface from the "point of no return" in a subduction zone (Sivrihisar, Turkey)

    NASA Astrophysics Data System (ADS)

    Whitney, Donna L.; Teyssier, Christian; Seaton, Nicholas C. A.; Fornash, Katherine F.

    2014-12-01

    The highest pressure recorded by metamorphic rocks exhumed from oceanic subduction zones is ~2.5 GPa, corresponding to the maximum decoupling depth (MDD) (80 ± 10 km) identified in active subduction zones; beyond the MDD (the "point of no return") exhumation is unlikely. The Sivrihisar massif (Turkey) is a coherent terrane of lawsonite eclogite and blueschist facies rocks in which assemblages and fabrics record P-T-fluid-deformation conditions during exhumation from ~80 to 45 km. Crystallographic fabrics and other features of high-pressure metasedimentary and metabasaltic rocks record transitions during exhumation. In quartzite, microstructures and crystallographic fabrics record deformation in the dislocation creep regime, including dynamic recrystallization during decompression, and a transition from prism slip to activation of rhomb and basal slip that may be related to a decrease in water fugacity during decompression (~2.5 to ~1.5 GPa). Phengite, lawsonite, and omphacite or glaucophane in quartzite and metabasalt remained stable during deformation, and omphacite developed an L-type crystallographic fabric. In marble, aragonite developed columnar textures with strong crystallographic fabrics that persisted during partial to complete dynamic recrystallization that was likely achieved in the stability field of aragonite (P > ~1.2 GPa). Results of kinematic vorticity analysis based on lawsonite shape fabrics are consistent with shear criteria in quartzite and metabasalt and indicate a large component of coaxial deformation in the exhuming channel beneath a simple shear dominated interface. This large coaxial component may have multiplied the exhuming power of the subduction channel and forced deeply subducted rocks to flow back from the point of no return.

  8. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.

    PubMed

    Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J

    2015-10-15

    Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of

  9. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    NASA Astrophysics Data System (ADS)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    Our understanding of the evolution of hard rock coastlines is limited due to the episodic nature and ';slow' rate at which changes occur. High-resolution surveying techniques, such as Terrestrial Laser Scanning (TLS), have just begun to be adopted as a method of obtaining detailed point cloud data to monitor topographical changes over short periods of time (weeks to months). However, the difficulties involved in comparing consecutive point cloud data sets in a complex three-dimensional plane, such as occlusion due to surface roughness and positioning of data capture point as a result of a consistently changing environment (a beach profile), mean that comparing data sets can lead to errors in the region of 10 - 20 cm. Meshing techniques are often used for point cloud data analysis for simple surfaces, but in surfaces such as rocky cliff faces, this technique has been found to be ineffective. Recession rates of hard rock coastlines in the UK are typically determined using aerial photography or airborne LiDAR data, yet the detail of the important changes occurring to the cliff face and toe are missed using such techniques. In this study we apply an algorithm (M3C2 - Multiscale Model to Model Cloud Comparison), initially developed for analysing fluvial morphological change, that directly compares point to point cloud data using surface normals that are consistent with surface roughness and measure the change that occurs along the normal direction (Lague et al., 2013). The surfaces changes are analysed using a set of user defined scales based on surface roughness and registration error. Once the correct parameters are defined, the volumetric cliff face changes are calculated by integrating the mean distance between the point clouds. The analysis has been undertaken at two hard rock sites identified for their active erosion located on the UK's south west peninsular at Porthleven in south west Cornwall and Godrevy in north Cornwall. Alongside TLS point cloud data, in

  10. Design and Dynamic Performance of a Small Water Cooled Reactor Fuelled with Plutonium in Rock-Like Oxide (ROX) Form

    SciTech Connect

    Gaultier, M.; Danguy, G.; Ritchie, D.; Williams, A.; Thompson, A.; Brushwood, J.; Beeley, P.A.; Greenlees, L.; Perry, A.

    2006-07-01

    The results of a design study for a small water-cooled reactor with plutonium fuel in a rock like oxide (ROX) form are reported. A summary is given of the five study areas, Physics, Thermal Hydraulics, Materials, Navalisation and Dynamics, and Shielding and Decommissioning. The dynamics simulation for the whole plant is then described in more detail. The physics of the fuel module is studied using the WIMS suite of deterministic codes with selected computations checked with the Monte-Carlo code MONK. Whole core calculations are undertaken with the WIMS/SNAP code. Essential parameters are provided to the other study areas including reactivity feedback coefficients for the Dynamics. The Thermal Hydraulic design aims to remove the required maximum power using pumped flow and also to provide significant power removal using natural circulation. The major components of the primary circuit are sized and flow rates in pumped and natural circulation calculated by hand and by using the TRACPFQ code. This information is also used in the dynamics study. Further details of the Physics and Thermal hydraulics studies will be given at PHYSOR 2006. The materials study is being published elsewhere, but a brief description of the temperature and stress calculations for the fuel pellet performed with the ABACUS finite element code is given. Navalisation and dynamics of the plant are examined. The power requirements for the plant are estimated and a suitable electric propulsion system is proposed and sized. A whole plant model is built using the AcslXtreme computer package in which a block diagram of the system is constructed via a graphical interface and simulations of the system transients are produced. The block diagram for the whole system is described followed by the describing equations for the major blocks representing neutron kinetics, fuel element heat transfer, thermal hydraulics of the primary circuit and of the steam generators. Also included are describing equations for

  11. Application of the Reactor Analysis Support Package LWR set-point analysis guidelines

    SciTech Connect

    Engel, R.E.; Sorensen, J.M.; May, R.S.; Doran, K.J.; Trikouros, N.G.; Mozzias, E.S.

    1989-07-01

    Frequently, a situation is encountered in which the technical specification setpoints established by the plant safety analysis are judged to be unacceptable from a plant operational standpoint. This report documents the application of the Electric Power Research Institute (EPRI) Reactor Analysis Support Package (RASP) Light Water Reactor (LWR) setpoint analysis guidelines to provide justification for relaxing the high pressure setpoints at the Oyster Creek Nuclear Generation Station. More Specifically, the plant operation's staff determined that it was desirable to provide increased margin for measurement uncertainties in the high pressure instrument and safety valve setpoints. Previous experience had indicated that there was insufficient margin to justify the desired setpoints using conventional deterministic inputs to the safety analysis and plant performance evaluation process. Therefore, it was determined that the RASP LWR setpoint analysis guidelines, which incorporated the use of a statistical combination of uncertainties methodology, would be used to establish an acceptable set of high pressure setpoints. This report documents the results of applying the RASP setpoint analysis guidelines to provide justification for an acceptable set of high pressure setpoints for the Oyster Creek station. 14 refs., 53 figs., 28 tabs.

  12. Radiation damage in ferritic/martensitic steels for fusion reactors: a simulation point of view

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Baluc, N.

    2007-12-01

    Low activation ferritic/martensitic steels are good candidates for the future fusion reactors, for, relative to austenitic steels, their lower damage accumulation and moderate swelling under irradiation by the 14 MeV neutrons produced by the fusion reaction. Irradiation of these steels, e.g. EUROFER97, is known to produce hardening, loss of ductility, shift in ductile to brittle transition temperature and a reduction of fracture toughness and creep resistance starting at the lowest doses. Helium, produced by transmutation by the 14 MeV neutrons, is known to impact mechanical properties, but its effect at the microstructure level is still unclear. The mechanisms underlying the degradation of mechanical properties are not well understood, despite numerous studies on the evolution of the microstructure under irradiation. This impedes our ability to predict materials' behaviour at higher doses for use in the future fusion reactors. Simulations of these effects are now essential. An overview is presented on molecular dynamics simulations of the primary state of damage in iron and of the mobility of a dislocation, vector of plasticity, in the presence of a defect.

  13. The Inversion Point of the Isothermal Reactivity Coefficient of the IPEN/MB-01 Reactor - II: Theoretical Analysis

    SciTech Connect

    Santos, A. dos; Fuga, R.; Abe, A.Y.

    2005-10-15

    TORT, an S{sub N} three-dimensional transport code, is employed for the analysis of the inversion point of the isothermal reactivity coefficient of the IPEN/MB-01 reactor. The analyses are performed in companion NJOY, AMPX-II, and TORT systems considering the data libraries ENDF/B-VI.8, JENDL3.3, and JEF3.0. The analyses reveal that for this peculiar problem, there is a need to convert all the computer codes to DOUBLE-PRECISION as well as to increase to seven the number of digits of the ANISN library generated by XSDRNPM. Contrary to the traditional diffusion theory codes, TORT k{sub eff} results are very sensitive to the number of both fine and broad groups. For instance, the traditional and very well known two- and four-group structure, largely utilized in several diffusion codes, produced simply unacceptable k{sub eff} results. The highest deviation between calculated and experimental values found for the inversion point was -4.48 deg. C. At first glance, there appears to be a significant discrepancy. However, in terms of reactivity coefficient, this discrepancy means a deviation of -0.90 {+-} 0.05 pcm/deg. C, which indicates that the calculational methodology and related nuclear data libraries meet the desired accuracy (-1.0 pcm/deg. C) for the determination of this parameter for thermal reactors.

  14. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  15. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  16. Toward a Learning Health-care System – Knowledge Delivery at the Point of Care Empowered by Big Data and NLP

    PubMed Central

    Kaggal, Vinod C.; Elayavilli, Ravikumar Komandur; Mehrabi, Saeed; Pankratz, Joshua J.; Sohn, Sunghwan; Wang, Yanshan; Li, Dingcheng; Rastegar, Majid Mojarad; Murphy, Sean P.; Ross, Jason L.; Chaudhry, Rajeev; Buntrock, James D.; Liu, Hongfang

    2016-01-01

    The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery. Additionally, significant clinical information is embedded in the free text, making natural language processing (NLP) an essential component in implementing an LHS. Herein, we share our institutional implementation of a big data-empowered clinical NLP infrastructure, which not only enables health-care analytics but also has real-time NLP processing capability. The infrastructure has been utilized for multiple institutional projects including the MayoExpertAdvisor, an individualized care recommendation solution for clinical care. We compared the advantages of big data over two other environments. Big data infrastructure significantly outperformed other infrastructure in terms of computing speed, demonstrating its value in making the LHS a possibility in the near future. PMID:27385912

  17. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  18. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  19. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  20. DESTRUCTIVE EXAMINATION OF 3-CYCLE LWR (LIGHT WATER REACTOR) FUEL RODS FROM TURKEY POINT UNIT 3 FOR THE CLIMAX - SPENT FUEL TEST

    SciTech Connect

    ATKIN SD

    1981-06-01

    The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reator fuel rods with similar burnups (28 GWd/MTU) and operating histories.

  1. Big bluestem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big Bluestem (Andropogon gerardii) is a warm season grass native to North America, accounting for 40% of the herbaceous biomass of the tall grass prairie, and a candidate for bioenergy feedstock production. The goal of this study was to measure among and within population genetic variation of natura...

  2. Big Dreams

    ERIC Educational Resources Information Center

    Benson, Michael T.

    2015-01-01

    The Keen Johnson Building is symbolic of Eastern Kentucky University's historic role as a School of Opportunity. It is a place that has inspired generations of students, many from disadvantaged backgrounds, to dream big dreams. The construction of the Keen Johnson Building was inspired by a desire to create a student union facility that would not…

  3. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  4. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  5. Deep crescentic features caused by subglacial boulder point pressure on jointed rock; an example from Virkisjökull, SE Iceland

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.; Everest, J.

    2012-04-01

    A variety of subglacially formed, erosional crescentic features (e.g. crescentic gouges, lunate fractures) have been widely reported on deglaciated bedrock surfaces. They are characterised by a conchoidal fracture that dips in the same direction as the palaeo-ice flow direction, and a steeper fracture that faces against the ice flow. They are generally interpreted as being formed by point pressure exerted by large boulders entrained in basal ice. They are significant in that they record palaeo-ice flow even if shallower glacial striae are obliterated by post-glacial weathering [1, 2, 3]. This contribution reports on deep scallop-shaped, crescentic depressions observed on abraded surfaces of roche moutonnées and whalebacks recently (<10yrs) exposed beneath the actively retreating Virkisjökull, an outlet glacier of the Oraefajökull ice cap in southeast Iceland. The substrate comprises hard rhyolitic rock (relatively rare in Iceland compared to more common basalt and hyaloclastite) with polygonal, columnar jointing. The crescentic depressions at Virkisjökull are cut into smoothed, abraded surfaces festooned with abundant glacial striae. Differences with previously reported crescentic features are: • The scallop-shaped depressions are considerably deeper (5-20 cm); • The steep fracture facing ice flow coincides in all cases with a pre-existing joint that cuts the entire whaleback. The steep joints developed thus before the conchoidal fracture, whilst in reported crescentic features they develop after the conchoidal fracture. We suggest the following formation mechanism. A boulder encased in basal ice exerts continuous pressure on its contact point as it moves across the ice-bedrock contact. This sets up a stress field in the bedrock that does not necessarily exceed the intact rock strength (other crescentic features are rare to absent at Virkisjökull). However, as the stress field migrates (with the transported boulder) and encounters a subvertical, pre

  6. Big Bang, Big Data, Big Computers

    NASA Astrophysics Data System (ADS)

    Conference website: http://www.apc.univ-paris7.fr/APC/Conferences/Workshop_Big3/Home.html Observations of the Cosmic Microwave Background (CMB) radiation have transformed modern cosmology propelling it into high-precision, data-driven science it is today. CMB data analysis has been a cornerstone of this transformation and it continues in this role preparing currently to meet its possibly ultimate challenge as posed by ever-growing in size and complexity forthcoming data sets required by new science goals posed for the field. These include providing key pieces of information about the very early Universe: Gaussianity of the initial conditions, the presence of the primordial gravity waves, as well as constraints on the large-scale structure formation and possibly properties of dark energy. The sophistication of the involved data models is matched by precision levels, which have to be attained to deliver robust detections and result in firm conclusions. The overall challenge is indeed breathtaking and, without a doubt, the success will be only possible if the data analysis effort becomes truly interdisciplinary and capitalizes on the latest advances in statistics, applied mathematics, and computer science - all of which constitute veritable foundations of the contemporary data analysis work.

  7. The Big Rocks: Priority Management for Principals

    ERIC Educational Resources Information Center

    Marshall, Kim

    2008-01-01

    How can a dedicated principal work really, really hard but fail to get significant gains in student achievement? The answer is obvious: by spending too much time on the wrong things and not enough on the right things. The principal's number-one priority is zeroing in on the highest-priority activities for bringing all students to high levels of…

  8. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  9. Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications.

    PubMed

    Ramalingam, Naveen; Liu, Hao-Bing; Dai, Chang-Chun; Jiang, Yu; Wang, Hui; Wang, Qinghui; M Hui, Kam; Gong, Hai-Qing

    2009-10-01

    A major challenge for the lab-on-a-chip (LOC) community is to develop point-of-care diagnostic chips that do not use instruments. Such instruments include pumping or liquid handling devices for distribution of patient's nucleic-acid test sample among an array of reactors and microvalves or mechanical parts to seal these reactors. In this paper, we report the development of a primer pair pre-loaded PCR array chip, in which the loading of the PCR mixture into an array of reactors and subsequent sealing of the reactors were realized by a novel capillary-based microfluidics with a manual two-step pipetting operations. The chip is capable of performing simultaneous (parallel) analyses of multiple gene targets and its performance was tested by amplifying twelve different gene targets against cDNA template from human hepatocellular carcinoma using SYBR Green I fluorescent dye. The versatility and reproducibility of the PCR-array chip are demonstrated by real-time PCR amplification of the BNI-1 fragment of SARS cDNA cloned in a plasmid vector. The reactor-to-reactor diffusion of the pre-loaded primer pairs in the chip is investigated to eliminate the possibility of primer cross-contamination. Key technical issues such as PCR mixture loss in gas-permeable PDMS chip layer and bubble generation due to different PDMS-glass bonding methods are investigated. PMID:19421862

  10. VIEW OF BEGINNING (UPSTREAM) OF THE COLUMBIA SOUTHERN CANAL'S "BIG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BEGINNING (UPSTREAM) OF THE COLUMBIA SOUTHERN CANAL'S "BIG CUT" BETWEEN CONSTRUCTION CAMP ROCK FEATURE AND THE COLUMBIA SOUTHERN DIVERSION STRUCTURE. LOOKING SOUTH/SOUTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  11. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  12. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  13. Challenges of Big Data Analysis.

    PubMed

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-06-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions. PMID:25419469

  14. Challenges of Big Data Analysis

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-01-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions. PMID:25419469

  15. Magnetostratigraphy of a Marine Triassic-Jurassic Boundary Section, Kennecott Point, Queen Charlotte Islands: Implications for the Temporal Correlation of a 'Big Five' Mass Extinction Event.

    NASA Astrophysics Data System (ADS)

    Hilburn, I. A.; Kirschvink, J. L.; Ward, P. D.; Haggart, J. W.; Raub, T. D.

    2008-12-01

    Several causes have been proposed for Triassic-Jurassic (T-J) boundary extinctions, including global ocean anoxia/euxinia, an impact event, and/or eruption of the massive Central Atlantic Magmatic Province (CAMP), but poor intercontinental correlation makes testing these difficult. Sections at Kennecott Point, Queen Charlotte Islands, British Columbia span the late Norian through Rhaetian (Triassic) and into the earliest Hettangian (Jurassic) and provide the best integrated magneto- and chemostratigraphic framework for placing necessary temporal constraints upon the T-J mass extinctions. At Kennecott Point, turnover of radiolaria and ammonoids define the T-J boundary marine extinction and are coincident with a 2 ‰ negative excursion in δ13Corg similar in magnitude to that observed at Ferguson Hill (Muller Canyon), Nevada (1, 2). With Conodont Alteration Index values in the 1-2 range, Kennecott Point provides the ideal setting for use of magnetostratigraphy to tie the marine isotope excursion into the chronostratigraphic framework of the Newark, Hartford, and Fundy Basins. In the summer of 2005, we collected a ~1m resolution magnetostratigraphic section from 105 m of deep marine, silt- and sandstone turbidites and interbedded mudstones, spanning the T-J boundary at Kennecott Point. Hybrid progressive demagnetization - including zero-field, low-temperature cycling; low-field AF cleaning; and thermal demagnetization in ~25°C steps to 445°C under flowing N2 gas (3) - first removed a Northerly, steeply inclined component interpreted to be a Tertiary overprint, revealing an underlying dual-polarity component of moderate inclination. Five major polarity zones extend through our section, with several short, one-sample reversals interspersed amongst them. Comparison of this pattern with other T-J boundary sections (4-6) argues for a Northern hemisphere origin of our site, albeit with large vertical-axis rotations. A long normal chron bounds the T-J boundary punctuated

  16. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  17. Big Burst

    NASA Technical Reports Server (NTRS)

    2007-01-01

    What would a starburst look like if you could see it up close? Probably a lot like the Carina Nebula, a rather small region of one of the Galaxy's spiral arms, a complex of massive clouds of gas and dust, and a region where, about a million or two years ago, for some reason and extraordinary amount of very massive stars formed. And at only some 8500 lightyears distant, it's relatively nearby. Such regions are of great interest to astronomers, since they are very young, and they show how massive stars form and how they create and disperse the elements necessary for life. The image above is a beautiful new study of the Carina Nebula in X-rays, taken by the XMM Newton X-ray observatory. The X-ray colors represent X-ray energy, as usual: red means low energy X-ray emission, green is somewhat higher in energy than red, and blue somewhat higher than green. Thus blue objects are either very high energy objects, or else very absorbed objects. Most of the point sources are massive stars, some X-ray emitting binaries, and some objects still to be identified. The clustering of the X-ray point sources is very evident, showing how massive stars like to form in groups. A number of interesting sources are identified. Interestingly, the Carina Nebula is immersed in a large diffuse glow of X-radiation. This X-ray glow might be produced by the combined winds of the massive stars colliding with the dense cold clouds in the nebula. Another interesting possibility: perhaps this emission represents an old supernova. But if so which star died?

  18. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution. PMID:27441855

  19. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  20. The ARIES-III D- sup 3 He tokamak reactor: Design-point determination and parametric studies

    SciTech Connect

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A. ); Santarius, J.F. )

    1991-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-3 design uses a D-{sup 3}He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. Results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-1 is included. 11 refs., 5 figs.

  1. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  2. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  3. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  4. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Liu, Bo; Wang, Jieqiong; Zhang, Zhe; Shi, Kaibo; Wu, Shuanglin

    2014-08-01

    Commonly used petrological quantification methods are visual estimation, counting, and image analyses. However, in this article, an Adobe Photoshop-based analyzing method (PSQ) is recommended for quantifying the rock textural data and porosities. Adobe Photoshop system provides versatile abilities in selecting an area of interest and the pixel number of a selection could be read and used to calculate its area percentage. Therefore, Adobe Photoshop could be used to rapidly quantify textural components, such as content of grains, cements, and porosities including total porosities and different genetic type porosities. This method was named as Adobe Photoshop Quantification (PSQ). The workflow of the PSQ method was introduced with the oolitic dolomite samples from the Triassic Feixianguan Formation, Northeastern Sichuan Basin, China, for example. And the method was tested by comparing with the Folk's and Shvetsov's "standard" diagrams. In both cases, there is a close agreement between the "standard" percentages and those determined by the PSQ method with really small counting errors and operator errors, small standard deviations and high confidence levels. The porosities quantified by PSQ were evaluated against those determined by the whole rock helium gas expansion method to test the specimen errors. Results have shown that the porosities quantified by the PSQ are well correlated to the porosities determined by the conventional helium gas expansion method. Generally small discrepancies (mostly ranging from -3% to 3%) are caused by microporosities which would cause systematic underestimation of 2% and/or by macroporosities causing underestimation or overestimation in different cases. Adobe Photoshop could be used to quantify rock textural components and porosities. This method has been tested to be precise and accurate. It is time saving compared with usual methods.

  5. The Big Group of People Looking at How to Control Putting the Parts of the Air That Are the Same as What You Breathe Out Into Small Spaces in Rocks

    SciTech Connect

    Stack, Andrew

    2013-07-18

    Representing the Nanoscale Control of Geologic CO2 (NCGC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of NCGC is to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to the injection and storage of carbon dioxide (CO2) in subsurface reservoirs.

  6. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  7. Dynamical realization of end-point memory in consolidated materials

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Vyacheslav O.; Vakhnenko, Oleksiy O.; TenCate, James A.; Shankland, Thomas J.

    2006-05-01

    Starting with a soft-ratchet model of slow dynamics in nonlinear resonant response of sedimentary rocks we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. The effect we describe and simulate is defined as the memory of previous maximum amplitude of alternating stress and manifested in the form of small hysteretic loops inside the big hysteretic loop on the resonance curve. It is most clearly pronounced in the vicinity of bar resonant frequency. These theoretical findings are confirmed experimentally.

  8. Comparison of lactate sampling sites for rock climbing.

    PubMed

    Fryer, S; Draper, N; Dickson, T; Blackwell, G; Winter, D; Ellis, G

    2011-06-01

    Comparisons of capillary blood lactate concentrations pre and post climb have featured in the protocols of many rock climbing studies, with most researchers obtaining samples from the fingertip. The nature of rock climbing, however, places a comparatively high physiological loading on the foreaand fingertips. Indeed, the fingertips are continually required for gripping and this makes pre-climb sampling at this site problematic. The purpose of our study was to examine differences in capillary blood lactate concentrations from samples taken at the fingertip and first (big) toe in a rock climbing context. 10 participants (9 males and 1 female) completed climbing bouts at 3 different angles (91°, 100° and 110°). Capillary blood samples were taken simultaneously from the fingertip and first toe pre and post climb. A limit of agreement plot revealed all data points to be well within the upper and lower bounds of the 95% population confidence interval. Subsequent regression analysis revealed a strong relationship (R (2)=0.94, y=0.940x + 0.208) between fingertip and first toe capillary blood lactate concentrations. Findings from our study suggest that the toe offers a valid alternative site for capillary blood lactate concentration analysis in a rock climbing context. PMID:21380969

  9. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  10. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  11. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  12. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  13. Dual of big bang and big crunch

    SciTech Connect

    Bak, Dongsu

    2007-01-15

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory.

  14. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases

    PubMed Central

    Liu, Changchun; Geva, Eran; Mauk, Michael; Qiu, Xianbo; Abrams, William R.; Malamud, Daniel; Curtis, Kelly; Owen, S. Michele; Bau, Haim H.

    2015-01-01

    A simple, point of care, inexpensive, disposable cassette for the detection of nucleic acids extracted from pathogens was designed, constructed, and tested. The cassette utilizes a single reaction chamber for isothermal amplification of nucleic acids. The chamber is equipped with an integrated, flow-through, Flinders Technology Associates (Whatman FTA®) membrane for the isolation, concentration, and purification of DNA and/or RNA. The nucleic acids captured by the membrane are used directly as templates for amplification without elution, thus simplifying the cassette’s flow control. The FTA membrane also serves another critical role—enabling the removal of inhibitors that dramatically reduce detection sensitivity. Thermal control is provided with a thin film heater external to the cassette. The amplification process was monitored in real time with a portable, compact fluorescent reader. The utility of the integrated, single-chamber cassette was demonstrated by detecting the presence of HIV-1 in oral fluids. The HIV RNA was reverse transcribed and subjected to loop-mediated, isothermal amplification (LAMP). A detection limit of less than 10 HIV particles was demonstrated. The cassette is particularly suitable for resource poor regions, where funds and trained personnel are in short supply. The cassette can be readily modified to detect nucleic acids associated with other pathogens borne in saliva, urine, and other body fluids as well as in water and food. PMID:21455542

  15. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  16. Big Ideas in Art

    ERIC Educational Resources Information Center

    Day, Kathleen

    2008-01-01

    In this article, the author shares how she was able to discover some big ideas about art education. She relates how she found great ideas to improve her teaching from the book "Rethinking Curriculum in Art." She also shares how she designed a "Big Idea" unit in her class.

  17. Big data for health.

    PubMed

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled. PMID:26173222

  18. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  19. Genesis of the big bang

    NASA Astrophysics Data System (ADS)

    Alpher, Ralph A.; Herman, Robert

    The authors of this volume have been intimately connected with the conception of the big bang model since 1947. Following the late George Gamov's ideas in 1942 and more particularly in 1946 that the early universe was an appropriate site for the synthesis of the elements, they became deeply involved in the question of cosmic nucleosynthesis and particularly the synthesis of the light elements. In the course of this work they developed a general relativistic model of the expanding universe with physics folded in, which led in a progressive, logical sequence to our prediction of the existence of a present cosmic background radiation some seventeen years before the observation of such radiation was reported by Penzias and Wilson. In addition, they carried out with James W. Follin, Jr., a detailed study of the physics of what was then considered to be the very early universe, starting a few seconds after the big bang, which still provides a methodology for studies of light element nucleosynthesis. Because of their involvement, they bring a personal perspective to the subject. They present a picture of what is now believed to be the state of knowledge about the evolution of the expanding universe and delineate the story of the development of the big bang model as they have seen and lived it from their own unique vantage point.

  20. Big data, big knowledge: big data for personalized healthcare.

    PubMed

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority. PMID:26218867

  1. Big Data: Survey, Technologies, Opportunities, and Challenges

    PubMed Central

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Mahmoud Ali, Waleed Kamaleldin; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data. PMID:25136682

  2. Big data: survey, technologies, opportunities, and challenges.

    PubMed

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Ali, Waleed Kamaleldin Mahmoud; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data. PMID:25136682

  3. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  4. Big Data in industry

    NASA Astrophysics Data System (ADS)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  5. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  6. The Big Bang Theory

    SciTech Connect

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  7. Trace-metal and organic constituent concentrations in bed sediment at Big Base and Little Base Lakes, Little Rock Air Force Base, Arkansas—Comparisons to sediment-quality guidelines and indications for timing of exposure

    USGS Publications Warehouse

    Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.

    2015-01-01

    Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.

  8. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  10. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    ERIC Educational Resources Information Center

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own "big" words and dreams. During the one…

  11. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  12. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed Central

    Hutter, Harald; Moerman, Donald

    2015-01-01

    A clear definition of what constitutes “Big Data” is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of “complete” data sets for this organism is actually rather small—not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein–protein interaction—important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. PMID:26543198

  13. Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    Most of the advances in volcanology during the past 20 years have concerned the recognition, interpretation, and mode of emplacement of pyroclastic rocks. The literature on pyroclastic rocks is widely scattered, in part because the field draws from sedimentology, igneous petrology, physics, and fluid mechanics, and there have been few review papers on the topic. Fisher and Schmincke have done the discipline of volcanology and all field-oriented geologists a great service in assembling material from a wide range of sources in this comprehensive treatment of pyroclastic rocks. With its introduction to the petrology of magmas involved in explosive eruptions in chapter 2 and a complete treatment of magma rheology and the behavior of dissolved and exsolving magmatic volatiles in chapter 3, they lay sufficient groundwork that anyone with a rudimentary knowledge of geology can understand the book.

  14. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  15. The lack of a big picture in tuberculosis: the clinical point of view, the problems of experimental modeling and immunomodulation. The factors we should consider when designing novel treatment strategies

    PubMed Central

    Vilaplana, Cristina; Cardona, Pere-Joan

    2014-01-01

    This short review explores the large gap between clinical issues and basic science, and suggests why tuberculosis research should focus on redirect the immune system and not only on eradicating Mycobacterium tuberculosis bacillus. Along the manuscript, several concepts involved in human tuberculosis are explored in order to understand the big picture, including infection and disease dynamics, animal modeling, liquefaction, inflammation and immunomodulation. Scientists should take into account all these factors in order to answer questions with clinical relevance. Moreover, the inclusion of the concept of a strong inflammatory response being required in order to develop cavitary tuberculosis disease opens a new field for developing new therapeutic and prophylactic tools in which destruction of the bacilli may not necessarily be the final goal. PMID:24592258

  16. Big Questions: Missing Antimatter

    SciTech Connect

    Lincoln, Don

    2013-08-27

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  17. Big data in biomedicine.

    PubMed

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science. PMID:24183925

  18. Bayesian big bang

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show that the flow of particles corresponding to Bayes' rule has a number of striking similarities with the big bang, including cosmic inflation and cosmic acceleration. We derive a PDE for this flow using a log-homotopy from the prior probability density to the posteriori probability density. We solve this PDE using the gradient of the solution to Poisson's equation, which is computed using an exact Green's function and the standard Monte Carlo approximation of integrals. The resulting flow is analogous to Coulomb's law in electromagnetics. We have used no physics per se to derive this flow, but rather we have only used Bayes' rule and the definition of normalized probability and a loghomotopy parameter that could be interpreted as time. The details of this big bang resemble very recent theories much more closely than the so-called new inflation models, which postulate enormous inflation immediately after the big bang.

  19. Big Questions: Missing Antimatter

    ScienceCinema

    Lincoln, Don

    2014-08-07

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  20. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  1. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  2. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  3. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  4. [Utilization of Big Data in Medicine and Future Outlook].

    PubMed

    Kinosada, Yasutomi; Uematsu, Machiko; Fujiwara, Takuya

    2016-03-01

    "Big data" is a new buzzword. The point is not to be dazzled by the volume of data, but rather to analyze it, and convert it into insights, innovations, and business value. There are also real differences between conventional analytics and big data. In this article, we show some results of big data analysis using open DPC (Diagnosis Procedure Combination) data in areas of the central part of JAPAN: Toyama, Ishikawa, Fukui, Nagano, Gifu, Aichi, Shizuoka, and Mie Prefectures. These 8 prefectures contain 51 medical administration areas called the second medical area. By applying big data analysis techniques such as k-means, hierarchical clustering, and self-organizing maps to DPC data, we can visualize the disease structure and detect similarities or variations among the 51 second medical areas. The combination of a big data analysis technique and open DPC data is a very powerful method to depict real figures on patient distribution in Japan. PMID:27363223

  5. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  6. Big-City Rules

    ERIC Educational Resources Information Center

    Gordon, Dan

    2011-01-01

    When it comes to implementing innovative classroom technology programs, urban school districts face significant challenges stemming from their big-city status. These range from large bureaucracies, to scalability, to how to meet the needs of a more diverse group of students. Because of their size, urban districts tend to have greater distance…

  7. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The government aims to put…

  8. The big bang

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.

  9. Thinking Big, Aiming High

    ERIC Educational Resources Information Center

    Berkeley, Viv

    2010-01-01

    What do teachers, providers and policymakers need to do in order to support disabled learners to "think big and aim high"? That was the question put to delegates at NIACE's annual disability conference. Some clear themes emerged, with delegates raising concerns about funding, teacher training, partnership-working and employment for disabled…

  10. The Big Empty.

    ERIC Educational Resources Information Center

    Brook, Richard; Smith, Shelley; Tisdale, Mary

    1995-01-01

    Discusses "The Big Empty" or, the Great Basin. Suggests that it is not empty but rather a great ecosystem rich in plants, animals, and minerals. Presents information and activities to guide students in exploring the Great Basin in order to understand the ways in which such an arid and seemingly harsh environment can support so many living things.…

  11. A Sobering Big Idea

    ERIC Educational Resources Information Center

    Wineburg, Sam

    2006-01-01

    Since Susan Adler, Alberta Dougan, and Jesus Garcia like "big ideas," the author offers one to ponder: young people in this country can not read with comprehension. The saddest thing about this crisis is that it is no secret. The 2001 results of the National Assessment of Educational Progress (NAEP) for reading, published in every major newspaper,…

  12. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  13. Big Bang Theory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory which asserts that the universe originated a finite time ago by expanding from an infinitely compressed state. According to this model, space, time and matter originated together, and the universe has been expanding ever since. Key stages in the history of the Big Bang universe are summarized below....

  14. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  15. Business and Science - Big Data, Big Picture

    NASA Astrophysics Data System (ADS)

    Rosati, A.

    2013-12-01

    Data Science is more than the creation, manipulation, and transformation of data. It is more than Big Data. The business world seems to have a hold on the term 'data science' and, for now, they define what it means. But business is very different than science. In this talk, I address how large datasets, Big Data, and data science are conceptually different in business and science worlds. I focus on the types of questions each realm asks, the data needed, and the consequences of findings. Gone are the days of datasets being created or collected to serve only one purpose or project. The trick with data reuse is to become familiar enough with a dataset to be able to combine it with other data and extract accurate results. As a Data Curator for the Advanced Cooperative Arctic Data and Information Service (ACADIS), my specialty is communication. Our team enables Arctic sciences by ensuring datasets are well documented and can be understood by reusers. Previously, I served as a data community liaison for the North American Regional Climate Change Assessment Program (NARCCAP). Again, my specialty was communicating complex instructions and ideas to a broad audience of data users. Before entering the science world, I was an entrepreneur. I have a bachelor's degree in economics and a master's degree in environmental social science. I am currently pursuing a Ph.D. in Geography. Because my background has embraced both the business and science worlds, I would like to share my perspectives on data, data reuse, data documentation, and the presentation or communication of findings. My experiences show that each can inform and support the other.

  16. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  17. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  18. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  19. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  20. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  1. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  2. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  3. Water resources in the Big Lost River Basin, south-central Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  4. Using the Big Six Research Process. The Coconut Crab from Guam and Other Stories: Writing Myths, Fables, and Tall Tales.

    ERIC Educational Resources Information Center

    Jansen, Barbara A.; Culpepper, Susan N.

    1996-01-01

    Using the Big Six research process, students at Live Oak Elementary (Round Rock, TX) supplemented information from traditional print and electronic sources with e-mail exchanges around the world to complete a library research collaborative project culminating in an original folk tale. Describes the Big Six process and how it was applied. (PEN)

  5. Results of new petrologic and remote sensing studies in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Benker, Stevan Christian

    The initial section of this manuscript involves the South Rim Formation, a series of 32.2-32 Ma comenditic quartz trachytic-rhyolitic volcanics and associated intrusives, erupted and was emplaced in Big Bend National Park, Texas. Magmatic parameters have only been interpreted for one of the two diverse petrogenetic suites comprising this formation. Here, new mineralogic data for the South Rim Formation rocks are presented. Magmatic parameters interpreted from these data assist in deciphering lithospheric characteristics during the mid-Tertiary. Results indicate low temperatures (< 750 °C), reduced conditions (generally below the FMQ buffer), and low pressures (≤ 100 MPa) associated with South Rim Formation magmatism with slight conditional differences between the two suites. Newly discovered fayalite microphenocrysts allowed determination of oxygen fugacity values (between -0.14 and -0.25 DeltaFMQ over temperature ranges of 680-700 °C), via mineral equilibria based QUILF95 calculations, for Emory Peak Suite. Petrologic information is correlated with structural evidence from Trans-Pecos Texas and adjacent regions to evaluate debated timing of tectonic transition (Laramide compression to Basin and Range extension) and onset of the southern Rio Grande Rift during the mid-Tertiary. The A-type and peralkaline characteristics of the South Rim Formation and other pre-31 Ma magmatism in Trans-Pecos Texas, in addition to evidence implying earlier Rio Grande Rift onset in Colorado and New Mexico, promotes a near-neutral to transtensional setting in Trans-Pecos Texas by 32 Ma. This idea sharply contrasts with interpretations of tectonic compression and arc-related magmatism until 31 Ma as suggested by some authors. However, evidence discussed cannot preclude a pre-36 Ma proposed by other authors. The later section of this manuscript involves research in the Big Bend area using Google Earth. At present there is high interest in using Google Earth in a variety of scientific

  6. Big Rock Candy Mountain; Resources for Our Education.

    ERIC Educational Resources Information Center

    Yanes, Samuel, Ed.; Holdorf, Cia, Ed.

    The material reviewed in this edition is loosely divided into categories--process learning, educational environments, classroom materials, home learning, self discovery, and education and consciousness. As in previous editions of the catalog, education is defined in its broadest sense, so that the material reviewed is suitable for many age groups…

  7. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  8. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  9. Big3. Editorial

    PubMed Central

    Lehmann, Christoph U.; Séroussi, Brigitte; Jaulent, Marie-Christine

    2014-01-01

    Summary Objectives To provide an editorial introduction into the 2014 IMIA Yearbook of Medical Informatics with an overview of the content, the new publishing scheme, and upcoming 25th anniversary. Methods A brief overview of the 2014 special topic, Big Data - Smart Health Strategies, and an outline of the novel publishing model is provided in conjunction with a call for proposals to celebrate the 25th anniversary of the Yearbook. Results ‘Big Data’ has become the latest buzzword in informatics and promise new approaches and interventions that can improve health, well-being, and quality of life. This edition of the Yearbook acknowledges the fact that we just started to explore the opportunities that ‘Big Data’ will bring. However, it will become apparent to the reader that its pervasive nature has invaded all aspects of biomedical informatics – some to a higher degree than others. It was our goal to provide a comprehensive view at the state of ‘Big Data’ today, explore its strengths and weaknesses, as well as its risks, discuss emerging trends, tools, and applications, and stimulate the development of the field through the aggregation of excellent survey papers and working group contributions to the topic. Conclusions For the first time in history will the IMIA Yearbook be published in an open access online format allowing a broader readership especially in resource poor countries. For the first time, thanks to the online format, will the IMIA Yearbook be published twice in the year, with two different tracks of papers. We anticipate that the important role of the IMIA yearbook will further increase with these changes just in time for its 25th anniversary in 2016. PMID:24853037

  10. Small turbines, big unknown

    SciTech Connect

    Gipe, P.

    1995-07-01

    While financial markets focus on the wheeling and dealing of the big wind companies, the small wind turbine industry quietly keeps churning out its smaller but effective machines. Some, the micro turbines, are so small they can be carried by hand. Though worldwide sales of small wind turbines fall far short of even one large windpower plant, figures reach $8 million to $10 million annually and could be as much as twice that if batteries and engineering services are included.

  11. The Next Big Idea

    PubMed Central

    2013-01-01

    Abstract George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed. PMID:23786296

  12. Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Big Bear Solar Observatory (BBSO) is located at the end of a causeway in a mountain lake more than 2 km above sea level. The site has more than 300 sunny days a year and a natural inversion caused by the lake which makes for very clean images. BBSO is the only university observatory in the US making high-resolution observations of the Sun. Its daily images are posted at http://www.bbso.njit.e...

  13. DARPA's Big Mechanism program.

    PubMed

    Cohen, Paul R

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers. PMID:26178259

  14. DARPA's Big Mechanism program

    NASA Astrophysics Data System (ADS)

    Cohen, Paul R.

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  15. A holographic big bang?

    NASA Astrophysics Data System (ADS)

    Afshordi, N.; Mann, R. B.; Pourhasan, R.

    2015-11-01

    We present a cosmological model in which the Universe emerges out of the collapse of a five-dimensional (5D) star as a spherical three-brane. The initial singularity of the big bang becomes hidden behind a causal horizon. Near scale-invariant primordial curvature perturbations can be induced on the brane via a thermal atmosphere that is in equilibrium with the brane, circumventing the need for a separate inflationary process and providing an important test of the model.

  16. Big Bang Circus

    NASA Astrophysics Data System (ADS)

    Ambrosini, C.

    2011-06-01

    Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…

  17. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  18. Big Data Technologies

    PubMed Central

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-01-01

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient’s care processes and of single patient’s behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, able to gather large amounts of real-time data, requires the implementation of distributed platforms for data analysis and decision support. Finally, the inclusion of geographical and environmental information into such complex IT systems may further increase the capability of interpreting the data gathered and extract new knowledge from them. This article reviews the main concepts and definitions related to big data, it presents some efforts in health care, and discusses the potential role of big data in diabetes care. Finally, as an example, it describes the research efforts carried on in the MOSAIC project, funded by the European Commission. PMID:25910540

  19. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  20. 6. SEAWARD VIEW OF BOAT LANDING CUT INTO ROCK, ALSO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SEAWARD VIEW OF BOAT LANDING CUT INTO ROCK, ALSO SHOWING CEMENT POURED ATOP TUNNEL. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA

  1. Bedrock erosion in the lower Big Wood River channel, southcentral Idaho

    SciTech Connect

    Maley, T.S.; Oberlindacher, P. )

    1993-04-01

    The Big Wood River, which is fed from the mountains to the north of the Snake River Plain, cuts through 0.8 m.y. old basalt in an area north and east of Shoshone, Idaho. The basalt channel carved by the Big Wood River exhibits remarkable and unusual bedrock erosional features. Approximately 10,000 years ago, nearby Black Butte shield volcano erupted basaltic lave which rerouted the Big Wood River. At the time the new river channel formed 10,000 years ago, alpine glaciers in the mountains were also beginning to melt. High flows of water from the melting glaciers during the next few thousand years carried large sediment loads and were instrumental in developing the spectacular potholes now found in the channel. Most of the scouring agents are pebbles and cobbles derived from quartzite, granitic, and gneissic rocks. As potholes began to develop, they were closely spaced and generally less than 1 m apart. However, as the potholes enlarged and expanded both horizontally and vertically, they coalesced with one another. The merging process occurred when the walls of two or more adjacent potholes were breached by the outward expansion of each pothole. The deeper of the two potholes captured the pebbles of the adjacent pothole. When pebbles are captured, pothole growth is terminated and the more shallow pothole was gradually cannibalized. All of the features within the channel are overprinted with a strong asymmetry caused by the current-driven pebbles against the upstream side of the features. Consequently, the upstream side of the features tends to be smooth, convex and rounded; whereas, the downstream side tends to be concave with the leading edge of the feature pointing in the downstream direction.

  2. The trashing of Big Green

    SciTech Connect

    Felten, E.

    1990-11-26

    The Big Green initiative on California's ballot lost by a margin of 2-to-1. Green measures lost in five other states, shocking ecology-minded groups. According to the postmortem by environmentalists, Big Green was a victim of poor timing and big spending by the opposition. Now its supporters plan to break up the bill and try to pass some provisions in the Legislature.

  3. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  4. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  5. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  6. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  7. The dropped big toe.

    PubMed

    Satku, K; Wee, J T; Kumar, V P; Ong, B; Pho, R W

    1992-03-01

    Surgical procedures for exposure of the upper third of the fibula have been known to cause weakness of the long extensor of the big toe post-operatively. The authors present three representative cases of surgically induced dropped big toe. From cadaveric dissection, an anatomic basis was found for this phenomenon. The tibialis anterior and extensor digitorum longus muscles have their origin at the proximal end of the leg and receive their first motor innervation from a branch that arises from the common peroneal or deep peroneal nerve at about the level of the neck of the fibula. However, the extensor hallucis longus muscle originates in the middle one-third of the leg and the nerves innervating this muscle run a long course in close proximity to the fibula for up to ten centimeters from a level below the neck of the fibula before entering the muscle. Surgical intervention in the proximal one-third of the fibula just distal to the origin of the first motor branch to the tibialis anterior and extensor digitorum longus muscles carries a risk of injury to the nerves innervating the extensor hallucis longus. PMID:1519891

  8. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  9. Institute for Rock Magnetism established

    NASA Astrophysics Data System (ADS)

    Banerjee, Subir K.

    There is a new focal point for cooperative research in advanced rock magnetism. The University of Minnesota in Minneapolis has established an Institute for Rock Magnetism (IRM) that will provide free access to modern equipment and encourage visiting fellows to focus on important topics in rock magnetism and related interdisciplinary research. Funding for the first three years has been secured from the National Science Foundation, the W.M. Keck Foundation, and the University of Minnesota.In the fall of 1986, the Geomagnetism and Paleomagnetism (GP) section of the AGU held a workshop at Asilomar, Calif., to pinpoint important and emerging research areas in paleomagnetism and rock magnetism, and the means by which to achieve them. In a report of this workshop published by the AGU in September 1987, two urgent needs were set forth. The first was for interdisciplinary research involving rock magnetism, and mineralogy, petrology, sedimentology, and the like. The second need was to ease the access of rock magnetists and paleomagnetists around the country to the latest equipment in modern magnetics technology, such as magneto-optics or electronoptics. Three years after the publication of the report, we announced the opening of these facilities at the GP section of the AGU Fall 1990 Meeting. A classified advertisement inviting applications for visiting fellowships was published in the January 22, 1991, issue of Eos.

  10. Big Sisters: An Experimental Evaluation.

    ERIC Educational Resources Information Center

    Seidl, Fredrick W.

    1982-01-01

    Assessed the effects of participation in a Big Sisters' Program. The first part consisted of interviews (N=20) with pairs of Big Sisters-Little Sisters. The second part evaluated program effectiveness experimentally. Findings indicated positive relationships between pairs, and improved behavior of experimental girls versus controls. (RC)

  11. Think Big, Bigger ... and Smaller

    ERIC Educational Resources Information Center

    Nisbett, Richard E.

    2010-01-01

    One important principle of social psychology, writes Nisbett, is that some big-seeming interventions have little or no effect. This article discusses a number of cases from the field of education that confirm this principle. For example, Head Start seems like a big intervention, but research has indicated that its effects on academic achievement…

  12. The International Big History Association

    ERIC Educational Resources Information Center

    Duffy, Michael; Duffy, D'Neil

    2013-01-01

    IBHA, the International Big History Association, was organized in 2010 and "promotes the unified, interdisciplinary study and teaching of history of the Cosmos, Earth, Life, and Humanity." This is the vision that Montessori embraced long before the discoveries of modern science fleshed out the story of the evolving universe. "Big History" is a…

  13. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  14. Whole Language Using Big Books.

    ERIC Educational Resources Information Center

    Whyte, Sarah

    Designed as thematic units around Wright Company Big Books, the lessons in this guide demonstrate ways that Big Books can be used in a whole language first grade program. Each lesson indicates skill focus, needed materials, procedures, and additional thoughts or suggestions about the lesson. Units consist of: "Bedtime" (five lessons); "Monsters…

  15. The Rise of Big Data in Neurorehabilitation.

    PubMed

    Faroqi-Shah, Yasmeen

    2016-02-01

    In some fields, Big Data has been instrumental in analyzing, predicting, and influencing human behavior. However, Big Data approaches have so far been less central in speech-language pathology. This article introduces the concept of Big Data and provides examples of Big Data initiatives pertaining to adult neurorehabilitation. It also discusses the potential theoretical and clinical contributions that Big Data can make. The article also recognizes some impediments in building and using Big Data for scientific and clinical inquiry. PMID:26882360

  16. Big-bounce genesis

    NASA Astrophysics Data System (ADS)

    Li, Changhong; Brandenberger, Robert H.; Cheung, Yeuk-Kwan E.

    2014-12-01

    We report on the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a big bounce at the early stage in the evolution of our currently observed universe. A model independent study of dark matter production in the pre-bounce contraction and the post-bounce expansion epochs of the bounce universe reveals a new venue for achieving the observed relic abundance of our present universe, in which a significantly smaller amount of dark matter with a smaller cross section—as compared to the prediction of standard cosmology—is produced and the information about the bounce universe evolution is preserved by the out-of-thermal-equilibrium process. Once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario.

  17. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population. PMID:16124868

  18. Big bang and big crunch in matrix string theory

    SciTech Connect

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-04-15

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.

  19. Big bang and big crunch in matrix string theory

    NASA Astrophysics Data System (ADS)

    Bedford, J.; Papageorgakis, C.; Rodríguez-Gómez, D.; Ward, J.

    2007-04-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.

  20. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  1. Inference of fitness values and putative appearance time points for evolvable self-replicating molecules from time series of occurrence frequencies in an evolution reactor.

    PubMed

    Aita, Takuyo; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-07-21

    We have established a translation-coupled RNA replication system within a cell-like compartment, and conducted an experimental evolution of the RNA molecules in the system. Then, we obtained a time series of occurrence frequencies of 91 individual genotypes through random sampling and next-generation sequencing. The time series showed a complex clonal interference and a polymorphic population called the "quasispecies". By fitting a deterministic kinetic model of evolvable simple self-replicators to the time series, we estimated the fitness value and "putative appearance time point" for each of the 91 major genotypes identified, where the putative appearance time point is defined as a certain time point at which a certain mutant genotype is supposed to appear in the deterministic kinetic model. As a result, the kinetic model was well fitted and additionally we confirmed that the estimated fitness values for 11 genotypes were considerably close to the experimentally measured ones (Ichihashi et al., 2015). In this sequel paper, with the theoretical basis of the deterministic kinetic model, we present the details of inference of the fitness values and putative appearance time points for the 91 genotypes. It may be possible to apply this methodology to other self-replicating molecules, viruses and bacteria. PMID:27091052

  2. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  3. Homogeneous and isotropic big rips?

    SciTech Connect

    Giovannini, Massimo

    2005-10-15

    We investigate the way big rips are approached in a fully inhomogeneous description of the space-time geometry. If the pressure and energy densities are connected by a (supernegative) barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is approached. This behavior is contrasted with the usual big-bang singularities. A similar analysis is performed in the case of sudden (quiescent) singularities and it is argued that the spatial gradients may well be non-negligible in the vicinity of pressure singularities.

  4. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  5. Big Data and Ambulatory Care

    PubMed Central

    Thorpe, Jane Hyatt; Gray, Elizabeth Alexandra

    2015-01-01

    Big data is heralded as having the potential to revolutionize health care by making large amounts of data available to support care delivery, population health, and patient engagement. Critics argue that big data's transformative potential is inhibited by privacy requirements that restrict health information exchange. However, there are a variety of permissible activities involving use and disclosure of patient information that support care delivery and management. This article presents an overview of the legal framework governing health information, dispels misconceptions about privacy regulations, and highlights how ambulatory care providers in particular can maximize the utility of big data to improve care. PMID:25401945

  6. The challenges of big data.

    PubMed

    Mardis, Elaine R

    2016-05-01

    The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  7. Rate Change Big Bang Theory

    NASA Astrophysics Data System (ADS)

    Strickland, Ken

    2013-04-01

    The Rate Change Big Bang Theory redefines the birth of the universe with a dramatic shift in energy direction and a new vision of the first moments. With rate change graph technology (RCGT) we can look back 13.7 billion years and experience every step of the big bang through geometrical intersection technology. The analysis of the Big Bang includes a visualization of the first objects, their properties, the astounding event that created space and time as well as a solution to the mystery of anti-matter.

  8. Big climate data analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred

    2015-04-01

    The Big Data era has begun also in the climate sciences, not only in economics or molecular biology. We measure climate at increasing spatial resolution by means of satellites and look farther back in time at increasing temporal resolution by means of natural archives and proxy data. We use powerful supercomputers to run climate models. The model output of the calculations made for the IPCC's Fifth Assessment Report amounts to ~650 TB. The 'scientific evolution' of grid computing has started, and the 'scientific revolution' of quantum computing is being prepared. This will increase computing power, and data amount, by several orders of magnitude in the future. However, more data does not automatically mean more knowledge. We need statisticians, who are at the core of transforming data into knowledge. Statisticians notably also explore the limits of our knowledge (uncertainties, that is, confidence intervals and P-values). Mudelsee (2014 Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, xxxii + 454 pp.) coined the term 'optimal estimation'. Consider the hyperspace of climate estimation. It has many, but not infinite, dimensions. It consists of the three subspaces Monte Carlo design, method and measure. The Monte Carlo design describes the data generating process. The method subspace describes the estimation and confidence interval construction. The measure subspace describes how to detect the optimal estimation method for the Monte Carlo experiment. The envisaged large increase in computing power may bring the following idea of optimal climate estimation into existence. Given a data sample, some prior information (e.g. measurement standard errors) and a set of questions (parameters to be estimated), the first task is simple: perform an initial estimation on basis of existing knowledge and experience with such types of estimation problems. The second task requires the computing power: explore the hyperspace to

  9. Big bang darkleosynthesis

    NASA Astrophysics Data System (ADS)

    Krnjaic, Gordan; Sigurdson, Kris

    2015-12-01

    In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis, a dark-sector version of big-bang nucleosynthesis (BBN), in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD, which generically yields large (≫MeV /dark-nucleon) binding energies. These bounds further suggest the mediator is relatively weakly coupled, so repulsive forces between dark-sector nuclei are much weaker than Coulomb repulsion between standard-model nuclei, which results in an exponential barrier-tunneling enhancement over standard BBN. Thus, darklei are easier to make and harder to break than visible species with comparable mass numbers. This process can efficiently yield a dominant population of states with masses significantly greater than the confinement scale and, in contrast to dark matter that is a fundamental particle, may allow the dominant form of dark matter to have high spin (S ≫ 3 / 2), whose discovery would be smoking gun evidence for dark nuclei.

  10. Big Spherules near 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This frame from the microscopic imager on NASA's Mars Exploration Rover Opportunity shows spherules up to about 5 millimeters (one-fifth of an inch) in diameter. The camera took this image during the 924th Martian day, or sol, of Opportunity's Mars-surface mission (Aug. 30, 2006), when the rover was about 200 meters (650 feet) north of 'Victoria Crater.'

    Opportunity discovered spherules like these, nicknamed 'blueberries,' at its landing site in 'Eagle Crater,' and investigations determined them to be iron-rich concretions that formed inside deposits soaked with groundwater. However, such concretions were much smaller or absent at the ground surface along much of the rover's trek of more than 5 kilometers (3 miles) southward to Victoria. The big ones showed up again when Opportunity got to the ring, or annulus, of material excavated and thrown outward by the impact that created Victoria Crater. Researchers hypothesize that some layer beneath the surface in Victoria's vicinity was once soaked with water long enough to form the concretions, that the crater-forming impact dispersed some material from that layer, and that Opportunity might encounter that layer in place if the rover drives down into the crater.

  11. The BigBOSS Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  12. My Big Wall

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.

    2002-01-01

    It was June and I was in Yosemite National Park in California, 2,000-feet off the ground. I was climbing El Capitan, a majestic 3,000-foot high, mile-wide granite monolith--one of the most sought after and spectacular rock climbs in the world. After three days of climbing on its sheer face, and having completed the most difficult part of the route, my partner and I were heading down. A thunderstorm lasting all night and into the morning had soaked our tiny perch and all our worldly possessions. We began rappelling down the vertical wall by sliding to the ends of two 50meter ropes tied together and looped through a set of fixed rings bolted into the rock. At the end of the ropes was another rappel station consisting of a set of rings, placed by previous climbers for retreating parties, which we used to anchor ourselves to the rock face. We then pulled the ropes down from the rings above, threaded the ones in front of our noses and started down another rope length. Everything we brought up for our five-day climb to the summit we had to bring back down with us: ropes, climbing gear of every sort, sleeping bags, extra clothes, food, water, and other essentials. All this we either stuffed into a haul bag (an oversized reinforced duffel bag) or slung over our shoulders. The retreat was slow and methodical, akin to a train backing down a mountain, giving me ample time to think. My situation made me think about my work, mostly, about all the projects I have managed, or been involved in managing. As a NASA project manager, I have worked on a number of successful projects. I have also been involved in a number of projects I never saw the end of. I thought about all the projects I transferred off of for other opportunities, projects that were in full stride and ran out of funding, and ones put on the shelf because they would not meet a flight date. Oh yes, I have had many success, to be sure, or I would have burned out years ago. Lessons from both the successful and not

  13. Relevance of Computational Rock Physics

    NASA Astrophysics Data System (ADS)

    Dvorkin, J. P.

    2014-12-01

    The advent of computational rock physics has brought to light the often ignored question: How applicable are controlled-experiment data acquired at one scale to interpreting measurements obtained at a different scale? An answer is not to use a single data point or even a few data points but rather find a trend that links two or more rock properties to each other in a selected rock type. In the physical laboratory, these trends are generated by measuring a significant number of samples. In contrast, in the computational laboratory, these trends are hidden inside a very small digital sample and can be derived by subsampling it. Often, the internal heterogeneity of measurable properties inside a small sample mimics the large-scale heterogeneity, making the tend applicable in a range of scales. Computational rock physics is uniquely tooled for finding such trends: Although it is virtually impossible to subsample a physical sample and consistently conduct the same laboratory experiments on each of the subsamples, it is straightforward to accomplish this task in the computer.

  14. Big bang nucleosynthesis: Present status

    NASA Astrophysics Data System (ADS)

    Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han

    2016-01-01

    Big bang nucleosynthesis (BBN) describes the production of the lightest nuclides via a dynamic interplay among the four fundamental forces during the first seconds of cosmic time. A brief overview of the essentials of this physics is given, and new calculations presented of light-element abundances through 6Li and 7Li, with updated nuclear reactions and uncertainties including those in the neutron lifetime. Fits are provided for these results as a function of baryon density and of the number of neutrino flavors Nν. Recent developments are reviewed in BBN, particularly new, precision Planck cosmic microwave background (CMB) measurements that now probe the baryon density, helium content, and the effective number of degrees of freedom Neff. These measurements allow for a tight test of BBN and cosmology using CMB data alone. Our likelihood analysis convolves the 2015 Planck data chains with our BBN output and observational data. Adding astronomical measurements of light elements strengthens the power of BBN. A new determination of the primordial helium abundance is included in our likelihood analysis. New D/H observations are now more precise than the corresponding theoretical predictions and are consistent with the standard model and the Planck baryon density. Moreover, D/H now provides a tight measurement of Nν when combined with the CMB baryon density and provides a 2 σ upper limit Nν<3.2 . The new precision of the CMB and D/H observations together leaves D/H predictions as the largest source of uncertainties. Future improvement in BBN calculations will therefore rely on improved nuclear cross-section data. In contrast with D/H and 4He, 7Li predictions continue to disagree with observations, perhaps pointing to new physics. This paper concludes with a look at future directions including key nuclear reactions, astronomical observations, and theoretical issues.

  15. Genericness of a big bounce in isotropic loop quantum cosmology.

    PubMed

    Date, Ghanashyam; Hossain, Golam Mortuza

    2005-01-14

    The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the Universe exhibiting a big bounce. We show that with a scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and the details of scalar field dynamics. The volume of the Universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cutoff for computations of density perturbations thereby influencing their amplitudes. PMID:15698060

  16. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-01

    soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership

  17. Survey: Translational Bioinformatics embraces Big Data

    PubMed Central

    Shah, Nigam H.

    2015-01-01

    Summary We review the latest trends and major developments in translational bioinformatics in the year 2011–2012. Our emphasis is on highlighting the key events in the field and pointing at promising research areas for the future. The key take-home points are: Translational informatics is ready to revolutionize human health and healthcare using large-scale measurements on individuals.Data–centric approaches that compute on massive amounts of data (often called “Big Data”) to discover patterns and to make clinically relevant predictions will gain adoption.Research that bridges the latest multimodal measurement technologies with large amounts of electronic healthcare data is increasing; and is where new breakthroughs will occur. PMID:22890354

  18. Results of new petrologic and remote sensing studies in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Benker, Stevan Christian

    The initial section of this manuscript involves the South Rim Formation, a series of 32.2-32 Ma comenditic quartz trachytic-rhyolitic volcanics and associated intrusives, erupted and was emplaced in Big Bend National Park, Texas. Magmatic parameters have only been interpreted for one of the two diverse petrogenetic suites comprising this formation. Here, new mineralogic data for the South Rim Formation rocks are presented. Magmatic parameters interpreted from these data assist in deciphering lithospheric characteristics during the mid-Tertiary. Results indicate low temperatures (< 750 °C), reduced conditions (generally below the FMQ buffer), and low pressures (≤ 100 MPa) associated with South Rim Formation magmatism with slight conditional differences between the two suites. Newly discovered fayalite microphenocrysts allowed determination of oxygen fugacity values (between -0.14 and -0.25 DeltaFMQ over temperature ranges of 680-700 °C), via mineral equilibria based QUILF95 calculations, for Emory Peak Suite. Petrologic information is correlated with structural evidence from Trans-Pecos Texas and adjacent regions to evaluate debated timing of tectonic transition (Laramide compression to Basin and Range extension) and onset of the southern Rio Grande Rift during the mid-Tertiary. The A-type and peralkaline characteristics of the South Rim Formation and other pre-31 Ma magmatism in Trans-Pecos Texas, in addition to evidence implying earlier Rio Grande Rift onset in Colorado and New Mexico, promotes a near-neutral to transtensional setting in Trans-Pecos Texas by 32 Ma. This idea sharply contrasts with interpretations of tectonic compression and arc-related magmatism until 31 Ma as suggested by some authors. However, evidence discussed cannot preclude a pre-36 Ma proposed by other authors. The later section of this manuscript involves research in the Big Bend area using Google Earth. At present there is high interest in using Google Earth in a variety of scientific

  19. Numerical analysis of the big bounce in loop quantum cosmology

    SciTech Connect

    Laguna, Pablo

    2007-01-15

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity.

  20. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  1. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  2. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  3. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  4. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  7. Big data for bipolar disorder.

    PubMed

    Monteith, Scott; Glenn, Tasha; Geddes, John; Whybrow, Peter C; Bauer, Michael

    2016-12-01

    The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, population health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many technical challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active participation of psychiatrists is needed throughout the analytical process. PMID:27068058

  8. [Big data in official statistics].

    PubMed

    Zwick, Markus

    2015-08-01

    The concept of "big data" stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany. PMID:26077871

  9. GEOSS: Addressing Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  10. 18. SOUTHERNMOST ARCH TOP AND BUTTRESS, AT TURNING POINT WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SOUTHERNMOST ARCH TOP AND BUTTRESS, AT TURNING POINT WHERE THE EARTHEN EMBANKMENT MEETS THE CONCRETE ARCH DAM. VIEW TO SOUTHWEST. - Rock Creek Dam, East end of Rock Creek Road, Auburn, Placer County, CA

  11. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  12. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. Big Dust Devils

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 January 2004 Northern Amazonis Planitia is famous for its frequent, large (> 1 km high) dust devils. They occur throughout the spring and summer seasons, and can be detected from orbit, even at the 240 meters (278 yards) per pixel resolution of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle instruments. This red wide angle image shows a plethora of large dust devils. The arrow points to an example. Shadows cast by the towering columns of swirling dust point away from the direction of sunlight illumination (sun is coming from the left/lower left). This December 2004 scene covers an area more than 125 km (> 78 mi) across and is located near 37oN, 154oW.

  14. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of

  15. BIG FROG WILDERNESS STUDY AREA AND ADDITIONS, TENNESSEE AND GEORGIA.

    USGS Publications Warehouse

    Slack, John F.; Gazdik, Gertrude C.

    1984-01-01

    A mineral-resource survey was made of the Big Frog Wilderness Study Area and additions, Tennessee-Georgia. Geochemical sampling found traces of gold, zinc, copper, and arsenic in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of deposits of these metals. The results of the survey indicate that there is little promise for the occurrence of metallic mineral deposits within the study area. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. A potential may exist for oil and natural gas at great depths, but this cannot be evaluated by the present study.

  16. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Navidi, Fatemeh; Beard, Daniel A.; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  17. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  18. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade. PMID:26151137

  19. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  20. [Big Data- challenges and risks].

    PubMed

    Krauß, Manuela; Tóth, Tamás; Hanika, Heinrich; Kozlovszky, Miklós; Dinya, Elek

    2015-12-01

    The term "Big Data" is commonly used to describe the growing mass of information being created recently. New conclusions can be drawn and new services can be developed by the connection, processing and analysis of these information. This affects all aspects of life, including health and medicine. The authors review the application areas of Big Data, and present examples from health and other areas. However, there are several preconditions of the effective use of the opportunities: proper infrastructure, well defined regulatory environment with particular emphasis on data protection and privacy. These issues and the current actions for solution are also presented. PMID:26614539

  1. Microcracks in lunar rocks

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1979-01-01

    Lunar samples contain abundant open microcracks that have closure characteristics completely unlike any shocked terrestrial rock; however, the microcracks present in the lunar rocks before the rocks reached the surface of the moon were likely similar to the microcracks in the shocked terrestrial rocks. Because the microcracks present in the lunar rocks in situ inside the moon were different, radically different, from the microcracks present today in returned lunar samples, any property that is sensitive to microcracks measured on the returned lunar samples is inappropriate for predicting that property as a function of depth in the moon. Therefore, many data that have been measured already on lunar samples simply do not apply to rocks in situ inside the moon. A plausible mechanism with which to account for the difference in microcrack characteristics of lunar samples on the surface of the moon and the microcrack characteristics of lunar rock in situ inside the moon is thermal cycling during residence on the moon's surface.

  2. Little Science to Big Science: Big Scientists to Little Scientists?

    ERIC Educational Resources Information Center

    Simonton, Dean Keith

    2010-01-01

    This article presents the author's response to Hisham B. Ghassib's essay entitled "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?" Professor Ghassib's (2010) essay presents a provocative portrait of how the little science of the Babylonians, Greeks, and Arabs became the Big Science of the modern industrial…

  3. [Algorithms, machine intelligence, big data : general considerations].

    PubMed

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges. PMID:26141245

  4. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  5. Tick-Borne Diseases: The Big Two

    MedlinePlus

    ... Feature: Ticks and Diseases Tick-borne Diseases: The Big Two Past Issues / Spring - Summer 2010 Table of ... to Remove a Tick / Tick-borne Diseases: The Big Two Spring / Summer 2010 Issue: Volume 5 Number ...

  6. Do Big Bottles Kickstart Infant Weight Issues?

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159241.html Do Big Bottles Kickstart Infant Weight Issues? Smaller baby bottles ... 2016 (HealthDay News) -- Feeding babies formula from a big bottle might put them at higher risk for ...

  7. Big Explosives Experimental Facility - BEEF

    SciTech Connect

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  8. The Case for "Big History."

    ERIC Educational Resources Information Center

    Christian, David

    1991-01-01

    Urges an approach to the teaching of history that takes the largest possible perspective, crossing time as well as space. Discusses the problems and advantages of such an approach. Describes a course on "big" history that begins with time, creation myths, and astronomy, and moves on to paleontology and evolution. (DK)

  9. Fossils of big bang turbulence

    NASA Astrophysics Data System (ADS)

    Gibson, C. H.

    2004-12-01

    A model is proposed connecting turbulence, fossil turbulence, and the big bang origin of the universe. While details are incomplete, the model is consistent with our knowledge of these processes and is supported by observations. Turbulence arises in a hot-big-bang quantum-gravitational-dynamics scenario at Planck scales. Chaotic, eddy-like-motions produce an exothermic Planck particle cascade from 10-35 m at 1032 K to 108 larger, 104 cooler, quark-gluon scales. A Planck-Kerr instability gives high-Reynolds-number (Re 106) turbulent combustion, space-time-energy-entropy and turbulent mixing. Batchelor-Obukhov-Corrsin turbulent-temperature fluctuations are preserved as the first fossil-turbulence by inflation stretching the patterns beyond the horizon ct of causal connection faster than light speed c in time t 10-33 seconds. Fossil-big-bang-temperature-turbulence re-enters the horizon and imprints nucleosynthesis of H-He densities that seed fragmentation by gravity at 1012 s in the low Reynolds number plasma before its transition to gas at t 1013 s and T 3000 K. Multi-scaling coefficients of the cosmic-microwave-background (CMB) temperature anisotropies closely match those for high Reynolds number turbulence, Bershadskii and Sreenivasan 2002, 2003. CMB spectra support the interpretation that big-bang-turbulence-fossils triggered fragmentation of the viscous plasma at supercluster to galaxy mass scales from 1046 to 1042 kg, Gibson 1996, 2000, 2004ab.

  10. Big6 Turbotools and Synthesis

    ERIC Educational Resources Information Center

    Tooley, Melinda

    2005-01-01

    The different tools that are helpful during the Synthesis stage, their role in boosting students abilities in Synthesis and the way in which it can be customized to meet the needs of each group of students are discussed. Big6 TurboTools offers several tools to help complete the task. In Synthesis stage, these same tools along with Turbo Report and…

  11. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2015-01-07

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  12. 1976 Big Thompson flood, Colorado

    USGS Publications Warehouse

    Jarrett, R. D., (compiler); Vandas, S.J.

    2006-01-01

    In the early evening of July 31, 1976, a large stationary thunderstorm released as much as 7.5 inches of rainfall in about an hour (about 12 inches in a few hours) in the upper reaches of the Big Thompson River drainage. This large amount of rainfall in such a short period of time produced a flash flood that caught residents and tourists by surprise. The immense volume of water that churned down the narrow Big Thompson Canyon scoured the river channel and destroyed everything in its path, including 418 homes, 52 businesses, numerous bridges, paved and unpaved roads, power and telephone lines, and many other structures. The tragedy claimed the lives of 144 people. Scores of other people narrowly escaped with their lives. The Big Thompson flood ranks among the deadliest of Colorado's recorded floods. It is one of several destructive floods in the United States that has shown the necessity of conducting research to determine the causes and effects of floods. The U.S. Geological Survey (USGS) conducts research and operates a Nationwide streamgage network to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson Flood. Such research and streamgage information are part of an ongoing USGS effort to reduce flood hazards and to increase public awareness.

  13. China: Big Changes Coming Soon

    ERIC Educational Resources Information Center

    Rowen, Henry S.

    2011-01-01

    Big changes are ahead for China, probably abrupt ones. The economy has grown so rapidly for many years, over 30 years at an average of nine percent a year, that its size makes it a major player in trade and finance and increasingly in political and military matters. This growth is not only of great importance internationally, it is already having…

  14. Hydrocarbon maturation in Laramide basins - constraints from evolution of northern Big Horn basin, Wyoming and Montana

    SciTech Connect

    Hagen, E.S.; Furlong, K.P.; Surdam, R.C.

    1984-04-01

    Thermal and mechanical models were used to quantify the effects of Laramide uplifts and subsequent synorogenic deposition on the hydrocarbon maturation of Cretaceous source rocks in the Big Horn basin. Laramide deformation and resultant sedimentation has clearly affected hydrocarbon maturation of Cretaceous source rocks. (Thermopolis, Mowry, Frontier, Cody). Modified Lopatin-type reconstructions suggest that a significant region containing Cretaceous source rocks has been within the liquid hydrocarbon window. The earliest onset of hydrocarbon maturation in the northern Big Horn basin was latest Eocene, with some regions still containing immature Cretaceous source rocks as a consequence of Cenozoic erosion, uplift of the Pryor Mountains, and lack of burial. Regional geologic features indicate that the basin formed as a result of flexural compensation of an elastic lithosphere during emplacement of the Beartooth and Pryor Mountains, and possibly the Absaroka volcanics. This was determined by 2-dimensional models which predict sediment thickness caused by tectonic loading and subsequent sedimentation. Flexural rigidities of 10/sup 2/2exclamation-10/sup 22/ newton-meters adequately explain flexural subsidence in the northern Big Horn basin. The present basin configuration also was compared with a theoretical profile based on geologic constraints. Subsidence models for the present basin profile suggest the Paleocene thrusting of the Beartooth block contributes a majority of the tectonic loading and that Cenozoic erosion has drastically affected the resultant sedimentary sequence (Fort Union and Wasatch). These models, along with stratigraphic reconstructions, can be combined to pinpoint areas of potential hydrocarbon maturation within Laramide-type basins.

  15. The BigBoss Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

    2012-06-07

    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.

  16. 77 FR 27245 - Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... Fish and Wildlife Service Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN... comprehensive conservation plan (CCP) and environmental assessment (EA) for Big Stone National Wildlife Refuge...: r3planning@fws.gov . Include ``Big Stone Draft CCP/ EA'' in the subject line of the message. Fax:...

  17. The Big Bang, Genesis, and Knocking on Heaven's Door

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2012-03-01

    Michael Shermer recently upped the ante in the big bang-Genesis controversy by citing Lisa Randall's provocative claim (Science 334, 762 (2011)) that ``it is inconceivable that God could continue to intervene without introducing a material trace of his actions.'' So does Randall's and Shermer's agreement that no such evidence exists disprove God's existence? Not in my view because my 1970s Science, Nature and ARNS publications, and my article in the 1982 AAAS Western Division's Symposium Proceedings, Evolution Confronts Creation, all contain validation of God's existence via discovery of His Fingerprints of Creation and falsification of the big bang and geological evolution. These results came to wide public/scientific attention in my testimony at the 1981 Arkansas creation/evolution trial. There ACLU witness G Brent Dalrymple from the USGS -- and 2005 Medal of Science recipient from President Bush -- admitted I had discovered a tiny mystery (primordial polonium radiohalos) in granite rocks that indicated their almost instant creation. As a follow-up in 1992 and 1995 he sent out SOS letters to the entire AGU membership that the polonium halo evidence for fiat creation still existed and that someone needed to urgently find a naturalistic explanation for them. Is the physics community guilty of a Watergate-type cover-up of this discovery of God's existence and falsification of the big bang? For the answer see www.halos.tv.

  18. Big Data: Implications for Health System Pharmacy.

    PubMed

    Stokes, Laura B; Rogers, Joseph W; Hertig, John B; Weber, Robert J

    2016-07-01

    Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services. PMID:27559194

  19. A survey of big data research

    PubMed Central

    Fang, Hua; Zhang, Zhaoyang; Wang, Chanpaul Jin; Daneshmand, Mahmoud; Wang, Chonggang; Wang, Honggang

    2015-01-01

    Big data create values for business and research, but pose significant challenges in terms of networking, storage, management, analytics and ethics. Multidisciplinary collaborations from engineers, computer scientists, statisticians and social scientists are needed to tackle, discover and understand big data. This survey presents an overview of big data initiatives, technologies and research in industries and academia, and discusses challenges and potential solutions. PMID:26504265

  20. Big Sagebrush Seed Bank Densities Following Wildfires

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia sp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires wildfires and big sagebrush seed is generally sho...

  1. Big City Education: Its Challenge to Governance.

    ERIC Educational Resources Information Center

    Haskew, Laurence D.

    This chapter traces the migration from farms to cities and the later movement from cities to suburbs and discusses the impact of the resulting big city environment on the governance of big city education. The author (1) suggests how local, State, and Federal governments can improve big city education; (2) discusses ways of planning for the future…

  2. A SWOT Analysis of Big Data

    ERIC Educational Resources Information Center

    Ahmadi, Mohammad; Dileepan, Parthasarati; Wheatley, Kathleen K.

    2016-01-01

    This is the decade of data analytics and big data, but not everyone agrees with the definition of big data. Some researchers see it as the future of data analysis, while others consider it as hype and foresee its demise in the near future. No matter how it is defined, big data for the time being is having its glory moment. The most important…

  3. Judging Big Deals: Challenges, Outcomes, and Advice

    ERIC Educational Resources Information Center

    Glasser, Sarah

    2013-01-01

    This article reports the results of an analysis of five Big Deal electronic journal packages to which Hofstra University's Axinn Library subscribes. COUNTER usage reports were used to judge the value of each Big Deal. Limitations of usage statistics are also discussed. In the end, the author concludes that four of the five Big Deals are good…

  4. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  5. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  6. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  7. The Rock Physics Handbook

    NASA Astrophysics Data System (ADS)

    Mavko, Gary; Mukerji, Tapan; Dvorkin, Jack

    2003-10-01

    The Rock Physics Handbook conveniently brings together the theoretical and empirical relations that form the foundations of rock physics, with particular emphasis on seismic properties. It also includes commonly used models and relations for electrical and dielectric rock properties. Seventy-six articles concisely summarize a wide range of topics, including wave propagation, AVO-AVOZ, effective media, poroelasticity, pore fluid flow and diffusion. The book contains overviews of dispersion mechanisms, fluid substitution, and Vp-Vs relations. Useful empirical results on reservoir rocks and sediments, granular media, tables of mineral data, and an atlas of reservoir rock properties complete the text. This distillation of an otherwise scattered and eclectic mass of knowledge is presented in a form that can be immediately applied to solve real problems. Geophysics professionals, researchers and students as well as petroleum engineers, well log analysts, and environmental geoscientists will value The Rock Physics Handbook as a unique resource.

  8. Kasner solutions, climbing scalars and big-bang singularity

    SciTech Connect

    Condeescu, Cezar; Dudas, Emilian E-mail: emilian.dudas@cpht.polytechnique.fr

    2013-08-01

    We elaborate on a recently discovered phenomenon where a scalar field close to big-bang is forced to climb a steep potential by its dynamics. We analyze the phenomenon in more general terms by writing the leading order equations of motion near the singularity. We formulate the conditions for climbing to exist in the case of several scalars and after inclusion of higher-derivative corrections and we apply our results to some models of moduli stabilization. We analyze an example with steep stabilizing potential and notice again a related critical behavior: for a potential steepness above a critical value, going backwards towards big-bang, the scalar undergoes wilder oscillations, with the steep potential pushing it back at every passage and not allowing the scalar to escape to infinity. Whereas it was pointed out earlier that there are possible implications of the climbing phase to CMB, we point out here another potential application, to the issue of initial conditions in inflation.

  9. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  10. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  11. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  12. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  13. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    SciTech Connect

    2009-10-13

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  14. Solution of a braneworld big crunch/big bang cosmology

    SciTech Connect

    McFadden, Paul L.; Turok, Neil; Steinhardt, Paul J.

    2007-11-15

    We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-dimensional description fails at the first nontrivial order in (V/c){sup 2}. At this order, there is nontrivial mixing of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the boundary branes move from the narrowly separated limit described by Kaluza-Klein theory to the well-separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological significance of the result and compute other quantities of interest in five-dimensional cosmological scenarios.

  15. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    ScienceCinema

    None

    2011-04-25

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  16. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  17. Big Data in Medicine is Driving Big Changes

    PubMed Central

    Verspoor, K.

    2014-01-01

    Summary Objectives To summarise current research that takes advantage of “Big Data” in health and biomedical informatics applications. Methods Survey of trends in this work, and exploration of literature describing how large-scale structured and unstructured data sources are being used to support applications from clinical decision making and health policy, to drug design and pharmacovigilance, and further to systems biology and genetics. Results The survey highlights ongoing development of powerful new methods for turning that large-scale, and often complex, data into information that provides new insights into human health, in a range of different areas. Consideration of this body of work identifies several important paradigm shifts that are facilitated by Big Data resources and methods: in clinical and translational research, from hypothesis-driven research to data-driven research, and in medicine, from evidence-based practice to practice-based evidence. Conclusions The increasing scale and availability of large quantities of health data require strategies for data management, data linkage, and data integration beyond the limits of many existing information systems, and substantial effort is underway to meet those needs. As our ability to make sense of that data improves, the value of the data will continue to increase. Health systems, genetics and genomics, population and public health; all areas of biomedicine stand to benefit from Big Data and the associated technologies. PMID:25123716

  18. Similar quartz crystallographic textures in rocks of continental earth's crust (by neutron diffraction data): I. Quartz textures in monomineral rocks

    NASA Astrophysics Data System (ADS)

    Nikitin, A. N.; Ivankina, T. I.; Ullemeyer, K.; Vasin, R. N.

    2008-09-01

    Quartz crystallographic textures in different rocks have been investigated by neutron diffraction. Various types of crystallographic textures of quartz-bearing mineral associations in monomineral and multiphase rocks from a representative collection of samples have been revealed and classified. Experimental investigations have been performed on special neutron texture diffractometers designed at the Frank Laboratory of Neutron Physics and mounted in the seventh channel of the IBR-2 reactor at the Joint Institute for Nuclear Research (Dubna).

  19. Similar quartz crystallographic textures in rocks of continental earth's crust (by neutron diffraction data): I. Quartz textures in monomineral rocks

    SciTech Connect

    Nikitin, A. N. Ivankina, T. I.; Ullemeyer, K.; Vasin, R. N.

    2008-09-15

    Quartz crystallographic textures in different rocks have been investigated by neutron diffraction. Various types of crystallographic textures of quartz-bearing mineral associations in monomineral and multiphase rocks from a representative collection of samples have been revealed and classified. Experimental investigations have been performed on special neutron texture diffractometers designed at the Frank Laboratory of Neutron Physics and mounted in the seventh channel of the IBR-2 reactor at the Joint Institute for Nuclear Research (Dubna).

  20. 78 FR 20544 - Proposed Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... to establish the Red Hills Lake County viticultural area (October 30, 2002, 67 FR 66083). The...-slip'' movement of tectonic plates along the San Andreas Fault warped the layers of rock on the lake... to rise above the surface. When the Big Valley landmass rose, it brought with it the sedimentary...

  1. Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology

    NASA Astrophysics Data System (ADS)

    Manin, Yuri I.; Marcolli, Matilde

    2014-07-01

    We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point x. This creates a boundary which consists of the projective space of tangent directions to x and possibly of the light cone of x. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from ''the end of previous aeon'' of the expanding and cooling Universe to the ''beginning of the next aeon'' is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.

  2. Big data and ophthalmic research.

    PubMed

    Clark, Antony; Ng, Jonathon Q; Morlet, Nigel; Semmens, James B

    2016-01-01

    Large population-based health administrative databases, clinical registries, and data linkage systems are a rapidly expanding resource for health research. Ophthalmic research has benefited from the use of these databases in expanding the breadth of knowledge in areas such as disease surveillance, disease etiology, health services utilization, and health outcomes. Furthermore, the quantity of data available for research has increased exponentially in recent times, particularly as e-health initiatives come online in health systems across the globe. We review some big data concepts, the databases and data linkage systems used in eye research-including their advantages and limitations, the types of studies previously undertaken, and the future direction for big data in eye research. PMID:26844660

  3. Big, Dark Dunes Northeast of Syrtis Major

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Big sand dunes! Mars is home to some very large, windblown dunes. The dunes shown here rise to almost 100 meters (275 feet) at their crests. Unlike dunes on Earth, the larger dunes of Mars are composed of dark, rather than light grains. This is probably related to the composition of the sand, since different materials will have different brightnesses. For example, beaches on the island of Oahu in Hawaii are light colored because they consist of ground-up particles of seashells, while beaches in the southern shores of the island of Hawaii (the 'Big Island' in the Hawaiian island chain) are dark because they consist of sand derived from dark lava rock.

    The dunes in this picture taken by the Mars Orbiter Camera (MOC) are located on the floor of an old, 72 km-(45 mi)-diameter crater located northeast of Syrtis Major. The sand is being blown from the upper right toward the lower left. The surface that the dunes have been travelling across is pitted and cratered. The substrate is also hard and bright--i.e., it is composed of a material of different composition than the sand in the dunes. The dark streaks on the dune surfaces area puzzle...at first glance one might conclude they are the result of holiday visitors with off-road vehicles. However, the streaks more likely result from passing dust devils or wind gusts that disturb the sand surface just enough to leave a streak. The image shown here covers an area approximately 2.6 km (1.6 mi) wide, and is illuminated from the lower right.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  4. Water resources of Big Horn County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Cassidy, E.W.; Smalley, M.L.

    1993-01-01

    Groundwater in unconsolidated aquifers is the most reliable and accessible source of potable water in Big Horn County, Wyoming. Well yields generally ranged from 25 to 200 gal/min; however, yields of 1600 gal/min are reported from wells in the gravel, pediment, and fan deposits. Bedrock aquifers that yield the most abundant water supplies are the Tensleep Sandstone, Madison Limestone, Bighorn Dolomite, and Flathead Sandstone. The Madison Limestone, the Darby Formation, and the Bighorn Dolomite form the Madison/Bighorn aquifer. Shut-in pressure from flowing wells in bedrock indicate declines, from the time the wells were completed to 1988, by as much as 390 ft. Water samples from wells completed,in unconsolidated aquifers had concentration of dissolved solids less than 2000 mg/L. Water samples from wells in aquifers in Paleozoic and Precambrian rocks had median concentrations of dissolved solids ranging from 111 to 275 mg/L. Perennial streams originate in the mountains and ephemeral streams originate in the Bighorn Basin. The predominant dissolved constituents are calcium or sodium and bicarbonate or sulfate. Concentrations of pesticides detected in surface-water samples were less than the U.S. Environmental Protection Agency (USEPA) maximum contaminant levels. Pesticides detected in groundwater samples included dicamba and picloram at a concentration of 0.40 microg/L, atrazines (0.40 microg/L), aldicarb sulfoxide (1.44 microg/L), aldicarb sulfoxide (0.52 microg/L), and malathion (0.02 microg/L). Analyses of groundwater samples for radionuclides indicated that concentrations from four municipal wells exceeded the maximum contaminant levels established by the USEPA. Surface water accounts for 96 percent and groundwater accounts for 4 percent of total off-stream water use in Big Horn County. Irrigation is the largest off-stream use of both surface and groundwater. Groundwater supplies 89 percent of water used for domestic purposes and about 16 percent of water used

  5. District Bets Big on Standards

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2013-01-01

    The big clock in Dowan McNair-Lee's 8th grade classroom in the Stuart-Hobson Middle School is silent, but she can hear the minutes ticking away nonetheless. On this day, like any other, the clock is a constant reminder of how little time she has to prepare her students--for spring tests, and for high school and all that lies beyond it. The…

  6. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  7. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  8. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  9. Big data: the management revolution.

    PubMed

    McAfee, Andrew; Brynjolfsson, Erik

    2012-10-01

    Big data, the authors write, is far more powerful than the analytics of the past. Executives can measure and therefore manage more precisely than ever before. They can make better predictions and smarter decisions. They can target more-effective interventions in areas that so far have been dominated by gut and intuition rather than by data and rigor. The differences between big data and analytics are a matter of volume, velocity, and variety: More data now cross the internet every second than were stored in the entire internet 20 years ago. Nearly real-time information makes it possible for a company to be much more agile than its competitors. And that information can come from social networks, images, sensors, the web, or other unstructured sources. The managerial challenges, however, are very real. Senior decision makers have to learn to ask the right questions and embrace evidence-based decision making. Organizations must hire scientists who can find patterns in very large data sets and translate them into useful business information. IT departments have to work hard to integrate all the relevant internal and external sources of data. The authors offer two success stories to illustrate how companies are using big data: PASSUR Aerospace enables airlines to match their actual and estimated arrival times. Sears Holdings directly analyzes its incoming store data to make promotions much more precise and faster. PMID:23074865

  10. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  11. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  12. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  13. [Sequential extraction experiments applied to study chemical mobility of fluorine in rocks].

    PubMed

    Xu, Li-Rong; Liang, Han-Dong; Luo, Kun-Li; Feng, Fu-Jian; Tan, Jian-An

    2006-11-01

    Sequential extraction experiments were used to study the chemical mobility of fluorine in rocks. The results show that there are quite big differences in chemical mobility of fluorine in rocks of different types. Fluorine in carbonate rock is very active, in which the proportion of leachable fluorine is generally more than 75%. Fluorine in black rocks of Lower Cambrian is closely related to their different metamorphosed grades, in which fluorine in black carbonaceous slate with higher metamorphosed grade mostly has lower leachability than black shale and black siliceous rock. Generally speaking, the leachable percentage of fluorine is high in phosphorite rocks and low in phyllite. The leachable fluorine in diabase is in direct proportion to its fluorine concentration. There are some differences in chemical mobility of fluorine in stone coal of different ages. Fluorine in stone coal of Silurian has higher leachability than stone coal of Cambrian. PMID:17326440

  14. 15. MILE ROCK TUNNEL INSPECTED, AUGUST 26, 1915, WITH MAYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MILE ROCK TUNNEL INSPECTED, AUGUST 26, 1915, WITH MAYOR ROLPH AND MEMBERS OF PUBLIC WORKS BOARD PRESENT. Department of Public Works, Map and Plan Room, photo #2546. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA

  15. Geochemical and petrographic data for intrusions peripheral to the Big Timber Stock, Crazy Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Van Gosen, Bradley S.

    2015-01-01

    The Paleocene Fort Union Formation hosts a compositionally diverse array of Eocene plugs, dikes, and sills arrayed around the Eocene Big Timber stock in the Crazy Mountains of south-central Montana. The geochemistry and petrography of the sills have not previously been characterized or interpreted. The purpose of this report is (1) to present available geochemical and petrographic data for several dozen samples of these rocks and (2) to provide a basic interpretive synthesis of these data.

  16. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  17. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  18. Turning big bang into big bounce. I. Classical dynamics

    SciTech Connect

    Dzierzak, Piotr; Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz

    2009-11-15

    The big bounce (BB) transition within a flat Friedmann-Robertson-Walker model is analyzed in the setting of loop geometry underlying the loop cosmology. We solve the constraint of the theory at the classical level to identify physical phase space and find the Lie algebra of the Dirac observables. We express energy density of matter and geometrical functions in terms of the observables. It is the modification of classical theory by the loop geometry that is responsible for BB. The classical energy scale specific to BB depends on a parameter that should be fixed either by cosmological data or determined theoretically at quantum level, otherwise the energy scale stays unknown.

  19. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  20. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  1. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  2. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  3. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  4. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  5. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  6. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  7. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  8. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  9. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  10. Native perennial forb variation between mountain big sagebrush and Wyoming big sagebrush plant communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush (A. tridentata spp. vaseyana (Rydb....

  11. Big.

    ERIC Educational Resources Information Center

    Everhart, Nancy; Everhart, Harry

    2000-01-01

    Presents information on the different types of data projectors, to help librarians make a smart selection for their library. Describes multimedia projectors; document cameras; large-screen televisions, monitors, and flat panels; electronic whiteboards, and identifies uses, manufacturers, and prices. Notes three important ways that data projectors…

  12. Particle physics catalysis of thermal big bang nucleosynthesis.

    PubMed

    Pospelov, Maxim

    2007-06-01

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date. PMID:17677895

  13. Big bang nucleosynthesis: An update

    SciTech Connect

    Olive, Keith A.

    2013-07-23

    An update on the standard model of big bang nucleosynthesis (BBN) is presented. With the value of the baryon-tophoton ratio determined to high precision by WMAP, standard BBN is a parameter-free theory. In this context, the theoretical prediction for the abundances of D, {sup 4}He, and {sup 7}Li is discussed and compared to their observational determination. While concordance for D and {sup 4}He is satisfactory, the prediction for {sup 7}Li exceeds the observational determination by a factor of about four. Possible solutions to this problem are discussed.

  14. Fitting ERGMs on big networks.

    PubMed

    An, Weihua

    2016-09-01

    The exponential random graph model (ERGM) has become a valuable tool for modeling social networks. In particular, ERGM provides great flexibility to account for both covariates effects on tie formations and endogenous network formation processes. However, there are both conceptual and computational issues for fitting ERGMs on big networks. This paper describes a framework and a series of methods (based on existent algorithms) to address these issues. It also outlines the advantages and disadvantages of the methods and the conditions to which they are most applicable. Selected methods are illustrated through examples. PMID:27480375

  15. Big bang theory under fire.

    NASA Astrophysics Data System (ADS)

    Mitchell, W. C.

    The very old big bang (BB) problems (of the singularity, smoothness, horizon, and flatness) and the failed solutions of inflation theory; newer BB problems relating to missing mass (as required for a flat inflationary universe), the age of the universe, radiation from the "decoupling" ("smearing" of blackbody spectrum), a contrived BB chronology, the abundances of light elements, and redshift anomalies; and problems, newer yet regarding inconsistencies of redshift interpretation, curved space, inflation theory, the decelerating expansion of a BB universe, and some additional logical inconsistencies of BB theory are presented.

  16. The LHC's Next Big Mystery

    NASA Astrophysics Data System (ADS)

    Lincoln, Don

    2015-03-01

    When the sun rose over America on July 4, 2012, the world of science had radically changed. The Higgs boson had been discovered. Mind you, the press releases were more cautious than that, with "a new particle consistent with being the Higgs boson" being the carefully constructed phrase of the day. But, make no mistake, champagne corks were popped and backs were slapped. The data had spoken and a party was in order. Even if the observation turned out to be something other than the Higgs boson, the first big discovery from data taken at the Large Hadron Collider had been made.

  17. Our World: Lunar Rock

    NASA Video Gallery

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  18. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  19. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  20. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  1. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  2. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  3. Layered Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Now that solar conjunction is over so that communication between Earth and Mars is no longer blocked by the Sun, NASA's Mars Exploration Rover Spirit is continuing its trek through the 'Columbia Hills' in Gusev Crater. Straight ahead, in the foreground of this image, is a horizontally layered rock dubbed 'Tetl,' which scientists hope to investigate. Layering can be either volcanic or sedimentary in origin; researchers aim to determine which of these processes created this rock. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba,' just to the right, toward the middle of this image. Spirit took this image with its navigation camera on its 263rd martian day, or sol (Sept. 28, 2004).

  4. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  5. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  6. Traffic information computing platform for big data

    SciTech Connect

    Duan, Zongtao Li, Ying Zheng, Xibin Liu, Yan Dai, Jiting Kang, Jun

    2014-10-06

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  7. Urgent Call for Nursing Big Data.

    PubMed

    Delaney, Connie W

    2016-01-01

    The purpose of this panel is to expand internationally a National Action Plan for sharable and comparable nursing data for quality improvement and big data science. There is an urgent need to assure that nursing has sharable and comparable data for quality improvement and big data science. A national collaborative - Nursing Knowledge and Big Data Science includes multi-stakeholder groups focused on a National Action Plan toward implementing and using sharable and comparable nursing big data. Panelists will share accomplishments and future plans with an eye toward international collaboration. This presentation is suitable for any audience attending the NI2016 conference. PMID:27332330

  8. Big data: an introduction for librarians.

    PubMed

    Hoy, Matthew B

    2014-01-01

    Modern life produces data at an astounding rate and shows no signs of slowing. This has lead to new advances in data storage and analysis and the concept of "big data," that is, massive data sets that can yield surprising insights when analyzed. This column will briefly describe what big data is and why it is important. It will also briefly explore the possibilities and problems of big data and the implications it has for librarians. A list of big data projects and resources is also included. PMID:25023020

  9. Reactor antineutrino experiments

    NASA Astrophysics Data System (ADS)

    Lu, Haoqi

    2014-09-01

    Neutrinos are elementary particles in the standard model of particle physics. There are three flavors of neutrinos that oscillate among themselves. Their oscillation can be described by a 3×3 unitary matrix, containing three mixing angles θ12, θ23, θ13, and one CP phase. Both θ12 and θ23 are known from previous experiments. θ13 was unknown just two years ago. The Daya Bay experiment gave the first definitive nonzero value in 2012. An improved measurement of the oscillation amplitude sin 22(θ 13) = 0.090+0.008-0.009 and the first direct measurement of the \\bar ν e mass-squared difference \\vertΔ m2ee\\vert\\big (2.59+0.19-0.20\\big )×10-3 eV2 were obtained recently. The large value of θ13 boosts the next generation of reactor antineutrino experiments designed to determine the neutrino mass hierarchy, such as JUNO and RENO-50.

  10. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  11. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  12. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  13. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  14. Comparative Validity of Brief to Medium-Length Big Five and Big Six Personality Questionnaires

    ERIC Educational Resources Information Center

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-01-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are…

  15. Scaling Thomson scattering to big machines

    NASA Astrophysics Data System (ADS)

    Bílková, P.; Walsh, M.; Böhm, P.; Bassan, M.; Aftanas, M.; Pánek, R.

    2016-03-01

    Thomson scattering is a widely used diagnostic tool for local measurement of both electron temperature and electron density. It is used for both low and high temperature plasmas and it is a key diagnostic on all fusion devices. The extremely low cross-section of the reaction increases the complexity of the design. Since the early days of fusion, when a simple single point measurement was used, the design moved to a multi-point system with a large number of spatial points, LIDAR system or high repetition Thomson scattering diagnostic which are used nowadays. The initial low electron temperature approximation has been replaced by the full relativistic approach necessary for large devices as well as for ITER with expected higher plasma temperature. Along the way, the different development needs and the issues that exist need to be addressed to ensure that the technique is developed sufficiently to handle challenges of the bigger devices of the future as well as current developments needed for ITER. For large devices, the achievement of the necessary temperature range represents an important task. Both high and low temperatures can be measured, however, a large dynamic range makes the design difficult as size of detector and dynamic range are linked together. Therefore, the requirements of the new devices are extending the boundaries of these parameters. Namely, ITER presents challenges as access is also difficult but big efforts have been made to cope with this. This contribution contains a broad review of Thomson scattering diagnostics used in current devices together with comments on recent progress and speculation regarding future developments needed for future large scale devices.

  16. Untapped Potential: Fulfilling the Promise of Big Brothers Big Sisters and the Bigs and Littles They Represent

    ERIC Educational Resources Information Center

    Bridgeland, John M.; Moore, Laura A.

    2010-01-01

    American children represent a great untapped potential in our country. For many young people, choices are limited and the goal of a productive adulthood is a remote one. This report paints a picture of who these children are, shares their insights and reflections about the barriers they face, and offers ways forward for Big Brothers Big Sisters as…

  17. Astronomical surveys and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ -rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ -ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC) in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS), and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  18. Evidence of big bang turbulence

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2002-11-01

    Chaotic, eddy-like motions dominated by inertial-vortex forces begin at Planck scales in a hot big-bang-turbulence (BBT) cosmological model where this version of the quantum-gravitational-dynamics epoch produces not only the first space-time-energy of the universe but the first high Reynolds number turbulence and turbulent mixing with Kolmogorov and Batchelor-Obukhov-Corrsin velocity and temperature gradient spectra. Strong-force-freeze-out and inflation produced the first fossil-temperature-turbulence by stretching the fluctuations beyond the horizon scale ct of causal connection for light speed c and time t. Recent Cosmic Background Imager spectra of the cosmic microwave background (CMB) temperature anisotropies at high wavenumbers support the prediction that fossil BBT fluctuation patterns imprinted by nucleosynthesis on light element densities and the associated Sachs-Wolfe temperature fluctuations should not decay by thermal diffusion as expected if the CMB anisotropies were acoustic as commonly assumed. Extended Self Similarity coefficients of the CMB anisotropies exactly match those of high Reynolds number turbulence (Bershadskii and Sreenivasan 2002), supporting the conclusion that fossil big-bang-turbulence seeded nucleosynthesis of light elements and the first hydro-gravitational structure formation.

  19. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2015-12-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced ~10 impacts bigger than Chicxulub between 2.5 Ga and 3.5 Ga, the biggest of which were ~30-100X more energetic than Chicxulub. To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A

  20. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 billion years, the biggest of which were approximately 30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid

  1. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 2.5 billion years, the biggest of which were approximately30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid

  2. The geology and tectonic significance of the Big Creek Gneiss, Sierra Madre, southeastern Wyoming

    NASA Astrophysics Data System (ADS)

    Jones, Daniel S.

    The Big Creek Gneiss, southern Sierra Madre, southeastern Wyoming, is a heterogeneous suite of upper-amphibolite-facies metamorphic rocks intruded by post-metamorphic pegmatitic granite. The metamorphic rocks consist of three individual protolith suites: (1) pre- to syn-1780-Ma supracrustal rocks including clastic metasedimentary rocks, calc-silicate paragneiss, and metavolcanic rocks; (2) a bimodal intrusive suite composed of metagabbro and granodiorite-tonalite gneiss; and (3) a younger bimodal suite composed of garnet-bearing metagabbronorite and coarse-grained granitic gneiss. Zircons U-Pb ages from the Big Creek Gneiss demonstrate that: (1) the average age of detrital zircons in the supracrustal rocks is ~1805 Ma, requiring a significant source of 1805-Ma (or older) detritus during deposition, possibly representing an older phase of arc magmatism; (2) the older bimodal igneous suite crystallized at ~1780 Ma, correlative with arc-derived rocks of the Green Mountain Formation; (3) the younger bimodal igneous suite crystallized at ~1763 Ma, coeval with the extensional(?) Horse Creek anorthosite complex in the Laramie Mountains and Sierra Madre Granite batholith in the southwestern Sierra Madre; (4) Big Creek Gneiss rocks were tectonically buried, metamorphosed, and partially melted at ~1750 Ma, coeval with the accretion of the Green Mountain arc to the Wyoming province along the Cheyenne belt; (5) the posttectonic granite and pegmatite bodies throughout the Big Creek Gneiss crystallized at ~1630 Ma and are correlative with the 'white quartz monzonite' of the south-central Sierra Madre. Geochemical analysis of the ~1780-Ma bimodal plutonic suite demonstrates a clear arc-affinity for the mafic rocks, consistent with a subduction environment origin. The granodioritic rocks of this suite were not derived by fractional crystallization from coeval mafic magmas, but are instead interpreted as melts of lower-crustal mafic material. This combination of mantle

  3. Rock deformation equations and application to the study on slantingly installed disc cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Huang; Meng, Liang; Sun, Fei

    2014-08-01

    At present the mechanical model of the interaction between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the functional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installation angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.

  4. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  5. An embedding for the big bang

    NASA Technical Reports Server (NTRS)

    Wesson, Paul S.

    1994-01-01

    A cosmological model is given that has good physical properties for the early and late universe but is a hypersurface in a flat five-dimensional manifold. The big bang can therefore be regarded as an effect of a choice of coordinates in a truncated higher-dimensional geometry. Thus the big bang is in some sense a geometrical illusion.

  6. What is beyond the big five?

    PubMed

    Saucier, G; Goldberg, L R

    1998-08-01

    Previous investigators have proposed that various kinds of person-descriptive content--such as differences in attitudes or values, in sheer evaluation, in attractiveness, or in height and girth--are not adequately captured by the Big Five Model. We report on a rather exhaustive search for reliable sources of Big Five-independent variation in data from person-descriptive adjectives. Fifty-three candidate clusters were developed in a college sample using diverse approaches and sources. In a nonstudent adult sample, clusters were evaluated with respect to a minimax criterion: minimum multiple correlation with factors from Big Five markers and maximum reliability. The most clearly Big Five-independent clusters referred to Height, Girth, Religiousness, Employment Status, Youthfulness and Negative Valence (or low-base-rate attributes). Clusters referring to Fashionableness, Sensuality/Seductiveness, Beauty, Masculinity, Frugality, Humor, Wealth, Prejudice, Folksiness, Cunning, and Luck appeared to be potentially beyond the Big Five, although each of these clusters demonstrated Big Five multiple correlations of .30 to .45, and at least one correlation of .20 and over with a Big Five factor. Of all these content areas, Religiousness, Negative Valence, and the various aspects of Attractiveness were found to be represented by a substantial number of distinct, common adjectives. Results suggest directions for supplementing the Big Five when one wishes to extend variable selection outside the domain of personality traits as conventionally defined. PMID:9728415

  7. Structuring the Curriculum around Big Ideas

    ERIC Educational Resources Information Center

    Alleman, Janet; Knighton, Barbara; Brophy, Jere

    2010-01-01

    This article provides an inside look at Barbara Knighton's classroom teaching. She uses big ideas to guide her planning and instruction and gives other teachers suggestions for adopting the big idea approach and ways for making the approach easier. This article also represents a "small slice" of a dozen years of collaborative research,…

  8. Big system: Interactive graphics for the engineer

    NASA Technical Reports Server (NTRS)

    Quenneville, C. E.

    1975-01-01

    The BCS Interactive Graphics System (BIG System) approach to graphics was presented, along with several significant engineering applications. The BIG System precompiler, the graphics support library, and the function requirements of graphics applications are discussed. It was concluded that graphics standardization and a device independent code can be developed to assure maximum graphic terminal transferability.

  9. Efficiency, Corporate Power, and the Bigness Complex.

    ERIC Educational Resources Information Center

    Adams, Walter; Brock, James W.

    1990-01-01

    Concludes that (1) the current infatuation with corporate bigness is void of credible empirical support; (2) disproportionate corporate size and industry concentration are incompatible with and destructive to good economic performance; and (3) structurally oriented antitrust policy must be revitalized to combat the burdens of corporate bigness.…

  10. A New Look at Big History

    ERIC Educational Resources Information Center

    Hawkey, Kate

    2014-01-01

    The article sets out a "big history" which resonates with the priorities of our own time. A globalizing world calls for new spacial scales to underpin what the history curriculum addresses, "big history" calls for new temporal scales, while concern over climate change calls for a new look at subject boundaries. The article…

  11. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  12. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  13. Big sagebrush transplanting success in crested wheatgrass stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of formerly big sagebrush (Artemisia tridentate ssp. wyomingensis)/bunchgrass communities to annual grass dominance, primarily cheatgrass (Bromus tectorum), in Wyoming big sagebrush ecosystems has sparked the increasing demand to establish big sagebrush on disturbed rangelands. The e...

  14. Old Big Oak Flat Road at intersection with New Tioga ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Old Big Oak Flat Road at intersection with New Tioga Road. Note gate for road to Tamarack Campground - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  15. View of Old Big Oak Flat Road in Talus Slope. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Old Big Oak Flat Road in Talus Slope. Bridal Veil Falls at center distance. Looking east - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  16. Reactivity Transients in Nuclear Research Reactors

    Energy Science and Technology Software Center (ESTSC)

    2015-01-01

    Version 01 AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant.

  17. Lander and Mini Matterhorn rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard the Sojourner rover took this image of the Sagan Memorial Station on Sol 26. The angular resolution of the camera is about three milliradians (.018 degrees) per pixel, which is why the image appears grainy. The field of view of each rover camera is about 127 degrees horizontally and 90 degrees vertically.

    Features seen on the lander include (from left to right): the Atmospheric Structure Instrument/Meteorology Package (ASI/MET) mast with windsocks; the low-gain antenna mast, the Imager for Mars Pathfinder (IMP) on its mast at center; the disc-shaped high-gain antenna at right, and areas of deflated airbags. The dark circle on the lander body is a filtered vent that allowed air to escape during launch, and allowed the lander to repressurize upon landing. The high-gain antenna is pointed at Earth. The large rock Yogi, which Sojourner has approached and studied, as at the far right of the image. Mini Matterhorn is the large rock situated in front of the lander at left.

    The horizontal line at the center of the image is due to differences in light-metering for different portions of the image. The shadow of Sojourner and its antenna are visible at the lower section of the image. The antenna's shadow falls across a light-colored rock.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Tipping Point

    MedlinePlus Videos and Cool Tools

    ... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...

  19. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  20. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  1. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  2. Epidemiology in the Era of Big Data

    PubMed Central

    Mooney, Stephen J; Westreich, Daniel J; El-Sayed, Abdulrahman M

    2015-01-01

    Big Data has increasingly been promoted as a revolutionary development in the future of science, including epidemiology. However, the definition and implications of Big Data for epidemiology remain unclear. We here provide a working definition of Big Data predicated on the so-called ‘3 Vs’: variety, volume, and velocity. From this definition, we argue that Big Data has evolutionary and revolutionary implications for identifying and intervening on the determinants of population health. We suggest that as more sources of diverse data become publicly available, the ability to combine and refine these data to yield valid answers to epidemiologic questions will be invaluable. We conclude that, while epidemiology as practiced today will continue to be practiced in the Big Data future, a component of our field’s future value lies in integrating subject matter knowledge with increased technical savvy. Our training programs and our visions for future public health interventions should reflect this future. PMID:25756221

  3. Heat transport by fluids during late Cretaceous regional metamorphism in the Big Maria Mountains, southeastern California.

    USGS Publications Warehouse

    Hoisch, T.D.

    1987-01-01

    The Big Maria Mountains of SE California preserve evidence of a large-scale fluid flux that accompanied regional metamorphism in late Cretaceous time. Neither magmatism nor radioactive heat sources are adequate to explain the T of metamorphism. Simultaneously crystallizing plutons at different levels within the crust could have contributed to the overall hot fluid flux. A fluid:rock ratio of 17:1 may be calculated given average conditions of 3 kbar, 500oC, an infiltrating fluid of composition XH2O = 1.0, an equilibrium fluid composition of XH2O = 0.97, and 90% wollastonite in the final rock form the reaction quartz + calcite = CO2 + wollastonite. The minimum quantity of fluid of 1.7 rock volume was estimated to pass through the area if the fluid was approximately at granite solidus T at the start. Deep penetrative structures within the crust may have served to channel fluids. -L.C.H.

  4. The New Solar Telescope in Big Bear

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.

    2011-05-01

    The 1.6 m clear aperture, off-axis solar telescope (the "NST") in Big Bear Lake enjoyed first light in January 2009. In the Summer of 2009, high resolution, speckle corrected observations were made in TiO and Halpha. In the Summer of 2010, adaptive optics were implemented and the first magnetograms were obtained. The NST is first new U.S. facility class solar telescope in a generation. The NST has an off-axis Gregorian configuration consisting of a parabolic primary, heat-stop, elliptical secondary and diagonal flats. The focal ratio of the primary mirror is f/2.4, and the final ratio is f/50. The working wavelength range covers from 0.4 to 1.7 microns in the Coude Lab beneath the telescope and all wavelengths including the far infrared before the entrance window to the Coude Lab. Observational results will be introduced including revealing granular-scale chromospheric jets with their origin in the dark intergranular lanes, revealing bright lanes in granules, demonstration of equipartition between photospheric magnetic fields and plasma flow, and some unexpected results in the evolution of bright points.

  5. Petroleum geology of carbonate rocks

    SciTech Connect

    Billo, S.M.

    1995-09-01

    Where oil and gas supervene in reservoirs consisting of both limestone and dolomite, the dolomite and dolomitic rocks are usually the more prolific producers of petroleum. Even the dismissal by some oil explorers of primary or evaporitic dolostones from the category of reservoir rocks have recently been challenged; for example, by the discovery of more than 500 million barrels of oil in a primary dolomite and associated dolomitized portion of the Trenton (Ordovician) limestone of the Lima-Indiana field across the Cincinnati and Findlay arches. Permeability decreased updip where oil in the magnesian phase of the limestone disposed a stratigraphic trap. Oil geologists found that both porosity and permeability developed during dolomitization. Temperature and pressure, time, pH, Eh, and salinity are all important controls. Evaporation of sea water past the point of calcium sulphate precipitation suppresses the chemically inhibiting influence of calcium sulphate in solution on dolomite precipitation and increases the Mg/Ca ration from 1:1 at low salinities to over 5:1 or 10:1 in a hypersaline environment.

  6. Gage for measuring displacements in rock samples

    DOEpatents

    Holcomb, David J.; McNamee, Michael J.

    1986-01-01

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  7. Gage for measuring displacements in rock samples

    DOEpatents

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  8. Was the Big Bang hot?

    NASA Technical Reports Server (NTRS)

    Wright, E. L.

    1983-01-01

    Techniques for verifying the spectrum defined by Woody and Richards (WR, 1981), which serves as a base for dust-distorted models of the 3 K background, are discussed. WR detected a sharp deviation from the Planck curve in the 3 K background. The absolute intensity of the background may be determined by the frequency dependence of the dipole anisotropy of the background or the frequency dependence effect in galactic clusters. Both methods involve the Doppler shift; analytical formulae are defined for characterization of the dipole anisotropy. The measurement of the 30-300 GHz spectra of cold galactic dust may reveal the presence of significant amounts of needle-shaped grains, which would in turn support a theory of a cold Big Bang.

  9. Exploring Relationships in Big Data

    NASA Astrophysics Data System (ADS)

    Mahabal, A.; Djorgovski, S. G.; Crichton, D. J.; Cinquini, L.; Kelly, S.; Colbert, M. A.; Kincaid, H.

    2015-12-01

    Big Data are characterized by several different 'V's. Volume, Veracity, Volatility, Value and so on. For many datasets inflated Volumes through redundant features often make the data more noisy and difficult to extract Value out of. This is especially true if one is comparing/combining different datasets, and the metadata are diverse. We have been exploring ways to exploit such datasets through a variety of statistical machinery, and visualization. We show how we have applied it to time-series from large astronomical sky-surveys. This was done in the Virtual Observatory framework. More recently we have been doing similar work for a completely different domain viz. biology/cancer. The methodology reuse involves application to diverse datasets gathered through the various centers associated with the Early Detection Research Network (EDRN) for cancer, an initiative of the National Cancer Institute (NCI). Application to Geo datasets is a natural extension.

  10. Big Mysteries: The Higgs Mass

    SciTech Connect

    Lincoln, Don

    2014-04-28

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  11. Big Bang nucleosynthesis in crisis\\?

    NASA Astrophysics Data System (ADS)

    Hata, N.; Scherrer, R. J.; Steigman, G.; Thomas, D.; Walker, T. P.; Bludman, S.; Langacker, P.

    1995-11-01

    A new evaluation of the constraint on the number of light neutrino species (Nν) from big bang nucleosynthesis suggests a discrepancy between the predicted light element abundances and those inferred from observations, unless the inferred primordial 4He abundance has been underestimated by 0.014+/-0.004 (1σ) or less than 10% (95% C.L.) of 3He survives stellar processing. With the quoted systematic errors in the observed abundances and a conservative chemical evolution parametrization, the best fit to the combined data is Nν=2.1+/-0.3 (1σ) and the upper limit is Nν<2.6 (95% C.L.). The data are inconsistent with the standard model (Nν=3) at the 98.6% C.L.

  12. Evidence of the big fix

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2014-06-01

    We give an evidence of the Big Fix. The theory of wormholes and multiverse suggests that the parameters of the Standard Model are fixed in such a way that the total entropy at the late stage of the universe is maximized, which we call the maximum entropy principle. In this paper, we discuss how it can be confirmed by the experimental data, and we show that it is indeed true for the Higgs vacuum expectation value vh. We assume that the baryon number is produced by the sphaleron process, and that the current quark masses, the gauge couplings and the Higgs self-coupling are fixed when we vary vh. It turns out that the existence of the atomic nuclei plays a crucial role to maximize the entropy. This is reminiscent of the anthropic principle, however it is required by the fundamental law in our case.

  13. Big Mysteries: The Higgs Mass

    ScienceCinema

    Lincoln, Don

    2014-06-03

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  14. How 'hard' are hard-rock deformations?

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2003-04-01

    The study of soft-rock deformations has received increasing attention during the past two decades, and much progress has been made in the understanding of their genesis. It is also recognized now that soft-rock deformations—which show a wide variety in size and shape—occur frequently in sediments deposited in almost all types of environments. In spite of this, deformations occurring in lithified rocks are still relatively rarely attributed to sedimentary or early-diagenetic processes. Particularly faults in hard rocks are still commonly ascribed to tectonics, commonly without a discussion about a possible non-tectonic origin at a stage that the sediments were still unlithified. Misinterpretations of both the sedimentary and the structural history of hard-rock successions may result from the negligence of a possible soft-sediment origin of specific deformations. It is therefore suggested that a re-evaluation of these histories, keeping the present-day knowledge about soft-sediment deformations in mind, may give new insights into the geological history of numerous sedimentary successions in which the deformations have not been studied from both a sedimentological and a structural point of view.

  15. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  16. Ladon Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rocks exposed by the fluids that carved the Ladon Valles system in the Erythraeum region of Mars. These rocks are so ancient that their sediments were deposited, cemented to form rock, and then eroded by the water (or other liquid) that carved Ladon Valles, so far back in Martian history that such liquids could still flow on the planet's surface.

    Location near: 20.8oS, 30.0oW Image width: 3 km (1.9 mi Illumination from: upper left Season: Southern Spring

  17. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  18. West Candor Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock exposures in western Candor Chasma, part of the vast Valles Marineris trough system. Most of west Candor's interior includes exposures of layered rock with very few superimposed impact craters. The rock may be very ancient, but the lack of craters suggests that the erosion of these materials is on-going.

    Location near: 6.3oS, 76.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  19. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-348, 2 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired in March 2003 shows dozens of repeated layers of sedimentary rock in a western Arabia Terra crater at 8oN, 7oW. Wind has sculpted the layered forms into hills somewhat elongated toward the lower left (southwest). The dark patches at the bottom (south) end of the image are drifts of windblown sand. These sedimentary rocks might indicate that the crater was once the site of a lake--or they may result from deposition by wind in a completely dry, desert environment. Either way, these rocks have something important to say about the geologic history of Mars. The area shown is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  20. Dipping Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 May 2004 The central peak of Oudemans Crater, located at the edge of the Labyrinthus Noctis trough system, consists of steeply-dipping rock layers that were uplifted and tilted by the meteor impact that formed the crater. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The banded features are layers of light-toned, possibly sedimentary, rock that were brought to the surface and uplifted by the impact process that formed the crater and its central peak. Oudemans Crater's central peak serves as a means for probing the nature of rock that lies beneath the plains cut by the Labyrinthus Noctis troughs, which are part of the vast Valles Marineris system. This March 2004 picture is located near 10.2oS, 92.0oW. The image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  1. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  2. Microsystems - The next big thing

    SciTech Connect

    STINNETT,REGAN W.

    2000-05-11

    Micro-Electro-Mechanical Systems (MEMS) is a big name for tiny devices that will soon make big changes in everyday life and the workplace. These and other types of Microsystems range in size from a few millimeters to a few microns, much smaller than a human hair. These Microsystems have the capability to enable new ways to solve problems in commercial applications ranging from automotive, aerospace, telecommunications, manufacturing equipment, medical diagnostics to robotics, and in national security applications such as nuclear weapons safety and security, battlefield intelligence, and protection against chemical and biological weapons. This broad range of applications of Microsystems reflects the broad capabilities of future Microsystems to provide the ability to sense, think, act, and communicate, all in a single integrated package. Microsystems have been called the next silicon revolution, but like many revolutions, they incorporate more elements than their predecessors. Microsystems do include MEMS components fabricated from polycrystalline silicon processed using techniques similar to those used in the manufacture of integrated electrical circuits. They also include optoelectronic components made from gallium arsenide and other semiconducting compounds from the III-V groups of the periodic table. Microsystems components are also being made from pure metals and metal alloys using the LIGA process, which utilizes lithography, etching, and casting at the micron scale. Generically, Microsystems are micron scale, integrated systems that have the potential to combine the ability to sense light, heat, pressure, acceleration, vibration, and chemicals with the ability to process the collected data using CMOS circuitry, execute an electrical, mechanical, or photonic response, and communicate either optically or with microwaves.

  3. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon; Sobolik, Steven Ronald; Lee, Moo Yul

    2005-07-01

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  4. NETIMIS: Dynamic Simulation of Health Economics Outcomes Using Big Data.

    PubMed

    Johnson, Owen A; Hall, Peter S; Hulme, Claire

    2016-02-01

    Many healthcare organizations are now making good use of electronic health record (EHR) systems to record clinical information about their patients and the details of their healthcare. Electronic data in EHRs is generated by people engaged in complex processes within complex environments, and their human input, albeit shaped by computer systems, is compromised by many human factors. These data are potentially valuable to health economists and outcomes researchers but are sufficiently large and complex enough to be considered part of the new frontier of 'big data'. This paper describes emerging methods that draw together data mining, process modelling, activity-based costing and dynamic simulation models. Our research infrastructure includes safe links to Leeds hospital's EHRs with 3 million secondary and tertiary care patients. We created a multidisciplinary team of health economists, clinical specialists, and data and computer scientists, and developed a dynamic simulation tool called NETIMIS (Network Tools for Intervention Modelling with Intelligent Simulation; http://www.netimis.com ) suitable for visualization of both human-designed and data-mined processes which can then be used for 'what-if' analysis by stakeholders interested in costing, designing and evaluating healthcare interventions. We present two examples of model development to illustrate how dynamic simulation can be informed by big data from an EHR. We found the tool provided a focal point for multidisciplinary team work to help them iteratively and collaboratively 'deep dive' into big data. PMID:26879667

  5. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  6. Preliminary geologic map of the Big Costilla Peak area, Taos County, New Mexico, and Costilla County, Colorado

    USGS Publications Warehouse

    Fridrich, Christopher J.; Shroba, Ralph R.; Hudson, Adam M.

    2012-01-01

    This map covers the Big Costilla Peak, New Mex.&nash;Colo. quadrangle and adjacent parts of three other 7.5 minute quadrangles: Amalia, New Mex.–Colo., Latir Peak, New Mex., and Comanche Point, New Mex. The study area is in the southwesternmost part of that segment of the Sangre de Cristo Mountains known as the Culebra Range; the Taos Range segment lies to the southwest of Costilla Creek and its tributary, Comanche Creek. The map area extends over all but the northernmost part of the Big Costilla horst, a late Cenozoic uplift of Proterozoic (1.7-Ga and less than 1.4-Ga) rocks that is largely surrounded by down-faulted middle to late Cenozoic (about 40 Ma to about 1 Ma) rocks exposed at significantly lower elevations. This horst is bounded on the northwest side by the San Pedro horst and Culebra graben, on the northeast and east sides by the Devils Park graben, and on the southwest side by the (about 30 Ma to about 25 Ma) Latir volcanic field. The area of this volcanic field, at the north end of the Taos Range, has undergone significantly greater extension than the area to the north of Costilla Creek. The horsts and grabens discussed above are all peripheral structures on the eastern flank of the San Luis basin, which is the axial part of the (about 26 Ma to present) Rio Grande rift at the latitude of the map. The Raton Basin lies to the east of the Culebra segment of the Sangre de Cristo Mountains. This foreland basin formed during, and is related to, the original uplift of the Sangre de Cristo Mountains which was driven by tectonic contraction of the Laramide (about 70 Ma to about 40 Ma) orogeny. Renewed uplift and structural modification of these mountains has occurred during formation of the Rio Grande rift. Surficial deposits in the study area include alluvial, mass-movement, and glacial deposits of middle Pleistocene to Holocene age.

  7. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  8. Layered Rocks In Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), image shows exposures of finely-bedded sedimentary rocks in western Melas Chasma, part of the vast Valles Marineris trough system. Rocks similar to these occur in neighboring west Candor Chasma, as well. The picture is located near 9.1oS, 74.5oW, and covers an area about 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the left/upper left.

  9. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers of sedimentary rock in a crater in western Arabia Terra. Layered rock records the history of a place, but an orbiter image alone cannot tell the entire story. These materials record some past episodes of deposition of fine-grained material in an impact crater that is much larger than the image shown here. The picture is located near 3.4oN, 358.7oW, and covers an area 3 km (1.9 mi.) wide. Sunlight illuminates the scene from the lower left.

  10. Rock Outcrops near Hellas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in a pitted and eroded region just northeast of Hellas Planitia. The light-toned materials are most likely sedimentary rocks deposited early in martian history (but long after the Hellas Basin formed by a giant asteroid or comet impact). The scene also includes a plethora of large dark-toned, windblown ripples. The image is located near 27.2oS, 280.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  11. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  12. Sedimentary Rock Remnants

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows knobs of remnant, wind-eroded, layered sedimentary rock that once completely covered the floor of a crater located west of the Sinus Meridiani region of Mars. Sedimentary rock outcrops are common throughout the Sinus Meridiani region and its surrounding cratered terrain.

    Location near: 2.2oN, 7.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  13. Layered Rocks in Ritchey

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 May 2004 This March 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light- and dark-toned layered rock outcrops on the floor of Ritchey Crater, located near 28.9oS, 50.8oW. Some or all of these rocks may be sedimentary in origin. Erosion has left a couple of buttes standing on a more erosion-resistant plain. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  14. Remnant Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    29 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of small yardangs -- wind eroded hills -- on the plains immediately west of Meridiani Planum. These yardangs are the remains of layered, sedimentary rock that once covered this area. The few craters visible in this 3 km (1.9 mi) -wide scene are all exhumed from beneath the rocks that comprise the yardang hills. The image is located near 0.4oS, 7.2oW. Sunlight illuminates the picture from the lower left.

  15. Layered Rocks of Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    04 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops exposed by erosion in southern Melas Chasma, one of the major Valles Marineris troughs. Such outcrops are common in southern Melas; they resemble the rock outcrops seen in some of the chaotic terrains and other Valles Marineris chasms. This image is located near 11.9oS, 74.6oW, and is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  16. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  17. The big and little of fifty years of Moessbauer spectroscopy at Argonne.

    SciTech Connect

    Westfall, C.

    2005-09-20

    the $50 million Zero Gradient Synchrotron (ZGS) and the $30 million Experimental Breeder Reactor (EBR) II. Starting in the mid-1990s, Argonne physicists expanded their exploration of the properties of matter by employing a new type of Moessbauer spectroscopy--this time using synchrotron light sources such as Argonne's Advanced Photon Source (APS), which at $1 billion was the most expensive U.S. accelerator project of its time. Traditional Moessbauer spectroscopy looks superficially like prototypical ''Little Science'' and Moessbauer spectroscopy using synchrotrons looks like prototypical ''Big Science''. In addition, the growth from small to larger scale research seems to follow the pattern familiar from high energy physics even though the wide range of science performed using Moessbauer spectroscopy did not include high energy physics. But is the story of Moessbauer spectroscopy really like the tale told by high energy physicists and often echoed by historians? What do U.S. national laboratories, the ''Home'' of Big Science, have to offer small-scale research? And what does the story of the 50-year development of Moessbauer spectroscopy at Argonne tell us about how knowledge is produced at large laboratories? In a recent analysis of the development of relativistic heavy ion science at Lawrence Berkeley Laboratory I questioned whether it was wise for historians to speak in terms of ''Big Science'', pointing out at that Lawrence Berkeley Laboratory hosted large-scale projects at three scales, the grand scale of the Bevatron, the modest scale of the HILAC, and the mezzo scale of the combined machine, the Bevalac. I argue that using the term ''Big Science'', which was coined by participants, leads to a misleading preoccupation with the largest projects and the tendency to see the history of physics as the history of high energy physics. My aim here is to provide an additional corrective to such views as well as further information about the web of connections that allows

  18. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  19. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  20. Constraining big bang lithium production with recent solar neutrino data

    NASA Astrophysics Data System (ADS)

    Takács, Marcell P.; Bemmerer, Daniel; Szücs, Tamás; Zuber, Kai

    2015-06-01

    The 3He (α ,γ )7Be reaction affects not only the production of 7Li in big bang nucleosynthesis, but also the fluxes of 7Be and 8B neutrinos from the Sun. This double role is exploited here to constrain the former by the latter. A number of recent experiments on 3He α ,γ )7Be provide precise cross section data at E =0.5 - 1.0 MeV center-of-mass energies. However, there is a scarcity of precise data at big bang energies, 0.1-0.5 MeV, and below. This problem can be alleviated, based on precisely calibrated 7Be and 8B neutrino fluxes from the Sun that are now available, assuming the neutrino flavor oscillation framework to be correct. These fluxes and the standard solar model are used here to determine the 3He α ,γ )7Be astrophysical S -factor at the solar Gamow peak, S34ν(2 3-5+6 keV ) =0.548 ±0.054 keV b . This new data point is then included in a reevaluation of the 3He α ,γ )7Be S -factor at big bang energies, following an approach recently developed for this reaction in the context of solar fusion studies. The reevaluated S -factor curve is then used to redetermine the 3He α ,γ )7Be thermonuclear reaction rate at big bang energies. The predicted primordial lithium abundance is 7Li H =5.0 ×10-10 , far higher than the Spite plateau.

  1. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  2. The role of antimatter in big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1973-01-01

    Big bang cosmology is discussed with reference to both its strong points and gaps. Characteristics of a spectral component of red shifted gamma-radiation from cosmological matter-antimatter annihilation show a flattening of the gamma-ray spectrum in the vicinity of 1 MeV, an increased gamma-ray flux between 1 and 100 MeV, and a very steep spectrum between 50 and 135 MeV. This data fits well with the theoretical predictions in energy and intensity.

  3. Geologic Map of the Big Spring Quadrangle, Carter County, Missouri

    USGS Publications Warehouse

    Weary, David J.; McDowell, Robert C.

    2006-01-01

    The bedrock exposed in the Big Spring quadrangle of Missouri comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat lying except where they are adjacent to faults. The carbonate rocks are karstified, and the area contains numerous sinkholes, springs, caves, and losing streams. This map is one of several being produced under the U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A national park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the park to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for park management. For more information, see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  4. [Big data in medicine and healthcare].

    PubMed

    Rüping, Stefan

    2015-08-01

    Healthcare is one of the business fields with the highest Big Data potential. According to the prevailing definition, Big Data refers to the fact that data today is often too large and heterogeneous and changes too quickly to be stored, processed, and transformed into value by previous technologies. The technological trends drive Big Data: business processes are more and more executed electronically, consumers produce more and more data themselves - e.g. in social networks - and finally ever increasing digitalization. Currently, several new trends towards new data sources and innovative data analysis appear in medicine and healthcare. From the research perspective, omics-research is one clear Big Data topic. In practice, the electronic health records, free open data and the "quantified self" offer new perspectives for data analytics. Regarding analytics, significant advances have been made in the information extraction from text data, which unlocks a lot of data from clinical documentation for analytics purposes. At the same time, medicine and healthcare is lagging behind in the adoption of Big Data approaches. This can be traced to particular problems regarding data complexity and organizational, legal, and ethical challenges. The growing uptake of Big Data in general and first best-practice examples in medicine and healthcare in particular, indicate that innovative solutions will be coming. This paper gives an overview of the potentials of Big Data in medicine and healthcare. PMID:26063521

  5. M theory model of a big crunch/big bang transition

    SciTech Connect

    Turok, Neil; Perry, Malcolm; Steinhardt, Paul J.

    2004-11-15

    We consider a picture in which the transition from a big crunch to a big bang corresponds to the collision of two empty orbifold planes approaching each other at a constant nonrelativistic speed in a locally flat background space-time, a situation relevant to recently proposed cosmological models. We show that p-brane states which wind around the extra dimension propagate smoothly and unambiguously across the orbifold plane collision. In particular we calculate the quantum mechanical production of winding M2-branes extending from one orbifold to the other. We find that the resulting density is finite and that the resulting gravitational backreaction is small. These winding states, which include the string theory graviton, can be propagated smoothly across the transition using a perturbative expansion in the membrane tension, an expansion which from the point of view of string theory is an expansion in inverse powers of {alpha}{sup '}. The conventional description of a crunch based on Einstein general relativity, involving Kasner or mixmaster behavior is misleading, we argue, because general relativity is only the leading order approximation to string theory in an expansion in positive powers of {alpha}{sup '}. In contrast, in the M theory setup we argue that interactions should be well behaved because of the smooth evolution of the fields combined with the fact that the string coupling tends to zero at the crunch. The production of massive Kaluza-Klein states should also be exponentially suppressed for small collision speeds. We contrast this good behavior with that found in previous studies of strings in Lorentzian orbifolds.

  6. M theory model of a big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Perry, Malcolm; Steinhardt, Paul J.

    2004-11-01

    We consider a picture in which the transition from a big crunch to a big bang corresponds to the collision of two empty orbifold planes approaching each other at a constant nonrelativistic speed in a locally flat background space-time, a situation relevant to recently proposed cosmological models. We show that p-brane states which wind around the extra dimension propagate smoothly and unambiguously across the orbifold plane collision. In particular we calculate the quantum mechanical production of winding M2-branes extending from one orbifold to the other. We find that the resulting density is finite and that the resulting gravitational backreaction is small. These winding states, which include the string theory graviton, can be propagated smoothly across the transition using a perturbative expansion in the membrane tension, an expansion which from the point of view of string theory is an expansion in inverse powers of α'. The conventional description of a crunch based on Einstein general relativity, involving Kasner or mixmaster behavior is misleading, we argue, because general relativity is only the leading order approximation to string theory in an expansion in positive powers of α'. In contrast, in the M theory setup we argue that interactions should be well behaved because of the smooth evolution of the fields combined with the fact that the string coupling tends to zero at the crunch. The production of massive Kaluza-Klein states should also be exponentially suppressed for small collision speeds. We contrast this good behavior with that found in previous studies of strings in Lorentzian orbifolds.

  7. Rocking and Rolling Rattlebacks

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical and…

  8. Reducing Rock Climbing Risks.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1998-01-01

    Provides checklists that can be used as risk-management tools to evaluate rock-climbing programs: developing goals, policies, and procedures; inspecting the climbing environment; maintaining and inspecting equipment; protecting participants; and managing staff (hiring, training, retraining, and evaluating) and campers (experience level, needs, and…

  9. Slippery Rock University

    ERIC Educational Resources Information Center

    Arnhold, Robert W.

    2008-01-01

    Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…

  10. The River Rock School.

    ERIC Educational Resources Information Center

    Gereaux, Teresa Thomas

    1999-01-01

    In the early 1920s, the small Appalachian community of Damascus, Virginia, used private subscriptions and volunteer labor to build a 15-classroom school made of rocks from a nearby river and chestnut wood from nearby forests. The school building's history, uses for various community activities, and current condition are described. (SV)

  11. Prestressed rock truss

    SciTech Connect

    Johnson, S.F.

    1981-06-23

    A roof support system for mines in which prestressed rock trusses are bolted to the roof of the mine with roof bolts which each extend beyond the width of the mine gallery and the method of installing said trusses into position.

  12. Big questions, big science: meeting the challenges of global ecology.

    PubMed

    Schimel, David; Keller, Michael

    2015-04-01

    Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects. PMID:25680334

  13. Processing Solutions for Big Data in Astronomy

    NASA Astrophysics Data System (ADS)

    Fillatre, L.; Lepiller, D.

    2016-09-01

    This paper gives a simple introduction to processing solutions applied to massive amounts of data. It proposes a general presentation of the Big Data paradigm. The Hadoop framework, which is considered as the pioneering processing solution for Big Data, is described together with YARN, the integrated Hadoop tool for resource allocation. This paper also presents the main tools for the management of both the storage (NoSQL solutions) and computing capacities (MapReduce parallel processing schema) of a cluster of machines. Finally, more recent processing solutions like Spark are discussed. Big Data frameworks are now able to run complex applications while keeping the programming simple and greatly improving the computing speed.

  14. Big data and the electronic health record.

    PubMed

    Peters, Steve G; Buntrock, James D

    2014-01-01

    The electronic medical record has evolved from a digital representation of individual patient results and documents to information of large scale and complexity. Big Data refers to new technologies providing management and processing capabilities, targeting massive and disparate data sets. For an individual patient, techniques such as Natural Language Processing allow the integration and analysis of textual reports with structured results. For groups of patients, Big Data offers the promise of large-scale analysis of outcomes, patterns, temporal trends, and correlations. The evolution of Big Data analytics moves us from description and reporting to forecasting, predictive modeling, and decision optimization. PMID:24887521

  15. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  16. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  18. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  19. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  20. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  1. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but

  2. Field Geologist: An Android App for Measuring Rock Outcroppings

    NASA Astrophysics Data System (ADS)

    Baird, J.; Chiu, M. T.; Huang, X.; de Lanerolle, T. R.; Morelli, R.; Gourley, J. R.

    2011-12-01

    Field geologist is a mobile Android app that measures, plots, and exports strike and data in the field. When the phone is placed on the steepest part of the rock, it automatically detects dip, string, latitude and longitude. It includes a drop-down menu to record the type of rock. The app's initial screen displays a compass with an interior dip/strike symbol that always points toward the dip direction. Tapping the compass stores a data point in the phone's database. The points can be displayed on a Google map and uploaded to a server, from where they can be retrieved in CSV format and imported into a spreadsheet.

  3. 10. View looking northwest at excavation into serpentine rock. Formwork ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View looking northwest at excavation into serpentine rock. Formwork at left is for pump room. Partially completed caisson is in foreground. Portion of Point Avisadero visible at right (12/17/42). Photographer unknown. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  4. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  5. The Big Bad Wolf and Stereotype and Bias in the Media.

    ERIC Educational Resources Information Center

    Robinson, Julia

    1998-01-01

    Describes a librarian/teacher coplanned fourth-grade unit at Central Elementary School (Indianapolis, Indiana). The lesson focused on wolves and pack behavior and incorporated the tale of the Big Bad Wolf and the Three Little Pigs to teach the media literacy concepts of point of view, message, stereotype, and bias. Sample worksheets are included.…

  6. Not so Big Communities: A Promising Future for Human Beings of All Ages

    ERIC Educational Resources Information Center

    Susanka, Sarah

    2011-01-01

    In many American communities today, the methods of construction, as well as the almost exclusive orientation to the convenience of the automobile, limit the functioning and independence of the aging population, and offer little opportunity for human interaction. Sarah Susanka's "Not So Big" series of books points toward a new way of building…

  7. Imaging Structure, Stratigraphy and Groundwater with Ground-Penetrating Radar on the Big Island, Hawaii

    NASA Astrophysics Data System (ADS)

    Shapiro, S. R.; Tchakirides, T. F.; Brown, L. D.

    2004-12-01

    A series of exploratory ground-penetrating radar (GPR) surveys were carried out on the Big Island, Hawaii in March of 2004 to evaluate the efficacy of using GPR to address hydrological, volcanological, and tectonic issues in extrusive basaltic materials. Target sites included beach sands, nearshore lava flows, well-developed soil covers, lava tubes, and major fault zones. Surveys were carried out with a Sensors and Software T Pulse Ekko 100, which was equipped with 50, 100, and 200 MHz antennae. Both reflection profiles and CMP expanding spreads were collected at most sites to provide both structural detail and in situ velocity estimation. In general, the volcanic rocks exhibited propagation velocities of ca 0.09-0.10 m/ns, a value which we interpret to reflect the large air-filled porosity of the media. Penetration in the nearshore area was expectedly small (less than 1 m), which we attribute to seawater infiltration. However, surveys in the volcanics away from the coast routinely probed to depths of 10 m or greater, even at 100 MHz. While internal layering and lava tubes could be identified from individual profiles, the complexity of returns suggests that 3D imaging is required before detailed stratigraphy can be usefully interpreted. A pilot 3D survey over a lava tube complex supports this conclusion, although it was prematurely terminated by bad weather. Although analysis of the CMP data does not show a clear systematic variation in radar velocity with age of flow, the dataset is too limited to support any firm conclusions on this point. Unusually distinct, subhorizontal reflectors on several profiles seem to mark groundwater. In one case, the water seems to lie within a lava tube with an air-filled roof zone. Surveys over part of the controversial Hilana fault zone clearly image the fault as a steeply dipping feature in the subsurface, albeit only to depths of a few meters. The results suggest, however, that deeper extensions of the faults could be mapped by

  8. Fast reactors and nuclear nonproliferation

    SciTech Connect

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  9. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  10. Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Albright, Dennis; Butler, Carey; West, Nicole; Cole, John W. (Technical Monitor)

    2002-01-01

    Institute for Scientific Research, Inc. (ISR) research program consist of: 1.Study core physics by adapting existing codes: MCNP4C - Monte Carlo code; COMBINE/VENTURE - diffusion theory; SCALE4 - Monte Carlo, with many utility codes. 2. Determine feasibility and study major design parameters: fuel selection, temperature and reflector sizing. 3. Study reactor kinetics: develop QCALC1 to model point kinetics; study dynamic behavior of the power release.

  11. Fuel performance improvement program. Semiannual progress report, April-September 1980

    SciTech Connect

    Crouthamel, C E; Freshley, M D

    1980-10-01

    Progress on the Fuel Performance Improvement Program's fuel test and demonstration irradiations is reported for the period April-September, 1980. Included are results of out-of-reactor experiments with zircaloy cladding on the iodine assisted stress corrosion cracking mechanism. Preliminary results from the first eight ramp tests performed in the Halden Boiling Water Reactor are reported. The status of demonstration fuel irradiations in the Big Rock Point Reactor is described.

  12. Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA

    USGS Publications Warehouse

    Rowden, R.D.; Liu, H.; Libra, R.D.

    2001-01-01

    Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.

  13. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Morford, Scott L.; Houlton, Benjamin Z.; Dahlgren, Randy A.

    2016-02-01

    Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system.

  14. Big-bang nucleosynthesis revisited

    NASA Technical Reports Server (NTRS)

    Olive, Keith A.; Schramm, David N.; Steigman, Gary; Walker, Terry P.

    1989-01-01

    The homogeneous big-bang nucleosynthesis yields of D, He-3, He-4, and Li-7 are computed taking into account recent measurements of the neutron mean-life as well as updates of several nuclear reaction rates which primarily affect the production of Li-7. The extraction of primordial abundances from observation and the likelihood that the primordial mass fraction of He-4, Y(sub p) is less than or equal to 0.24 are discussed. Using the primordial abundances of D + He-3 and Li-7 we limit the baryon-to-photon ratio (eta in units of 10 exp -10) 2.6 less than or equal to eta(sub 10) less than or equal to 4.3; which we use to argue that baryons contribute between 0.02 and 0.11 to the critical energy density of the universe. An upper limit to Y(sub p) of 0.24 constrains the number of light neutrinos to N(sub nu) less than or equal to 3.4, in excellent agreement with the LEP and SLC collider results. We turn this argument around to show that the collider limit of 3 neutrino species can be used to bound the primordial abundance of He-4: 0.235 less than or equal to Y(sub p) less than or equal to 0.245.

  15. The NOAA Big Data Project

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) is a Big Data producer, generating tens of terabytes per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. These data are of critical importance and value for NOAA's mission to understand and predict changes in climate, weather, oceans, and coasts. In order to facilitate extracting additional value from this information, NOAA has established Cooperative Research and Development Agreements (CRADAs) with five Infrastructure-as-a-Service (IaaS) providers — Amazon, Google, IBM, Microsoft, Open Cloud Consortium — to determine whether hosting NOAA data in publicly-accessible Clouds alongside on-demand computational capability stimulates the creation of new value-added products and services and lines of business based on the data, and if the revenue generated by these new applications can support the costs of data transmission and hosting. Each IaaS provider is the anchor of a "Data Alliance" which organizations or entrepreneurs can join to develop and test new business or research avenues. This presentation will report on progress and lessons learned during the first 6 months of the 3-year CRADAs.

  16. Heat Waves Pose Big Health Threats

    MedlinePlus

    ... news/fullstory_159744.html Heat Waves Pose Big Health Threats Kids, elderly among those at greatest risk, ... Illness Seniors' Health Recent Health News Related MedlinePlus Health Topics Child Safety Heat Illness Seniors' Health About ...

  17. Cosmic relics from the big bang

    SciTech Connect

    Hall, L.J.

    1988-12-01

    A brief introduction to the big bang picture of the early universe is given. Dark matter is discussed; particularly its implications for elementary particle physics. A classification scheme for dark matter relics is given. 21 refs., 11 figs., 1 tab.

  18. Do Big Bottles Kickstart Infant Weight Issues?

    MedlinePlus

    ... baby bottles might help prevent early obesity in formula-fed infants, study suggests To use the sharing ... TUESDAY, June 7, 2016 (HealthDay News) -- Feeding babies formula from a big bottle might put them at ...

  19. Quantum nature of the big bang.

    PubMed

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime. PMID:16712061

  20. The caBIG terminology review process.

    PubMed

    Cimino, James J; Hayamizu, Terry F; Bodenreider, Olivier; Davis, Brian; Stafford, Grace A; Ringwald, Martin

    2009-06-01

    The National Cancer Institute (NCI) is developing an integrated biomedical informatics infrastructure, the cancer Biomedical Informatics Grid (caBIG), to support collaboration within the cancer research community. A key part of the caBIG architecture is the establishment of terminology standards for representing data. In order to evaluate the suitability of existing controlled terminologies, the caBIG Vocabulary and Data Elements Workspace (VCDE WS) working group has developed a set of criteria that serve to assess a terminology's structure, content, documentation, and editorial process. This paper describes the evolution of these criteria and the results of their use in evaluating four standard terminologies: the Gene Ontology (GO), the NCI Thesaurus (NCIt), the Common Terminology for Adverse Events (known as CTCAE), and the laboratory portion of the Logical Objects, Identifiers, Names and Codes (LOINC). The resulting caBIG criteria are presented as a matrix that may be applicable to any terminology standardization effort. PMID:19154797

  1. Big data in nephrology: friend or foe?

    PubMed

    Ketchersid, Terry

    2013-01-01

    The phrase 'big data' has arrived in today's lexicon with great fanfare and some degree of hyperbole. Generally speaking, big data refer to data sets that are too complex to be successfully interrogated using standard statistical software. A wide variety of business sectors has utilized big data to garner competitive advantage within their respective markets. Medicine and nephrology, in particular, have been late to this table. This is beginning to change, however, as data scientists begin to work with these large data sets, developing predictive models that permit us to peer into the future. Coupled with an expanding understanding of genomics, predictive models constructed with the assistance of big data may soon provide us with a powerful tool to use as we provide care to patients with renal disease. PMID:24496185

  2. Joint Commission on rock properties

    NASA Astrophysics Data System (ADS)

    A joint commission on Rock Properties for Petroleum Engineers (RPPE) has been established by the International Society of Rock Mechanics and the Society of Petroleum Engineers to set up data banks on the properties of sedimentary rocks encountered during drilling. Computer-based data banks of complete rock properties will be organized for sandstones (GRESA), shales (ARSHA) and carbonates (CARCA). The commission hopes to access data sources from members of the commission, private companies and the public domain.

  3. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  4. 76 FR 7837 - Big Rivers Electric Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Energy Regulatory Commission Big Rivers Electric Corporation; Notice of Filing Take notice that on February 4, 2011, Big Rivers Electric Corporation (Big Rivers) filed a notice of cancellation of its Second Revised and Restated Open Access Transmission Tariff. Big Rivers also requests waiver of the...

  5. 3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX SHOWING SWITCHRACKS AND SUPPORT BUILDINGS TO PHOTO RIGHT OF POWERHOUSE, SAN JOAQUIN RIVER FLOWING IN PHOTO CENTER TO LOWER RIGHT, AND PENSTOCKS AND STANDPIPES IN BACKGROUND ABOVE POWERHOUSE. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  6. 2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN FROM SAME ANGLE AS CA-167-X-1. THREE ORIGINAL PENSTOCKS PLUS FOURTH AND FIFTH PENSTOCKS (VISIBLE TO LEFT OF ORIGINAL THREE), AND THREE ORIGINAL STANDPIPES COUPLED TO FOURTH STANDPIPE SHOWN BEHIND AND ABOVE POWERHOUSE BUILDING. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  7. COBE looks back to the Big Bang

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    1993-01-01

    An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.

  8. Dark energy, wormholes, and the big rip

    SciTech Connect

    Faraoni, V.; Israel, W.

    2005-03-15

    The time evolution of a wormhole in a Friedmann universe approaching the big rip is studied. The wormhole is modeled by a thin spherical shell accreting the superquintessence fluid--two different models are presented. Contrary to recent claims that the wormhole overtakes the expansion of the universe and engulfs it before the big rip is reached, it is found that the wormhole becomes asymptotically comoving with the cosmic fluid and the future evolution of the universe is fully causal.

  9. Data Confidentiality Challenges in Big Data Applications

    SciTech Connect

    Yin, Jian; Zhao, Dongfang

    2015-12-15

    In this paper, we address the problem of data confidentiality in big data analytics. In many fields, much useful patterns can be extracted by applying machine learning techniques to big data. However, data confidentiality must be protected. In many scenarios, data confidentiality could well be a prerequisite for data to be shared. We present a scheme to provide provable secure data confidentiality and discuss various techniques to optimize performance of such a system.

  10. Quality of Big Data in Healthcare

    DOE PAGESBeta

    Sukumar, Sreenivas R.; Ramachandran, Natarajan; Ferrell, Regina Kay

    2015-01-01

    The current trend in Big Data Analytics and in particular Health information technology is towards building sophisticated models, methods and tools for business, operational and clinical intelligence, but the critical issue of data quality required for these models is not getting the attention it deserves. The objective of the paper is to highlight the issues of data quality in the context of Big Data Healthcare Analytics.

  11. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  12. Realistic Expectations for Rock Identification.

    ERIC Educational Resources Information Center

    Westerback, Mary Elizabeth; Azer, Nazmy

    1991-01-01

    Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…

  13. A look at carbonate rocks

    SciTech Connect

    Bowsher, A.I. )

    1994-03-01

    Important ore deposits are found in carbonate rocks, and large volumes of oil and gas are also produced from carbonate rocks on a worldwide basis. Reservoir types and productive capability are most often related to rock type and the facies to which the rock belongs. Broad new understanding of carbonate rocks came with the publication of Classification of Carbonate Rocks-A Symposium (AAPG Memoir 1, 1962). The principal parameters of carbonate rocks are (1) chemical composition, (2) grade size, (3) sorting and packing, (4) identification of grains in the rock, (5) cement, (6) color, (7) alteration of recrystallization, and (8) porosity. Original porosity in carbonate rocks relates to kind and packing of original particles. Secondary porosity is reduced by infilling that usually relates to some particles, or is enhanced because some types of grains are dissolved. Carbonate sediments are organic detritus. The range of solubility of organic detritus is very large. Fossils present in the carbonates are clues as to the source of the detritus in the rock. Additional research is needed in faunal relations of facies and of rock types. Ore recovery, well completion, and EOR are more successful when the parameters of carbonate rocks are extensively studied. A simplified approach to carbonate description is discussed.

  14. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  15. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  16. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  17. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  18. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  20. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  1. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  2. Soil and rock 'Yogi'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several possible targets of study for rover Sojourner's Alpha Proton X-Ray Spectrometer (APXS) instrument are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. The smaller rock at left has been dubbed 'Barnacle Bill,' while the larger rock at right, approximately 3-4 meters from the lander, is now nicknamed 'Yogi.' Barnacle Bill is scheduled to be the first object of study for the APXS. Portions of a petal and deflated airbag are also visible at lower right.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. Sedimentary Rock Outcrops

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded layered rock outcrops in a crater north of Meridiani Planum near 2.7oN, 359.1oW. The dozens and dozens of sedimentary rock layers of repeated thickness and similar physical properties at this location suggest that they may have been deposited in a lacustrine (lake) setting. The crater in which these layers occur may once have been completely filled and buried, as is the case for many craters in the Sinus Meridiani region. This image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  4. Sedimentary Rock Near Coprates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-420, 13 July 2003

    This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle camera images, one from 2001, the other from 2003, shows light-toned, layered, sedimentary rock outcrops exposed on the floor of a trough that parallels Coprates Chasma in the Valles Marineris system. Layered rocks form the pages from which the history of a place can be read. It may be many years before the story is read, but or now at least we know where one of the books of martian history is found. This picture is located near 15.2oS, 60.1oW. Sunlight illuminates the scene from the left.

  5. Schiaparelli's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 October 2004 Schiaparelli Basin is a large, 470 kilometer (292 miles) impact crater located east of Sinus Meridiani. The basin might once have been the site of a large lake--that is, if the sedimentary rocks exposed on its northwestern floor were deposited in water. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meter per pixel (5 ft per pixel) view of some of the light-toned, finely-bedded sedimentary rocks in northwestern Schiaparelli. The image is located near 1.0oS, 346.0oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  6. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    15 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of layered, sedimentary rock in eastern Gale Crater. North-central Gale Crater is the site of a mound that is more than several kilometers thick and largely composed of sedimentary rocks that record a complex history of deposition and erosion. At one time, Gale Crater might have been completely filled and buried beneath the martian surface.

    Location near: 4.9oS, 221.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  7. Poroelasticity of rock

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton's coefficient and undrained Poisson's ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  8. Thermal Conductivity Anisotropy of Metasedimentary and Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Davis, M. G.; Chapman, D. S.; van Wagoner, T. M.; Armstrong, P. A.

    2005-12-01

    Thermal conductivity anisotropy was determined for two sets of rocks: a series of sandstones, mudstones, and limey shales of Cretaceous age from Price Canyon, Utah, and metasedimentary argillites and quartzites of Precambrian age from the Big Cottonwood Formation in north central Utah. Additional anisotropy measurements were made on granitic rocks from two Tertiary plutons in Little Cottonwood Canyon, north central Utah. Most conductivity measurements were made in transient mode with a half-space, line-source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kmax) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kmax and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady-state mode. Anisotropy is defined as kmax/kperp. The Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for the Price Canyon samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming (1994) that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  9. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  10. Before you make that big decision...

    PubMed

    Kahneman, Daniel; Lovallo, Dan; Sibony, Olivier

    2011-06-01

    When an executive makes a big bet, he or she typically relies on the judgment of a team that has put together a proposal for a strategic course of action. After all, the team will have delved into the pros and cons much more deeply than the executive has time to do. The problem is, biases invariably creep into any team's reasoning-and often dangerously distort its thinking. A team that has fallen in love with its recommendation, for instance, may subconsciously dismiss evidence that contradicts its theories, give far too much weight to one piece of data, or make faulty comparisons to another business case. That's why, with important decisions, executives need to conduct a careful review not only of the content of recommendations but of the recommendation process. To that end, the authors-Kahneman, who won a Nobel Prize in economics for his work on cognitive biases; Lovallo of the University of Sydney; and Sibony of McKinsey-have put together a 12-question checklist intended to unearth and neutralize defects in teams' thinking. These questions help leaders examine whether a team has explored alternatives appropriately, gathered all the right information, and used well-grounded numbers to support its case. They also highlight considerations such as whether the team might be unduly influenced by self-interest, overconfidence, or attachment to past decisions. By using this practical tool, executives will build decision processes over time that reduce the effects of biases and upgrade the quality of decisions their organizations make. The payoffs can be significant: A recent McKinsey study of more than 1,000 business investments, for instance, showed that when companies worked to reduce the effects of bias, they raised their returns on investment by seven percentage points. Executives need to realize that the judgment of even highly experienced, superbly competent managers can be fallible. A disciplined decision-making process, not individual genius, is the key to good

  11. Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation

    NASA Astrophysics Data System (ADS)

    Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla

    2014-07-01

    Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.

  12. Terby Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 December 2003 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops in Terby Crater, located near 27.7oS, 285.4oW. The layered sediments in Terby are several kilometers thick, attesting to a long history of deposition in this ancient basin. The picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  13. Eroded Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-372, 26 May 2003

    This high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded, layered sedimentary rock exposures in an unnamed western Arabia Terra crater at 8oN, 7oW. The dark material is windblown sand; much of the erosion of these layers may have also been caused by wind. Sunlight illuminates the scene from the left.

  14. Ripples and Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rock outcrops and large dark-toned, windblown ripples in Aram Chaos.

    Location near: 3.0oN, 20.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  15. Iani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rocks exposed by erosion in the Iani Chaos region of Mars.

    Location near: 4.2oS, 18.7oW Image width: 1 km (0.6 mi) Illumination from: upper left Season: Southern Winter

  16. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered, sedimentary rock outcrops in southwestern Melas Chasma, one of the troughs of the vast Valles Marineris system. Sunlight illuminates this scene from the upper left; it is located near 9.8oS, 76.0oW, and covers an area about 3 km (1.9 mi) wide.

  17. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  18. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  19. 78 FR 3911 - Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN; Final Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Fish and Wildlife Service Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN... (CCP) and finding of no significant impact (FONSI) for the environmental assessment (EA) for Big Stone.../FONSI on the planning Web site at http://www.fws.gov/midwest/planning/BigStoneNWR/index.html . A...

  20. Salty Martian Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which produces a spectrum, or fingerprint, of chemicals in martian rocks and soil. The instrument contains a radioisotope, curium-244, that bombards a designated area with alpha particles and X-rays, causing a cascade of reflective fluorescent X-rays. The energies of these fluorescent X-rays are unique to each atom in the periodic table, allowing scientists to determine a target's chemical composition.

    Both 'Tarmac' and 'McKittrick' are located within the small crater where Opportunity landed. The full spectra are expressed as X-ray intensity (logarithmic scale) versus energy. When comparing two spectra, the relative intensities at a given energy are proportional to the elemental concentrations, however these proportionality factors can be complex. To be precise, scientists extensively calibrate the instrument using well-analyzed geochemical standards.

    Both the alpha particle X-ray spectrometer and the rock abrasion tool are located on the rover's instrument deployment device, or arm.

  1. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S., Jr.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  2. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  3. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  4. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  5. Boosting Big National Lab Data

    SciTech Connect

    Kleese van Dam, Kerstin

    2013-02-21

    Introduction: Big data. Love it or hate it, solving the world’s most intractable problems requires the ability to make sense of huge and complex sets of data and do it quickly. Speeding up the process – from hours to minutes or from weeks to days – is key to our success. One major source of such big data are physical experiments. As many will know, these physical experiments are commonly used to solve challenges in fields such as energy security, manufacturing, medicine, pharmacology, environmental protection and national security. Experiments use different instruments and sensor types to research for example the validity of new drugs, the base cause for diseases, more efficient energy sources, new materials for every day goods, effective methods for environmental cleanup, the optimal ingredients composition for chocolate or determine how to preserve valuable antics. This is done by experimentally determining the structure, properties and processes that govern biological systems, chemical processes and materials. The speed and quality at which we can acquire new insights from experiments directly influences the rate of scientific progress, industrial innovation and competitiveness. And gaining new groundbreaking insights, faster, is key to the economic success of our nations. Recent years have seen incredible advances in sensor technologies, from house size detector systems in large experiments such as the Large Hadron Collider and the ‘Eye of Gaia’ billion pixel camera detector to high throughput genome sequencing. These developments have led to an exponential increase in data volumes, rates and variety produced by instruments used for experimental work. This increase is coinciding with a need to analyze the experimental results at the time they are collected. This speed is required to optimize the data taking and quality, and also to enable new adaptive experiments, where the sample is manipulated as it is observed, e.g. a substance is injected into a

  6. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  7. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    SciTech Connect

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  8. The Change of Structural and Thermal Properties of Rocks Exposed to High Temperatures in the Vicinity of Designed Geo-Reactor / Zmiany właściwości strukturalnych i cieplnych skał poddanych wysokim temperaturom w rejonie projektowanego georeaktora

    NASA Astrophysics Data System (ADS)

    Małkowski, Piotr; Niedbalski, Zbigniew; Hydzik-Wiśniewska, Joanna

    2013-06-01

    Among the main directions of works on energy acquisition, there is the development and application of the technology of underground gasification of coal deposits (UCG). During the process of deposit burning and oxidation, there is also impact of temperatures exceeding 1000°C on rocks surrounding the deposit. As a result of subjecting carboniferous rocks to high temperatures for a prolonged period of time, their structure will change, which in turn will result in the change of their physical properties. Due to the project of underground coal gasification, as performed in Poland, laboratory tests are currently under way to a broad extent, including physical properties of carboniferous rocks subjected to high temperatures. The article presents results of laboratory tests of rocks surrounding the designed geo-reactor: changes to bulk density, specific density and porosity due to high temperature, and confronts the above results with the results of tests of thermal conductivity, specific heat and heat diffusivity (temperature conductivity) of the rocks. The mineralogical investigations were presented too. Jednym z głównych kierunków prac nad pozyskiwaniem energii jest opracowanie i zastosowanie technologii podziemnej gazyfikacji pokładów węgla. W czasie procesu spalania i utleniania pokładu dochodzi również do oddziaływania temperatur przekraczających 1000°C na skały otaczające pokład. W wyniku poddania skał karbońskich wysokim temperaturom przez dłuższy okres czasu będzie dochodzić do zmian ich struktury, co z kolei spowoduje zmiany ich właściwości fizycznych. Ze względu na realizowany w Polsce projekt podziemnego zgazowania węgla prowadzone są obecnie badania laboratoryjne w szerokim zakresie, m.in. właściwości fizycznych skał karbońskich poddanych wysokim temperaturom. W artykule przedstawiono wyniki badań laboratoryjnych skał otaczających projektowany georeaktor: zmian gęstości objętościowej, gęstości właściwej i porowato

  9. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    NASA Astrophysics Data System (ADS)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  10. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  11. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  12. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  13. Analysis of the Massive Salt Fall in Big Hill Cavern 103

    SciTech Connect

    MUNSON, DARRELL E.; BAUER, STEPHEN J.; RAUTMAN, CHRISTOPHER A.; EHGARTNER, BRIAN L.; SATTLER, ALLAN R.

    2003-05-01

    This report summarizes recent reviews, observations, and analyses believed to be imperative to our understanding of the recent two million cubic feet salt fall event in Big Hill Cavern 103, one of the caverns of the Strategic Petroleum Reserve (SPR). The fall was the result of one or more stress driven mechanical instabilities, the origins of which are discussed in the report. The work has lead to important conclusions concerning the engineering and operations of the caverns at Big Hill. Specifically, Big Hill, being the youngest SPR site, was subjected to state-of-the-art solutioning methods to develop nominally well-formed, right-circular cylindrical caverns. Examination of the pressure history records indicate that operationally all Big Hill SPR caverns have been treated similarly. Significantly, new three-dimensional (3-D) imaging methods, applied to old (original) and more recent sonar survey data, have provided much more detailed views of cavern walls, roofs, and floors. This has made possible documentation of the presence of localized deviations from ''smooth'' cylindrical cavern walls. These deviations are now recognized as isolated, linear and/or planar features in the original sonar data (circa early 1990s), which persist to the present time. These elements represent either sites of preferential leaching, localized spalling, or a combination of the two. Understanding the precise origin of these phenomena remains a challenge, especially considering, in a historical sense, the domal salt at Big Hill was believed to be well-characterized. However, significant inhomogeneities in the domal salt that may imply abnormalities in leaching were not noted. Indeed, any inhomogeneities were judged inconsequential to the solution-engineering methods at the time, and, by the same token, to the approaches to modeling the rock mass geomechanical response. The rock mass was treated as isotropic and homogeneous, which in retrospect, appears to have been an over

  14. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  15. Making a Difference in Schools: The Big Brothers Big Sisters School-Based Mentoring Impact Study

    ERIC Educational Resources Information Center

    Herrera, Carla; Grossman, Jean Baldwin; Kauh, Tina J.; Feldman, Amy F.; McMaken, Jennifer

    2007-01-01

    School-based mentoring is one of the fastest growing forms of mentoring in the US today; yet, few studies have rigorously examined its impacts. This landmark random assignment impact study of Big Brothers Big Sisters School-Based Mentoring is the first national study of this program model. It involves 10 agencies, 71 schools and 1,139 9- to…

  16. Making a Difference. An Impact Study of Big Brothers/Big Sisters.

    ERIC Educational Resources Information Center

    Tierney, Joseph P.; And Others

    This report provides reliable evidence that mentoring programs can positively affect young people. The evidence is derived from research conducted at local affiliates of Big Brothers/Big Sisters of America (BB/BSA), the oldest, best-known, and arguably most sophisticated of the country's mentoring programs. Public/Private Ventures, Inc. conducted…

  17. Serving, Learning and Mentoring through the Big Brothers Big Sisters Program

    ERIC Educational Resources Information Center

    Sivukamaran, Thillainatarajan; Holland, Glenda; Clark, Leonard J.

    2010-01-01

    This study describes the collaborative partnership between a Big Brothers Big Sisters organization, an elementary school and the College of Education at a public university. The partnership utilized a mentoring system consisting of elementary students, college students, elementary teachers and university faculty. Benefits of the various…

  18. Rock Pore Structure as Main Reason of Rock Deterioration

    NASA Astrophysics Data System (ADS)

    Ondrášik, Martin; Kopecký, Miloslav

    2014-03-01

    Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze

  19. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  20. Enhancement of β-catenin activity by BIG1 plus BIG2 via Arf activation and cAMP signals.

    PubMed

    Li, Chun-Chun; Le, Kang; Kato, Jiro; Moss, Joel; Vaughan, Martha

    2016-05-24

    Multifunctional β-catenin, with critical roles in both cell-cell adhesion and Wnt-signaling pathways, was among HeLa cell proteins coimmunoprecipitated by antibodies against brefeldin A-inhibited guanine nucleotide-exchange factors 1 and 2 (BIG1 or BIG2) that activate ADP-ribosylation factors (Arfs) by accelerating the replacement of bound GDP with GTP. BIG proteins also contain A-kinase anchoring protein (AKAP) sequences that can act as scaffolds for multimolecular assemblies that facilitate and limit cAMP signaling temporally and spatially. Direct interaction of BIG1 N-terminal sequence with β-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins. Depletion of BIG1 and/or BIG2 or overexpression of guanine nucleotide-exchange factor inactive mutant, but not wild-type, proteins interfered with β-catenin trafficking, leading to accumulation at perinuclear Golgi structures. Both phospholipase D activity and vesicular trafficking were required for effects of BIG1 and BIG2 on β-catenin activation. Levels of PKA-phosphorylated β-catenin S675 and β-catenin association with PKA, BIG1, and BIG2 were also diminished after BIG1/BIG2 depletion. Inferring a requirement for BIG1 and/or BIG2 AKAP sequence in PKA modification of β-catenin and its effect on transcription activation, we confirmed dependence of S675 phosphorylation and transcription coactivator function on BIG2 AKAP-C sequence. PMID:27162341