Science.gov

Sample records for bighorn mountains wyoming

  1. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  2. Nature of thrusting along western flank of Bighorn Mountains, Wyoming

    SciTech Connect

    Noggle, K.S.

    1986-08-01

    The northern portion of the Bighorn Mountains is characterized by opposed mountain-front thrusts, of which the southwest direction is dominant. Blind basement thrusts along the northeastern flank do not pierce the folded Paleozoic cover; whereas on the western flank, southwest-directed thrust segments expose Precambrian rocks along a 24-km (14-mi) extent. Field studies on the western flank show evidence of four major southwest-directed thrust segments delineated by tear-fault boundaries, which include from northwest to southeast: (1) the Five Springs thrust, a low-angle, out-of-the-syncline fault mainly involving the sedimentary sequence; (2) the Bear Creek thrust, a continuation of the Five Springs out-of-the-syncline fault; (3) the South Beaver Creek thrust, which juxtaposes Precambrian rocks against a tectonically thinned, overturned anticlinal limb of Mississippian through Jurassic rocks and which is inward from an out-of-the-syncline thrust involving little displacement of Jurassic formations; and (4) a mountain-front reentrant that coincides with the zone where the South Beaver Creek thrust continues beneath Paleozoic cover, causing the upper flexure of a double monocline. The central portion of the Bighorn Mountains is thrust eastward, whereas the northern portion is thrust southwestward with much less displacement. The segmented association of southwest-directed basement thrusts along the western flank of the northern Bighorns is indicative of the major transport direction for that portion of the Bighorn uplift.

  3. Back-thrusting along the western flank of the Bighorn Mountain, Bighorn County,Wyoming

    SciTech Connect

    Noggle, K.S.

    1985-01-01

    Field evidence of westward back-thrusting, compartmentalized faulting, and tectonically-thinned fault wedges supports a thrust-generated model of uplift for the Bighorn Mountains. Encompassed within the Leavitt Reservoir Quadrangle are structures suggestive of westward basement-involved thrusting antithetic to the main eastward thrust direction of the Bighorn uplift. The mountain-flank region in this area is characterized by reverse-faulted blocks of Precambrian basement which are draped by a deformed Paleozoic cover. A reentrant along the mountain front coincides with an east-west compartmental boundary separating two distinct areas of structural discordance. North of this fault boundary, compression appears to have been accommodated by folding of the hanging wall block. To the south, Precambrian rocks exposed at the mountain-front overlie, and are in fault-contact with a tectonically-thinned, overturned wedge of Paleozoic and Mesozoic strata. Structures i the basinal portion of the Leavitt Reservoir Quadrangle include small-scale folds and a thrust-faulted anticline paralleling the NW-SE trend of the larger mountain-flank structures. Decollement may have occurred parallel to bedding planes within multiple stratigraphic horizons. This deformation probably represents concomitant basinward ramping of the sedimentary sequence in response to westward back-thrusting of Precambrian blocks during the Laramide Orogeny.

  4. Seismicity Near the Bighorn Mountain Range, Wyoming, During the Earthscope USArray Deployment

    NASA Astrophysics Data System (ADS)

    O'Rourke, C. T.; Nakai, J.; Sheehan, A. F.; Erslev, E.

    2013-12-01

    In this study we combine a temporary seismic array with the existing USArray network in order to establish a more complete earthquake record for northern Wyoming and to better understand the current state of stress in the area. To accomplish this, we incorporate data gathered during a temporary array of 35 broadband and 156 short-period seismometers deployed across the Bighorn Mountains and flanking basins in northern Wyoming as part of the Bighorn Arch Seismic Experiment (BASE). These stations were installed in an array designed to densify the existing USArray network in the area, achieving a spatial resolution of ~30km (broadband) and ~5km spacing (short-period) vs. ~70km of a typical USArray grid. We focus on the area surrounding the Bighorn Mountains, ~250km east of Yellowstone, which is listed as a moderate seismic hazard by the USGS and has a record of several intensity-V earthquakes in the past several decades. The area is also poorly covered by the World Stress Map; to help fill this gap in data we solve for focal mechanisms and collect industry borehole breakout and fracture data to provide a better picture of the overall stress of the area. The Bighorn Mountains were created during the late Eocene and are considered to be an archetype of Laramide basement-involved foreland arches. Though the Bighorn Mountain region appears to tectonically inactive today, the USArray Array Network Facility (ANF) has identified several dozen small-magnitude earthquakes (and many mine blasts) that occurred during the USArray deployment. We believe this list can be improved by using a lower station threshold and other improved detection parameters, as well as the inclusion of the dense BASE array. We perform initial hypocenter relocation calculations using detection, association, and location algorithms that are part of the Antelope Environmental Data Collection Software, which present a simple user interface and allow for quick event identification and relocation. This study

  5. Influences on Wood Load in Mountain Streams of the Bighorn National Forest, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Nowakowski, Amy L.; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  6. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    PubMed

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds. PMID:18535855

  7. Structural style of east flank of Bighorn Mountains, Johnson and Sheridan Counties, Wyoming

    SciTech Connect

    Furner, R.B. )

    1989-09-01

    The 70 mi-long portion of the east flank of the Bighorn Mountains, between Sheridan and Mayoworth, Wyoming, is structurally divisible into three distinct segments - northern, central, and southern - each distinguished by a dominant sense of vergence and structural style. The northern segment displays southwest-verging reverse faults and associated folds, indicating tectonic transport out of the Powder River basin and onto the mountain flank. The central segment displays northeast and east-northeast-verging reverse faults and associated folds, indicating tectonic transport of the mountain flank over the Powder River basin. Seismic and drill-hole data indicate most of these reverse faults dip to the southwest and west-southwest at angles of 35{degree} or less. The southern segment displays west-southwest-verging reverse faults and associated folds, again indicating tectonic transport out of the Powder River basin and onto the mountain flank. All major structures identified within the area of investigation are basement involved, and the geometry of the rocks supports the concept that the mountain flank deformed under the influence of northeast-southwest-directed horizontal compression rather than vertically oriented block uplift.

  8. Laramide thrusting of Bighorn Mountains onto Powder River basin near Buffalo, Wyoming

    SciTech Connect

    Grow, J.A.; Hinrichs, E.N.; Miller, J.J.; Lee, M.W.; Robbins, S.L.

    1988-07-01

    Recent seismic surveys and exploratory drilling by industry for subthrust oil and gas prospects beneath the Bighorn Mountain front along the western edge of the Powder River basin near Buffalo, Wyoming, reveal a basement-involved thrust of considerable magnitude. A deep test for oil and gas, the ARCO 1-4 Kinney Ranch borehole, was drilled 13 km (8 mi) west of Buffalo and penetrated 750 m (2460 ft) of Precambrian granite gneiss before penetrating the thrust and entering 1475 m (4838 ft) of the Paleocene Fort Union Formation and another 2199 m (7214 ft) of Mesozoic and Paleozoic sedimentary rocks. The Gulf Granite Ridge 1-9-2D borehole, which was drilled 31 km (19 mi) north-northwest of the ARCO borehole and 5 km (3 mi) northwest of Story, Wyoming, penetrated 1768 m (5800 ft) of granite before entering Upper Cretaceous strata. This borehole penetrated a total of 3021 m (9911 ft) of Mesozoic and Paleozoic sedimentary rocks. Chevron U.S.A., Inc., supplied to the USGS two very high-quality seismic reflection profiles near the Kinney Ranch and Granite Ridge boreholes. These profiles have been reprocessed by the USGS and integrated with surface geologic mapping, gravity surveys, and other geologic studies by the USGS in progress in the Powder River basin. The seismic profiles near the Kinney Ranch and Granite Ridge boreholes clearly show that sedimentary rocks of the Paleozoic through the Paleocene, which occur beneath the thrust fault, extend more than 11 km (7 mi) west ward from the eastern edge of the basement thrust. The fault plane at the base of the Precambrian granites and gneisses dips 30/degrees/ to the west.

  9. Geochemistry of Precambrian mafic dikes, central Bighorn Mountains, Wyoming, U.S.A.

    USGS Publications Warehouse

    Armbrustmacher, T.J.

    1977-01-01

    Precambrian quartz dolerites and metadolerites of the central Bighorn Mountains form dikes that intrude a Precambrian metamorphic and igneous terrane typical of the Laramide uplifts of the middle Rocky Mountains. They have a restricted range of major- and trace-element compositions and are typical of basalts in the middle stages of tholeiitic fractionation. Fractionation in the direction of iron enrichment occurred by removal of plagioclase. Average element concentrations of the two groups are nearly identical to one another, are comparable to those in Archean metabasalts from numerous shield areas, and are intermediate between those of modern oceanic tholeiites and continental tholeiites. These average concentrations suggest a depth of magma generation and thickness of crust intermediate between those for the oceanic and continental environments. ?? 1977.

  10. Petrology of Tullock Member, Fort Union Formation, Wyoming and Montana: Evidence for early Paleocene uplift of Bighorn Mountains

    SciTech Connect

    Brown, J.L.; Hansley, P.L. )

    1989-09-01

    New petrologic data collected from sandstones in the Paleocene Tullock Member of the Fort Union Formation above the Cretaceous/Tertiary boundary in the Powder River basin (PRB) and from the lowermost Paleocene in the Bighorn basin, Wyoming and Montana, compel reevaluation of the timing of the bighorn uplift, formerly thought to be middle Paleocene. The Cretaceous/Tertiary boundary is identified by regionally valid palynological and trace element geochemical criteria. Basin-wide outcrop and subsurface studies of the Tullock Member indicate deposition on a low-gradient alluvial plain extending toward the retreating Cannonball sea. Eastward-flowing, low-sinuosity paleostreams containing small, sandy, stable channels characterized the fluvial systems.

  11. Structural and microstructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): New insights into the Sevier and Laramide orogenic stress build-up in the Bighorn Basin

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Leprêtre, Rémi; Bellahsen, Nicolas; Lacombe, Olivier; Amrouch, Khalid; Callot, Jean-Paul; Emmanuel, Laurent; Daniel, Jean-Marc

    2012-11-01

    The Rocky Mountains in western US provide among the best examples of thick-skinned tectonics: following a period of thin-skinned tectonics related to the Sevier orogeny, the compressional reactivation of basement faults gave birth to the so-called Laramide uplifts/arches. The Bighorn basin, located in Wyoming, is therefore a key place to study the transition from thin- to thick-skinned tectonics in orogenic forelands, especially in terms of microstructural and stress/strain evolution. Our study focuses on a classic Laramide structure: the Rattlesnake Mountain Anticline (RMA, Wyoming, USA), a basement-cored anticline located in the western part of the Bighorn basin. Stress and strain evolution analysis in folded sedimentary layers and underlying faulted basement rocks were performed on the basis of combined analyses of fractures, fault-slip data and calcite twinning paleopiezometry. Most of the fractures are related to three main tectonic events: the Sevier thin-skinned contraction, the Laramide thick-skinned contraction, and the Basin and Range extension. Serial balanced cross-sections of RMA and displacement profiles suggest that all thrust faults were coeval, evidencing strain distribution in the basement during faulting. The comparison of RMA with another structure located in the eastern edge of the Bighorn basin, i.e. the Sheep Mountain Anticline (SMA), allows to propose a conceptual model for the geometric and kinematic evolution of Laramide-related basement-cored anticlines. Finally, the stress evolution is reconstructed at both the fold scale and the basin scale. We show that the evolution of stress trends and magnitudes was quite similar in both structures (RMA and SMA) during Laramide times (thick-skinned tectonics), in spite of different stress regimes. During Sevier (thin-skinned tectonics) and post-Laramide times, stress trends and fracture patterns were different in these two structures. These results suggest that the distance to the orogenic front

  12. Expression of syndepositional tectonic uplift in Permian Goose Egg formation (Phosphoria equivalent) carbonates and red beds of Sheep Mountain anticline, Bighorn basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Ulmer, D.S.; Scholle, P.A.

    1989-03-01

    Based on detailed field observations at Sheep Mountain, a doubly plunging anticline in the northeastern Bighorn basin in Wyoming, there appears to have been active tectonic uplift at this site contemporaneous with Pennsylvanian and Permian sedimentation. The Permian (Leonardian to Guadalupian) Goose Egg Formation at Sheep Mountain consists of 25-60 m of silty red beds (including minor carbonate and evaporite units) capped by 15-30 m of dominantly intertidal carbonates (the Ervay Member). A strong lateral variation of facies normal to the trend of the anticline is found within the red-bed sequence: carbonate beds on the anticline flanks are transitional with a gypsum/anhydrite facies along the crest. Similarly, shales on the anticline limbs grade into sandstones near the fold axis, indicating a paleohigh roughly coincidental with the present-day anticline crest. Ervay deposition (late Guadalupian) was marked by a more extensive uplifted structure in a marginal marine setting. On Sheep Mountain the unit is typified by intertidal fenestral carbonates, whereas outcrops to the east suggest a restricted marine facies and outcrops to the west reflect a more open marine environment. Thin sand lenses present in the Ervay are thought to represent terrigenous sediments blown onto the sometimes emergent bank which were then captured through adhesion and cementation. Anticlinal features similar to Sheep Mountain are common along the eastern margin of the Bighorn basin. When found in the subsurface, these structures are often associated with hydrocarbon production from the Ervay Member. Tectonic uplift contemporaneous with deposition of this unit may explain the localization of the productive fenestral facies on the present-day anticlines.

  13. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE PAGESBeta

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  14. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S-190A color transparencies from SL-2 of the Big Horn basin region provide the best format to date for geologic study of that region; red beds are quite mappable and resistant key beds sharply outlined. An S-190B color frame from SL-3 of the Pryor-Bighorn mountains provides no indication that the Nye-Bowler lineament extends east of East Pryor Mountain. This has important implications regarding the role of this and other lineaments (which also appear to be of restricted length) in the tectonics of the region. Extensions of these lineaments for great distances does not seem warranted on the basis of surface evidence.

  15. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Excellent imagery has been obtained from SL-3 along track 5 across the Bighorn Mountains and track 19 across the northern Black Hills. The red band is by far the best of the four black and white films of S-190A. Excellent detail is visible of topography, structure, resistant lithologies, and culture with good resolution obtainable at high magnification (30X). The infrared bands do not have as good resolution and are grainy at high magnification. They are of use as a complement to the red band particularly for relief enhancement in areas of heavy green grass and forest cover. S-190B high definition black and white is comparable to the red band (S-190A) in detail. Its main advantage is larger initial scale and slightly better resolution. High resolution color transparencies along track 19 allow detailed delineation of cultivated land and strip mining. A group of folds northwest of Billings stand out clearly. Light colored units in northwestern Black Hills and in the badlands can be mapped in great detail.

  16. Assessment of Undiscovered Oil and Gas Resources of the Bighorn Basin Province, Wyoming and Montana, 2008

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 989 billion cubic feet of undiscovered natural gas, a mean of 72 million barrels of undiscovered oil, and a mean of 13 million barrels of undiscovered natural gas liquids in the Bighorn Basin Providence of Wyoming and Montana.

  17. Some aspects of geophagia in Wyoming bighorn sheep (Ovis canadensis)

    SciTech Connect

    B. J. Mincher; J. Mionczynski; P. A. Hnilicka; D. R. Ball; T. P. Houghton

    2008-05-01

    Geophagia has been commonly reported for bighorn sheep (Ovis canadensis) and other ungulates worldwide. The phenomenon is often attributed to the need to supplement animal diets with minerals available in the soil at mineral lick locations. Sodium is the mineral most frequently cited as being the specific component sought, although this has not been found universally. In this study area, bighorn sheep left normal summer range to make bimonthly 26-km, 2000-m elevation round-trip migrations, the apparent purpose of which was to visit mineral licks on normal winter-range. Lick soil and normal summer range soil were sampled for their available mineral content, and summer range forage was sampled for total mineral content and comparisons were made to determine the specific components sought at the lick by bighorn sheep consuming soil. It was concluded that bighorn sheep were attracted to the lick by a desire for sodium, but that geophagia also supplemented a diet deficient in the trace element selenium.

  18. Bighorn sheep response to road-related disturbances in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Keller, B.J.; Bender, L.C.

    2007-01-01

    Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.

  19. Brucellosis in captive Rocky Mountain bighorn sheep (Ovis canadensis) caused by Brucella abortus biovar 4.

    PubMed

    Kreeger, Terry J; Cook, Walter E; Edwards, William H; Cornish, Todd

    2004-04-01

    Nine (four female, five male) captive adult Rocky Mountain bighorn sheep (Ovis canadensis) contracted brucellosis caused by Brucella abortus biovar 4 as a result of natural exposure to an aborted elk (Cervus elaphus) fetus. Clinical signs of infection were orchitis and epididymitis in males and lymphadenitis and placentitis with abortion in females. Gross pathologic findings included enlargement of the testes or epididymides, or both, and yellow caseous abscesses and pyogranulomas of the same. Brucella abortus biovar 4 was cultured in all bighorn sheep from a variety of tissues, including testes/epididymides, mammary gland, and lymph nodes. All bighorn sheep tested were positive on a variety of standard Brucella serologic tests. This is the first report of brucellosis caused by B. abortus in Rocky Mountain bighorn sheep. It also provides evidence that bighorn sheep develop many of the manifestations ascribed to this disease and that infection can occur from natural exposure to an aborted fetus from another species. Wildlife managers responsible for bighorn sheep populations sympatric with Brucella-infected elk or bison (Bison bison) should be cognizant of the possibility of this disease in bighorn sheep. PMID:15362833

  20. Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin, Wyoming

    SciTech Connect

    Heasler, H.P.; Kharitonova, N.A.

    1996-05-01

    An improved exponential model of sonic transit time data as a function of depth takes into account the physical range of rock sonic velocities. In this way, the model is more geologically realistic for predicting compaction trends when compared to linear or simple exponential functions that fail at large depth intervals. The improved model is applied to the Bighorn basin of northwestern Wyoming for calculation of erosion amounts. This basin was chosen because of extensive geomorphic research that constrains erosion models and because of the importance of quantifying erosion amounts for basin analysis and hydrocarbon maturation prediction. Thirty-six wells were analyzed using the improved exponential model. Seven of these wells, due to limited data from the Tertiary section, were excluded from the basin erosion analysis. Erosion amounts from the remaining 29 wells ranged from 0 to 5600 ft (1700 m), with an average of 2500 ft (800 m).

  1. Thin-skinned shortening geometries of the South Fork fault: Bighorn basin, Park County, Wyoming

    SciTech Connect

    Clarey, T.L. )

    1990-01-01

    This paper presents a new interpretation of the South Fork fault in light of thin-skinned thrust theory. Cross sections and seismic data are presented which indicate that the South Fork fault is an allochthonous salient which was emplaced in the Bighorn basin during the early to middle Eocene. All observed structural geometries can be interpreted as developing under a compressional regime, similar to the Wyoming-Utah-Idaho thrust belt. Faults either follow bedding-plane surfaces, cut up section in the direction of tectonic transport or form backthrusts. A single decollement within the Jurassic Gypsum Spring Formation appears to dominate. Tectonic transport was approximately southeast, parallel to tear faults in the allochthonous plate.

  2. Depositional history of Lower Triassic Dinwoody Formation, Bighorn basin, Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K.

    1986-08-01

    The Lower Triassic Dinwoody Formation in the Bighorn basin of Wyoming and Montana records the northeasternmost extent of the widespread and rapid Griesbachian transgression onto the Wyoming shelf. Depositional patterns document a progressive change from sparsely fossiliferous, inner-shelf marine conditions in the southwest and west to restricted, marginal-marine environments to the north and east. Characteristic lithologies include greenish-gray calcareous or dolomitic mudstone and siltstone, very thin to thick beds of gypsum, and thin-bedded, commonly laminated dolomite. A formation thickness of approximately 20 m persists throughout most of the basin but diminishes abruptly near the northern and eastern limits of deposition. The Dinwoody is disconformable on the Ervay Member of the Permian Park City Formation except in the northeasternmost part of the basin, where it locally overlies the Pennsylvanian Tensleep Sandstone. Considering the significant time interval involved, physical evidence at the Permian-Triassic boundary is generally limited to an abrupt lithologic change from light-colored shallow marine or intertidal Permian dolomite to greenish-gray Dinwoody siltstone. The Dinwoody grades vertically as well as laterally to the east and north into red beds of the Lower Triassic Red Peak Formation of the Chugwater Group. The Early Triassic depositional environment in the present-day Bighorn basin was hostile. A sparse molluscan fauna was observed at only one of the 20 sections studied, and no conodonts were recovered from Dinwoody carbonates. Significant amounts of gypsum within the Dinwoody suggest periodic high evaporation from hypersaline waters on a low-energy shallow shelf during intervals of reduced terrigenous sediment supply from the north and east. However, sufficient organic material was present to create reducing conditions, as evidenced by greenish rock color and abundant pyrite.

  3. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  4. Variability of the isotopic lapse rate across the mountain ranges in Wyoming

    NASA Astrophysics Data System (ADS)

    Brian, H.; Fan, M.

    2012-12-01

    Stable isotope based paleoaltimetry studies require knowledge of the isotope-elevation gradient during the time of interest, but this information is rarely available. As a result, many studies often apply the modern local lapse rate or a global average lapse rate and assume these values are valid for the area of interest and that they hold through time. However, natural variability in local-scale climate and mountain geometry and morphology can influence the isotope-elevation (and temperature-elevation) gradient. We evaluate the inter- and intra-mountain range variability of modern climate and isotope values of stream water for three Laramide ranges in Wyoming (Wind River Range, Bighorn and Laramie Mountains), as well as for a regional elevation transect across the central Rocky mountain front. Samples of steam water were taken from major catchments across Wyoming in 2007, 2011, and 2012. We find that the modern lapse rate for these ranges is -1.7‰/km, -2.2‰/km and -1.8‰/km respectively. Although these values are very similar to one another and to the global isotopic lapse rate (-2.1‰/km), large variation (up to 6‰/km) exists among individual small river catchments of the Bighorn Mountains. The variability in catchment-scale lapse rate does not appear to be systematically related to annual, or seasonal surface air temperature, precipitation amount, or catchment area. However, the range-scale lapse rates may yet reflect the regional climate, which is generally coolest and driest in the Wind River Range (lowest lapse rate) and warmest and wettest in the Bighorn Mountains (highest lapse rate). Similar d-excess values exist across individual mountain ranges, but inter-mountain range differences indicate that the Laramie Mountains (and regions of western Nebraska) receive evaporatively enriched rainwater compared to those in the Wind River Range and Bighorn Mountains. These differences do not necessarily require separate vapor sources as the lower d

  5. Eustatic and tectonic control on localization of porosity and permeability, Mid-Permian, Bighorn Basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Scholle, P.A. )

    1990-05-01

    The Goose Egg Formation of the northeastern Bighorn basin was deposited in an arid shoreline (sabkha) environment during a time of global cyclic sea level variations and local tectonic uplift Eustatic sea level lows are represented by terrestrial red beds (seals), whereas highs resulted in the deposition of supratidal to shallow subtidal carbonates (reservoirs). Pennsylvanian and Permian differential uplift along the present basin margin localized a broken chain of barrier islands and shoals during deposition of the Ervay and earlier carbonate members, as recognized in outcrop at Sheep and Little Sheep Mountain anticlines. The Ervay Member on these paleohighs is typified by fenestral dolomite, containing abundant tepees and pisoids. This fabric is interpreted to have folded in the highest intertidal to supratidal sabkha environment which developed on the leeward shores of these islands. The fenestral carbonates grade basinward (westward) into narrow bioclastic grainstone beach deposits and then to open-shelf fossiliferous packstones and wackestone. To the east lie laminated lagoonal micritic limestones and dolomites. Outcrop and core study has shown the fenestral facies to be limited to areas coincident with present-day basin margin anticlines. Not only are these the locations of the most porous facies, but tight Laramide folding of the Goose Egg carbonates resulted in pervasive fracturing and thus very high permeabilities in the same structures. The close association of Laramide folds and productive Permian carbonate horizons in the northeast Bighorn basin could well be characteristic for other yet to be explored structures along the basin-margin trend.

  6. Middle Jurassic (Bajocian and Bathonian) dinosaur megatracksites, Bighorn Basin, Wyoming, USA

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, G.D.; Mickelson, D.L.; Keller, K.; Furer, L.; Archer, A.

    2001-01-01

    Two previously unknown rare Middle Jurassic dinosaur megatracksites are reported from the Bighorn Basin of northern Wyoming in the Western Interior of the United States. These trace fossils occur in carbonate units once thought to be totally marine in origin, and constitute the two most extensive Middle Jurassic dinosaur tracksites currently known in North America. The youngest of these occurs primarily along a single horizon at or near the top of the "basal member" of the "lower" Sundance Formation, is mid-Bathonian in age, and dates to ??? 167 ma. This discovery necessitates a major change in the paleogeographic reconstructions for Wyoming for this period. The older tracksites occur at multiple horizons within a 1 m interval in the middle part of the Gypsum Spring Formation. This interval is uppermost Bajocian in age and dates to ??? 170 ma. Terrestrial tracks found, to date, have been all bipedal tridactyl dinosaur prints. At least some of these prints can be attributed to the theropods. Possible swim tracks of bipedal dinosaurs are also present in the Gypsum Spring Formation. Digitigrade prints dominate the Sundance trackways, with both plantigrade and digitigrade prints being preserved in the Gypsum Spring trackways. The Sundance track-bearing surface locally covers 7.5 square kilometers in the vicinity of Shell, Wyoming. Other tracks occur apparently on the same horizon approximately 25 kilometers to the west, north of the town of Greybull. The Gypsum Spring megatracksite is locally preserved across the same 25 kilometer east-west expanse, with the Gypsum Spring megatracksite more extensive in a north-south direction with tracks occurring locally across a 100 kilometer extent. Conservative estimates for the trackway density based on regional mapping in the Sundance tracksite discovery area near Shell suggests that over 150, 000 in situ tracks may be preserved per square kilometer in the Sundance Formation in this area. Comparable estimates have not been made

  7. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary

    USGS Publications Warehouse

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-01-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic data determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 ?? 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al. ?? 1994.

  8. Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, P. H.

    2013-12-01

    The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from

  9. Tree-Ring-Based Reconstruction of Precipitation in the Bighorn Basin, Wyoming, since 1260 a.d.

    NASA Astrophysics Data System (ADS)

    Gray, Stephen T.; Fastie, Christopher L.; Jackson, Stephen T.; Betancourt, Julio L.

    2004-10-01

    Cores and cross sections from 79 Douglas fir () and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June June) precipitation spanning 1260 1998 A.D. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past 750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15 20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Niña events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Niño events).


  10. Raman spectroscopy of carbonaceous material in PETM sediments from the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Jacobsen, S. D.; Blair, N. E.; Thomas, S.; Kraus, M. J.

    2009-12-01

    Raman microspectroscopy has become a widely used method in geosciences to characterize carbonaceous material (CM) because of its non-destructive nature, short aquisition times, high spatial resolution, and minimal sample preparation. Spectral parameters such as vibrational band position, peak width and peak ratios are used to characterize the CM in terms of thermal maturity. Such information is important to C-biogeochemical studies of both present and past environments because surface pools, such as soils and sediments, typically contain CM exhibiting a wide range of ages and hence thermal maturity. Resolution of those sources is critical to an accurate interpretation of the organic geochemical record. Using Raman spectroscopy, we have identified different types of CM in untreated mudstones, carbonaceous shales, and fine-grained sandstones from the Willwood and Fort Union formations of the southeastern Bighorn Basin, Wyoming. In order to systematically characterize the thermal maturity along a 64 m vertical section spanning the Paleocene-Eocene Thermal Maximum, we measured Raman spectra of the CM. The samples contain at least two different types of CM, irregularly shaped black coal-like fragments and remnants of fossil roots. The Raman spectra of the black carbon fragments consist of bands at ~1347, 1385 cm-1 (D band) and 1588 cm-1 (G band) and weak bands at 2854 cm-1 and 3172 cm-1. The fossil root fragments reveal a different vibrational signature; bands are present at ~1338, 1367 cm-1 and 1582 cm-1 and weak bands at 2778 cm-1 and 2966 cm-1. The Raman spectra indicate that the black carbonaceous material has a higher degree of aromatization than the root material. The black CM spectra are consistent with either paleocharcoal or a recycled CM from an older, more thermally mature lithology that can co-occur with the fossil root debris. Initial results indicate that Raman spectroscopy is an effective method to resolve and characterize multiple sources of CM within

  11. Vitrinite reflectance data for Cretaceous marine shales and coals in the Bighorn Basin, north-central Wyoming and south-central Montana

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2012-01-01

    The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 square miles in north-central Wyoming and south-central Montana. The purpose of this report is to present new vitrinite reflectance data collected from Cretaceous marine shales and coals in the Bighorn Basin to better characterize the thermal maturity and petroleum potential of these rocks. Ninety-eight samples from Lower Cretaceous and lowermost Upper Cretaceous strata were collected from well cuttings from wells stored at the U.S. Geological Survey (USGS) Core Research Center in Lakewood, Colorado.

  12. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  13. Enigmatic uppermost Permian-lowermost Triassic stratigraphic relations in the northern Bighorn basin of Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K. )

    1991-06-01

    Eighteen measured sections in the northern Bighorn basin of Wyoming and Montana provide the basis for an analysis of Permian-Triassic stratigraphic relations. This boundary is well defined to the south where gray calcareous siltstones of the Lower Triassic Dinwoody disconformably overlie the Upper Permian Ervay Member of the Park City Formation with little physical evidence of a significant hiatus. The Dinwoody is gradationally overlain by red beds of the Red Peak Formation. The Dinwoody this to zero near the state line. Northward, the erathem boundary is enigmatic because fossils are absent and there is no evidence of an unconformity. Poor and discontinuous exposures contribute to the problem. Up to 20 m of Permian or Triassic rocks or both overlie the Pennsylvanian Tensleep Sandstone in the westernmost surface exposures on the eastern flank of the Bighorn basin with physical evidence of an unconformity. East of the exposed Tensleep, Ervay-like carbonates are overlain by about 15 m of Dinwoody-like siltstones interbedded with red beds and thin dolomitic limestone. In both areas, they are overlain by the Red Peak Formation. Thin carbonates within the Dinwoody are silty, coarse algal laminates with associated peloidal micrite. Carbonates north of the Dinwoody termination and above probably Ervay are peloidal algal laminates with fenestral fabric and sparse coated shell fragments with pisoids. These rocks may be Dinwoody equivalents or they may be of younger Permian age than the Ervay. Regardless, revision of stratigraphic nomenclature in this area may bed required.

  14. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  15. Petroleum Systems and Geologic Assessment of Oil and Gas in the Bighorn Basin Province, Wyoming and Montana

    USGS Publications Warehouse

    U.S. Geological Survey Bighorn Basin Province Assessment Team

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Bighorn Basin Province, which encompasses about 6.7 million acres in north-central Wyoming and southern Montana. The assessment is based on the geologic elements of each total petroleum system defined in the province, including petroleum source rocks (source-rock maturation, petroleum generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and traps (trap formation and timing). Using this geologic framework, the USGS defined two total petroleum systems: (1) Phosphoria, and (2) Cretaceous-Tertiary Composite. Within these two systems, eight assessment units (AU) were defined, and undiscovered oil and gas resources were quantitatively estimated within each AU.

  16. Bighorn Basin Coring Project: Palynofloral changes and taphonomy through the Paleocene-Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Harrington, G.; Jardine, P.

    2012-12-01

    The early Palaeogene hyperthermals provide an unprecedented opportunity to investigate the biotic responses to rapid and transient global warming events. As part of the Bighorn Basin Coring Project (BBCP), we have analyzed 182 sporomorph (pollen and spore) samples from three newly cored sites in the Bighorn Basin of Wyoming. Two sites, Basin Substation (121 samples) and Polecat Bench (41 samples), contain the Paleocene-Eocene Thermal Maximum (PETM, ETM1), and one early Eocene site, Gilmore Hill (20 samples), contains the ELMO (ETM2) event. We have focused initially on the Basin Substation section, because it is more organic rich, has demonstrated higher sporomorph recovery potential than the other two sites, and is the main focus of complementary geochemical analyses. Below 90 m core depth sporomorph concentrations are typically 1000 - 10 000 grains/gram, but between 90 and 60 m these decline to <100 grains/gram, before rising again to levels similar to those seen at the base of the core. Correlation between marker beds in the core and those at outcrop suggests that this zone of low recovery corresponds closely to the position of the PETM. Prior to this interval, the sporomorph assemblage is dominated by the gymnosperms Cupressacites hiatipites (cypress, Cupressaceae) and bisaccate pollen (Pinaceae and/or Podocarpaceae), and the angiosperm taxa Polyatriopollenites vermontensis (wingnut or wheel wingnut, Juglandaceae), Caryapollenites spp. (hickory, Juglandaceae), and Alnipollenites spp. (alder, Betulaceae). However, samples are heterogeneous in terms of the dominant taxon, with different taxa having the highest relative abundance in different samples. In the upper part of the core, the assemblage is similar to that in the lower part, but with a more consistent dominance of gymnosperm taxa, and with the addition of Eocene marker taxa Intratriporopollenites instructus (linden, Tilioideae) and Celtis spp. (hackberry, Cannabaceae). These both have their first

  17. Deformational stress fields of Casper Mountain, Wyoming

    SciTech Connect

    Burfod, A.E.; Gable, D.J.

    1985-01-01

    Casper Mountain is an east-west-trending Laramide feature located immediately west of the north termination of the Laramie Mountains in central Wyoming. Precambrian rocks are exposed as its core; off-dipping Paleozoic and Mesozoic strata characterize the flanks and ends. The north side is abruptly downthrown along a major east-west fault or faults. A complex of stress fields of Precambrian and younger ages is indicated by high-angle shears and shear zones, steep-dip foliations, and multiple joint systems. One or more of the indicated Precambrian stress fields may be equivalent to that of the Cheyenne belt of the southern Laramie Mountains. In addition, at least two well-developed Laramide stress fields were active during the formation of the mountain structure. The principal maximum compressive stress of each was oriented north-south; the mean compressive axis of one was vertical whereas in the other the minimum compressive axis was vertical. Some structural features of Precambrian age, faulting in particular, appear to have influenced structures of younger ages. Prominent east-northeast-trending, high-angle faults lie approximately parallel to the Precambrian structural grain; they offset structural features of Laramide age and may be of late Laramide and/or post-Laramide age.

  18. Comparison of bulk and n-alkane PETM carbon isotope trends from the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Kraus, M. J.; Wing, S.

    2010-12-01

    The Paleocene-Eocene Thermal Maximum (PETM), a period of abrupt, short-term, and large-scale global warming fueled by a large release of isotopically light carbon, is recorded in terrestrial and marine carbonates and organic carbon as a prominent negative carbon isotope excursion (CIE). Here we present a composite stable carbon isotope record from n-alkanes and four bulk organic carbon records from individual sections spanning the PETM interval in the Cabin Fork area of the southeastern Bighorn Basin, Wyoming. The n-alkane curve shows an abrupt, negative shift in δ13C values, an extended CIE body, and a rapid recovery to pre-PETM δ13C values. While the bulk organic carbon records show similarly abrupt negative shifts in δ13C values, the CIE appears to be compressed as well as smaller in magnitude, and the return to more positive δ13C values is often more gradual. Furthermore, the stratigraphic thickness of the most negative CIE values and the pattern of the recovery phase are not consistent among the four bulk organic carbon records. The discrepancy between the bulk organic matter and n-alkane CIE may arise because of changes in soil organic matter cycling during the PETM. Bulk soil organic matter δ13C values are influenced by degradation and selective preservation whereas n-alkanes are resistant to diagenesis. Variations in sediment accumulation rates across the basin may be responsible for the differences between the four bulk organic carbon δ13C records. Sites with extended CIE bodies likely present more complete isotope records with greater time resolution and less time averaging than those with reduced CIEs. The shape of the high-resolution n-alkane curve presented here is similar to the newest 3He-based timescale for the PETM using data from Walvis Ridge, IODP site 1266 (Murphy et al., 2010). The most significant difference between this revised PETM timescale and previously published age models is the allocation of time within the PETM event. Murphy et

  19. Bighorn sheep habitat studies, population dynamics, and population modeling in Bighorn Canyon National Recreation Area, Wyoming and Montana, 2000-2003

    USGS Publications Warehouse

    Singer, Francis J.; Schoenecker, Kathryn A.

    2004-01-01

    The bighorn sheep population of the greater Bighorn Canyon National Recreation Area (BICA) was extirpated in the 1800s, and then reintroduced in 1973. The herd increased to a peak population of about 211 animals (Kissell and others, 1996), but then declined sharply in 1995 and 1996. Causes for the decline were unknown. Numbers have remained around 100 ± 20 animals since 1998. Previous modeling efforts determined what areas were suitable bighorn sheep habitat (Gudorf and others, 1996). We tried to determine why sheep were not using areas that were modeled as suitable or acceptable habitat, and to evaluate population dynamics of the herd.

  20. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  1. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  2. Outcrops, Fossils, Geophysical Logs, and Tectonic Interpretations of the Upper Cretaceous Frontier Formation and Contiguous Strata in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Tillman, R.W.

    2010-01-01

    In the Bighorn Basin of north-central Wyoming and south-central Montana, the Frontier Formation of early Late Cretaceous age consists of siliciclastic, bentonitic, and carbonaceous beds that were deposited in marine, brackish-water, and continental environments. Most lithologic units are laterally discontinuous. The Frontier Formation conformably overlies the Mowry Shale and is conformably overlain by the Cody Shale. Molluscan fossils collected from outcrops of these formations and listed in this report are mainly of marine origin and of Cenomanian, Turonian, and Coniacian ages. The lower and thicker part of the Frontier in the Bighorn Basin is of Cenomanian age and laterally equivalent to the Belle Fourche Member of the Frontier in central Wyoming. Near the west edge of the basin, these basal strata are disconformably overlain by middle Turonian beds that are the age equivalent of the Emigrant Gap Member of the Frontier in central Wyoming. The middle Turonian beds are disconformably overlain by lower Coniacian strata. Cenomanian strata along the south and east margins of the basin are disconformably overlain by upper Turonian beds in the upper part of the Frontier, as well as in the lower part of the Cody; these are, in turn, conformably overlain by lower Coniacian strata. Thicknesses and ages of Cenomanian strata in the Bighorn Basin and adjoining regions are evidence of regional differential erosion and the presence of an uplift during the early Turonian centered in northwestern Wyoming, west of the basin, probably associated with a eustatic event. The truncated Cenomanian strata were buried by lower middle Turonian beds during a marine transgression and possibly during regional subsidence and a eustatic rise. An uplift in the late middle Turonian, centered in north-central Wyoming and possibly associated with a eustatic fall, caused the erosion of lower middle Turonian beds in southern and eastern areas of the basin as well as in an adjoining region of north

  3. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  4. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.

    1986-01-01

    The major Paleozoic artesian aquifers, the aquifers most favorable for continued development, in the Ten Sleep area of the Bighorn Basin of Wyoming are the Tensleep Sandstone, the Madison Limestone and Bighorn Dolomite (Madison-Bighorn aquifer), and the Flathead Sandstone. The minor aquifers include the Goose Egg and Park City Formations (considered in the Ten Sleep area to be the lateral equivalent of the Phosphoria Formation) and the Amsden Formation. Most wells completed in the major and minor aquifers flow at the land surface. Wellhead pressures generally are less than 50 pounds per square inch for the Tensleep Sandstone, 150-250 pounds per square inch for the Madison-Bighorn aquifer, and more than 400 pounds per square inch for the Flathead Sandstone. Flowing wells completed in the Madison-Bighorn aquifer and the Flathead Sandstone yield more than 1,000 gallons per minute. The initial test of one well completed in the Madison-Bighorn aquifer indicated a flow rate of 14,000 gallons per minute. Transmissivities range from 500 to 1,900 feet squared per day for the Madison-Bighorn aquifer and from about 90 to 325 feet squared per day for the Tensleep and Flathead Sandstones. Significant secondary permeability from fracturing in the Paleozoic aquifers allows local upward interformational movement of water, and this affects the altitude of the potentiometric surfaces of the Tensleep Sandstone and the Madison-Bighorn aquifer. Water moves upward from the Tensleep and other formations, through the Goose Egg Formation, to discharge at the land surface as springs. Much of the spring flow is diverted for irrigation or is used for rearing fish. Decreases from original well pressures were not apparent in wells completed in the Tensleep Sandstone or in the Madison-Bighorn aquifer in the study area except for a few wells in or near the town of Ten Sleep. Most wells completed in the Flathead Sandstone, which also are open to the Madison-Bighorn aquifer, show a decrease of

  5. Evolutionary relationships of a new genus and three new species of Omomyid primates (Willwood Formation, Lower Eocene, Bighorn Basin, Wyoming)

    USGS Publications Warehouse

    Bown, T.M.

    1991-01-01

    Studies of new finds of omomyid primates from the lower Eocene Willwood Formation of northwest Wyoming reveal the presence of a new genus and two new species of anaptomorphines and a new species of omomyine. All were apparently short-lived immigrants into the Bighorn Basin. The new genus and speciesTatmanius szalayi is typified by a diminutive single-rooted p3 and a bilobed-rooted p4 with a crown smaller than ml. These traits were probably derived fromPseudotetonius and parallel similar conditions inTrogolemur andNannopithex. The new speciesArapahovius advena is the first occurrence ofArapahovius outside the Washakie Basin, where it appears to have also been a vagrant species.Steinius annectens, sp. nov., is larger than the olderSteinius vespertinus and strengthens the alliance between this genus and BridgerianOraorays carteri, although which species ofSteinius is closer toOmomys is not yet clear. The available evidence suggests a derivation ofOmomys (Omomyini) fromSteinius and all Washakiini from the anaptomorphineTeilhardina, which would indicate that Omomyinae were at least diphyletic. Preliminary evidence suggests that the geographic distributions of at least some Willwood omomyids correlate with paleosol distributions.

  6. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Gingerich, Philip D.

    1998-11-01

    New stratigraphic and paleontological information from the McCullough Peaks, northern Bighorn Basin, Wyoming, is incorporated into an isotaphonomic faunal database and used to investigate the impact of the latest Paleocene thermal maximum and coincident earliest Wasatchian immigration event on local mammalian community structure. Surface collections from Willwood Formation overbank deposits provide taphonomically consistent and stratigraphically resolved samples of the medium- to large-sized components of underlying mammalian communities. Rarefaction shows that the immigration event caused an abrupt and dramatic increase in species richness and evenness. After this initial increase, diversity tapered off to more typical Wasatchian levels that were still higher than those in the preceding Clarkforkian. Wasatchian immigrants were rapidly incorporated into the new community organization, representing ˜20% of the taxa and ˜50% of the individuals. Immigrant taxa generally had larger body sizes and more herbivorous and frugivorous dietary habits compared to endemic taxa, causing significant turnover in body-size structure and trophic structure. There was a significant short-term body-size decrease in many lineages that may have been prompted by the elevated temperatures and/or decreased latitudinal thermal gradients during the latest Paleocene thermal maximum. Rapid short-term climatic change (transient climates) and associated biotic dispersal can have abrupt and long-lasting effects on mammalian community evolution.

  7. The rise and fall of psoroptic scabies in bighorn sheep in the San Andres Mountains, New Mexico.

    PubMed

    Boyce, Walter M; Weisenberger, Mara E

    2005-07-01

    Between 1978 and 1997, a combination of psoroptic scabies (Psoroptes spp.), mountain lion (Puma concolor) predation, and periodic drought reduced a population of native desert bighorn sheep (Ovis canadensis) in the San Andres Mountains (SAM), New Mexico, from >200 individuals to a single ewe. In 1999, this ewe was captured, ensured to be Psoroptes-free, and released back into the SAM. Eleven radio-collared rams were translocated from the Red Rock Wildlife Area (RRWA) in New Mexico into the SAM range and monitored through 2002 to determine whether Psoroptes spp. mites were still in the environment. None of these sentinel rams acquired scabies during this period, and no additional native sheep were found to be present in the range. In 2002, 51 desert bighorn sheep were translocated into the SAM from the Kofa National Wildlife Refuge in Arizona (n = 20) and the RRWA in New Mexico (n = 31). Twenty-one bighorn sheep have died in the SAM since that time, but Psoroptes spp. mites have not been detected on any of these animals, nor have they been found on mule deer (Odocoileus hemionus) sampled since 2000. We conclude that psoroptic scabies is no longer present in the San Andres bighorn sheep population and that psoroptic scabies poses a minimal to nonexistent threat to the persistence of this population at this time. PMID:16244062

  8. Structural interpretations based on ERTS-1 imagery, Bighorn Region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A.

    1973-01-01

    Structural analysis is being carried out on bands MSS 5 and 7 of scene 1085-17294. Geologic strucutre is primarily revealed in the topographic relief and drainage. Topographic linears are particularly well developed in the bighorn uplift. Many of these occur along known faults and shear zones in the Precambrian core; several have not been previously mapped. These linears, however, do not continue into the younger rocks of the flanks or do so in a much less marked manner than in the core. Linears are far less abundant in the basin or are manifested only in very subtle tonal contrasts and somewhat straight drainage segments. Some of the linears are aligned along trends previously postulated on the basis of surface mapping to be lineaments. The imagery reveals little or no evidence of strike-slip displacements along these lineaments.

  9. Stress and strain evolution in foreland basins and its relation to the structural style : insights from the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Beaudoin, N.; Leprêtre, R.; Bellahsen, N.; Lacombe, O.; Amrouch, K.; Callot, J.-P.; Emmanuel, L.; Daniel, J.-M.

    2012-04-01

    The Rocky Mountains in western US provide amongst the best examples of thick-skinned tectonics: following the thin-skinned Sevier orogeny, the subsequent compressional reactivation of basement faults gave birth to the so-called Laramide uplifts/arches. The Bighorn basin, located in Wyoming, is therefore a key place to study the stress evolution during the transition from thin- to thick-skinned tectonics in orogenic forelands in terms of structural, microstructural and stress/strain evolution. We report the results of the analyses of fracture populations, inversion of fault-slip data and calcite twin data for stress as well as of calcite twinning paleopiezometry performed in two famous Laramide basement-cored structures located on each side of the basin: the Rattlesnake Mountain Anticline (RMA) and the Sheep Mountain Anticline (SMA). The comparison between the stress evolution in both folds allows to unravel (i) the pattern of both paleostress orientations and magnitudes and their evolution in time and space and (ii) the tectonic history at the basin scale. Structural and microstructural analyses show that both folds share similar kinematics. Most of the fractures are related to three main events: the Sevier thin-skinned contraction, the Laramide thick-skinned contraction, and the Basin and Range extension. During the thin-skinned period, in the innermost part of the foreland, the stress regime evolved from strike-slip to reverse while it remained strike-slip in the outermost part of the basin. Moreover, some fracture sets related to layer-parallel shortening during the early Sevier contraction formed only close to the Sevier deformation front and remained poorly expressed further away. Stress attenuation toward the craton interior is thus clearly shown by the dataset and illustrates the prominent role of the distance to the front of deformation in the way fracture sets developed in orogenic forelands. Alternatively, during the thick-skinned period, the evolution of

  10. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn basin

    USGS Publications Warehouse

    Kvale, E.P.; Mickelson, D.L.; Hasiotis, S.T.; Johnson, G.D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers. ?? Taylor and Francis Inc.

  11. New Vitrinite Reflectance Data for the Bighorn Basin, North-Central Wyoming and South-Central Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2007-01-01

    Introduction The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana (fig. 1). Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary (Fox and Dolton, 1989, 1996a, b; De Bruin, 1993). In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs (Johnson and Finn, 1998; Johnson and others, 1999). The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey's assessment of undiscovered oil and gas resources of the Bighorn Basin. These new data supplement previously published data by Nuccio and Finn (1998), and Yin (1997), and lead to a better understanding and characterization of the thermal maturation and burial history of potential source rocks. Eighty-nine samples of Cretaceous and Tertiary strata (fig. 2) were collected and analyzed - 15 samples were from outcrops around the margins of the basin and 74 samples were well cuttings (fig. 1). Forty-one of the samples were shale, two were carbonaceous shale, and the remainder from coal. All samples were analyzed by vitrinite reflectance to determine levels of thermal maturation. Preparation of samples for reflectance analysis required (1) crushing the larger pieces into 0.25-to 1-mm pieces, (2) casting the pieces with epoxy in pre-cut and drilled plugs, and (3) curing the samples overnight. Subsequently, a four-step grinding and polishing process was implemented that included sanding with progressively finer sandpaper (60 and 600 grit) followed with a two-step polishing process (0.3 and 0.05 micron). Vitrinite reflectance measurements were determined at 500 X magnification using plane-polarized incident white light and a 546-nm monochromatic filter in immersion oil. For samples containing

  12. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Abels, Hemmo A.; Lauretano, Vittoria; van Yperen, Anna E.; Hopman, Tarek; Zachos, James C.; Lourens, Lucas J.; Gingerich, Philip D.; Bowen, Gabriel J.

    2016-05-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere-ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event and also to correlate marine and terrestrial records with high precision. The Paleocene-Eocene Thermal Maximum (PETM) is well documented, but CIE records for the subsequent warming events are still rare, especially from the terrestrial realm.Here, we provide new paleosol carbonate CIE records for two of the smaller hyperthermal events, I1 and I2, as well as two additional records of Eocene Thermal Maximum 2 (ETM2) and H2 in the Bighorn Basin, Wyoming, USA. Stratigraphic comparison of this expanded, high-resolution terrestrial carbon isotope history to the deep-sea benthic foraminiferal isotope records from Ocean Drilling Program (ODP) sites 1262 and 1263, Walvis Ridge, in the southern Atlantic Ocean corroborates the idea that the Bighorn Basin fluvial sediments record global atmospheric change. The ˜ 34 m thicknesses of the eccentricity-driven hyperthermals in these archives corroborate precession forcing of the ˜ 7 m thick fluvial overbank-avulsion sedimentary cycles. Using bulk-oxide mean-annual-precipitation reconstructions, we find soil moisture contents during the four younger hyperthermals that are similar to or only slightly wetter than the background, in contrast with soil drying observed during the PETM using the same proxy, sediments, and plant fossils.The magnitude of the CIEs in soil carbonate for the four smaller, post-PETM events scale nearly linearly with the equivalent event magnitudes documented in marine records. In contrast, the magnitude of the PETM terrestrial CIE is at least 5 ‰ smaller than expected based on extrapolation of the scaling relationship established

  13. Detection of hydrocarbons and hydrocarbon microseepage in the Bighorn Basin, Wyoming using isotopic, biogeochemical, and spectral reflectance techniques

    SciTech Connect

    Bammel, B.H.

    1992-01-01

    A stable isotope, biogeochemical, and gebotanical reflectance study was conducted at five areas in the Bighorn Basin of Wyoming. Three of the areas are active hydrocarbon producing fields, including Little Buffalo Basin, Bonanza, and Enigma oil fields. One area contains no surface or subsurface hydrocarbons, the Cody Base area. One area, Trapper Canyon, is a surface tar sand deposit. In each area numerous reflectance spectra were measured and leaf samples collected from sagebrush over and surrounding the fields. At Bonanza and Trapper Canyon, sagebrush plants were also growing directly in hydrocarbon impregnated formations. Unusually low [delta][sup 13]C values of calcite were found in calcite-bearing samples over the Little Buffalo Basin Field. The systematic distribution of these low [delta][sup 13]C values is correlated with the subsurface oil and gas production axis. Significant distinctions between the surface hydrocarbon occurrences at Trapper Canyon and Bonanza Seeps are highlighted by chemical differences in sagebrush leaves. At Trapper Canyon relatively high concentrations of aluminum and iron are found. Sagebrush leaves at the Bonanza Seeps contain relatively low concentrations of calcium and potassium, and a relatively high amount of organic material. Analyses from sagebrush growing over subsurface commercial hydrocarbon deposits tend to be relatively low in magnesium and relatively high in sodium. The increase in sodium may indicate subsurface reservoirs without regard to their hydrocarbon content. The results of the geobotanical reflectance study shows that a significant blue shift of the green peak and red trough positions is the most reliable indicator of hydrocarbon-induced stress in sagebrush plants, and can only be detected where the sage is actually growing in visible surface or near-surface hydrocarbons. Spectral reflectance intensity data have no significant correlation with the presence of surface or subsurface hydrocarbons.

  14. Ecological Impact of Climate Change on Leaf Economic Strategies Across the Paleocene- Eocene Thermal Maximum, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Royer, D. L.; Currano, E. D.; Wilf, P.; Wing, S. L.; Labandeira, C. C.; Lovelock, E. C.

    2007-12-01

    Deciphering the ecological impacts of climate change is a key priority for paleontologists and ecologists alike. An important ecological metric in vegetated settings is the leaf economics spectrum, which represents an adaptive continuum running from rapid resource acquisition to maximized resource retention. This spectrum is comprised of a large number of coordinated traits, including leaf mass per area (LMA), leaf lifespan, photosynthetic rate, nutrient concentration, and palatability to herbivores. Here we apply a recently developed technique for reconstructing LMA to a suite of four isotaphonomic fossil plant sites spanning the Paleocene-Eocene thermal maximum (PETM) in the Bighorn Basin, Wyoming, USA. This technique is based on the biomechanical scaling between petiole width and leaf mass, and it has been calibrated with 65 present-day sites from five continents and tested on two well-known Eocene fossil localities (Bonanza, Utah and Republic, Washington). There are no significant differences in LMA among plants across the PETM. This stasis is present despite a backdrop of extreme climate change during the PETM in this region, including a three-to-four-fold increase in atmospheric CO2, an ~5 °C rise in temperature, and possible drying. Moreover, quantitative measurements of insect herbivory show, on average, a two-fold increase during the PETM relative to before and after the event. We interpret our results to suggest that leaf-economic relationships can, in some situations, partially decouple. More specifically, our documented increase in insect herbivory during the PETM with no concomitant decrease in LMA implies that during this interval less carbon was being captured by plants per unit of investment. Because the rate and magnitude of climate change during the PETM is similar to present-day anthropogenic changes, our results may provide clues for predictions of ecological impacts in the near future.

  15. Lower Cody Shale (Niobrara equivalent) in the Bighorn Basin, Wyoming and Montana: thickness, distribution, and source rock potential

    USGS Publications Warehouse

    Finn, Thomas M.

    2014-01-01

    The lower shaly member of the Cody Shale in the Bighorn Basin, Wyoming and Montana is Coniacian to Santonian in age and is equivalent to the upper part of the Carlile Shale and basal part of the Niobrara Formation in the Powder River Basin to the east. The lower Cody ranges in thickness from 700 to 1,200 feet and underlies much of the central part of the basin. It is composed of gray to black shale, calcareous shale, bentonite, and minor amounts of siltstone and sandstone. Sixty-six samples, collected from well cuttings, from the lower Cody Shale were analyzed using Rock-Eval and total organic carbon analysis to determine the source rock potential. Total organic carbon content averages 2.28 weight percent for the Carlile equivalent interval and reaches a maximum of nearly 5 weight percent. The Niobrara equivalent interval averages about 1.5 weight percent and reaches a maximum of over 3 weight percent, indicating that both intervals are good to excellent source rocks. S2 values from pyrolysis analysis also indicate that both intervals have a good to excellent source rock potential. Plots of hydrogen index versus oxygen index, hydrogen index versus Tmax, and S2/S3 ratios indicate that organic matter contains both Type II and Type III kerogen capable of generating oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale show that it is more organic-rich and more oil-prone in the eastern and southeastern parts of the basin. Thermal maturity based on vitrinite reflectance (Ro) ranges from 0.60–0.80 percent Ro around the margins of the basin, increasing to greater than 2.0 percent Ro in the deepest part of the basin, indicates that the lower Cody is mature to overmature with respect to hydrocarbon generation.

  16. Impact of fracture stratigraphy on the paleo-hydrogeology of the Madison Limestone in two basement-involved folds in the Bighorn basin, (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Barbier, Mickael; Leprêtre, Rémi; Callot, Jean-Paul; Gasparrini, Marta; Daniel, Jean-Marc; Hamon, Youri; Lacombe, Olivier; Floquet, Marc

    2012-11-01

    Based on the study of the Madison Limestone at Sheep Mountain and Rattlesnake Mountain, a unique outcrop dataset including (1) facies and diagenetic analyses, (2) vertical persistence and cement stratigraphy of vein sets and (3) fluid inclusions thermometry are used to demonstrate the impact of folding and fracturing on paleo-hydrogeology. Quantification of the vertical persistence of fractures shows that Sheep Mountain and Rattlesnake Mountain differ by the vertical persistence of the pre-folding Laramide vein sets, which are strictly bed-confined in Sheep Mountain but cut across bedding at Rattlesnake Mountain, whereas the syn-folding veins are through-going in both. The emplacement chronology and the various sources of the fluids responsible for the paragenetic sequence are based on isotope chemistry and fluid inclusions analysis of the matrix and vein cements. At Sheep Mountain and Rattlesnake Mountain, the cements related to the burial are characterized by isotopic signatures of marine formation waters that were diluted during the karstification of the Madison Platform at the end of Mississippian. Meteoric fluids, presumably migrating during the Cenomanian from Wind River Range and Teton Range, recharge zones located in the south-west of the Bighorn Basin, were remobilized in the early bed-confined and through-going syn-folding veins of the Sheep Mountain Anticline. The former vein set drained only local fluids whose isotopic signature relates to an increase of temperature of the meteoric fluids during their migration, whereas the latter set allowed quick drainage of basinal fluids.

  17. Sheep Mountain Wilderness study area, Wyoming

    SciTech Connect

    Houston, R.S.; Patten, L.L.

    1984-01-01

    On the basis of a mineral survey completed in 1975 and 1976, the Sheep Mountain Wilderness study area, was determined to offer little promise for metallic mineral resources. There is a probable potential for oil and gas resources in a small part of the study area along its northeast margin.

  18. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  19. Utilizing ERTS-A imagery for tectonic analysis through study of the Bighorn Mountains Region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary vegetation analysis has been undertaken on MSS scene 1085-17294, Oct. 16, 1973 in the Bighorn region. Forest Service maps showing detailed distribution of dominant forest types have been compared with MSS bands 5 and 7 positive transparencies, enlarged positive prints, and color imagery produced on an Addcol viewer. Patterns on the ERTS imagery match those on the Forest Service maps quite well. A tectonic map ovearlay of MSS band 7 of the Bighorn region reveals a strong concentration of linears in the uplift as compared to basins. Folds in the Bighorn Basin are visible where not covered by post-Paleocene deposits. In regions where far less is known of the geology than in this area, it might be possible to predict the subsurface occurrence of folds and lineaments on the basis of imagery analysis and more confidently explore covered areas for concealed oil structures and mineral deposits.

  20. A Synoptic Study of Fecal-Indicator Bacteria in the Wind River, Bighorn River, and Goose Creek Basins, Wyoming, June-July 2000

    USGS Publications Warehouse

    Clark, Melanie L.; Gamper, Merry E.

    2003-01-01

    A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli

  1. Constraints on the duration of the Paleocene-Eocene Thermal Maximum by orbitally-influenced fluvial sediment records of the northern Bighorn Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    van der Meulen, Bas; Abels, Hemmo; Meijer, Niels; Gingerich, Philip; Lourens, Lucas

    2016-04-01

    The addition of major amounts of carbon to the exogenic carbon pool caused rapid climate change and faunal turnover during the Paleocene-Eocene Thermal Maximum (PETM) around 56 million years ago. Constraints are still needed on the duration of the onset, main body, and recovery of the event. The Bighorn Basin in Wyoming provides expanded terrestrial sections spanning the PETM and lacking the carbonate dissolution present in many marine records. Here we provide new carbon isotope records for the Polecat Bench and Head of Big Sand Coulee sections, two parallel sites in the northern Bighorn Basin, at unprecedented resolution. Cyclostratigraphic analysis of these fluvial sediment records using descriptive sedimentology and proxy records allows subdivision into intervals dominated by avulsion deposits and intervals dominated by overbank deposits. These sedimentary sequences alternate in a regular fashion and are related to climatic precession. Correlation of the two, 8-km-spaced sections shows that the avulsion-overbank cycles are laterally consistent. The presence of longer-period alternations, related to modulation by the 100-kyr eccentricity cycle, corroborates the precession influence on the sediments. Sedimentary cyclicity is then used to develop a floating precession-scale age model for the PETM carbon isotope excursion (CIE). We find a CIE body encompassing 95 kyrs aligning with marine cyclostratigraphic age models. The duration of the CIE onset is estimated at 5 kyrs, but difficult to determine because sedimentation rates vary at the sub-precession scale. The CIE recovery starts with a 2 to 4 per mille step and lasts 40 or 90 kyrs, depending on what is considered the carbon isotope background state.

  2. Uranium, thorium, and lead systematics in Granite Mountains, Wyoming

    USGS Publications Warehouse

    Rosholt, J.N.; Bartel, A.J.

    1969-01-01

    Uranium, thorium and lead concentrations and isotopic compositions were determined on total rocks and a feldspar sample from widely separated parts of the Granite Mountains in central Wyoming. Linear relations defined by 206Pb/204Pb - 207Pb/204Pb and 208Pb/204Pb - 232Th/204Pb for the total rock samples define 2.8 billion-year isochrons. In contrast, 238U/206Pb ages are anomalously old by a factor of at least four. The low 238U/204Pb values, coupled with the radiogenic 206Pb/204Pb and radiogenic 207Pb/204Pb ratios, indicate that contents of uranium in near-surface rocks would have had to have been considerably greater than those presently observed to have generated the radiogenic lead. It is possible that more than 1011 kg of uranium has been removed from the Granite Mountains, and the most feasible interpretation is that most of this uranium was leached from near-surface rocks at some time during the Cenozoic, thus providing a major source for the uranium deposits in the central Wyoming basins. ?? 1969.

  3. Impact of fracture stratigraphy on the paleohydrogeology of the Madison limestone in two basement involved folds in the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Barbier, Mickael; Leprêtre, Rémi; Hamon, Youri; Callot, Jean-Paul; Gasparrini, Marta; Daniel, Jean-Marc; Lacombe, Olivier

    2013-04-01

    River Range and Teton Range, recharge zones located in the south-west of the Bighorn Basin, were remobilized in the early bed-confined and through-going syn-folding veins of the Sheep Mountain Anticline. The former vein set drained only local fluids whose isotopic signature relates to an increase of temperature of the meteoric fluids during their migration, whereas the latter set allowed quick drainage of basinal fluids.

  4. Local facies variability in the Mission Canyon Limestone, west flank, Bighorn Mountains, Wyoming

    SciTech Connect

    Vice, M.A.; Utgaard, J.E. )

    1991-06-01

    Comparison of two sections of the Mission Canyon Limestone (Madison Group, Mississippian) located approximately one-half mile (850-900 m) apart and at opposite ends of a single flatiron reveals significant lateral facies variations. The southern section, Dry Fork of Horse Creek, is 83 ft (25 m) thicker than the northern Horse Creek section. This substantial difference in thickness cannot be attributed solely to pre-Amsden erosion and solution collapse: all three members are thicker and more variable lithologically at Dry Fork. The lower (Big Goose) member is composed mostly of cherty, dolomitized lime mudstones at both locations. At Dry Fork, it contains numerous skeletal facies, particularly in the upper part. Skeletal facies are insignificant at Horse Creek. The two upper members are composed mainly of skeletal limestones; however, grain-supported facies are much more abundant at Dry Fork. Dolomitized mudstones predominate in the major breccia at the base of the middle (Little Tongue) member at Horse Creek, and lime mudstones predominate at Dry Fork. Additional breccias occur at other horizons: five at Dry Fork, four at Horse Creek. Conclusions drawn from the initial study of these two outcrops follow: (1) the local extent of grainstones and packstones suggests that the shoals were geographically less extensive than the subtidal muddy bottoms and intertidal-supratidal mud flats. (2) The limited geographic and vertical extent of some breccias suggests evaporiate deposition in localized muddy facies. (3) Conditions favoring dolomitization were limited mainly to the mudstones and occurred during and shortly after deposition of the Big Goose Member.

  5. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  6. L tectonites in the eastern-central Laramie Mountains, Wyoming

    NASA Astrophysics Data System (ADS)

    Sullivan, W. A.

    2006-12-01

    The formation of L tectonites is little understood and scarcely studied, however, it is likely an important part of penetrative plastic deformation in the crust. To improve our understanding of this strain phenomenon, I present a detailed case study of a km-wide domain of L tectonites developed in and around the ~2.05 Ga Boy Scout Camp Granodiorite (BSCG) in the Laramie Mountains, Wyoming. Detailed mapping and structural analyses allow for the reconstruction of the structural setting of this domain of apparent constrictional strain. Elongation lineations in and around the BSCG, including the L tectonites, are S to SW-trending and moderately plunging. In compositionally heterogeneous rocks (Archean banded gneiss and gneissic granite), hinge lines of minor folds are subparallel with the elongation lineation. The regional fold axes defined by poles to compositional banding and foliation measured from these rocks lies in the center of the lineation measurements from all the rock types in the area. Poles to foliation in the compositionally homogeneous BSCG and metamorphosed diabase dikes cluster in the NW quadrant and define the axial surface of the regional folds. These data show that the elongation lineations in and around the BSCG developed parallel with the local fold hinge lines and regional axes of folds with axial surfaces that strike ENE and dip moderately to the SE. Map- scale folds in this area verge towards the NW. Incorporation of 1) the constraints imposed by the shape fabric orientation data, 2) the constraints imposed by the orientation of the local and regional fold axes and 3) the constraints developed from map patterns and observations shows that the domain of L tectonites in and around the BSCG developed in the hinge zone of a large NW-vergent synform during bulk constrictional deformation as material was extruded from between two relatively ridged blocks. Therefore, L tectonites developed in response to both internal structural heterogeneities (hinge

  7. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Annual report, September 15, 1993--September 30, 1994

    SciTech Connect

    Dunn, T.L.

    1995-07-01

    The principal focus of this project is to evaluate the importance of relative permeability anisotropy with respect to other known geologic and engineering production concepts. This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. The Tensleep Sandstone contains the largest potential reserves within reservoirs which are candidates for EOR processes in the State of Wyoming. Although this formation has produced billions of barrels of oil, in some fields, as little as one in seven barrels of discovered oil is recoverable by current primary and secondary techniques. Because of the great range of {degree}API gravities of the oils produced from the Tensleep Sandstone reservoirs, the proposed study concentrates on establishing an understanding of the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research is to associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the Tensleep Sandstone. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR processes (e.g., C0{sub 2} flooding). This multidisciplinary project will provide a regional basis for EOR strategies which can be clearly mapped and efficiently applied to the largest potential target reservoir in the State of Wyoming. Additionally, the results of this study have application to all eolian reservoirs through the correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  8. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  9. COORDINATING ENVIRONMENTAL PUBLIC HEALTH PRACTICE WITH EPIDEMIOLOGY AND LABORATORY ANALYSIS: A WATERBORNE OUTBREAK OF SNOW MOUNTAIN VIRUS IN THE BIG HORN MOUNTAINS OF WYOMING

    EPA Science Inventory

    Background: In February 2001, the Wyoming Department of Health received reports of acute gastroenteritis among persons who had recently been on a snowmobiling vacation in the Big Horn Mountains. Initial interviews and laboratory testing suggested that exposure to a calicivirus ...

  10. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  11. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Annual report, October 1, 1994-- September 30, 1995

    SciTech Connect

    Dunn, T.L.

    1996-03-01

    This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  12. Mineral resources of the Prospect Mountain Wilderness Study Area, Carbon County, Wyoming

    SciTech Connect

    du Bray, E.A.; Bankey, V.; Hill, R.H.; Ryan, G.S.

    1989-01-01

    The Prospect Mountain Wilderness Study Area is about 20 mi east-southeast of Encampment in Carbon County, Wyoming. This study area is underlain by middle Proterozoic gabbro, granite, and hornblende gneiss, which is locally cut by pegmatite dikes. There are no identified resources and no potential for undiscovered energy resources in this study area. Resource potential for all undiscovered metallic commodities and for industrial mineral is low.

  13. Surface and subsurface analysis of Sheep Mountain anticline, Wyoming

    SciTech Connect

    Abercrombie, S.

    1988-01-01

    The Sheep Mountain area, in the southwest Wind River Basin, is the up plunge closure of the Derby Dome-Winkleman Dome producing trend of an echelon folds which comprise the first line of folding down the northeast flank of the Wind River Mountains. The structural style exposed in the Palozoic reservoir rocks of Sheep Mountain may serve as a model for the other structural features in the Wind River Basin. As in the case of the Derby Dome and Winkleman Dome, Sheep Mountain is typically asymmetric to the southwest. Local east-directed thrusts exposed in the core of the anticline place Pennsylvania over Permian age rocks. A major change in the trend of the anticlinal crest within Sheep Mountain, suggests development of separate left-stepping en echelon closures at depth. The northwest end of Sheep Mountain also forms a left-stepping en echelon pattern with Derby Dome. The northwest plunge of Sheep Mountain is facilitated by compartmentalization across an east-northeast trending, high angle fault. North of this fault, Mesozoic rocks are thrust to the southwest along a low angle, northeast-dipping out of the basin thrust, which obscures the en echelon bypass with Derby Dome. Sheep Mountain is transected at the southeast end by the east-northeast trending Spring Creek fault which has possible left lateral offset. South of the Spring Creek Fault, the southwest vergent Beaver Creek thrust places Precambrian to Missisippian rocks over Cretaceous rocks, and may represent the fault which controls the entire fold trend at depth.

  14. Analysis of photo linear elements, Laramie Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.

  15. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  16. Dismembered Archean ophiolite in the SE. Wind River Mountains, Wyoming

    SciTech Connect

    Harper, G.D.

    1985-01-01

    Ophiolitic rocks occur as wall rocks of the 2.7 Ga Louis Lake batholith near Atlantic City, Wyoming. All of the Archean rocks are strongly deformed and metamorphosed to a greenschist and amphibolite facies, but relict structures and textures are commonly preserved. These include the following, from west to east: (1) metadiabase with rare coarse-grained metagabbro; (2) ultramafic rocks and metagabbro; (3) amphibolite, locally pillowed, overlain(.) by pelitic schist, banded iron formation, and quartzite; and (4) pillow lavas, massive sills or flows, and minor metasedimentary rocks. Slice 1 locally contains parallel dike margins and rare metagabbro screens; these features suggest that it may represent a sheeted dike complex. Slice 2 locally contains ultramafic rocks having relict cumulus textures and igneous layering, corresponding to the cumulus portion of an ophiolite. The pillow lavas of slice 4 and possibly slice 3 are interpreted as comprising the extrusive portion of the ophiolite. The immobile trace element chemistry (Ti, V, Zr, Y, Cr, Ni) of slice 1 and 4 is very similar and supports a cogenetic origin, whereas pillow lavas of slice 3 are somewhat distinct. The metadiabases and lavas of slices 1 and 4 are similar to modern mid-ocean ridge basalt, whereas lavas of slice 3 are more similar to island-arc tholeiites. Rare high-Ti basaltic komatiites occur in slices 1 and 4, but have very distinct trace element chemistry and probably represent later off-axis dikes. The ophiolitic rocks are interpreted to represent the remains of Archean oceanic crust.

  17. Geologic framework for the national assessment of carbon dioxide storage resources: Bighorn Basin, Wyoming and Montana: Chapter A in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.

    2012-01-01

    This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  18. Interpretation of aircraft multispectral scanner images for mapping of alteration with uranium mineralization, Copper Mountain, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1983-01-01

    NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.

  19. Observed Changes in Mountain Hydrology Following a Mountain Pine Beetle Epidemic in the Snowy Range of Wyoming

    NASA Astrophysics Data System (ADS)

    Klatt, A. L.; Miller, S. N.; Paige, G. B.; Kelleners, T.; Ohara, N.; Hayes, M. M.

    2015-12-01

    A mountain pine beetle epidemic in the Snowy Range Mountains of Wyoming peaked in 2008 coinciding with changes in climate. The combination of the two effects have potentially changed hydrologic response in mountain watersheds. Shorter snowmelt duration and an earlier onset of snowmelt are hypothesized to occur as results of both mountain pine beetle epidemics and global climate change, while beetle effects likely point to increased total flows, baseflows, and peak flows. We used statistical analysis to identify changes in hydrologic response over the past four decades by comparing hydrograph components from 2012-2014 water years to hydrograph components from the 1960's-1980's water years using analysis of variance (ANOVA) and analysis of covariance (ANCOVA) including a precipitation covariate. The 2012-2014 group was found to be associated with (1) shorter snowmelt duration, (2) earlier onset of snowmelt, and (3) increased baseflows. No differences in total discharge, snowmelt discharge, stormflow discharge, peak discharge, or day of peak discharge were detected. Pearson's correlation coefficients between watershed and runoff characteristics for six mountain watersheds were calculated for the 2013 and 2014 water years. Watershed characteristics include percent green conifers, percent red phase conifers, and percent grey phase conifers derived from a Random Forest land classification map. For the 2013 water year, watershed area expressed as percent red phase conifer was found to be significantly correlated to watershed discharge expressed as percent baseflow with a Pearson's Correlation Coefficient of +0.95 (alpha level = 0.05). The positive correlation between red phase conifer and baseflow may be considered corroborating evidence of a mountain pine beetle induced change on mountain hydrology detected in the ANOVA/ANCOVA analysis. No significant correlations between beetle phase and either snowmelt duration or onset of snowmelt were detected.

  20. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed

  1. Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle

    NASA Astrophysics Data System (ADS)

    Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.

    2010-12-01

    The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a

  2. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hausel, W.D.

    1983-08-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s.

  3. 75 FR 28642 - Limiting Mountain Lion Predation on Desert Bighorn Sheep on Kofa National Wildlife Refuge, Yuma...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... in the Federal Register (74 FR 38667; August 4, 2009). We received 220 responses during the comment... significant impact (FONSI) for the environmental assessment (EA) for limiting mountain lion (Puma...

  4. Mineral resources of the Raymond Mountain Wilderness Study Area, Lincoln county, Wyoming

    SciTech Connect

    Lund, K.; Evans, J.P.; Hill, R.H.; Bankey, V.; Lane, E.

    1990-01-01

    The paper reports on the Raymond Mountain Wilderness Study Area which encompasses most of the Sublette Range of western Lincoln County, Wyo. The study area consists of upper Paleozoic and Mesozoic sedimentary rocks that form part of the Idaho-Wyoming-Utah overthrust belt. There are no identified mineral or energy resources in the wilderness study area. The study area has moderate energy resource potential for oil and gas. Mineral resource potential for vanadium and phosphate is low because the Phosphoria Formation is deeply buried beneath the wilderness study area and contains unweathered units having low P{sub 2}O{sub 5} values. The mineral resource potential for coal, other metals, including uranium, high-purity limestone or dolostone, and geothermal energy is low.

  5. Seasonal and daily snowmelt runoff estimates utilizing satellite data. [Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Methods using snowcovered area to update seasonal forecasts as snowmelt progresses are also being used in quasi-operational situations. The input of snowcovered area to snowmelt models for short term perdictions was attempted in two ways; namely, the modification of existing hydrologic models and/or the use of models that were specifically designed to use snowcovered area. A daily snowmelt runoff model was used with LANDSAT data to simulate discharge on remote basins in the Wind River Mountains of Wyoming. Daily predicted and actual flows compare closely, and, summarized over the entire snowmelt season (April 1 - September 30), the average difference is only three percent. The model and snowcovered area data are currently being tested on additional watersheds to determine the method's transferability.

  6. Variation in Pasteurella (Bibersteinia) and Mannheimia spp. following transport and antibiotic treatment in free-ranging and captive Rocky Mountain bighorn sheep (Ovis canadensis canadensis).

    PubMed

    Weiser, Glen C; Miller, David S; Drew, Mark L; Rhyan, Jack C; Ward, Alton C S

    2009-03-01

    Morbidity and mortality associated with respiratory disease following capture and translocation of bighorn sheep (Ovis canadensis canadensis) is a significant concern, particularly when establishing new or augmenting existing bighorn populations. Administration of prophylactic antibiotics at the time of capture is often done to minimize the risk of respiratory disease, but the efficacy of this practice is unknown. The effects of oxytetracycline and florfenicol on the Pasteurella (Bibersteinia) and Mannheimia spp. isolated from samples collected from the oropharynx at the time of capture and 3 or 42 day later were evaluated in two groups of bighorn sheep. The most evident change in the isolation rates or types of Pasteurella (Bibersteinia) spp., Mannheimia spp., or both was an increase of beta-hemolytic strains isolated from bighorn sheep 3 day following oxytetracycline treatment. Both groups of bighorn sheep carried Pasteurella (Bibersteinia) trehalosi identified as the same biovariants, but they did not share biovariants of Mannheimia spp. No animals had signs of respiratory disease. Isolates representative of all biovariants present in cultures from the two bighorn sheep groups were sensitive to in vitro tests to both oxytetracycline and florfenicol and the majority were also sensitive to seven other antibiotics tested. The administration of neither oxytetracycline nor florfenicol eliminated Pasteurella (Bibersteinia) or Mannheimia from the oropharyngeal mucosa. Resistance to either antibiotic used in these animals was not noted. Although the prophylactic benefits of these drugs in preventing disease are uncertain, therapeutic levels of antibiotics in lung tissue during times of stress may reduce the risk of disease. Representative sampling of the oropharyngeal microflora of bighorn sheep source and recipient populations prior to being intermingled should be considered as one of the tools to minimize exposure of naive populations to potentially pathogenic

  7. Analytical results and sample locality map of rock and stream-sediment samples from the Ferris Mountains Wilderness Study Area (WY-030-407), Carbon County, Wyoming

    SciTech Connect

    Detra, D.E.; Reynolds, M.W.; Roemer, T.A.

    1989-01-01

    A U.S. Geological Survey report is presented detailing the analytical results and sample locality map of rock and stream-sediment samples from the Ferris Mountains Wilderness Study Area (WY-030-407), Carbon County, Wyoming.

  8. Economic geology of the Copper Mountain Supracrustal Belt, Owl Creek Mountains, Fremont County, Wyoming

    SciTech Connect

    Hausel, W.D.; Graff, P.J.; Albert, K.G.

    1985-01-01

    The Archean stratigraphy and associated mineral deposits at Copper Mountain were investigated to determine if this supracrustal belt has potential commercial mineral deposits. It was concluded Copper Mountain lacks the stratigraphic and structural character of a classical greenstone belt, exhibits higher metamorphic grade, and may be better classified as a high-grade terrain. However, potential is noted for stratiform Au associated with iron formation, stratiform W associated with gneiss, and Cu-Au mineralization in strike veins. 63 refs., 9 figs., 3 tabs. (ACR)

  9. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; and others

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  10. A dataset of magnetic susceptibility, metalization, and alteration for samples from the Stinkingwater Mining District, Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, Mark E.

    2004-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. Measurements were performed on splits from 3 m (10 ft) sections of pulverized core. The measurements constitute a useful dataset because the same samples were studied to identify their alteration state and have been subjected to chemical analysis. Tables of the data are included in this report.

  11. Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA

    USGS Publications Warehouse

    Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.

    1999-01-01

    The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to < 3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78-1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.

  12. Buried soils of Late Quaternary moraines of the Wind River Mountains, Wyoming

    SciTech Connect

    Dahms, D.E. . Geography Dept.)

    1992-01-01

    Buried soils occur on kettle floors of four Pinedale moraine catenas of the western Wind River Mountains of Wyoming. Radiocarbon ages from bulk samples of Ab horizons indicate the soils were buried during the mid-Holocene. Soils on kettle floors have silty A and Bw horizons that overlie buried A and B horizons that also formed in silt-rich sediments. Crests and backslope soils also have A and Bw horizons of sandy loam formed over 2BCb and 2Cb horizons of stony coarse loamy sand. Recent data show the silty textures of the A and B horizons are due to eolian silt and clay from the Green River Basin just west of the mountains. The buried soils appear to represent alternate periods of erosion and deposition on the moraines during the Holocene. The original soils developed on higher slopes of the moraines were eroded during the mid-Holocene and the 2BC and 2C horizons exposed at the surface. Eroded soil sediments were transported downslope onto the kettle floors. Following erosion, silt-rich eolian sediments accumulated on all surfaces and mixed with the BC and C horizons (the mixed loess of Shroba and Birkeland). The present surface soils developed within this silt-rich material. Stone lines often occur at the Bw-2BCb/2Cb boundary, and mark the depth to which the earlier soils were eroded. Thus, soil profiles at the four localities result from two periods of soil formation, interrupted by an interval of erosion during the mid-Holocene. Moraines of this study are adjacent to the Fremont Lake type area for the Pinedale glaciation of the Rocky Mountains. Buried soils in kettles of the moraines indicates the soil characteristics of the Pinedale type region are not necessarily due to continuous post-Pinedale development, but may result from more than one episode of soil formation.

  13. Sympatric cattle grazing and desert bighorn sheep foraging

    USGS Publications Warehouse

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  14. Association of Mycoplasma ovipneumoniae Infection with Population-Limiting Respiratory Disease in Free-Ranging Rocky Mountain Bighorn Sheep (Ovis canadensis canadensis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bronchopneumonia is a population-limiting disease in bighorn sheep in much of western North America. Previous investigators have isolated diverse bacteria from the lungs of affected sheep, but no single bacterial species is consistently present, even within single epizootics. We obtained high-quali...

  15. Association of Mycoplasma ovipneumoniae infection with population-limiting respiratory disease in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis).

    PubMed

    Besser, Thomas E; Cassirer, E Frances; Potter, Kathleen A; VanderSchalie, John; Fischer, Allison; Knowles, Donald P; Herndon, David R; Rurangirwa, Fred R; Weiser, Glen C; Srikumaran, Subramaniam

    2008-02-01

    Bronchopneumonia is a population-limiting disease in bighorn sheep in much of western North America. Previous investigators have isolated diverse bacteria from the lungs of affected sheep, but no single bacterial species is consistently present, even within single epizootics. We obtained high-quality diagnostic specimens from nine pneumonic bighorn sheep in three populations and analyzed the bacterial populations present in bronchoalveolar lavage specimens of seven by using a culture-independent method (16S rRNA gene amplification and clone library analyses). Mycoplasma ovipneumoniae was detected as a predominant member of the pneumonic lung flora in lambs with early lesions of bronchopneumonia. Specific PCR tests then revealed the consistent presence of M. ovipneumoniae in the lungs of pneumonic bighorn sheep in this study, and M. ovipneumoniae was isolated from lung specimens of five of the animals. Retrospective application of M. ovipneumoniae PCR to DNA extracted from archived formalin-fixed, paraffin-embedded lung tissues of historical adult bighorn sheep necropsy specimens supported the association of this agent with bronchopneumonia (16/34 pneumonic versus 0/17 nonpneumonic sheep were PCR positive [P < 0.001]). Similarly, a very strong association was observed between the presence of one or more M. ovipneumoniae antibody-positive animals and the occurrence of current or recent historical bronchopneumonia problems (seropositive animals detected in 9/9 versus 0/9 pneumonic and nonpneumonic populations, respectively [P < 0.001]). M. ovipneumoniae is strongly associated with bronchopneumonia in free-ranging bighorn sheep and is a candidate primary etiologic agent for this disease. PMID:18057131

  16. Episodic Dissolution, Precipitation and Slip along the Heart Mountain Detachment, Wyoming

    NASA Astrophysics Data System (ADS)

    Swanson, E.; Wernicke, B. P.

    2014-12-01

    Slip on shallowly dipping detachments is one of the longest-debated puzzles in structural geology. The Eocene Heart Mountain detachment in northwestern Wyoming is among the largest, best-studied examples of such an enigmatic feature. Extant exposures of the upper plate of the detachment, the Heart Mountain allochthon, form an elongate, internally coherent, extended mass comprising Paleozoic carbonate strata and overlying Eocene Absaroka volcanics. The allochthon is at least 70 km long, with apparent slip of as much as 45 kilometers. At present, the base of the allochthon is regionally subhorizontal, with local dips rarely exceeding a few degrees. Given its highly unfavorable orientation for either coulombic failure or continued slip, it would seem likely that a viscous mechanism, where failure may occur under relatively low ratios of shear stress to normal stress, is needed to explain how such low-angle faults are able to form. Most recent conceptions of the emplacement of the Heart Mountain allochthon as a catastrophic event, occurring within a single day. However, we have observed evidence of both cyclic and long-duration, fault-related deformation, including cross-cutting clastic dikes and overprinting relationships involving brecciation, cementation, veining, and pressure solution. In particular, textures within and around distinctive banded grains ("accreted grains" of previous workers) suggest their formation via the relatively slow, fluid-related processes. The only known potential mechanism to facilitate viscous deformation under upper crustal conditions is pressure solution creep. We propose that the Heart Mountain detachment began to form via heterogeneous, perhaps highly localized, pressure solution creep along discrete patches of the future detachment surface. The loading induced by these patches could serve to rotate the principal stress directions locally, and thereby trigger brittle failure on the low-angle surface. Most of the slip along the

  17. Dismembered Archaean ophiolite in the southeastern Wind River Mountains, Wyoming: Remains of Archaean oceanic crust

    NASA Technical Reports Server (NTRS)

    Harper, G. D.

    1986-01-01

    Archean mafic and ultramafic rocks occur in the southeastern Wind River Mountains near Atlantic City, Wyoming and are interpreted to represent a dismembered ophiolite suite. The ophiolitic rocks occur in a thin belt intruded by the 2.6 Ga Louis Lake Batholith on the northwest. On the southeast they are in fault contact with the Miners Delight Formation comprised primarily of metagraywackes with minor calc-alkaline volcanics. The ophiolitic and associated metasedimentry rocks (Goldman Meadows Formation) have been multiply deformed and metamorphosed. The most prominant structures are a pronounced steeply plunging stretching lineation and steeply dipping foliation. These structural data indicate that the ophiolitic and associated metasedimentary rocks have been deformed by simple shear. The ophiolitic rocks are interpreted as the remains of Archean oceanic crust, probably formed at either a mid-ocean ridge or back-arc basin. All the units of a complete ophiolite are present except for upper mantle periodotities. The absence of upper mantle rocks may be the result of detactment within the crust, rather than within the upper mantle, during emplacement. This could have been the result of a steeper geothermal gradient in the Archean oceanic lithosphere, or may have resulted from a thicker oceanic crust in the Archean.

  18. Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming

    USGS Publications Warehouse

    Arth, Joseph G.; Barker, F.; Stern, T.W.

    1980-01-01

    The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.

  19. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    USGS Publications Warehouse

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; and others

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  20. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance

    USGS Publications Warehouse

    Pierce, W.G.

    1979-01-01

    Structural features in northwestern Wyoming indicate that the Heart Mountain fault movement was an extremely rapid, cataclysmic event that created a large volume of carbonate fault breccia derived entirely from the lower part of the upper plate. After fault movement had ceased, much of the carbonate fault breccia, here called calcibreccia, lay loose on the resulting surface of tectonic denudation. Before this unconsolidated calcibreccia could be removed by erosion, it was buried beneath a cover of Tertiary volcanic rocks: the Wapiti Formation, composed of volcanic breccia, poorly sorted volcanic breccia mudflows, and lava flows, and clearly shown in many places by inter lensing and intermixing of the calcibreccia with basal volcanic rocks. As the weight of volcanic overburden increased, the unstable water-saturated calcibreccia became mobile and semifluid and was injected upward as dikes into the overlying volcanic rocks and to a lesser extent into rocks of the upper plate. In some places the lowermost part of the volcanic overburden appears to have flowed with the calcibreccia to form dike like bodies of mixed volcanic rock and calcibreccia. One calcibreccia dike even contains carbonized wood, presumably incorporated into unconsolidated calcibreccia on the surface of tectonic denudation and covered by volcanic rocks before moving upward with the dike. Angular xenoliths of Precambrian rocks, enclosed in another calcibreccia dike and in an adjoining dikelike mass of volcanic rock as well, are believed to have been torn from the walls of a vent and incorporated into the basal part of the Wapiti Formation overlying the clastic carbonate rock on the fault surface. Subsequently, some of these xenoliths were incorporated into the calcibreccia during the process of dike intrusion. Throughout the Heart Mountain fault area, the basal part of the upper-plate blocks or masses are brecciated, irrespective of the size of the blocks, more intensely at the base and in places

  1. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  2. Geologic structure and altitude of the top of the Minnelusa Formation, northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, K.R.

    1987-01-01

    Beginning in 1981, a 3-yr project was conducted to determine the availability and quality of groundwater in the sedimentary bedrock aquifers in the Black Hills of South Dakota and Wyoming. The project was limited to three bedrock units in order of increasing age: the Cretaceous Inyan kara Group, Permian and Pennsylvanian Minnelusa Formation, and Mississippian Madison (or Pahasapa) Limestone. This map shows the altitude of the top of the Minnelusa Formation in the northern Black Hills, and shows the configuration of the structural features in the northern part of the Black Hills and the eastern part of the Bear Lodge Mountains. In general, the Minnelusa Formation dips away from the Black Hills uplift, either to the northeast and the Williston Basin or, south of the Bear Lodge Mountains, to the southwest and the Powder River basin, which is outside the map area. In the map area, the upper beds of the Minnelusa Formation are an aquifer and the lower beds are a confining or semi-confining unit. The upper part of the Minnelusa Formation has a greater percentage of coarse-grained sandstone beds than the lower part. Furthermore, solution and removal of anhydrite, brecciation, and solution of cement binding the sandstone grains may have increased the permeability of the upper part of the Minnelusa Formation in the Black Hills. Wells completed in the upper part of the Minnelusa have yields that exceed 100 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min. Flowing wells have been completed in the Minnelusa aquifer in most of the study area in South Dakota and in about the northern one-half of Crook County, Wyoming. (Lantz-PTT)

  3. Geohydrology and water quality of the Inyan Kara, Minnelusa, and Madison aquifers of the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Kyllonen, D.P.; Peter, K.D.

    1987-01-01

    The Inyan Kara, Minnelusa, and Madison aquifers are the principal sources of ground water in the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming. The aquifers are exposed in the Bear Lodge Mountains and the Black Hills and are about 3,000 to 5,000 ft below the land surface in the northeast corner of the study area. The direction of groundwater movement is from the outcrop area toward central South Dakota. Recharge is by infiltration of precipitation and streamflow is by springs and well withdrawals. All three aquifers yield water to flowing wells in some part of the area. Measured and reported well yields in each of the three aquifers exceed 100 gal/min (gpm). A well open to the Minnelusa Formation and the upper part of the Madison Limestone yielded more than 2 ,000 gpm. Water from the Inyan Kara aquifer may require treatment for gross alpha radiation, iron, manganese, sulfate, and hardness before use in public water systems. Water from the Minnelusa aquifer in the northern one-half of the study area may require treatment for sulfate and hardness before use in public water systems. Water from the Madison aquifer in the northern one-half of the study area may require treatment of fluoride, gross alpha radiation, sulfate, and hardness before use in public water systems. Water from the Minnelusa and Madison aquifers in the southern one-half of the study area, though very hard (more than 180 mg/L hardness as calcium carbonate), is suitable for public water systems and irrigation. Flow between the Minnelusa and the Inyan Kara aquifers appears to be insignificant, based on the results of a digital model results. The model indicated there may be significant recharge to the Minnelusa and Madison aquifers by leakage between these two aquifers and perhaps deeper aquifers. (Author 's abstract)

  4. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  5. Large uraniferous springs and associated uranium minerals, Shirley Mountains, Carbon County, Wyoming -- A preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1963-01-01

    Ten springs along the southeast flank of the Shirley Mountains, Carbon County, Wyoming, have water containing from 12 to 27 parts per billion uranium, have a total estimated flow of 3 million gallons of clear fresh water per day, and have a combined annual output that may be as much as 166 pounds of uranium. These springs emerge from Pennsylvanian, Permian, and Triassic rocks on the east flank of a faulted anticlinal fold. In the vicinity of several springs, metatyuyamunite occurs locally in crystalline calcite veins averaging 3 feet in width but reaching a maximum of 24 feet. The veins are as much as several hundred feet long-and cut vertically through sandstones of Pennsylvanian age overlying the Madison Limestone (Mississippian). This limestone is believed to be the source of the calcite. A 3-foot channel sample cross one calcite vein contains 0.089 percent uranium. Lesser amounts of uranium were obtained from other channel samples. Selected samples contain from 0.39 to 2.2 percent uranium and from 0.25 to 0.86 percent vanadium. Three possible sources of the uranium are: (1) Precambrian rocks, (2) Paleozoic rocks, (3) Pliocene(?) tuffaceous strata that were deposited unconformably across older .rocks in both the graphically high and low parts of the area, but were subsequently removed by erosion except for a few small remnants, one of which contains carnotite. There is apparently a close genetic relation between the uraniferous springs and uranium mineralization in the calcite veins. Data from this locality illustrate how uraniferous ground water can be used as a guide in the exploration for areas where uranium deposits may occur. Also demonstrated is the fact that significant quantities of uranium are present in water of some large flowing springs.

  6. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    Dunn, T.L.

    1996-04-26

    Work in conjunction with Marathon Oil Company in the Oregon Basin field utilizing Formation MicroImager and Formation MicroScanner logs has been completed. Tensleep outcrops on the western side of the Bighorn Basin are not of the quality necessary to do detailed study of stratification. This made the use of borehole imaging logs, in which stratification can be recognized, particularly attractive for the western side of the Bighorn Basin. The borehole imaging logs were used to determine the dip angle and dip direction of stratification as well as to distinguish different lithologies. It is also possible to recognize erosional bounding surfaces and classify them according to a process-oriented hierarchy. Foreset and bounding surface orientation data was utilized to create bedform reconstructions in order to simulate the distribution of flow-units bounded by erosional surfaces. The bedform reconstructions indicate that the bedforms on the western side of the basin are somewhat different from those on the eastern side of the Bighorn Basin. A report has been submitted to Marathon Oil Company, the principal cost-share subcontractor. Marine dolomitic units initially identified and correlated in the Bighorn Basin have been correlated into the Wind River Basin. Gross and net sand maps have been produced for the entire upper Tensleep in the Bighorn and Wind River Basins, as well as for each of the eolian units identified in the study. These maps indicate an overall thickening of the Tensleep to the west and south. This thickening is a result of both greater subsidence to the west and south and greater differential erosion to the north and east. An article documenting the North Oregon Basin field study will appear in the Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation Conference volume entitled {open_quotes}Stratigraphic Analysis Utilizing Advanced Geophysical, Wireline and Borehole Technology for Petroleum Exploration and Production{close_quotes}.

  7. The Heart Mountain fault: Implications for the dynamics of decollement

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1985-01-01

    The Hart Mountain docollement in Northwestern Wyoming originally comprised a plate of rock up to 750m thick and 1300 sq kilometers in area. This plate moved rapidly down a slope no steeper than 2 deg. during Early Eocene time, transporting some blocks at least 50m from their original positions. Sliding occurred just before a volcanic erruption and was probably accompanied by seismic events. The initial movement was along a bedding plane fault in the Bighorn Dolomite, 2 to 3 meters above its contact with the Grove Creek member of the Snowy Range formation. The major pecularity of this fault is that it lies in the strong, cliff-forming Bighorn Dolomite, rather than in the weaker underlying shales. The dynamics of decollement are discussed.

  8. Basin-margin depositional environments of the Fort Union and Wasatch Formations (Tertiary) in the Buffalo-Lake De Smet area, Johnson County, Wyoming

    USGS Publications Warehouse

    Obernyer, Stanley L.

    1979-01-01

    The Paleocene Fort Union and Eocene Wasatch Formations along the east flank of the Bighorn Mountains in the Buffalo-Lake De Smet area, Wyoming, consist of continental alluvial fan, braided stream, and poorly drained alluvial plain deposits. The Fort Union conformably overlies the Cretaceous Lance Formation, which is marine in its lower units and nonmarine in its upper part. The formations dip steeply along the western margin of the study area and are nearly horizontal in the central and eastern portions. This structural configuration permits the reconstruction of depositional environments as an aid to understanding: (1) the evolution of the Bighorn uplift and its effects on the depositional patterns marginal to the uplift during Paleocene and Eocene time and (2) the changing depositional environments basinward from the margin of the uplift during a relatively small period of time in the Eocene.

  9. Water resources of Big Horn County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Cassidy, E.W.; Smalley, M.L.

    1993-01-01

    Groundwater in unconsolidated aquifers is the most reliable and accessible source of potable water in Big Horn County, Wyoming. Well yields generally ranged from 25 to 200 gal/min; however, yields of 1600 gal/min are reported from wells in the gravel, pediment, and fan deposits. Bedrock aquifers that yield the most abundant water supplies are the Tensleep Sandstone, Madison Limestone, Bighorn Dolomite, and Flathead Sandstone. The Madison Limestone, the Darby Formation, and the Bighorn Dolomite form the Madison/Bighorn aquifer. Shut-in pressure from flowing wells in bedrock indicate declines, from the time the wells were completed to 1988, by as much as 390 ft. Water samples from wells completed,in unconsolidated aquifers had concentration of dissolved solids less than 2000 mg/L. Water samples from wells in aquifers in Paleozoic and Precambrian rocks had median concentrations of dissolved solids ranging from 111 to 275 mg/L. Perennial streams originate in the mountains and ephemeral streams originate in the Bighorn Basin. The predominant dissolved constituents are calcium or sodium and bicarbonate or sulfate. Concentrations of pesticides detected in surface-water samples were less than the U.S. Environmental Protection Agency (USEPA) maximum contaminant levels. Pesticides detected in groundwater samples included dicamba and picloram at a concentration of 0.40 microg/L, atrazines (0.40 microg/L), aldicarb sulfoxide (1.44 microg/L), aldicarb sulfoxide (0.52 microg/L), and malathion (0.02 microg/L). Analyses of groundwater samples for radionuclides indicated that concentrations from four municipal wells exceeded the maximum contaminant levels established by the USEPA. Surface water accounts for 96 percent and groundwater accounts for 4 percent of total off-stream water use in Big Horn County. Irrigation is the largest off-stream use of both surface and groundwater. Groundwater supplies 89 percent of water used for domestic purposes and about 16 percent of water used

  10. Airborne radioactivity survey of the Aspen Mountain area, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 700 square miles in the Aspen Mountain area, Sweetwater county, Wyoming. The survey was made by the U.S. Geological Survey, October 22, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils

  11. COORDINATING SYSTEMS-BASED ENVIRONMENTAL PUBLIC HEALTH PRACTICE WITH EPIDEMIOLOGY AND LABORATORY ANALYSIS: A WATERBORNE OUTBREAK OF NORWALK-LIKE VIRUS IN THE BIG HORN MOUNTAINS OF WYOMING

    EPA Science Inventory

    Background: In February 2001, the Wyoming Department of Health received reports of cases of gastroenteritis among persons who had been snowmobiling in the Big Horn Mountains. Laboratory testing suggested that exposure to a Norwalk-like virus was responsible for the illness.
    ...

  12. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    The Rocky Mountains of Colorado and Wyoming enjoy some of the cleanest air in the United States, with few local sources of particulate matter or its precursors apart from fire emissions, windblown dust, and biogenic emissions. However, anthropogenic influences are also present with sources as diverse as the populated Front Range, large isolated power plants, agricultural emissions, and more recently emissions from increased oil and gas exploration and production. While long-term data exist on the bulk composition of background fine particulate matter at remote sites in the region, few long-term observations exist of aerosol size distributions, number concentrations and size resolved composition, although these characteristics are closely tied to important water resource issues through the potential aerosol impacts on clouds and precipitation. Recent modeling work suggests sensitivity of precipitation-producing systems to the availability of aerosols capable of serving as cloud condensation nuclei (CCN); however, model inputs for these aerosols are not well constrained due to the scarcity of data. In this work I present aerosol number and volume concentrations, size distributions, chemical composition and hygroscopicity measurements from long-term field campaigns. I also explore the volatility of organic material from biomass burning and the potential impacts on aerosol loading. Relevant aerosol observations were obtained in several long-term field studies: the Rocky Mountain Atmospheric Nitrogen and Sulfur study (RoMANS, Colorado), the Grand Tetons Reactive Nitrogen Deposition Study (GrandTReNDS, Wyoming) and as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen project (BEACHON, Colorado). Average number concentrations (0.04 < Dp < 20 mum) measured during the field studies ranged between 1000 -- 2000 cm-3 during the summer months and decreased to 200 -- 500 cm-3 during the winter. These seasonal changes in aerosol

  13. Use of active source geophones for passive source imaging: Examples from Bighorn Arch Seismic Experiment (BASE), USA

    NASA Astrophysics Data System (ADS)

    Sheehan, A.; O'rourke, C. T.; Haines, S. S.; Yang, Z.; Worthington, L. L.; Miller, K. C.

    2013-05-01

    In this paper we explore the variety of active and passive source deep seismic imaging that can be performed using continous wavefield recordings from a dense array of industry-style geophones. The data in this study were acquired during the 2009-10 EarthScope FlexArray Bighorn Arch Seismic Experiment(BASE) in central Wyoming, USA. In addition to traditional active and passive source seismic data acquisition, BASE included a deployment of 850 Reftek RT125 " Texan" dataloggers that produced continuous recording over 14 days. Ground motion was recorded via Geospace GS-11 4.5 Hz single channel vertical component geophones. The geophones were deployed in a grid of three E-W lines and two N-S lines across the Bighorn Mountains. We find that the high frequency geophones effectively record the P waves of teleseismic earthquakes. During the 15 days of continuous recording we observed 57 teleseismic events with pickable P-wave arrivals across the array, providing over 10,000 travel times (P, PKiKP, Pdiff, Pn) suitable for teleseismic tomography. The full waveforms can be used to extract additional information about the subsurface. We have successfully utilized teleseismic receiver-side crustal reverberation phases as virtual sources to mimic crustal reflection profiles (Yang et al., 2012). After depth conversion, we find a coherent phase that correlates well with the top of the Madison Formation under the Powder River and Bighorn Basins that flank the Bighorn Mountains. In addition, we combine the phases PpPdp from single-channel geophone recordings and Ps from three-component recordings to constrain the average Vp /Vs ratio for the sedimentary strata. Following Haines (2011), we are exploring the use of interferometric processing of active source blasts. In principle, virtual source and receiver gathers can be created through cross-correlation of full wavefields. The seismic interferometry provides a means of simulating alternative acquisition geometries, and has the

  14. Mineral transformations in and chemical evolution of mobile regolith on Osborn Mountain, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Riggins, S. G.; Anderson, S. P.; Tye, A.

    2012-12-01

    There is not yet a consensus on whether reaction kinetics (precipitation & temperature) or the generation of fresh mineral surfaces are more influential in weathering bedrock. Biological, physical and chemical processes work in concert to release and alter bedrock; however, their relative importance in a locality is likely dependent upon site-specific conditions. Additionally, past climate conditions complicate field observations since soils in many landscapes predate the Holocene and evolved under conditions much colder than today. In this study, we examine the mineralogy and chemistry of granitic bedrock and mobile regolith on Osborn Mountain (OM), Wyoming, USA, to shed light on the factors controlling mineralogical and chemical transformations in mobile material. OM is a high elevation site (3,600 m), with low mean annual temperature (-5°C) and a soil residence time of 71,000 years. The jigsaw-puzzle-like boundary between bedrock and mobile regolith suggests that the physical processes that create blocks are more important than chemical transformations in generating mobile regolith. Once released, blocks appear to shatter into fine grain sizes, which then weather at rates dependent on the grain size. Within mobile regolith, chemical weathering produces secondary minerals that constitute no more than 13% of the material, and include smectite, vermiculite, and kaolinite with minor hematite and geothite. While most primary minerals are less abundant in mobile regolith than parent bedrock, plagioclase weathering is dependent upon grain size; it has not been weathered from the 63 μm - 2 mm fraction, but is depleted from the <63 μm fraction. Correspondingly, smectite is more abundant in the smaller size fraction than in the larger. K-feldspar abundances are similar (and roughly half of the amount found in parent material) across all size fractions. If this lower plagioclase abundance were simply a matter of dilution by an increase in clay-sized particles (such as

  15. Digital snow mapping technique using LANDSAT data and General Electric IMAGE 100 system. [Dinwoody Creek in Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Dallam, W. C.; Foster, J. L.

    1975-01-01

    In this study, a technique and procedures using General Electric IMAGE 100 system were derived for performing a snow cover analysis of small watersheds for quasi-operational application. The study area was the Wind River Mountains of west central Wyoming. A small watershed, namely, Dinwoody Creek was selected as a test site. LANDSAT data and U-2 imagery were used in the analysis. From a minimal snowcover LANDSAT scene, multispectral analysis was performed yielding the distribution of forest, bare rock, grassland, water, and snow within the watershed. The forest and bare rock themes were saved and registered with other scenes containing greater snow cover. Likewise, elevation contours from a digitized map were stored and superimposed over the snowpack areas.

  16. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  17. Geological and geochemical investigations of uranium occurrences in the Arrastre Lake area of the Medicine Bow Mountains, Wyoming

    USGS Publications Warehouse

    Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.

    1977-01-01

    Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.

  18. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Uranium-thorium-lead systematics of an Archean granite from the Owl Creek Mountains, Wyoming

    SciTech Connect

    Stuckless, J.S.; Nkomo, I.T.; Butt, K.A.

    1986-01-01

    Isotopic analyses of apparently unaltered whole-rock samples of a granite from the Owl Creek Mountains, Wyo., yield a lead-lead isochron age of 2730 {plus minus} 35 Ma, which is somewhat older than the age obtained by the rubidium-strontium whole-rock method. Thorium-lead data for the same samples deviate markedly from an isochronal relation; however, calculated initial {sup 208}Pb/{sup 204}Pb ratios correlate with whole-rock {delta}{sup 18}O values and lead to the conclusion that the {sup 232}Th-{sup 208}Pb data are not colinear because of an originally heterogeneous granitic magma. Relationships in the {sup 207}Pb/{sup 235}U-{sup 206}Pb/{sup 238}U system show that uranium was mobilized during early Laramide time or shortly before, such that most surface and shallow drill-core samples lost 60-80 percent of their uranium, and some fractured, deeper drill-core samples gained from 50 to 10,000 percent uranium. Fission-track maps show that much uranium is located along edges and cleavages of biotite and magnetic where it is readily accessible to oxidizing ground water. Furthermore, qualitative comparisons of uranium distribution in samples with excess radiogenic lead and in samples with approximately equilibrium amounts of uranium and lead suggest that the latter contain more uranium in these readily accessible sites. Unlike other granites that have uranium distributions and isotopic systematics similar to those observed in this study, the granite of the Owl Creek Mountains is not associated with economic uranium deposits.

  19. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  20. Tongue River in Wyoming: a baseline fisheries assessment, Monarch to the state line

    SciTech Connect

    Wesche, T.A.; Johnson, L.S.

    1981-04-01

    A baseline study of fish populations was conducted in northeastern Wyoming's Tongue River and Goose Creek as part of a research project on the ecological effects of a large surface coal mine near Sheridan, Wyoming. The study area is a transition zone between the cold-water, torrential habitat in the Bighorn Mountains and the warm-water, quiet-zone habitat of the lower Tongue River. Fauna of the study area form one of the most diverse fisheries in Wyoming and include brown and rainbow trout, sauger, smallmouth bass, and black bullhead. Diversity generally increases in a downstream direction. Sauger and northern pike are extending their ranges from Montana into Wyoming to spawn; sauger in the study area are very fast-growing, probably due to the abundance of forage species. Studies should continue on the effect of the new Tongue River channel at the Big Horn Mine site in order to determine if recolonization is occurring. Spawning movements of sauger and northern pike in the Tongue River should be followed so that the effects of future mining along the Tongue River may be evaluated.

  1. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  2. 75 FR 57061 - Public Land Order No. 7748; Extension of Public Land Order No. 6797; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... Act of 1976, 43 U.S.C. 1714, it is ordered as follows: Public Land Order No. 6797 (55 FR 37878 (1990... necessary to continue the protection of the Whiskey Mountain Bighorn Sheep Winter Range in Fremont County... continue the protection of the Whiskey Mountain Bighorn Sheep Winter Range. The withdrawal extended by...

  3. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Analysis of SL-3, S-190A, and S-190B color frames indicates two sets of linears obliquely cutting across the east-west trending Owl Creek-Bridger uplifts. A northwest set of faults and folds has been mapped previously but the imagery indicates some changes and addition of detail can be made. A less pronounced east-northeast set of linear alignments (drainage segments, lithologic contacts, possible faults) extends into the southeast part of the Big Horn Basin.

  4. Factors associated with stocked cutthroat trout populations in high-mountain lakes

    USGS Publications Warehouse

    Bailey, Paul E.; Hubert, W.A.

    2003-01-01

    High-mountain lakes provide important fisheries in the Rocky Mountains; therefore we sought to gain an understanding of the relationships among environmental factors, accessibility to anglers, stocking rates, and features of stocks of cutthroat trout Oncorhynchus clarki in high-mountain lakes of the Bighorn Mountains, Wyoming. We sampled fish with experimental gill nets, measured lake habitat features, and calculated factors affecting angler access among 19 lakes that lacked sufficient natural reproduction to support salmonid fisheries and that were stocked at 1-, 2-, or 4-year intervals with fingerling cutthroat trout. We found that angler accessibility was probably the primary factor affecting stock structure, whereas stocking rates affected the densities of cutthroat trout among lakes. The maximum number of years survived after stocking appeared to have the greatest affect on biomass and population structure. Our findings suggest that control of harvest and manipulation of stocking densities can affect the density, biomass, and structure of cutthroat trout stocks in high-elevation lakes.

  5. Native perennial forb variation between mountain big sagebrush and Wyoming big sagebrush plant communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush (A. tridentata spp. vaseyana (Rydb....

  6. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review.

    PubMed

    Burns, Douglas A

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha(-1) yr(-1), and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is <50% in some watersheds east of the Continental Divide, which reflects low biomass and a short growing season relative to the timing and N load in deposition. Regional upward temporal trends in surface water NO(3)(-) concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. PMID:14568725

  7. Evidence for the presence of two supracrustal sequences in the central Wind River Mountain, Wyoming

    SciTech Connect

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.

    1985-01-01

    Supracrustal rocks, although volumetrically minor, are found throughout the Archean basement of the central and northern Wind River Mountains. Detailed mapping in the Medina Mountain area suggests that at least two discrete sedimentation events are preserved. The older sequence occurs as melanosomes in a multiple deformed migmatitic gneiss. Rock types include mafic rocks (metavolcanics.), calc-silicates, iron formation and rare pelites. Although retrogression is widespread, small patches with granulite mineralogies are found preserved. The younger supracrustal sequence consists of banded amphibolites, calc-silicates, semipelitic and pelitic gneiss. These rocks form synformal structures that are up to 4 km in length. The coherent nature of these rocks and the lack of the aforementioned porphyritic dikes strongly suggests that this sequence, the Medina Mountain. Supracrustals (MMS) is considerably younger than the supracrustal rocks found in the migmatites. The authors propose that the MMS were not subjected to the high grade granulite metamorphism evidenced in the migmatites because the MMS are dominantly in amphibolite facies and are only locally upgraded to granulite facies. Sr and Nd isotopic data provide constraints on the timing of the deposition and metamorphism of the younger sequence. A Nd crustal residence age for the MMS gives 3.4 Ga, an older limit for the age of the unit. A Rb-Sr isochron of 2.7 Ga for the Bridger Batholith, a granitoid deformed in the waning stages of the second metamorphism, places a younger age limit on the last Archean metamorphism to affect the central Wind River Mountains.

  8. Multidisciplinary study on Wyoming test sites

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.

    1975-01-01

    The author has identified the following significant results. Ten EREP data passes over the Wyoming test site provided excellent S190A and S190B coverage and some useful S192 imagery. These data were employed in an evaluation of the EREP imaging sensors in several earth resources applications. Boysen Reservoir and Hyattsville were test areas for band to band comparison of the S190 and S192 sensors and for evaluation of the image data for geologic mapping. Contrast measurements were made from the S192 image data for typical sequence of sedimentary rocks. Histograms compiled from these measurements show that near infrared S192 bands provide the greatest amount of contrast between geologic units. Comparison was also made between LANDSAT imagery and S190B and aerial photography for regional land use mapping. The S190B photography was found far superior to the color composite LANDSAT imagery and was almost as effective as the 1:120,000 scale aerial photography. A map of linear elements prepared from LANDSAT and EREP imagery of the southwestern Bighorn Mountains provided an important aid in defining the relationship between fracture and ground water movement through the Madison aquifer.

  9. Cambrian pisolites as paleoenvironment and paleotectonic stress indicators, Rattlesnake Mountain, Wyoming

    SciTech Connect

    Neese, D.G.; Vernon, J.H.

    1987-05-01

    Pisolitic-rich carbonates occur within the uppermost 0.5 m of the Meagher Limestone member of the lower Gros Ventre formation in exposures near Cody, Wyoming. The Meagher Limestone is overlain by 51 m, and underlain by 63 m of dark gray Gros Ventre shale. Pisolites range in size from 2.0 to 18 mm in diameter and occur in lime grainstones associated with trilobite fragments, peloids, glauconite, fine-grained subangular quartz, and minor oolites. Girvanella grainstones 15-20 cm thick directly underlie the pisolite strata and have contributed to some of the carbonate material within pisolite nuclei. Dolomite and ankerite may occur within pisolitic rocks as finely crystalline irregular patches. Pisoliths commonly show an oblate ellipsoid shape, with maximum flattening perpendicular to bedding. Long-axis to short-axis ratios of these grains in fracture planes perpendicular to bedding average between 2.5 to 3.5, with the long axis parallel or subparallel to bedding. Grains observed in bedding planes have ratios averaging between 1.5 to 2.0. A paleostress state has produced a strain ellipsoid with long-axis ratios ranging from 1.7 to over 3.0. There appears to be little or no tectonic strain on the bedding plane, so the strain can be described as uniaxial, with maximum compression perpendicular to bedding. The majority of carbonate rocks in the Meagher Limestone were deposited in a normal marine subtidal setting, while ooid and pisolitic grain types are suggestive of subtidal-peritidal conditions. Because of the strain deformed pisoliths, a subaqueous versus subaerial environment of pisolite genesis is difficult to assess. A siliciclastic sandstone, 0.6 m thick with low-angle tabular crossbedding, is present immediately beneath the Meagher Limestone. The sandstone is composed of 94% fine to medium sand-size subangular quartz grains and is associated with glauconite, minor biotite, zircon, and ilmenite.

  10. Ecotypic variation in recruitment of reintroduced bighorn sheep: implications for translocation

    USGS Publications Warehouse

    Wiedmann, Brett P.; Sargeant, Glen A.

    2014-01-01

    European settlement led to extirpation of native Audubon's bighorn sheep (formerly Ovis canadensis auduboni) from North Dakota during the early 20th century. The North Dakota Game and Fish Department subsequently introduced California bighorn sheep (formerly O. c. californiana) that were indigenous to the Williams Lake region of British Columbia, Canada, and Rocky Mountain bighorn sheep (O. c. canadensis) that were indigenous to the Sun River region of Montana. Although California bighorn sheep are no longer recognized as a distinct subspecies, they are smaller and adapted to a milder climate than either the native bighorn sheep of North Dakota or introduced bighorn sheep from Montana. Because reintroductions still play a key role in the management of bighorn sheep and because local adaptation may have substantial demographic consequences, we evaluated causes of variation in recruitment of bighorn sheep reintroduced in North Dakota. During 2006–2011, Montana stock recruited 0.54 juveniles/adult female (n = 113), whereas British Columbia stock recruited 0.24 juveniles/adult female (n = 562). Our most plausible mixed-effects logistic regression model (53% of model weight) attributed variation in recruitment to differences between source populations (odds ratio = 4.5; 90% CI = 1.5, 15.3). Greater recruitment of Montana stock (fitted mean = 0.56 juveniles/adult female; 90% CI = 0.41, 0.70) contributed to a net gain in abundance (r = 0.15), whereas abundance of British Columbia stock declined (fitted mean = 0.24 juveniles/adult female; 90% CI = 0.09, 0.41; r = − 0.04). Translocations have been the primary tool used to augment and restore populations of wild sheep but often have failed to achieve objectives. Our results show that ecotypic differences among source stocks may have long-term implications for recruitment and demographic performance of reintroduced populations.

  11. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  12. Heart Mountain, Wyoming, detachment lineations: are they in microbreccia or in volcanic tuff?

    USGS Publications Warehouse

    Pierce, W.G.; Nelson, W.H.; Tokarski, A.K.; Piekarska, E.

    1991-01-01

    The concept of tectonic denudation followed by deposition of lower middle Eocene Wapiti Formation volcanic rocks on the exposed Heart Mountain detachment has been challenged by Hauge. His "extending allochthon' interpretation requires that the Wapiti Formation be fault emplaced and that lineations in a volcanic tuff overlying the fault north of Jim Smith Peak be fault striae in "microbreccia'. Our re-examination of the field evidence in minute detail indicates that these lineations were produced by flowage of volcanic rocks on a thin layer of air-fall tuff. The evidence indicates that this tuff was deposited on the detachment surface during the brief interval that the denuded surface was exposed. -from Authors

  13. Geologic map and coal stratigraphy of the Doty Mountain quadrangle, eastern Washakie basin, Carbon County, Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.

    2006-01-01

    This report provides a geologic map of the Doty Mountain 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface. Detailed measured sections are provided for the type sections of the Red Rim Member of the Upper Cretaceous Lance Formation and China Butte and Overland Members of the Paleocene Fort Union Formation. The data set was collected as part of a larger effort to acquire data on Upper Cretaceous and Tertiary coal-bearing rocks in the eastern Washakie Basin and southeastern Great Divide Basin. Regions in the eastern Washakie Basin and southeastern Great Divide Basin have potential for coal development and were considered previously for coal leasing by the U.S. Bureau of Land Management.

  14. The High Variability of Hydrologic Response in Mountain Watersheds: Snowy Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Miller, S. N.

    2015-12-01

    Three adjacent mountain streams that coalesce to form a single river have been monitored with a nested watershed design comprised of ten runoff stations for the past three years. Some of the stations are co-located on previous monitoring sites that allow for an extended period of record. Stage-discharge relationships have been built with high degrees of confidence at each station, and stream isotope data have been taken to better determine sources of water and fractionation of precipitation into runoff components. In addition to runoff observations we have multiple weather stations and use geophysical methods to investigate the subsurface and better characterize potential flow pathways and remote sensing and field methods to characterize the watersheds. From these data we have observed a high degree in variability in runoff characteristics among these sites, including significant differences in annual runoff, proportion of baseflow, rainfall/runoff efficiency, and hydrologic regime. Analyses of nested runoff data reveal longitudinal and seasonal changes in surface and subsurface flow, which allow us to identify the timing and location of groundwater contributions and channel transmission to regional aquifers. Differences among the watershed responses are augmented by precipitation, and we identify stream reaches that change from effluent to influent depending on timing and magnitude of runoff. We explored physical interpretations for the observed variability, including management, beetle impacts, and subsurface characteristics as inferred from geophysical data.

  15. Neogene tectonics and geomorphology of the eastern Uinta Mountains in Utah, Colorado, and Wyoming

    SciTech Connect

    Hansen, W.R

    1986-01-01

    A recent reevaluation of the Bishop Conglomerate in the eastern part of the Uinta Mountains of Utah and Colorado helps clarify how the conglomerate relates to the Browns Park Formation and, in turn, how both formations relate to Tertiary tectonic activity and late Tertiary and Quaternary drainage adjustments. Field relations indicate divergent geomorphic histories for the two formations, yet over broad areas they are nearly coextensive and, as will be shown, the Browns Park locally rests directly on the Bishop. Some of the conglomerate beneath the Browns Park Formation surely is Bishop, but a hiatus is indicated between the two formations. Sears, moreover, showed that the Bishop is stratigraphically below the Browns Park and, hence, is older. The Browns Park is now well dated as largely Miocene; the Bishop is Oligocene. In their type areas the Bishop and the Browns Park are separated by great topographic discontinuity, the Bishop capping high mesas and the Browns Park filling deep adjacent valleys. Because of its wide geographic extent and relatively uniform character, the Bishop is an excellent datum for use in reconstruction tectonic and geomorphic event in the Uinta region.

  16. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Final technical report, September 15, 1993--October 31, 1996

    SciTech Connect

    Dunn, T.L.

    1996-10-01

    This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.

  17. Petroleum exploration in Absaroka basin of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.

    1986-08-01

    A new, virtually unexplored petroleum province with large potential resources can be defined in northwestern Wyoming. Structurally, the Absaroka basin is bounded on the north by the Beartooth uplift, to the west by the Gallatin and Washakie uplifts, to the south by the Washakie and Owl Creek uplifts, and to the east by the Cody arch. The Cody arch connects the southern Beartooth uplift with the northwesternmost Owl Creek uplift and separates the Bighorn basin to the east from the Absaroka basin to the west. The eastern flank of the cody arch is bounded by a major west-dipping thrust fault. The western flank is locally a subhorizontal shelf but overall gently dips to the west-southwest into deeper parts of the Absaroka basin. In contrast to most petroleum basins, the Absaroka basin is topographically a rugged mountain range, created by erosion of a thick sequence of Eocene volcanic rocks that fill the center of the basin and lap onto the adjacent uplifts. Mesozoic and Paleozoic rocks that have produced several billion barrels of oil from the adjacent Bighorn and Wind River basins are probably present within the Absaroka basin and should have similar production capabilities. The Absaroka basin may have greater potential than adjacent basins because the volcanics provide additional traps and reservoirs. Domes in Mesozoic and Paleozoic rocks beneath the volcanics and stratigraphic traps at the angular unconformity between the volcanics and underlying reservoirs are primary exploration targets. Unique geologic, geophysical, permitting, access, and drilling problems are encountered in all aspects of exploration.

  18. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  19. Wood-mediated geomorphic effects of a jökulhlaup in the Wind River Mountains, Wyoming

    NASA Astrophysics Data System (ADS)

    Oswald, Elizabeth B.; Wohl, Ellen

    2008-08-01

    A jökulhlaup burst from the head of Grasshopper Glacier in Wyoming's Wind River Mountains during early September 2003. Five reaches with distinct sedimentation patterns were delineated along the Dinwoody Creek drainage. This paper focuses on a portion of the jökulhlaup route where erosion of the forested banks created 16 large logjams spaced at longitudinal intervals of tens to hundreds of meters. Aggradation within the main channel upstream from each logjam created local sediment wedges, and the jams facilitated overbank deposition during the jökulhlaup. Field surveys during 2004 and 2006 documented logjam characteristics and associated erosional and depositional features, as well as initial modification of the logjams and flood deposits within the normal seasonal high-flow channel. Overbank deposits have not been altered by flows occurring since 2003. Field measurements supported three hypotheses that (i) logjams present along the forested portions of the jökulhlaup route are larger and more closely spaced than those along adjacent, otherwise comparable stream channels that have not recently experienced a jökulhlaup; (ii) logjams are not randomly located along the jökulhlaup route, but instead reflect specific conditions of channel and valley geometry and flood hydraulics; and (iii) the presence of logjams facilitated significant erosional and depositional effects. This paper documents a sequence of events in which outburst floodwaters enhance bank erosion and recruitment of wood into the channel, and thus the formation of large logjams. These logjams sufficiently deflect flow to create substantial overbank deposition in areas of the valley bottom not commonly accessed by normal snowmelt peak discharges, and through this process promote valley-bottom aggradation and sediment storage. Changes in the occurrence of glacier outburst floods thus have the potential to alter the rate and magnitude of valley-bottom dynamics in these environments, which is

  20. Cataclastic flow kinematics inferred from magnetic fabrics at the Heart Mountain Detachment, Wyoming

    NASA Astrophysics Data System (ADS)

    Heij, G. W.; Ferre, E. C.; Friedman, S. A.

    2013-12-01

    The Heart Mountain Detachment (HMD) constitutes one of the largest known rock slides (3400 km2) on Earth. This detachment occurred along the stratigraphic boundary between the Big Horn Dolomite at the hanging-wall and the Snowy Range Formation at the footwall. The bedding plane contact between these two carbonate formations dipped >2 deg. at the time of slide. The slide resulted in the formation of an up to 3 m-thick carbonate ultracataclasite (CUC) at the base of the slide. The origin of the CUC and the nature of the triggering mechanism responsible for the initiation of the catastrophic movement have long been a subject of controversy. Absoroka volcanics could have provided the trigger for the catastrophic slide. Here we present a proof of concept study addressing the question of the consistent magnetic fabrics observed in the CUC as well as new observations indicating presence of volcanic solid material within the CUC. The magnetic susceptibility (Klf) ranges narrowly from 1062. [10]^(-6) to 1115 . [10]^(-6) [SI]. Thermomagnetic investigations revealed a Curie temperature of 525C which suggests that magnetite is most likely the dominant magnetic carrier mineral. Energy Dispersive Spectroscopy analyses confirm that this magnetite has a relatively low Ti content. The CUC magnetic hysteresis properties point to an average pseudo-single domain magnetic grain size or, alternatively, a mixture of single domain and multi-domain grains. The average degree of magnetic anisotropy (P' = 1.062) is relatively high and is consistent with a magnetostatic origin for the AMS. The shape parameter T is mostly oblate (average T=0.175). The anisotropy of magnetic susceptibility (AMS) directional data is surprisingly consistent within each specimen and between specimens collected within a few tens of meters of each other with an overall NNE-SSW. The consistency of this magnetic fabric suggests that cataclastic flow corresponded to a dominantly simple shear regime. Generally

  1. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  2. Local extinction and unintentional rewilding of bighorn sheep (Ovis canadensis) on a desert island

    USGS Publications Warehouse

    Wilder, Benjamin T.; Betancourt, Julio L.; Epps, Clinton W.; Crowhurst, Rachel S.; Mead, Jim I.; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ~500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ~1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct.

  3. Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island

    PubMed Central

    Wilder, Benjamin T.; Betancourt, Julio L.; Epps, Clinton W.; Crowhurst, Rachel S.; Mead, Jim I.; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct. PMID:24646515

  4. Local extinction and unintentional rewilding of bighorn sheep (Ovis canadensis) on a desert island.

    PubMed

    Wilder, Benjamin T; Betancourt, Julio L; Epps, Clinton W; Crowhurst, Rachel S; Mead, Jim I; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476-1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct. PMID:24646515

  5. Determination of critical habitat for the endangered Nelson's bighorn sheep in southern California

    USGS Publications Warehouse

    Turner, J.C.; Douglas, C.L.; Hallum, C.R.; Krausman, P.R.; Ramey, R.R.

    2004-01-01

    The United States Fish and Wildlife Service's (USFWS) designation of critical habitat for the endangered Nelson's bighorn sheep (Ovis canadensis nelsoni) in the Peninsular Ranges of southern California has been controversial because of an absence of a quantitative, repeatable scientific approach to the designation of critical habitat. We used 12,411 locations of Nelson's bighorn sheep collected from 1984-1998 to evaluate habitat use within 398 km2 of the USFWS-designated critical habitat in the northern Santa Rosa Mountains, Riverside County, California. We developed a multiple logistic regression model to evaluate and predict the probability of bighorn use versus non-use of native landscapes. Habitat predictor variables included elevation, slope, ruggedness, slope aspect, proximity to water, and distance from minimum expanses of escape habitat. We used Earth Resources Data Analysis System Geographic Information System (ERDAS-GIS) software to view, retrieve, and format predictor values for input to the Statistical Analysis Systems (SAS) software. To adequately account for habitat landscape diversity, we carried out an unsupervised classification at the outset of data inquiry using a maximum-likelihood clustering scheme implemented in ERDAS. We used the strata resulting from the unsupervised classification in a stratified random sampling scheme to minimize data loads required for model development. Based on 5 predictor variables, the habitat model correctly classified >96% of observed bighorn sheep locations. Proximity to perennial water was the best predictor variable. Ninety-seven percent of the observations were within 3 km of perennial water. Exercising the model over the northern Santa Rosa Mountain study area provided probabilities of bighorn use at a 30 x 30-m2 pixel level. Within the 398 km 2 of USFWS-designated critical habitat, only 34% had a graded probability of bighorn use to non-use ranging from ???1:1 to 6,044:1. The remaining 66% of the study area

  6. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    NASA Technical Reports Server (NTRS)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  7. Detecting short-term responses to weekend recreation activity: desert bighorn sheep avoidance of hiking trails

    USGS Publications Warehouse

    Longshore, Kathleen; Lowrey, Chris; Thompson, Daniel B.

    2013-01-01

    To study potential effects of recreation activity on habitat use of desert bighorn sheep (Ovis canadensis nelsoni), we placed Global Positioning System collars on 10 female bighorn sheep within the Wonderland of Rocks–Queen Mountain region of Joshua Tree National Park (JOTR), California, USA, from 2002 to 2004. Recreation use was highest from March to April and during weekends throughout the year. Daily use of recreation trails was highest during midday. By comparing habitat use (slope, ruggedness, distance to water, and distance to recreation trails) of female bighorn sheep on weekdays versus weekends, we were able to detect short-term shifts in behavior in response to recreation. In a logistic regression of bighorn sheep locations versus random locations for March and April, female locations at midday (1200 hours) were significantly more distant from recreation trails on weekends compared with weekdays. Our results indicate that within this region of JOTR, moderate to high levels of human recreation activity may temporarily exclude bighorn females from their preferred habitat. However, the relative proximity of females to recreation trails during the weekdays before and after such habitat shifts indicates that these anthropogenic impacts were short-lived. Our results have implications for management of wildlife on public lands where the co-existence of wildlife and recreational use is a major goal.

  8. Use of dye tracing in water-resources investigations in Wyoming, 1967-94

    USGS Publications Warehouse

    Wilson, J.F., Jr.; Rankl, J.G.

    1996-01-01

    During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.

  9. 2.69-2.68 Ga granulite facies metamorphism in the Wyoming Craton revealed by Sm-Nd garnet geochronology and trace element zoning, eastern Beartooth Mountains, Montana and Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Guevara, V.; Dragovic, B.; Caddick, M. J.; Baxter, E. F.

    2014-12-01

    The Beartooth Mountains in Montana and Wyoming, USA, form an extensive exposure of Archean rocks of the Wyoming Craton and are dominantly comprised of a ~2.8 Ga granitoid batholith known as the Long Lake Magmatic Complex (LLMC). Contained within the LLMC are numerous m- to km-scale enclaves of metasedimentary granulites. P-T pseudosection modeling indicates that these granulites reached peak pressure-temperature (P-T) conditions of 800 °C, 7-8 kbar. This has previously been interpreted to result from contact heating with the LLMC. However, substantial field evidence from multiple localities suggests that the texturally dominant phase of HT metamorphism in the metasediments postdates LLMC emplacement. Further, Sm-Nd garnet (grt) dates from the metasediments are in the range ~2.69-2.68 Ga ('bulk' dates incorporating crystal cores and rims), ~100 Myrs younger than LLMC emplacement (based on U-Pb zircon ages, 1). Trace element zoning in grt suggests that these dates record the age of granulite facies metamorphism. Euhedral high-Ca overgrowths in Grt from a residual pelite are coincident with a high Eu spike, interpreted to result from plagioclase breakdown during partial melting. These overgrowths are also coincident with high Sm and Nd annuli, and we thus interpret the bulk grt date (2689±4 Ma) to record timing of the late stages of grt growth during migmatisation near peak T. Coupled with major element zoning, retention of Sm and Nd zoning in euhedral grt from the leucosome of another sample suggest that its bulk date (2681±1 Ma) also represents peritectic grt growth rather than subsequent diffusion. Grt from a lithology that did not experience melting records a date of 2686±1 Ma. Together, these ages indicate that granulite facies metamorphism persisted in the area for at least ~3 Myrs (inner bounds of the 2σ dates), ~100 Myrs after batholith emplacement. Limited evidence for this later event in the plutonic rocks is consistent with their experiencing little

  10. Geology and description of thorium and rare-earth deposits in the southern Bear Lodge Mountains, northeastern Wyoming

    USGS Publications Warehouse

    Staatz, M.H.

    1983-01-01

    The Bear Lodge Mountains are a small northerly trending range approximately 16 km northwest of the Black Hills in the northeast corner of Wyoming. Thorium and rare-earth deposits occur over an area of 16 km 2 in the southern part of these mountains. These deposits occur in the core of the Bear Lodge dome in a large multiple intrusive body made up principally of trachyte and phonolite. Two types of deposits are recognized: disseminated deposits and veins. The disseminated deposits are made up of altered igneous rocks cut by numerous crisscrossing veinlets. The disseminated deposits contain thorium and rare-earth minerals in a matrix consisting principally of potassium feldspar, quartz, and iron and manganese oxides. Total rare-earth content of these deposits is about 27 times that of the thorium content. The general size and shape of the disseminated deposits were outlined by making a radiometric map using a scintillation counter of the entire Bear Lodge core, an area of approximately 30 km 2 . The most favorable part of this area, which was outlined by the 40 countJs (count-per-second) isograd on the radiometric map, was sampled in detail. A total of 341 samples were taken over an area of 10.6 km 2 and analyzed for as many as 60 elements. Rare earths and thorium are the principal commodities of interest in these deposits. Total rare-earth content of these samples ranged from 47 to 27,145 ppm (parts per million), and the thorium content from 9.3 to 990 ppm. The amount of total rare earths of individual samples shows little correlation with that of thorium. Contour maps were constructed using the analytical data for total rare earths, thorium, uranium, and potassium. The total rare-earth and thorium maps can be used to define the size of the deposits based on what cut-off grade may be needed during mining. The size is large as the 2,000 ppm total rare-earth isograd encloses several areas that total 3.22 km 2 in size, and the 200 ppm thorium isograd encloses several

  11. Behavioural and physiological response of trout to winter habitat in tailwaters in Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Annear, Thomas C.; Hubert, Wayne; Simpkins, Darin; Hebdon, Lance

    2002-03-01

    Fisheries managers have often suggested that survival of trout during the winter is a major factor affecting population densities in many stream ecosystems in the Rocky Mountains. In Wyoming, trout population reductions from fall to spring in excess of 90% have been documented in some reservoir tailwaters. Though biologists have surmised that these reductions were the result of either mortality or emigration from some river sections, the specific mechanisms have not been defined and the factors leading to the trout loss are unknown. This is a review of four studies that were conducted or funded between 1991 and 1998 by the Wyoming Game and Fish Department to understand the extent of overwinter losses, identify some of the mechanisms leading to those conditions and develop management strategies to help avoid those impacts. Winter studies were conducted on tailwater fisheries in the Green, North Platte, Bighorn and Shoshone rivers to document trout population dynamics, assess physical habitat availability, evaluate trout movement and habitat selection, and understand the relationships between food availability and bioenergetic relationships. Results indicate that winter trout losses are extreme in some years, that trout movement and habitat selection are affected by supercooled flows, and that mortality is probably not directly due to starvation. The combination of physiological impairment with frequently altered habitat availability probably leads to indirect mortality from predators and other factors.

  12. Oblique convergence during northeast-southwest Laramide compression along the east-west Owl Creek and Casper Mountain arches, central Wyoming

    SciTech Connect

    Molzer, P.C.; Erslev, E.A.

    1995-09-01

    Understanding the diversity of structural trends in the Laramide foreland of the conterminous Unite States is important to understanding the location, geometry, and fracturing of hydrocarbon reservoirs. East-west basement-cored arches in central Wyoming are oblique to the average northwesterly trend of foreland faults and folds. Tectonic models predict that these arches formed by one of the following mechanisms: north-south-directed thrust faulting; sinistral strike-slip thrust faulting. In the eastern Owl Creek Mountains, average slip directions give by slickenline directions trend from N37{degrees}E to N57{degrees}E. Geometric analysis of conjugate faults and stress inversion of minor fault data indicate nearly horizontal compression trending between N48{degrees}E and N65{degrees}E. In the east-west Casper Mountain structure, more limited minor fault data are consistent with the northeast-southwest compression seen in the eastern Owl Creek arch and indicate an additional stage of extension by normal faulting. The northeast-southwest compression documented by minor fault data indicate nearly horizontal compression trending between N48{degrees}E and N65{degrees}E. In the east-west Casper Mountain structure, more limited minor fault data are consistent with the northeast-southwest compression seen in the eastern Owl Creek arch and indicate an additional stage of extension by normal faulting. The northwest-southwest compression documented by minor faults suggests oblique thrusting with a component of sinistral strike-slip on the underlying east-west-striking Owl Creek and Casper Mountain thrusts. In this area of the Laramide foreland, east-west arches probably formed during a single stage of oblique slip on thrust ramps connecting northwest-trending arch culminations. This conclusion indicates that trap geometries and reservoir characteristics of foreland hydrocarbon accumulations are dependent on their obliquity to the regional stress field.

  13. Evaluation of Cottonwood Creek field complex, Bighorn basin, Wyoming

    SciTech Connect

    Inden, R.; Anderson, R.

    1986-08-01

    Most of the 83 million bbl of oil produced from Cottonwood Creek and associated fields (Worland, Rattlesnake, South Frisby) is from a suite of peritidal dolomite facies that were deposited in and on the flanks of an ancient estuarine system. Isopach and facies maps suggest that the Tensleep fault and related northwest-southeast-oriented basement fault blocks, controlled the formation of this estuary during Late Pennsylvanian/Early Permian time and the pattern of late Ervay deposition within the estuary. Upper Ervay pisolitic and algal-laminated units, along with intraclast grainstones, map as thick (40 to 90 ft), 1 to 2-mi wide and 2 to 5-mi long pods that represent a northwest-southeast peninsular system of islands. The thickest (i.e., central and highest) portions of these islands are made up of extensively altered pisolitic, brecciated units whose porosity systems were destroyed by aragonite and calcite cementation during periodically low sea level stands. The thinner margins of these island pods are made up of reservoir-quality peritidal fenestral fabric, algal-laminated units, and intraclast grainstones that were subjected to significantly less cementation because of less-frequent exposure. Permeability in these units may be enhanced by preferential fracturing because they were deposited along paleostructural zones of weakness. As a result of these depositional, diagenetic, and fracture patterns, cumulative production is commonly much higher (> 200,000 bbl/well) from the flank positions of these pods. Lagoonal dolomite mudstones and red-bed/evaporite sequences were deposited between and behind these islands, respectively, and form the major updip hydrocarbon seals.

  14. Wind-Snow Interactions and Treeline Advance in the Medicine Bow Mountains, Wyoming: A Coupled Examination Using Dendroecology and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Elliott, G.; Crawford, C. J.

    2014-12-01

    Research suggests that broad-scale increases in temperature facilitated an abrupt initiation of upper treeline advance beginning in the 1950s at climatic treelines throughout a large portion of the southern and central Rocky Mountains. Despite this regional trend, patterns of finer scale variability often imply the likely influence of both wind-snow interactions and temperature on driving regeneration dynamics in these climatically-sensitive ecotones. This is particularly true for mountain ranges subject to consistently strong winds, such as the Medicine Bow Mountains of southeast Wyoming. A rich history of treeline work exists for this area, yet questions remain regarding how influential wind and snowpack variability are in governing climate-vegetation interactions within upper treeline ecotones and whether this varies according to the level of wind exposure. Here we present a coupled examination using dendroecology and remote sensing to test the hypothesis that sufficient snow cover is required in order for the ecological manifestation of increasing temperatures to appear at upper treeline; namely treeline advance. We used dendroecological methods to reconstruct the history of colonization on the two highest peaks in the range (Medicine Bow Peak Massif and Kannaday Peak). We sampled a total of six sites by placing nested-belt transects on two south-facing and one north-facing site for each peak. To gauge the influence of wind-snow interactions at each site, we analyzed remotely-sensed images. We selected three sets of LANDSAT images for each mountain peak based on years with maximum, minimum, and mean snowfall conditions to capture the entire range of variability. Results demonstrate that snow cover can be a critical modifier of treeline advance, especially on wind-exposed slopes and on mountain peaks with a relatively dry hydroclimatology, where a protective snow layer is only evident during high snow years. Overall, this research suggests that the role of wind

  15. Discharge forecasts in mountain basins based on satellite snow cover mapping. [Dinwoody Creek Basin, Wyoming and the Dischma Basin, Switzerland

    NASA Technical Reports Server (NTRS)

    Martinec, J.; Rango, A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff.

  16. Late Paleocene high Laramide ranges in northeast Wyoming: Oxygen isotope study of ancient river water

    NASA Astrophysics Data System (ADS)

    Fan, Majie; Dettman, David L.

    2009-08-01

    The distribution and initial timing of the establishment of high surface elevations in the Rocky Mountains during the Early Cenozoic remain controversial despite the importance of these data in testing tectonic models for this region. We track the timing and distribution of high elevation in the Rocky Mountains during the Late Cretaceous-Early Eocene by examining annual and seasonal δ18O values of the ancient river water, which are calculated from the δ18O values of well-preserved freshwater bivalve shells. In the Powder River basin of the eastern Laramide province, the δ18O values of the ancient river water vary between - 23.0‰ and - 8.0‰ SMOW in both seasonal and annual records in the Late Paleocene-Early Eocene. The large variation suggests that the ancient rivers were fed yearly or seasonally by snowmelt from highlands of 4.5 ± 1.3 km. This can be explained by the existence of the Bighorn Mountains and Black Hills with a drainage pattern similar to the present in northeast Wyoming. The δ18O values of ancient river water along the front of the Sevier thrust belt generally follow a trend from lower values in north, - 14.2 ± 1.4‰ in the Early Paleocene Crazy Mountains basin, to higher values in south, - 11.1 ± 0.8‰ in the Late Paleocene Bighorn basin, and - 7.1 ± 1.6‰ in the Early Eocene Washakie basin. The variations within each basin are relatively small. These rivers most likely rise in the Sevier thrust belt, and may reflect highland elevation of 1-2 km. The δ18O values in the Alberta foreland and Williston basin are very low (- 20.5‰) in the Late Cretaceous, indicating the rivers were fed by snowmelt from the Canadian Rocky Mountains of 4.3 ± 1.0 km high. The attainment of high elevation in the eastern Laramide province prior to the western province could be explained by southwestward progression of back-thrusts soled into an earlier east-directed master detachment, which may be formed by the westward rollback of subducted shallow slab.

  17. Demography, not inheritance, drives phenotypic change in hunted bighorn sheep

    PubMed Central

    Traill, Lochran W.; Schindler, Susanne; Coulson, Tim

    2014-01-01

    Selective harvest, such as trophy hunting, can shift the distribution of a quantitative character such as body size. If the targeted character is heritable, then there will be an evolutionary response to selection, and where the trait is not, then any response will be plastic or demographic. Identifying the relative contributions of these different mechanisms is a major challenge in wildlife conservation. New mathematical approaches can provide insight not previously available. Here we develop a size- and age-based two-sex integral projection model based on individual-based data from a long-term study of hunted bighorn sheep (Ovis canadensis) at Ram Mountain, Canada. We simulate the effect of trophy hunting on body size and find that the inheritance of body mass is weak and that any perceived decline in body mass of the bighorn population is largely attributable to demographic change and environmental factors. To our knowledge, this work provides the first use of two-sex integral projection models to investigate the potential eco-evolutionary consequences of selective harvest. PMID:25114219

  18. Cross folding in southern Bighorn basin

    SciTech Connect

    Gubbels, T.L.

    1986-08-01

    Analysis of Landsat Thematic Mapper imagery coupled with surface structural investigations of well-exposed folds in the southern Bighorn basin have revealed two northwest-trending folds that have been refolded. The eastern boundary of the Owl Creek Mountains is characterized by a well-defined alignment of folds that extend north-northwest from the Owl Creek thrust front. Bridger monocline, Wildhorse Butte anticline, and Red Hole anticline lie along this trend. Initial Laramide folding, probably during latest Cretaceous time, resulted in a single, continuous, north-northwest-trending anticline with a southwestward vergence. This anticline was progressively unfolded from south to north as the Owl Creek Range was thrust southward over the Wind River basin in earliest Eocene time; scissors-like vertical motion along this flexure rotated the axial surface of the early formed Bridger anticline, resulting in a monocline with a reversed vergence (northeastward). Formation of the Thermopolis/East Warm Springs anticline parallel to the north flank of the range accompanied thrusting and effectively refolded the northern end of the Wildhorse Butte anticline along an east-west axis. Faulting of the oversteepened south limb of the Red Hole cross fold was contemporaneous with folding. Cross-cutting fold axes in this area and the Mud Creek area to the west are best explained by a counterclockwise change in stress direction during the latest phase of the Laramide orogeny. Vertical movement along the eastern side of the Owl Creek Range results from differential motion in the hanging wall of the crystalline thrust sheet.

  19. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A review and new analysis of past study results

    USGS Publications Warehouse

    Burns, Douglas A.

    2003-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.

  20. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  1. Mountains

    SciTech Connect

    Fuller, M.

    1989-01-01

    This book covers the following topics: Above the forest: the alpine tundra; Solar energy, water, wind and soil in mountains; Mountain weather; Mountain building and plate tectonics; Mountain walls: forming, changing, and disappearing; Living high: mountain ecosystems; Distribution of mountain plants and animals; On foot in the mountains: how to hike and backpack; Ranges and peaks of the world. Map and guidebook sources, natural history and mountain adventure trips, mountain environmental education centers and programs, and sources of information on trails for the handicapped are included.

  2. Effects of urban development on stream ecosystems alongthe Front Range of the Rocky Mountains, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    The U.S. Geological Survey (USGS) conducted a study from 2002 through 2003 through its National Water-Quality Assessment (NAWQA) Program to determine the effects of urbanization on the physical, chemical, and biological characteristics of stream ecosystems along the Front Range of the Rocky Mountains. The objectives of the study were to (1) examine physical, chemical, and biological responses at sites ranging from minimally to highly developed; (2) determine the major physical, chemical, and landscape variables affecting aquatic communities at these sites; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin.

  3. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  4. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  5. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    USGS Publications Warehouse

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  6. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  7. Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming Province, USA: Evidence from U-Pb systematics in zircon

    USGS Publications Warehouse

    Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S.

    1996-01-01

    The Beartooth-Bighorn magmatic zone (BBMZ) and the Montana metasedimentary province (MMP) are two major subprovinces of the Archean Wyoming province. In the northwestern Beartooth Mountains, these subprovinces are separated by a structurally, lithologically and metamorphically complex assemblage of lithotectonic units that include: (1) a strongly deformed complex of trondhjemitic gneiss and interlayered amphibolites; and (2) an amphibolite facies mafic unit that occurs in a nappe that structurally overlies the gneiss complex. Zircons from a trondhjemitic blastomylonite in the gneiss complex yield concordant U-Pb ages of 3.5 Ga, establishing it as the oldest rock yet documented in the Wyoming province. Two younger events are also recorded by zircons in this rock: (1) an apparently protracted period of high-grade metamorphism and/or intrusion of additional magmas at ??? 3.25 Ga; and (2) growth of hydrothermal zircon at ??? 2.55 Ga, apparently associated with ductile deformation that immediately preceded structural emplacement of the gneiss. Although this latter event appears confined to areas along the BBMZ-MMP boundary, evidence of ??? 3.25 Ga igneous activity is found in the overlying amphibolite (3.24 Ga) and throughout the MMP. These data suggest that this boundary first developed as a major intracratonic zone of displacement at or before 3.25 Ga. The limited occurrences of 2.8 Ga magmatic activity in the MMP suggest that it had a controlling influence on late Archean magmatism as well.

  8. Spectral stratigraphy: multispectral remote sensing as a stratigraphic tool, Wind River/Big Horn basin, Wyoming

    SciTech Connect

    Lang, H.R.; Paylor, E.D.

    1987-05-01

    Stratigraphic and structural analyses of the Wind River and Big Horn basins areas of central Wyoming are in progress. One result has been the development of a new approach to stratigraphic and structural analysis that uses photogeologic and spectral interpretation of multispectral image data to remotely characterize the attitude, thickness, and lithology of strata. New multispectral systems that have only been available since 1982 are used with topographic data to map upper paleozoic and Mesozoic strata exposed on the southern margin of the Bighorn Mountains. Thematic Mapper (TM) satellite data together with topographic data are used to map lithologic contacts, measure dip and strike, and develop a stratigraphic column that is correlated with conventional surface and subsurface sections. Aircraft-acquired Airborne Imaging Spectrometer and Thermal Infrared Multispectral Scanner data add mineralogical information to the TM column, including the stratigraphic distribution of quartz, calcite, dolomite, montmorillonite, and gypsum. Results illustrate an approach that has general applicability in other geologic investigations that could benefit from remotely acquired information about areal variations in attitude, sequence, thickness, and lithology of strata exposed at the Earth's surface. Application of their methods elsewhere is limited primarily by availability of multispectral and topographic data and quality of bedrock exposures.

  9. Provenance of the Tullock member of the Fort Union formation, Powder River Basin, Wyoming and Montana: Evidence for early Paleocene Laramide uplift

    SciTech Connect

    Hansley, P.L.; Brown, J.L. )

    1993-01-01

    A petrologic and provenance study of the lower Paleocene Tullock Member of the Fort Union Formation in the Powder River Basin (PRB) indicates that Laramide uplifts to the west and south of the PRB were emergent and shedding detritus by early Paleocene time. This conclusion is based largely on the presence of abundant first-cycle carbonate clasts in the northwestern PRB and metamorphic and igneous clasts and labile heavy-mineral grains in the Tullock throughout the basin. The proximity and composition of the north end of the Bighorn uplift strongly suggest that is was the source for carbonate, igneous, and metamorphic rock fragments in northwestern Tullock outcrops. Lack of conglomeratic material in northwestern outcrops, however, indicates that the Bighorn uplift was not yet well developed and perhaps the Pryor Mountains uplift farther to the west was contributing some detritus. In the southern PRB, abundant labile heavy minerals and igneous rock fragments in the Tullock indicate that other uplifts to the west and south (i.e. Granite Mountains, Washakie, Owl Creek, and Laramie uplifts) had also started to rise by early Paleocene time. Paleocurrent directions show that Tullock streams flowed generally east-northeast across a gently sloping alluvial plain toward the retreating Cannonball sea, suggesting that the Black Hills were not yet emergent and, as a result, the basin had not fully developed. Our conclusions are supported by recent fission-track, palynological, and sedimentological studies that indicate that Laramide-style forland deformation in southwestern Montana began in late Cenomanian to Turonian time and migrated through central Wyoming to the Colorado Front Range by late Maastrichtian time. 37 refs., 8 figs., 3 tab.

  10. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute`s Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  11. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute's Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  12. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    SciTech Connect

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  13. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  14. Mountain Goats (Oreamnos americanum) at the livestock/wildlife interface: A susceptible species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mountain goats (Oreamnos americanum) were first introduced into the East Humboldt and Ruby Mountains of Elko County, Nevada in the 1960’s. These contiguous mountain ranges are also home to introduced Rocky Mountain bighorn sheep and native mule deer and are surrounded by both public and private rang...

  15. Workforce: Wyoming

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    From 2002 to 2012, the economy in Wyoming and the nation will continue generating jobs for workers at all levels of education and training, but there will be an increasing demand for employees with at least some postsecondary education, preferably a bachelor's degree. Nationwide, during a decade that will witness large numbers of baby boomers…

  16. Map Showing Principal Coal Beds and Bedrock Geology of the Ucross-Arvada Area, Central Powder River Basin, Wyoming

    USGS Publications Warehouse

    Molnia, Carol L.

    2013-01-01

    The Ucross-Arvada area is part of the Powder River Basin, a large, north-trending structural depression between the Black Hills on the east and the Bighorn Mountains on the west. Almost all of the study area is within Sheridan and Johnson Counties, Wyoming. Most of the Ucross-Arvada area lies within the outcrop of the Wasatch Formation of Eocene age; the extreme northeast corner falls within the outcrop of the Tongue River Member of the Fort Union Formation of Paleocene age. Within the Powder River Basin, both the Wasatch Formation and the Tongue River Member of the Fort Union Formation contain significant coal resources. The map includes locations and elevations of coal beds at 1:50,000 scale for an area that includes ten 7½-minute quadrangles covering some 500 square miles. The Wasatch Formation coal beds shown (in descending order) are Monument Peak, Walters (also called Ulm 1), Healy (also called Ulm 2), Truman, Felix, and Arvada. The Fort Union Formation coal beds shown (in descending order) are Roland (of Baker, 1929) and Smith.

  17. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    SciTech Connect

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming.

  18. Techniques for capturing bighorn sheep lambs

    USGS Publications Warehouse

    Smith, Joshua B.; Walsh, Daniel P.; Goldstein, Elise J.; Parsons, Zachary D.; Karsch, Rebekah C.; Stiver, Julie R.; Cain, James W.; Raedeke, Kenneth J.; Jenks, Jonathan A.

    2014-01-01

    Low lamb recruitment is a major challenge facing managers attempting to mitigate the decline of bighorn sheep (Ovis canadensis), and investigations into the underlying mechanisms are limited because of the inability to readily capture and monitor bighorn sheep lambs. We evaluated 4 capture techniques for bighorn sheep lambs: 1) hand-capture of lambs from radiocollared adult females fitted with vaginal implant transmitters (VITs), 2) hand-capture of lambs of intensively monitored radiocollared adult females, 3) helicopter net-gunning, and 4) hand-capture of lambs from helicopters. During 2010–2012, we successfully captured 90% of lambs from females that retained VITs to ≤1 day of parturition, although we noted differences in capture rates between an area of high road density in the Black Hills (92–100%) of South Dakota, USA, and less accessible areas of New Mexico (71%), USA. Retention of VITs was 78% with pre-partum expulsion the main cause of failure. We were less likely to capture lambs from females that expelled VITs ≥1 day of parturition (range = 80–83%) or females that were collared without VITs (range = 60–78%). We used helicopter net-gunning at several sites in 1999, 2001–2002, and 2011, and it proved a useful technique; however, at one site, attempts to capture lambs led to lamb predation by golden eagles (Aquila chrysaetos). We attempted helicopter hand-captures at one site in 1999, and they also were successful in certain circumstances and avoided risk of physical trauma from net-gunning; however, application was limited. In areas of low accessibility or if personnel lack the ability to monitor females and/or VITs for extended periods, helicopter capture may provide a viable option for lamb capture.

  19. Distinguishing major lithologic types in rocks of precambrian age in central Wyoming using multilevel sensing, with a chapter on possible economic significance of iron formation discovered by use of aircraft images in the Granite Mountains of Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Information obtained by remote sensing from three altitude levels: ERTS-1 (565 miles), U-2 (60,000 feet), and C-130 aircraft (15,000 feet) illustrates the possible application of multilevel sensing in mineral exploration. Distinction can be made between rocks of greenstone belts and rocks of granite-granite gneiss areas by using ERTS-1 imagery in portions of the Precambrian of central Wyoming. Study of low altitude color and color infrared photographs of the mafic terrain revealed the presence of metasedimentary rocks with distinct layers that were interpreted as amphibolite by photogeologic techniques. Some of the amphibolite layers were found to be iron formation when examined in the field. To our knowledge this occurrence of iron formation has not been previously reported in the literature.

  20. Managers' summary - ecological studies of the Pryor Mountain Wild Horse Range, 1992-1997

    USGS Publications Warehouse

    Singer, F.J.; Schoenecker, K.A.

    2000-01-01

    Ecological Studies of the Pryor Mountain Wild Horse Range, 1992-1997 provides a synthesis of key findings of landscape-scale, interdisciplinary studies of the effects of wild horses and native ungulates on a rugged, mountain ecosystem. This is perhaps the most comprehensive study of a wild horse herd conducted. This was a complex study and one involving a truly interagency approach. Six agencies either provided input to research priority setting, funding, or both. The agencies included the Bureau of Land Management, National Park Service, U.S. Geological Survey, Montana Department of Fish, Wildlife and Parks, Wyoming Game and Fish Department, and U.S. Forest Service. The major research direction and effort came from the U.S. Geological Survey and Natural Resources Ecology Lab, Colorado State University with Montana State University and the University of Kentucky also participating. Ungulate monitoring was conducted by the U.S. Geological Survey, Biological Resources Division, Bureau of Land Management, Billings Field Office and the Montana Fish and Wildlife Parks, with funding by Bighorn Canyon National Recreation Area. Many other individuals and groups were involved and deserve credit. The report printing was made possible with funds from the Bureau of Land Management, Wild Horse and Burro Program, Washington Office. This report was prepared by the Information Management Project, Midcontinent Ecological Science Center, U.S. Geological Survey.

  1. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep.

    PubMed

    Kardos, Marty; Luikart, Gordon; Bunch, Rowan; Dewey, Sarah; Edwards, William; McWilliam, Sean; Stephenson, John; Allendorf, Fred W; Hogg, John T; Kijas, James

    2015-11-01

    The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa. PMID:26454263

  2. Prevalence of Mycoplasma ovipneumoniae in desert bighorn sheep in Arizona

    USGS Publications Warehouse

    Justice-Allen, Anne E.; Luedtke, Clint J.; Overstreet, Matthew; Cain, James W.; Stephenson, Thomas R.

    2011-01-01

    To assess the potential for an epizootic of pneumonia to result from either natural immigration or translocation, we compared the seroprevalence to Mycoplasma ovipneumoniae in several populations of desert bighorn sheep in Arizona. We collected blood samples and nasal or oropharyngeal swabs from 124 desert bighorn sheep (Ovis canadensis nelsoni) from 6 populations in Arizona in 2009 and 2010. M. ovipneumoniae organisms were detected by PCR in 22%, whereas antibodies to M. ovipneumoniae were detected in 47% of tested bighorn sheep. Mycoplasma antibodies were not found in 2 of 6 populations, indicating some bighorn sheep populations in Arizona are naïve to this bacterium. In contrast, others had seroprevalence rates up to 80%. We were able to compare seroprevalence rates and titers over time in 9 individuals (7 individuals included in the 124 bighorn sheep sampled in 2009 and 2010, and 2 individuals originally captured in 2006). Antibody titers persisted for 12 months in individuals from the Kofa National Wildlife Refuge (n = 7) while antibody titers appeared to decline in the Kanab Creek population (n = 2). M. ovipneumoniae is present or has been present in several, but not all, populations of bighorn sheep in Arizona. The results demonstrate the importance of routine health testing for future translocation efforts to reduce disease risk for naive populations.

  3. Coal-bed methane in Utah, New Mexico, Colorado, and Wyoming: Resources, reserves, and production

    SciTech Connect

    Sommer, S.N. ); DeBruin, R.H. ); Tremain, C.M. ); Whitehead, N.H. III )

    1993-08-01

    Coal-bed methane reserves of 10 tcf, in-place resources up to 250 tcf, and dramatically increased production rates from Cretaceous and Tertiary formations affirm the importance of the Rocky Mountain gas province well into the 21st century. These resources have been calculated for the individual states and basins using a variety of criteria and methods and the resource numbers are not necessarily comparable. The Book Cliffs, Emery, Wastach Plateau, Kaiparowits Plateau, and Sego coal fields in Utah contain a coal-bed methane resource of 10.4 tcf. The Book Cliffs and Emery coal fields contain 8.3 tcf or 80% of this resource. The San Juan basin, New Mexico and Colorado, has 10 tcf (reserves), 40 tcf (resources) in the Fruitland Formation, and 28 tcf (resources) in the Menefee Formation. The Raton basin, Colorado and New Mexico, has 10.2 tcf of resources in the Raton and Vermejo Formations. The Piceance and Sand Wash basins in Colorado have estimated resources of more than 96 tcf. The Powder River, Green River, Hams Fork, Wind River, Hanna, Rock Creek, and Bighorn coal fields in Wyoming have resources of 54.4 tcf. The Powder River, Wind River, Green River, and Hams Fork coal fields contain 87% of this resource. In August, 1992, coal-bed methane production accounted for 49% of all gas produced from the San Juan basin (New Mexico) and 30% of all New Mexico production. For 1991, coal-bed methane production in Colorado from the San Juan and Piceance basins was 16% of all Colorado gas production.

  4. Irregularly shaped otoliths from saugers prevent back-calculation of length at previous ages in Wyoming

    USGS Publications Warehouse

    Krueger, K.L.; Hubert, W.A.

    1997-01-01

    We collected otoliths from saugers Stizostedion canadense in Boysen Reservoir, Bighorn Reservoir, and the Bighorn River in Wyoming to evaluate age and growth. All otoliths in our samples (264 fish) were irregularly shaped, and the irregularities became more pronounced with increasing age of the fish. Age estimates with irregular otoliths were possible, but back-calculation of length at previous ages was not possible as a result of radically inconsistent lengths of radii. It should not be assumed that otoliths can be used for back calculation of length at age among all stocks of sauger. The assumption of regular otolith formation within a stock should be tested before obtaining samples of otoliths for age and growth assessment.

  5. Digital Archives - Thomas M. Bown's Bighorn Basin Maps: The Suite of Forty-Four Office Master Copies

    USGS Publications Warehouse

    McKinney, Kevin C.

    2001-01-01

    This CD-ROM is a digitally scanned suite of master 'locality' maps produced by Dr. Thomas M. Bown. The maps are archived in the US Geological Survey Field Records. The maps feature annual compilations of newly established fossil (nineteen 7.5 degree maps) of central basin data collections. This master suite of forty-four maps represents a considerably broader geographic range within the basin. Additionally, three field seasons of data were compiled into the master suite of maps after the final editing of the Professional Paper. These maps are the culmination of Dr. Bown's Bighorn Basin research as a vertebrate paleontologist for the USGS. Data include Yale, Wyoming, Duke, Michigan and USGS localities. Practical topographic features are also indicated, such as jeep=trail access, new reservoirs, rerouted roadbeds, measured sections, fossil reconnaissance evaluations (G=good, NG=no good and H=hideous), faults, palcosol stages, and occasionally 'camp' vernacular for locality names.

  6. Experiment to Evaluate the Feasibility of Utilizing Skylab-EREP Remote Sensing Data for Tectonic Analysis Through a Study of the Big Horn Mountain Region, Wyoming, South Dakota and Wyoming

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator); Caldwell, J.; Lehman, D.; Palmer, S.; Pan, K. L.; Swenson, A.

    1976-01-01

    The author has identified the following significant results. S190B imagery was the best single product from which fairly detailed structural and some lithologic mapping could be accomplished in the Big Horn basin, the Owl Creek Mountains, and the northern Big Horn Mountains. The Nye-Bowler lineament could not be extended east of its presently mapped location although a linear (fault or monocline) was noted that may be part of the lineament, but north of postulated extensions. Much more structure was discernible in the Big Horn basin than could be seen on LANDSAT-1 imagery; RB-57 color IR photography, in turn, revealed additional folds and faults. A number of linears, several of which could be identified as faults and one a monocline, cut obliquely the east-west trending Owl Creek uplift. The heavy forest cover of the Black Hills makes direct lithologic delineation impossible. However, drainage and linear overlays revealed differences in pattern between the areas of exposed Precambrian crystalline core and the flanking Paleozoic rocks. S192 data, even precision corrected segments, were not of much use.

  7. Wyoming Strategic Plan, 2005

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2005

    2005-01-01

    Wyoming's colleges offer much more than academic and occupational technical degrees and certificates. In 2000, 27,703 Wyoming citizens, age 25 years and older, did not have a high school diploma. For this 12.14% of Wyoming's population, the Adult Basic Education (ABE) program at each of the colleges is designed to equip these adults with the…

  8. Climatic and floral change during the Paleocene-Eocene Thermal Maximum in the Bighorn Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) is an interval of global warming lasting ~150 ka that occurred at the start of the Eocene, ~55.8 Ma. Globally, temperature rose 4-8 °C in association with carbon cycle changes attributed to the release of >5,000 Pg of C into the ocean-atmosphere system. Fossil plants from the PETM in the Bighorn Basin, northwestern Wyoming, show that latest Paleocene forests contained palms, deciduous taxodiaceous conifers, and a variety of deciduous and evergreen angiosperms, many belonging to lineages with north temperate distributions. Mean annual temperature (MAT) for the latest Paleocene inferred from leaf margin analysis is ~18 °C. Early and mid-PETM floras have a completely different composition. They lack conifers and broad-leaved deciduous taxa with north temperate distributions, and are dominated by palms, legumes, and other angiosperm taxa with living relatives in the dry tropical forests of Central and South America. Leaf margin analysis gives an MAT of ~23 °C. Floras of this type are known from a stratigraphic interval ~30 m thick that also produces geochemical and mammalian faunal indicators of the PETM. Floras from late PETM or earliest post-PETM time are composed largely of species that had been present in the latest Paleocene, with a few new species that are common in the early Eocene. The inferred MAT is ~18 °C. Leaf size data suggest that the PETM was drier than the immediately preceding and following times. Floral data from the Bighorn Basin indicate that the magnitude of temperature change in this mid-latitude continental interior was similar to that inferred for the surface ocean. Evidence for dryness or seasonal dryness during the PETM has been observed in sections in northern Spain as well as in Wyoming, raising the possibility of widespread water stress in the middle northern latitudes. Change in floral composition during the PETM is consistent with regional extinction in mid-latitude populations of plants

  9. Low-Temperature Thermochronology of Laramide Ranges in Montana and Wyoming Provides Information on Exhumation and Tectonics Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Armenta, M.; Carrapa, B.; DeCelles, P. G.

    2014-12-01

    Timing of exhumation of Laramide basement uplifts can be used as a proxy for tectonic processes associated with thick-skinned deformation resulting from flat-slab subduction. Despite its significance, the timing and pattern of Laramide deformation remains poorly constrained in Montana. Thermochronological data from Wyoming indicate exhumation of Laramide ranges during the late Cretaceous and Paleogene. Whereas a few data exist for the Bearthooth Range in Montana; the exhumation history of most of the Montana ranges remains unexplored preventing testing of current tectonic models. We report apatite fission track thermochronologic (AFT) data from modern river sands derived from Laramide ranges, bedrock basement samples, and synorogenic conglomerate clasts to determine the regional exhumation history of the Beartooth, Gravelly, Tobacco Root, Ruby, the Highland Mountains, and the Wind River Range. AFT permits reconstruction of thermal histories and rates of erosion of the upper few kilometers of the crust. In particular detrital AFT of river sands provides information on regional exhumation of the drainage area. AFT detrital ages derived from the southern end of the Beartooth Range are dominated by a 60-80 Ma signal, consistent with ages reported for bedrock basement samples in the Beartooth Range. A Cenozoic synorogenic conglomerate clast was obtained from the Highland Mountains, AFT results show a 69.56 +/- 5.45 Ma cooling age. In the Wind River Range, Wyoming AFT data from a Cenozoic synorogenic conglomerate clast from the Wind River Formation indicates a 59.32 +/- 4.83 Ma cooling age. This age is consistent with AFT ages from Gannett Peak indicating rapid cooling at ~60 Ma and ~50 Ma (Fan and Carrapa, 2014). Overall, samples from the easternmost ranges, the Beartooth and Bighorn, clearly preserve a Cretaceous signal; samples from Wind River Range and the rest of southwest Montana mainly record a Cenozoic signal. This suggests deeper and younger exhumation to the

  10. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    NASA Astrophysics Data System (ADS)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  11. Mineral resources of the Bobcat Draw Badlands Wilderness Study Area, Bir Horn and Washakie Counties, Wyoming

    SciTech Connect

    Gibbons, A.B.; Carlson, R.R.; Kulik, D.M.; Lundby, W.

    1989-01-01

    The Bobcat Draw Wilderness Study Area is in the Bighorn Basin about 45 mi west of Worland, Wyoming, and is underlain by early Tertiary sedimentary rocks. No resources were identified in this study area, which lacks mines or prospects, but is mostly under lease for oil and gas. This study area has a high potential for oil and gas and for subeconomic resources of coal and a moderate potential for a deep-seated geothermal energy resource. The resource potential for oil shale and metals, including uranium, is low.

  12. Strontium, neodymium, and lead isotopic evidence for the interaction of post-suhduction asthenospheric potassic mafic magmas of the Highwood Mountains, Montana, USA, with ancient Wyoming craton lithospheric mantle

    NASA Astrophysics Data System (ADS)

    O'Brien, Hugh E.; Irving, Anthony J.; McCallum, I. S.; Thirlwall, Matthew F.

    1995-11-01

    The Eocene potassic mafic rocks of the Highwood Mountains in Montana, USA, share many petrographic, major element, and trace element characteristics with potassic rocks erupted in Recent arcs, including Italy, Indonesia, and western Mexico. However, isotopic compositions of the Highwood samples (radiogenic 87Sr/86Sr of 0.707 to 0.709, unradiogenic ɛNd of -11 to -20, unradiogenic 206Pb/204Pb of 16 to 18) are very different from those of their more modern counterparts, and, as for most other magmas emplaced into the Archean/Proterozoic Wyoming Province, must reflect the influence of ancient, geochemically extreme lithologies in their petrogenesis. The most primitive Highwood minettes and leucitites (8-14 wt% MgO) have high K 20 (4.6 to 8.2 wt%) and Ba (2000-5000 ppm), yet are relatively depleted in TiO 2, Nb, and Ta. Although the Highwood magmas ascended through thick Precambrian crust, their very high trace element contents coupled with their primitive compositions indicate that crustal assimilation was negligible. Instead, it is proposed that the distinctive isotopic and trace element characteristics of the Highwood magmas were acquired by assimilation of lithospheerc mantle by ascending asthenospheric melts. Alternative models suggesting derivation of these and other Wyoming Province magmas by direct melting of lithospheric mantle are rejected on the basis of thermal constraints and the extreme isotopic compositions of mantle xenoliths, including a glimmerite-veined harzburgite, sampled by one of the Highwood minettes. The isotopic and trace element systematics can be modeled by mixing one or more ancient metasomatized mantle components with a dominantly asthenospheric component that has ɛNd near or greater than zero (as observed for many Wyoming Province kimberlitic-alnöitic magmas and for Recent potassic arc magmas that have not traversed ancient lithosphere). The voluminous Eocene mafic magmatism throughout central Montana may have been triggered by

  13. Air quality at a snowmobile staging area and snow chemistry on and off trail in a Rocky Mountain subalpine forest, Snowy Range, Wyoming.

    PubMed

    Musselman, Robert C; Korfmacher, John L

    2007-10-01

    A study was begun in the winter of 2000-2001 and continued through the winter of 2001-2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of nitrogen oxides (NO( x ), NO), carbon monoxide (CO), ozone (O(3)) and particulate matter (PM(10) mass). Snowmobile numbers were higher weekends than weekdays, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were significantly higher weekends than weekdays. Ozone and particulate matter were not significantly different during the weekend compared to weekdays. Air quality data during the summer was also compared to the winter data. Carbon monoxide levels at the site were significantly higher during the winter than during the summer. Nitrogen oxides and particulates were significantly higher during the summer compared to winter. Nevertheless, air pollutants were well dispersed and diluted by strong winds common at the site, and it appears that snowmobile emissions did not have a significant impact on air quality at this high elevation ecosystem. Pollutant concentrations were generally low both winter and summer. In a separate study, water chemistry and snow density were measured from snow samples collected on and adjacent to a snowmobile trail. Snow on the trail was significantly denser and significantly more acidic with significantly higher concentrations of sodium, ammonium, calcium, magnesium, fluoride, and sulfate than in snow off the trail. Snowmobile activity had no effect on nitrate levels in snow. PMID:17286173

  14. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert

    USGS Publications Warehouse

    Sappington, J.M.; Longshore, K.M.; Thompson, D.B.

    2007-01-01

    Terrain ruggedness is often an important variable in wildlife habitat models. Most methods used to quantify ruggedness are indices derived from measures of slope and, as a result, are strongly correlated with slope. Using a Geographic Information System, we developed a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope. We examined the relationship of VRM to slope and to 2 commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States. We used VRM, slope, distance to water, and springtime bighorn sheep (Ovis canadensis nelsoni) adult female locations to model sheep habitat in the 3 ranges. Using logistic regression, we determined that the importance of ruggedness in habitat selection remained consistent across mountain ranges, whereas the relative importance of slope varied according to the characteristic physiography of each range. Our results indicate that the VRM quantifies local variation in terrain more independently of slope than other methods tested, and that VRM and slope distinguish 2 different components of bighorn sheep habitat.

  15. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming investigation during the first six months include: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks; (2) discovery of iron formation within the metasedimentary sequence; (3) mapping of previously unreported tectonic elements of major significance; (4) successful mapping of large scale fractures of the Wind River Mountains; (5) sucessful distinction of some metamorphic, igneous, and sedimentary lithologies by color-additive viewing of ERTS images; (6) mapping and interpretation of glacial features in western Wyoming; and (7) development of techniques for mapping small urban areas.

  16. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Rocky Mountain States of the United States (Colorado, Idaho, Montana, New Mexico, and Wyoming)

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2007-01-01

    This map and its accompanying dataset provide information for 48 natural asbestos occurrences in the Rocky Mountain States of the United States (U.S.), using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Rocky Mountain States. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the U.S., which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern U.S. (http://pubs.usgs.gov/of/2005/1189/) and the Central U.S. (http://pubs.usgs.gov/of/2006/1211/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the U.S.

  17. 75 FR 5074 - Wyoming Interstate Company, Ltd.; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Environmental Assessment for the Proposed Diamond Mountain Compressor Station Project January 25, 2010. The... assessment (EA) for the Diamond Mountain Compressor Station Project proposed by Wyoming Interstate Company... maintain the Diamond Mountain Compressor Station in Uintah County, Utah. The EA assesses the...

  18. Mapping a Mystery: The Battle of Little Bighorn.

    ERIC Educational Resources Information Center

    Mueller, Jean West; Schamel, Wynell Burroughs

    1990-01-01

    Recounts the events of the Battle of Little Bighorn through U.S. cavalry reports, interviews given by Indian warriors present at the battle, and maps (tracings) made of the battle. Gives teaching suggestions for map analysis and includes a map with instructions and a reading list. (GG)

  19. MHC class II DR allelic diversity in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  20. Rocky Mountain Regional Guide (covering forest service programs that affect the states of Colorado, Kansas, Nebraska, South Dakota, and Wyoming (east of the continental divide))

    SciTech Connect

    Not Available

    1992-05-01

    The Regional Guide proposes the future multiple-use management of the National Forests and National Grasslands in the Rocky Mountain Region. It also provides integrated direction for the National Forest System, and coordination with Research, and State and Private Forestry so these organizational units can accomplish their missions. The management of the National Forest System includes the administration of National Forests and National Grasslands and management within the principles of multiple-use and sustained-yield. Research includes planning and coordinating research programs to learn how we can best use and protect the plant, animal, soil, water, and aesthetic resources of nonagricultural rural lands. State and Private Forestry includes coordinating and providing leadership for intergovernmental resource programs; and coordinating and providing technical and financial assistance to improve and protect tribal, State, privately-owned forest resources, and urban and community forestry. In doing this the Forest Service bears a host of legal and ethical responsibilities. This Regional Guide reflects the responsibilities entrusted to the Forest Service.

  1. A spatial risk assessment of bighorn sheep extirpation by grazing domestic sheep on public lands.

    PubMed

    Carpenter, Tim E; Coggins, Victor L; McCarthy, Clinton; O'Brien, Chans S; O'Brien, Joshua M; Schommer, Timothy J

    2014-04-01

    Bighorn sheep currently occupy just 30% of their historic distribution, and persist in populations less than 5% as abundant overall as their early 19th century counterparts. Present-day recovery of bighorn sheep populations is in large part limited by periodic outbreaks of respiratory disease, which can be transmitted to bighorn sheep via contact with domestic sheep grazing in their vicinity. In order to assess the viability of bighorn sheep populations on the Payette National Forest (PNF) under several alternative proposals for domestic sheep grazing, we developed a series of interlinked models. Using telemetry and habitat data, we characterized herd home ranges and foray movements of bighorn sheep from their home ranges. Combining foray model movement estimates with known domestic sheep grazing areas (allotments), a Risk of Contact Model estimated bighorn sheep contact rates with domestic sheep allotments. Finally, we used demographic and epidemiologic data to construct population and disease transmission models (Disease Model), which we used to estimate bighorn sheep persistence under each alternative grazing scenario. Depending on the probability of disease transmission following interspecies contact, extirpation probabilities for the seven bighorn sheep herds examined here ranged from 20% to 100%. The Disease Model allowed us to assess the probabilities that varied domestic sheep management scenarios would support persistent populations of free-ranging bighorn sheep. PMID:24507886

  2. Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1981-01-01

    The lower Eocene Willwood Formation of northwest Wyoming is a 700 m thick accumulation of alluvial floodplain and channel mudstones and sandstones, nearly all of which show paleopedogenic modifications. Pedogenesis of Willwood sandstones is indicated by taproot and vertebrate and invertebrate bioturbation, early local cementation by calcium carbonate, and thin illuviation cutans on clastic grains. Pedogenesis in Willwood mudstones is indicated by plant bioturbation, insect and other invertebrate burrow casts and lebensspuren; free iron, aluminum, and manganese mobilization, including hydromorphic gleying; sesquioxide and calcareous glaebule formation in lower parts of the solum; presence of clay-rich and organic carbon-rich zones; and well differentiated epipedons and albic and spodic horizons. Probable A horizons are also locally well developed. Occurrence of variegated paleosol units in thick floodplain mudstone deposits and their association with thin, lenticular, and unconnected fluvial sandstones in the Willwood Formation of the central and southeast Bighorn Basin suggest that these soils formed during times of rapid sediment accumulation. The tabular geometry and lateral persistence of soil units as well as the absence of catenization indicate that Willwood floodplains were broad and essentially featureless. All Willwood paleosols were developed on alluvial parent materials and are complex in that B horizons of younger paleosols were commonly superimposed upon and mask properties of suspected A and B horizons of the next older paleosols. The soils appear to be wet varieties of the Spodosol and Entisol groups (aquods and ferrods, and aquents, respectively), though thick, superposed and less mottled red, purple, and yellow paleosols resemble some ultisols. Most Willwood paleosols resemble warm temperate to subtropical alluvial soils that form today under alternating wet and dry conditions and (or) fluctuating water tables. The up-section decrease in frequency

  3. Hydrogeologic features of the alluvial deposits in the Owl Creek Valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1982-01-01

    The alluvial acquifer principally of the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits and consists subordinately of alluvial-fan deposits. Thickness of the alluvial aquifer is generally 20 to 40 feet. Dissolved-solids concentration of water in the alluvial aquifer ranges from about 500 to more than 3,000 milligrams per liter. The most favorable areas for groundwater development are the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits; however, in much of these units, the water contains more than 2,000 milligrams per liter of dissolved solids. Measurements of specific conductance of the flow of Owl Creek indicate a progressive increase in the down stream direction and range between 15 and 355 micromhos per centimeter at 25C per mile. The increases are due to return flow of irrigation water, inflow from tributaries, and inflow from groundwater. Conspicuous terraces in Owl Creek Valley included an unnamed terrace at 500 feet above Owl Creek, the Embar Ranch terrace 160 to 120 feet above the creek, and the Arapahoe Ranch terrace 50 to 20 feet above the creek. (USGS)

  4. Wyoming Kids Count in Wyoming Factbook, 1999.

    ERIC Educational Resources Information Center

    Wyoming Children's Action Alliance, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. Following an overview of key indicators and data sources, the factbook documents trends by county for 20 indicators, including the following: (1) poverty and population; (2) welfare reform; (3) certified day care facilities; (4) births; (5) infant deaths;…

  5. Wyoming Snowmelt 2013

    NASA Video Gallery

    Images from NASA/USGS Landsat satellites show the snow cover in Wyoming's Fremont Lake Basin throughout 2013. NASA scientists have used Landsat data from 1972-2013 to determine that the snow is mel...

  6. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  7. Muellerius capillaris dominates the lungworm community of Bighorn Sheep at the National Bison Range, Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lungworm infections are common among bighorn sheep (Ovis canadensis) in North America, and the predominant species reported are Protostrongylus stilesi and P. rushi. Currently, the only records of another lungworm species, Muellerius capillaris, infecting bighorns come from South Dakota. At the Nati...

  8. Ecological Status of Wyoming Streams, 2000-2003

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Wright, Peter R.; Zumberge, Jeremy R.

    2007-01-01

    The ecological status of perennial streams in Wyoming was determined and compared with the status of perennial streams throughout 12 States in the western United States, using data collected as part of the Western Pilot Environmental Monitoring and Assessment Program (EMAP-West). Results for Wyoming are compared and contrasted in the context of the entire EMAP-West study area (west-wide) and climatic regions (based on aggregated ecoregions) within Wyoming. In Wyoming, ecological status, estimated as the proportion of the perennial stream length in least disturbed, most disturbed, and intermediate disturbance condition, based on ecological indicators of vertebrate and invertebrate assemblages was similar, in many cases, to the status of those assemblages determined for EMAP-West. Ecological status based on chemical and physical habitat stressors also was similar in Wyoming to west-wide proportions in many cases. Riparian disturbance was one of the most common physical stressors west-wide and in Wyoming. The estimates of riparian disturbance indicated about 90 percent of the stream length in the xeric climatic region in Wyoming was rated most disturbed, compared to about 30 percent rated most disturbed in the mountain climatic region in Wyoming. Results from analyses using a macroinvertebrate multi-metric index (MMI) and macroinvertebrate ratio of observed to expected taxa (O/E) developed specifically for the west-wide EMAP study were compared to results using a macroinvertebrate MMI and O/E developed for Wyoming. Proportions of perennial stream length in various condition categories determined from macroinvertebrate MMIs often were similar in Wyoming to proportions observed west-wide. Differences were larger, but not extreme, between west-wide and Wyoming O/E models. An aquatic life use support decision matrix developed for interpreting the Wyoming MMI and O/E model data indicated about one-half of the stream length statewide achieves the State's narrative aquatic

  9. Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1954-01-01

    The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are

  10. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier

  11. Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  12. Spatio-temporal dynamics of pneumonia in bighorn sheep

    USGS Publications Warehouse

    Cassirer, E. Frances; Plowright, Raina K.; Manlove, Kezia R.; Cross, Paul C.; Dobson, Andrew P.; Potter, Kathleen A.; Hudson, Peter J.

    2013-01-01

    Bighorn sheep mortality related to pneumonia is a primary factor limiting population recovery across western North America, but management has been constrained by an incomplete understanding of the disease. We analysed patterns of pneumonia-caused mortality over 14 years in 16 interconnected bighorn sheep populations to gain insights into underlying disease processes. 2. We observed four age-structured classes of annual pneumonia mortality patterns: all-age, lamb-only, secondary all-age and adult-only. Although there was considerable variability within classes, overall they differed in persistence within and impact on populations. Years with pneumonia-induced mortality occurring simultaneously across age classes (i.e. all-age) appeared to be a consequence of pathogen invasion into a naïve population and resulted in immediate population declines. Subsequently, low recruitment due to frequent high mortality outbreaks in lambs, probably due to association with chronically infected ewes, posed a significant obstacle to population recovery. Secondary all-age events occurred in previously exposed populations when outbreaks in lambs were followed by lower rates of pneumonia-induced mortality in adults. Infrequent pneumonia events restricted to adults were usually of short duration with low mortality. 3. Acute pneumonia-induced mortality in adults was concentrated in fall and early winter around the breeding season when rams are more mobile and the sexes commingle. In contrast, mortality restricted to lambs peaked in summer when ewes and lambs were concentrated in nursery groups. 4. We detected weak synchrony in adult pneumonia between adjacent populations, but found no evidence for landscape-scale extrinsic variables as drivers of disease. 5. We demonstrate that there was a >60% probability of a disease event each year following pneumonia invasion into bighorn sheep populations. Healthy years also occurred periodically, and understanding the factors driving these

  13. Northwest corner of Wyoming

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A near vertical view of the snow-covered northwest corner of Wyoming (43.5N, 109.5W), as seen from the Skylab space station in Earth orbit. A small portion of Montana and Idaho is in this photograph, also. The dark area is Yellowstone National Park. The largest body of water is Yellowstone Lake. The elongated range in the eastern part of the picture is the Big Horn Moutains. The Wind River Range is at the bottom center. The Grand Teton National Park area is almost straight south of Yellowstone Lake. Approximately 30 per cent of the State of Wyoming can be seen in this photograph.

  14. Evaluation of experimental genetic management in reintroduced bighorn sheep

    PubMed Central

    Olson, Zachary H; Whittaker, Donald G; Rhodes, Olin E

    2012-01-01

    Positive demographic responses have been reported in several species where the immigration or supplementation of genetically distinct individuals into wild populations has resulted in a genetic rescue effect. However, rarely have researchers incorporated what could be considerable risk of outbreeding depression into planning for genetic management programs. We assess the genetic effects of an experiment in genetic management involving replicate populations of California bighorn sheep (Ovis canadensis californiana) in Oregon, USA, which previously experienced poor productivity and numerical declines. In the experiment, two declining populations were supplemented with ewes from a more genetically diverse population of California bighorn sheep in Nevada. We incorporated analysis of genetic samples representing both experimental populations prior to supplementation, samples from the supplemented individuals, and samples collected from both experimental populations approximately one generation after supplementation. We used genetic analyses to assess the integration of supplemented and resident populations by identifying interpopulation hybrids. Further, we incorporated demographic simulations to assess the risk of outbreeding depression as a result of the experimental augmentation. Finally, we used data from microsatellites and mitochondrial sequences to determine if genetic management increased genetic diversity in the experimental populations. Our analyses demonstrated the success of genetic management by documenting interpopulation hybrids, identifying no evidence for outbreeding depression as a result of contact between the genetically distinct supplemented and resident populations, and by identifying increased population-level metrics of genetic diversity in postsupplementation populations compared with presupplementation levels. PMID:22423334

  15. Estimation of Growing Season ET using Wyoming ET Calculator

    NASA Astrophysics Data System (ADS)

    Rasmussen, R. W.; Park, G.

    2011-12-01

    Accurate estimations of Evapotranspiration (ET) and Consumptive Irrigation Requirement (CIR) are essential for water resources planning and management. The Wyoming State Engineer's Office currently determines monthly reference evapotranspiration (ET) with an Excel Spreadsheet ET model using average monthly data from a nearby weather station (usually an airport weather station) for the irrigated area of interest, and interpolates them into daily reference ET using either linear or cubic functions. The purpose of this project is to replace the current Excel model with a GIS-based ET calculator. Our approach uses daily weather data to calculate daily reference and actual ET, and then aggregate actual ET into monthly and seasonal ET. Among many reference ET equations available, the ASCE Standardized Reference Evapotranspiration Equation (ASCE-ET) and the Hargreaves-Samani equations were selected to calculate daily reference ET. Wyoming ET Calculator, a GIS-based ET tool, was developed to calculate daily potential ET, CIR, and actual ET, using daily reference ET, crop coefficients, effective precipitation ratios, and water stress factors. Total monthly and growing season ET and CIR were determined over the Upper Green River Basin in Wyoming. The long term trends of these totals from 1960-2009 were analyzed and compared to trends in weather data (minimum and maximum temperatures, wind speed, and dew point temperature). We also evaluated the total monthly and growing season ET from Wyoming ET Calculator against satellite-based ET (METRIC ET) estimations for June, July, and August of 2009 around an irrigated area near the Wind River Mountain Range in Wyoming. The total monthly ET from Wyoming ET Calculator agrees very well with total monthly ET from METRIC for well-watered crop areas. For other areas, the Wyoming ET Calculator tends to overestimate total monthly ET values than METRIC, because the tool assumes all NLCD crop area are being irrigated.

  16. Wyoming Indians, Unit II.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming Indians provides concepts, activities, Indian stories, and resources for elementary school students. Indian values and contributions are summarized. Concepts include the incorrectness of the term "Indian," the Indians' democratic society and sophisticated culture, historical events, and conflicts with whites over the land.…

  17. Wyoming Government, Unit VII.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming government presents concepts, activities, and stories for elementary school students. Concepts stress that the functions of government are determined according to the demands, needs, and traditions of the people; each part of government has a special function; as citizens, we should be loyal to the underlying concepts of our…

  18. Chlamydial-caused infectious keratoconjunctivitis in bighorn sheep of Yellowstone National Park

    USGS Publications Warehouse

    Meagher, Mary; Quinn, William J.; Stackhouse, Larry

    1992-01-01

    An epizootic of infectious keratoconjuctivitis occurred in bighorn sheep (Ovis canadensis) in Yellowstone National Park during the winter of 1981-82. The causative organism was identified as Chlamydia sp. Mortality related to the epizootic was approximately 60% of an estimated 500 bighorn sheep in the northern range population. The infection probably affected all sex and age classes, but field surveys of live animals and mortality suggested that mature rams died disproportionately. Limited field observations the following winter on individuals having both normal and cloudy-appearing eyes suggested that half of the bighorns then present on the core units of winter range had contracted the disease and survived. By 1988, there were about 300 bighorn sheep in the population.

  19. Desert bighorn sheep mortality due to presumptive type C botulism in California

    USGS Publications Warehouse

    Swift, P.K.; Wehausen, J.D.; Ernest, H.B.; Singer, R.S.; Pauli, A.M.; Kinde, H.; Rocke, T.E.; Bleich, V.C.

    2000-01-01

    During a routine telemetry flight of the Mojave Desert (California, USA) in August 1995, mortality signals were detected from two of 12 radio-collared female desert bighorn sheep (Ovis canadensis) in the vicinity of Old Dad Peak in San Bernardino County (California). A series of field investigations determined that at least 45 bighorn sheep had died near two artificial water catchments (guzzlers), including 13 bighorn sheep which had presumably drowned in a guzzler tank. Samples from water contaminated by decomposing bighorn sheep carcasses and hemolyzed blood from a fresh bighorn sheep carcass were tested for the presence of pesticides, heavy metals, strychnine, blue-green algae, Clostridium botulinum toxin, ethylene glycol, nitrates, nitrites, sodium, and salts. Mouse bioassay and enzyme-linked immunosorbent assay detected type C botulinum toxin in the hemolyzed blood and in fly larvae and pupae. This, coupled with negative results from other analyses, led us to conclude that type C botulinum poisoning was most likely responsible for the mortality of bighorn sheep outside the guzzler tank.

  20. Oil and gas leasing in proposed wilderness areas: the Wyoming District Court's interpretation of Section 603 of the Federal Land Policy Management Act of 1976 - Rocky Mountain Oil and Gas Association v. Andrus, 500 F. Supp. 1338 (D. Wyo. 1980), appeal docketed, No. 81-1040 (10th Cir. Jan. 5, 1981)

    SciTech Connect

    Corbett, H.E.

    1982-01-01

    Plaintiff Rocky Mountain Oil and Gas Association, a non-profit trade association, brought suit against the Secretary of the Interior, challenging land management policies of the Department of the Interior which plaintiff contended have effectively prohibited oil and gas exploration in areas proposed as wilderness under the Federal Land Policy Management Act of 1976 (FLPMA). The principal issue at trial was Interior's interpretation of the wilderness study provisions contained in Section 603 of the Act, which directed that activities on oil and gas leases in proposed wilderness areas be managed so as to prevent impairment of wilderness values. The United States Court for the District of Wyoming, Kerr, J., held that strict application of the non-impairment standard of Section 603, FLPMA, by the Department of the Interior virtually halted oil and gas exploration in proposed wilderness areas, and is therefore statutorily erroneous, clearly contrary to Congressional intent, and counter-productive to public interest. The Trial Court's decision is being appealed to the Tenth Circuit Court of Appeals under the title Rocky Mountain Oil and Gas Association v. Watt. 91 references.

  1. Graphically characterizing the movement of a rabid striped skunk epizootic across the landscape in northwestern Wyoming.

    PubMed

    Ramey, Craig A; Mills, Kenneth W; Fischer, Justin W; McLean, Robert G; Fagerstone, Kathleen A; Engeman, Richard M

    2013-09-01

    A striped skunk (Mephitis mephitis) rabies epizootic in northwestern Wyoming was studied from the Index Case in 1988 to the last case in 1993, and possibly is the first rabies epizootic in a previously rabies-free zone monitored from beginning to end. The 843 km(2) study area comprised skunk habitat along 90 km of Shoshone River's floodplain from Bighorn Lake upstream to Cody. Of 1,015 skunks tested, 215 were rabies-positive. Integrating spatial and temporal data from positive cases, we analyzed the epizootic's movements and dynamics at 6-month intervals using multivariate movement maps, a new multivariate descriptive methodology presented here to demonstrate the epizootic's directional flow, while illustrating areas with higher case densities (i.e., wave crests). This approach should help epidemiologists and public health officials to better understand future rabies epizootics. PMID:23812724

  2. Continental expression of post-PETM hyperthermals in the Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Clyde, W. C.; Fricke, H. C.; Bowen, G. J.

    2009-12-01

    The Cenozoic marine record of climate change includes several brief episodes of rapid and intense warming (“hyperthermals”) characterized by global negative carbon isotope excursions. The largest of these was the PETM, an event that has also been identified in terrestrial settings and is characterized by coincident changes in hydrology, sedimentation, and ecosystems. To date, however, there has been little research into how other hyperthermals are expressed in continental environments. Such documentation is critical if geologists are to determine more precisely the underlying causes, and global consequences, of these events. There are two negative carbon isotope excursions in marine carbonate (H1 and H2) that fall near the base of Chron C24n. We carried out meter-scale sampling of paleosol nodules and bulk sediment for geochemical analysis from this same interval in the well-documented McCullough Peaks section of the Bighorn Basin (Wyoming) to investigate the expression of these short-term events in a continental environment. Preliminary results indicate two intervals of significant geochemical, biological, and/or sedimentary change within the 150 meters of section that we sampled. A transient ~2‰ negative shift in the δ13C of carbonate nodules occurs in the upper part of the study interval, coincident with the base of Chron C24n but lacking any other obvious geological expression. Lower in the section there is a transient ~2‰ negative shift in the δ15N of organic matter that coincides with a short-term increase in the preservation of organic carbon, the onset of thick channel sandstone formation, and the largest early Eocene turnover in fossil mammals after the PETM (“Biohorizon B”) but shows no obvious carbon isotopic changes. Based on chronostratigraphic correlation to marine records, we tentatively correlate the lower changes in our section to the H1 event (aka Elmo, ETM2) and the upper change to the H2 event. It appears that these hyperthermals

  3. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the

  4. BigHorn Home Improvement Center Energy Performance

    SciTech Connect

    Deru, M.; Pless, S. D.; Torcellini, P. A.

    2006-01-01

    The BigHorn Development Project, located in Silverthorne, Colorado, is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The BigHorn Home Improvement Center, completed in the spring of 2000, is a 42,366-ft2 (3,936 m2) hardware store, warehouse, and lumberyard. The authors were brought in at the design stage of the project to provide research-level guidance to apply an integrated design process and perform a postoccupancy evaluation. An aggressive energy design goal of 60% energy cost saving was set early in the process, which focused the efforts of the design team and provided a goal for measuring the success of the project. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity. After construction, the authors installed monitoring equipment to collect energy performance data and analyzed the building's energy performance for two and one-half years. The authors also helped program the building controls and provided recommendations for improving operating efficiency. The building shows an estimated 53% energy cost saving and a 54% source energy saving. These savings were determined with whole-building energy simulations that were calibrated with measured data. This paper discusses lessons learned related to the design process, the daylighting performance, the PV system, and the heating, ventilating, and air-conditioning system.

  5. Epizootic Pneumonia of Bighorn Sheep following Experimental Exposure to Mycoplasma ovipneumoniae

    PubMed Central

    Besser, Thomas E.; Cassirer, E. Frances; Potter, Kathleen A.; Lahmers, Kevin; Oaks, J. Lindsay; Shanthalingam, Sudarvili; Srikumaran, Subramaniam; Foreyt, William J.

    2014-01-01

    Background Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia. Methodology/Principal Findings In two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy. Conclusions/Significance Exposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep. PMID:25302992

  6. Dynamic weakening and thermal decomposition during the Heart Mountain mega-landslide

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Smith, S. A.; Anders, M. H.; Di Toro, G.

    2012-12-01

    The 3400-km2 Heart Mountain landslide of northwestern Wyoming and southwestern Montana is the largest subaerial landslide known. This Eocene age slide slid ˜50 km on a carbonate rich basal layer ranging in thickness from a few tens of centimeters to several meters, along a shallow 2° slope, posing a long-standing question regarding its emplacement mechanism. It has recently been suggested that such large displacement was aided by strong dynamic weakening mechanism, thermal pressurization due to shear heating and thermal decomposition in the basal layer slip zone, with theoretical simulations suggesting slip velocities ranging between tens of meters per second to more than 100 ms-1. In this study, we present the results of a suite of high velocity friction experiments in a rotary shear configuration on initially intact carbonates collected from the Heart Mountain region, in attempt to reproduce conditions experienced in the slip zone of the basal section during emplacement of the landslide. Gouges were prepared from initially intact hostrocks of Madison limestone and Bighorn dolomite, and were sheared for a range of displacements up to 6 metres at normal stresses up to 25 MPa at slip rates up to 2 m/s. Mechanical results generally show strong dynamic weakening with peak friction dropping from 0.7 to a steady state friction as low as 0.1. Microstructural observations of the highly polished slip surfaces produced show localization of the principal slip surface to less than 100 microns thick. Thermal decomposition is evidenced by degassing bubbles in the rims of dolomite clasts, and the release of CO2 as measured by mass spectrometer during experiments, indicating that temperatures in the slip zone quickly reached the decomposition temperature of carbonates (at least 700 degrees) within just a few metres of slip. These results compare favorably with theoretical calculations and ample field evidence for carbonate decomposition during the emplacement. Independent

  7. Wyoming Community College Commission Annual Report, 2010

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2010

    2010-01-01

    The Wyoming Community College Commission (WCCC) serves the system of Wyoming's seven community colleges. Wyoming's seven community colleges provide affordable, accessible and lifelong education. The Wyoming Community College Commission supports the colleges through advocacy, coordination and collaboration. In partnership with the colleges, the…

  8. Survival of bighorn sheep (Ovis canadensis) commingled with domestic sheep (Ovis aries) in the absence of mycoplasma ovipneumoniae.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To test the hypothesis that Mycoplasma ovipneumoniae is an important agent of the bighorn sheep (Ovis canadensis) pneumonia that has previously inevitably followed experimental commingling with domestic sheep (Ovis aries), we commingled M. ovipneumoniae–free domestic and bighorn sheep (n=4 each). On...

  9. Modeling risk of pneumonia epizootics in bighorn sheep

    USGS Publications Warehouse

    Sells, Sarah N.; Mitchell, Michael S.; Nowak, J. Joshua; Lukacs, Paul M.; Anderson, Neil J.; Ramsey, Jennifer M.; Gude, Justin A.; Krausman, Paul R.

    2015-01-01

    Pneumonia epizootics are a major challenge for management of bighorn sheep (Ovis canadensis) affecting persistence of herds, satisfaction of stakeholders, and allocations of resources by management agencies. Risk factors associated with the disease are poorly understood, making pneumonia epizootics hard to predict; such epizootics are thus managed reactively rather than proactively. We developed a model for herds in Montana that identifies risk factors and addresses biological questions about risk. Using Bayesian logistic regression with repeated measures, we found that private land, weed control using domestic sheep or goats, pneumonia history, and herd density were positively associated with risk of pneumonia epizootics in 43 herds that experienced 22 epizootics out of 637 herd-years from 1979–2013. We defined an area of high risk for pathogen exposure as the area of each herd distribution plus a 14.5-km buffer from that boundary. Within this area, the odds of a pneumonia epizootic increased by >1.5 times per additional unit of private land (unit is the standardized % of private land where global  = 25.58% and SD = 14.53%). Odds were >3.3 times greater if domestic sheep or goats were used for weed control in a herd's area of high risk. If a herd or its neighbors within the area of high risk had a history of a pneumonia epizootic, odds of a subsequent pneumonia epizootic were >10 times greater. Risk greatly increased when herds were at high density, with nearly 15 times greater odds of a pneumonia epizootic compared to when herds were at low density. Odds of a pneumonia epizootic also appeared to decrease following increased spring precipitation (odds = 0.41 per unit increase, global  = 100.18% and SD = 26.97%). Risk was not associated with number of federal sheep and goat allotments, proximity to nearest herds of bighorn sheep, ratio of rams to ewes, percentage of average winter precipitation, or whether herds were of native versus mixed

  10. A comparison of trace element concentrations in biota from four irrigation projects in Wyoming

    SciTech Connect

    Ramirez, P. Jr.; Jennings, M.; Dickerson, K.

    1994-12-31

    Irrigation drainwater can or has the potential to cause the mobilization of trace elements into the food chain and adversely affect fish and aquatic birds. Because of the semi-arid climate, irrigation is a necessary component of agriculture in Wyoming. Biota from four irrigation projects in Wyoming were collected and analyzed for trace element concentrations between 1988 and 1990. The irrigation projects included: the Kendrick Reclamation Project, Natrona County; the Riverton Reclamation Project, Fremont County; the Shoshone Irrigation Project, Park and Bighorn counties; and the Wind River Irrigation Project, Fremont County. Selenium concentrations were elevated in aquatic vegetation, aquatic invertebrates, bird eggs, bird livers and fish from the Kendrick Reclamation Project. Reproductive impairment and embryo teratogenesis was documented at the Kendrick Reclamation Project. Trace element concentrations in most biological samples from the three other irrigation projects were less than levels suspected of causing adverse effects. However, at the Riverton Reclamation Project, selenium concentrations in some samples of aquatic vegetation, aquatic invertebrates, fish and fish eggs exceeded concentrations associated with adverse effects. Differences in selenium concentrations in the four irrigation projects can be explained by the extent of seleniferous formations and soils, and the presence of closed basin wetlands.

  11. Stochastic predation events and population persistence in bighorn sheep

    PubMed Central

    Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

    2006-01-01

    Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24–28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator–prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

  12. Fusobacterium necrophorum in North American Bighorn Sheep ( Ovis canadensis ) Pneumonia.

    PubMed

    Shanthalingam, Sudarvili; Narayanan, Sanjeevkumar; Batra, Sai Arun; Jegarubee, Bavananthasivam; Srikumaran, Subramaniam

    2016-07-01

    Fusobacterium necrophorum has been detected in pneumonic bighorn sheep (BHS; Ovis canadensis ) lungs, in addition to the aerobic respiratory pathogens Mannheimia haemolytica , Bibersteinia trehalosi , Pasteurella multocida , and Mycoplasma ovipneumoniae . Similar to M. haemolytica , F. necrophorum produces a leukotoxin. Leukotoxin-induced lysis and degranulation of polymorphonuclear leukocytes (PMNs) and macrophages are responsible for acute inflammation and lung tissue damage characteristic of M. haemolytica -caused pneumonia. As one approach in elucidating the role of F. necrophorum in BHS pneumonia, we determined the frequency of the presence of F. necrophorum in archived pneumonic BHS lung tissues, and susceptibility of BHS leukocytes to F. necrophorum leukotoxin. A species-specific PCR assay detected F. necrophorum in 37% of pneumonic BHS lung tissues (total tested n=70). Sequences of PCR amplicons were similar to the less virulent F. necrophorum subsp. funduliforme. Fusobacterium necrophorum leukotoxin exhibited cytotoxicity to BHS PMNs and peripheral blood mononuclear cells. As with the M. haemolytica leukotoxin, F. necrophorum leukotoxin was more toxic to BHS PMNs than domestic sheep PMNs. It is likely that F. necrophorum enters the lungs after M. haemolytica and other aerobic respiratory pathogens enter the lungs and initiate tissue damage, thereby creating a microenvironment that is conducive for anaerobic bacterial growth. In summary, Fusobacterium leukotoxin is highly toxic for BHS leukocytes; however, based on the PCR findings, it is unlikely to play a direct role in the development of BHS pneumonia. PMID:27224212

  13. Influence of climate and eolian dust on the major-element chemistry and clay mineralogy of soils in the northern Bighorn basin, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.

    1990-01-01

    Soil chronosequences in the northern Bighorn basin permit the study of chronologic changes in the major-element chemistry and clay mineralogy of soils formed in different climates. Two chronosequences along Rock Creek in south-central Montana formed on granitic alluvium in humid and semiarid climates over the past two million years. A chronosequence at the Kane fans in north-central Wyoming formed on calcareous alluvium in an arid climate over the past 600,000 years. Detailed analyses of elemental chemistry indicate that the soils in all three areas gradually incorporated eolian dust that contained less zirconium, considered to be chemically immobile during weathering, than did the alluvium. B and C horizons of soils in the wettest of the chronosequences developed mainly at logarithmic rates, suggesting that leaching, initially rapid but decelerating, dominated the dust additions. In contrast, soils in the most arid of the chronosequences developed at linear rates that reflect progressive dust additions that were little affected by leaching. Both weathering and erosion may cause changes with time to appear logarithmic in A horizons of soils under the moist and semiarid climatic regimes. Clay minerals form with time in the basal B and C horizons and reflect climatic differences in the three areas. Vermiculite, mixed-layer illite-smectite, and smectite form in the soils of the moist-climate chronosequence; smectite forms in the semiarid-climate chronosequence; and smectite and palygorskite form in the arid-climate chronosequence. ?? 1990.

  14. Paleoproterozoic metamorphism in the northern Wyoming province: Implications for the assembly of Laurentia

    USGS Publications Warehouse

    Mueller, P.A.; Burger, H.R.; Wooden, J.L.; Brady, J.B.; Cheney, J.T.; Hamrs, T.A.; Heatherington, A.L.; Mogk, D.W.

    2005-01-01

    U-Pb ages measured on zircons from the Tobacco Root Mountains and monazite from the Highland Mountains indicate that the northwestern Wyoming province experienced an episode of high-grade metamorphism at ???1.77 Ga. Leucosome emplaced in Archean gneisses from the Tobacco Root Mountains contains a distinctive population of zircons with an age of 1.77 Ga but also contains zircons to ???3.5 Ga; it is interpreted to have been derived primarily by anatexis of nearby Archean schist. A granulite facies mafic dike that cuts across Archean gneissic banding in the Tobacco Root Mountains contains two distinct populations of zircons. A group of small (<50 ??m) nonprismatic grains is interpreted to be metamorphic and yields an age of 1.76 Ga; a group of slightly larger prismatic grains yields an age of 2.06 Ga, which is interpreted to be the time of crystallization of the dike. Monazite from a leucogranite from the Highland Mountains yields a well-defined age of 1.77 Ga, which is interpreted as the time of partial melting and emplacement of the leucogranite. These results suggest that the northwestern Wyoming province, which largely lies within the western part of the Great Falls tectonic zone, experienced a metamorphic maximum at 1.77 Ga. This age is ???100 m.yr. younger than the proposed time of Wyoming-Hearne collision in the central Great Falls tectonic zone (1.86 Ga) and suggests that the northwestern Wyoming province may have been involved in a separate, younger collisional event at ???1.77 Ga. An event at this time is essentially coeval with collisions proposed for the eastern and southeastern margins of the province and suggests a multiepisodic model for the incorporation of the Wyoming craton into Laurentia. ?? 2005 by The University of Chicago. All rights reserved.

  15. 76 FR 32225 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Yellowstone, Cheyenne, Wyoming. FOR FURTHER INFORMATON CONTACT: Cindy Wertz, Wyoming Resource Advisory Council Coordinator, Wyoming State Office, 5353 Yellowstone, Cheyenne, Wyoming, 82009, telephone 307-775-6014....

  16. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  17. Coals and coal-bearing rocks of the Hanna Coal Field, Wyoming

    SciTech Connect

    Glass, G.B.; Roberts, J.T.

    1980-01-01

    Renewed interest in Wyoming's vast coal deposits began in the late 1960's as power plant demands for inexpensive, low sulfur coals increased. Because of this demand, Wyoming's coal companies have set new production records every year since 1972. Table 1 summarizes annual production for the last 19 years on a county basis. Wyoming's 1978 tonnage set yet another record at 58.2 million tons. With this tonnage, Wyoming remains the largest coal-producing state in the Rocky Mountains and the fourth largest in the nation. Coal production in Wyoming was dominated by underground mining until 1954. In that year, strip mining tonnage barely exceeded that of the underground mines. Since then, however, strip mining has become the dominant mining method and now accounts for about 99 percent of Wyoming's annual production. Conversely, underground mining has slipped to approximately one percent of the annual tonnage mined. In 1978, twenty-one coal mining companies produced 58.2 million tons of coal. These companies operated 22 strip mines and 3 underground mines.

  18. Late Paleozoic paleotectonics of the northern Rocky Mountain region

    SciTech Connect

    Peterson, J.A. . Dept. of Geology)

    1993-04-01

    The present-day configuration of northern Rocky Mountain foreland uplifts and basins evolved mainly by middle to late Tertiary time. Many of these structures, however, were inherited from Paleozoic and early Mesozoic tectonic episodes and thus have a long history of influence on sediment source terranes, clastic and carbonate facies distributions, thickness relationships, and diagenetic processes. New structural growth, and renewed older growth, were particularly important during late Paleozoic time, approximately coincident in time with growth of the Ancestral Rocky Mountains. Some features tend to trend with, or are sub-parallel to elements of the Ancestral Rocky Mountains, including the Laramie-Casper Big Horn high, the Powder River, Bighorn, and Wind River sags, and the Alliance-Denver basin. Late Paleozoic growth of these features, and perhaps others, undoubtedly was affected by stresses associated with the Ancestral Rocky Mountains episode. Interpretations, however, depend on careful stratigraphic and sedimentary facies analyses.

  19. Use of Exposure History to Identify Patterns of Immunity to Pneumonia in Bighorn Sheep (Ovis canadensis)

    PubMed Central

    Plowright, Raina K.; Manlove, Kezia; Cassirer, E. Frances; Cross, Paul C.; Besser, Thomas E.; Hudson, Peter J.

    2013-01-01

    Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis) following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating naïve healthy animals into or near populations infected with pneumonia pathogens. PMID:23637929

  20. Role of bibersteinia trehalosi, respiratory syncytial virus, and parainfluenza-3 virus in bighorn sheep pneumonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pneumonic bighorn sheep (BHS) have been found to be culture- and/or sero-positive for Bibersteinia trehalosi, respiratory syncytial virus (RSV), and parainfluenza-3 virus (PI-3). The objective of this study was to determine whether these pathogens can cause fatal pneumonia in BHS. In the first study...

  1. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pneumonia of bighorn sheep (Ovis canadensis) is a dramatic disease of high morbidity and mortality first described more than 80 years ago. The etiology of the disease has been debated since its initial discovery, and at various times lungworms, Mannheimia haemolytica and other Pasteurellaceae, and M...

  2. Timing and synchrony of births in bighorn sheep: implications for reintroduction and conservation

    USGS Publications Warehouse

    Klaver, Robert W.; Jericho C. Whiting; Daniel D. Olson; Justin M. Shannon; Terry Bowyer; Jerran T. Flinders

    2012-01-01

    Implications: Consideration should be given to the adjustment of timing and synchrony of births when reintroducing bighorns, especially when animals are released into different ecoregions. Also, biologists should select release sites that are ecologically similar to source areas, thereby reducing potential negative effects of animals adjusting timing and synchrony of births to environmental conditions of restoration areas.

  3. Use of exposure history to identify patterns of immunity to pneumonia in bighorn sheep (Ovis canadensis)

    USGS Publications Warehouse

    Plowright, Raina K.; Manlove, Kezia; Cassirer, E. Frances; Besser, Thomas H.; Hudson, Peter J.

    2013-01-01

    Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis) following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating nai¨ve healthy animals into or near populations infected with pneumonia pathogens.

  4. Causes of pneumonia epizootics among bighorn sheep, western United States, 2008-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epizootic pneumonia of bighorn sheep is a devastating disease of uncertain etiology. To help clarify the etiology, we used culture and culture-independent methods to compare the prevalence of the bacterial respiratory pathogens Mannheimia haemolytica, Bibersteinia trehalosi, Pasteurella multocida, a...

  5. "Clash of Cultures" as Euphemism: Avoiding History at the Little Bighorn

    ERIC Educational Resources Information Center

    Braatz, Timothy

    2004-01-01

    Considering the sizable number of visitors to the Little Bighorn Battlefield National Monument on the Crow Indian Reservation in southeastern Montana each year (more than four hundred thousand in fiscal year 2002), careful examination of the prominence of "Custer's Last Stand" in American mythology, and the widespread use of the phrase "clash of…

  6. Mycoplasma ovipneumoniae can predispose bighorn sheep to fatal Mannheimia haemolytica pneumonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycoplasma ovipneumoniae has been isolated from the lungs of pneumonic bighorn sheep (BHS). However experimental reproduction of fatal pneumonia in BHS with M. ovipneumoniae was not successful. Therefore the specific role, if any, of M. ovipneumoniae in BHS pneumonia is unclear. The objective of th...

  7. An individual-based modelling approach to estimate landscape connectivity for bighorn sheep (Ovis canadensis).

    PubMed

    Allen, Corrie H; Parrott, Lael; Kyle, Catherine

    2016-01-01

    Background. Preserving connectivity, or the ability of a landscape to support species movement, is among the most commonly recommended strategies to reduce the negative effects of climate change and human land use development on species. Connectivity analyses have traditionally used a corridor-based approach and rely heavily on least cost path modeling and circuit theory to delineate corridors. Individual-based models are gaining popularity as a potentially more ecologically realistic method of estimating landscape connectivity. However, this remains a relatively unexplored approach. We sought to explore the utility of a simple, individual-based model as a land-use management support tool in identifying and implementing landscape connectivity. Methods. We created an individual-based model of bighorn sheep (Ovis canadensis) that simulates a bighorn sheep traversing a landscape by following simple movement rules. The model was calibrated for bighorn sheep in the Okanagan Valley, British Columbia, Canada, a region containing isolated herds that are vital to conservation of the species in its northern range. Simulations were run to determine baseline connectivity between subpopulations in the study area. We then applied the model to explore two land management scenarios on simulated connectivity: restoring natural fire regimes and identifying appropriate sites for interventions that would increase road permeability for bighorn sheep. Results. This model suggests there are no continuous areas of good habitat between current subpopulations of sheep in the study area; however, a series of stepping-stones or circuitous routes could facilitate movement between subpopulations and into currently unoccupied, yet suitable, bighorn habitat. Restoring natural fire regimes or mimicking fire with prescribed burns and tree removal could considerably increase bighorn connectivity in this area. Moreover, several key road crossing sites that could benefit from wildlife overpasses were

  8. An individual-based modelling approach to estimate landscape connectivity for bighorn sheep (Ovis canadensis)

    PubMed Central

    Allen, Corrie H.; Kyle, Catherine

    2016-01-01

    Background. Preserving connectivity, or the ability of a landscape to support species movement, is among the most commonly recommended strategies to reduce the negative effects of climate change and human land use development on species. Connectivity analyses have traditionally used a corridor-based approach and rely heavily on least cost path modeling and circuit theory to delineate corridors. Individual-based models are gaining popularity as a potentially more ecologically realistic method of estimating landscape connectivity. However, this remains a relatively unexplored approach. We sought to explore the utility of a simple, individual-based model as a land-use management support tool in identifying and implementing landscape connectivity. Methods. We created an individual-based model of bighorn sheep (Ovis canadensis) that simulates a bighorn sheep traversing a landscape by following simple movement rules. The model was calibrated for bighorn sheep in the Okanagan Valley, British Columbia, Canada, a region containing isolated herds that are vital to conservation of the species in its northern range. Simulations were run to determine baseline connectivity between subpopulations in the study area. We then applied the model to explore two land management scenarios on simulated connectivity: restoring natural fire regimes and identifying appropriate sites for interventions that would increase road permeability for bighorn sheep. Results. This model suggests there are no continuous areas of good habitat between current subpopulations of sheep in the study area; however, a series of stepping-stones or circuitous routes could facilitate movement between subpopulations and into currently unoccupied, yet suitable, bighorn habitat. Restoring natural fire regimes or mimicking fire with prescribed burns and tree removal could considerably increase bighorn connectivity in this area. Moreover, several key road crossing sites that could benefit from wildlife overpasses were

  9. Unraveling the multiple origins of heterogeneity within Lower Mississippian Madison reservoirs: Bighorn Basin, Wyoming and Montana, USA

    SciTech Connect

    Sonnenfeld, M.D.

    1995-08-01

    {open_quotes}Fracture-controlled{close_quotes} and {open_quotes}karst-controlled{close_quotes} contributions to reservoir heterogeneity tend to be viewed as non-fabric selective in nature. Given such an outlook, predictions of fracture and karst overprints depend on an awareness of extrinsic controls such as past and present stress-fields, structural curvature, fault proximity, and the positions and movements of paleo-water tables. The hierarchical sequence stratigraphy of the 300 m Madison provides the stratigraphic framework necessary to characterize the vertical distribution of early, fabric-selective platformal dolomite; additionally, this framework assists in discriminating between fabric-selective and non-fabric-selective styles of karst and fracturing. In the case of Madison karst, early meteoric lithification and subtle Mississippian tectonics resulted in a vertically oriented fracture-controlled karst on top of the Madison, yet this non fabric-selective system channeled waters into several fabric-selective, regionally widespread solution collapse zones and cave systems. The horizontally oriented regional dissolution was stratigraphically controlled by soluble evaporitic zones and/or argillaceous aquitards overlying intra-Madison sequence boundaries rather than occurring at various unconfined water-table stillstands. Evaporite solution collapse breccias presently form partial to complete barriers to vertical fluid flow depending on thickness and degree of associated argillaceous influx, while cave-roof {open_quotes}fracture breccias{close_quotes} were preferential sites of late dolomitization within the giant Elk Basin Madison reservoir. In the case of Madison fracturing, stratigraphic cycles of several scales provide effective scales of analysis in the quest for true mechanical stratigraphic units defined by common fracture styles.

  10. Estimates of monthly streamflow characteristics at selected sites, Wind River and part of Bighorn River drainage basins, Wyoming

    USGS Publications Warehouse

    Rankl, J.G.; Montague, Ellen; Lenz, B.N.

    1994-01-01

    Monthly streamflow records from gaging stations with more than 5 years of record were extended to a 50-year base period, 1941-90, using a mixed- station, record-extension model. Monthly streamflow characteristics were computed from the extended record. Four statistical methods--basin characteristics, active-channel width, concurrent measurement, and weighted average were used to estimate monthly streamflow characteristics at ungaged sites and at streamflow-gaging stations with fewer than 5 years of record. Linear- regression models were used with the basin characteristic and active-channel-width methods to define the relations between the monthly streamflow characteristics and physical basin, climatic, and channel characteristics. The concurrent-measurement method used a Maintenance of Variance Extension, Type 1 curve-fitting technique to correlate discharge at active streamflow-gaging stations, which had computed streamflow characteristics, with discharge measured at ungaged sites. The weighted-average method is a weighted combination of estimates from any two or all three of the other methods. For the basin-characteristics method, the standard errors of estimate ranged from 37 to 83 percent and for the active-channel-width method, 34 to 100 percent. Standard errors for the concurrent- measurement method ranged from 27 to 151 percent. The standard error for the weighted-average method, ranged from 18 to 82 percent, which was lower than any individual method. Application of the equations for estimating monthly streamflow characteristics is limited to perennial streams with physical-basin, climatic, and active channel- width characteristics that are within the range of values used in the study. The equations are not applicable to estimate flow for ephemeral streams.

  11. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  12. Wyoming Community College Commission Annual Report, 2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The Wyoming Community College Commission (WCCC) collaborates with Wyoming's seven community colleges to provide educational experiences that strengthen, support and enrich communities and prepare students to successfully meet life's challenges and recognize and profit from opportunities. Wyoming's seven community colleges provide affordable,…

  13. Wyoming Community College Commission Annual Report, 2008

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    The Wyoming Community College Commission (WCCC) collaborates with Wyoming's seven community colleges to provide educational experiences that strengthen, support and enrich communities and prepare students to successfully meet life's challenges and recognize and profit from opportunities. Wyoming's seven community colleges provide affordable,…

  14. Wyoming: Territory to Statehood, Unit VI.

    ERIC Educational Resources Information Center

    Robinson, Terry

    Designed for elementary school students, this unit on the Wyoming evolution from territory to statehood provides concepts, activities, stories, resources, and maps. Concepts stress the five national flags which have flown over Wyoming, several other territories Wyoming was a part of, construction of the Union Pacific railroad, problems of the new…

  15. Bathymetry and temperature of some glacial lakes in Wyoming

    PubMed Central

    Leopold, Luna B.

    1980-01-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9°C. PMID:16592797

  16. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C. PMID:16592797

  17. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  18. Plant-derived terpenoids as paleovegetation proxies: evaluation of the proxy with Paleocene and Eocene megafloras and plant biomarkers in the Bighorn Basin, USA

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.

    2012-12-01

    Plant terpenoids (defense compounds synthesized from the 5-carbon building block isoprene) have a long history of use as geochemical plant biomarkers, and potentially can be used to reconstruct changes in the abundances of major land plant groups in rocks and sediments that do not preserve plant megafossils or pollen. Pentacyclic triterpenoids are synthesized almost exclusively by angiosperms whereas conifers produce the tricyclic diterpenoids. Many previous studies have focused on the use of di- to triterpenoid ratios to reconstruct floral changes in the geologic past, however few studies have compared terpenoid-based paleoflora proxies to pollen or megafossils. Prior reconstructions also did not take into account differences in biomarker production between plant functional types, such as deciduous and evergreen plants, which can be quite large. To investigate the use of terpenoids as paleoflora proxies, we examined sediments from the Bighorn Basin (Wyoming, USA) where ancient megafloras have been studied in detail. We analyzed di- and triterpenoid abundances as well as plant leaf waxes (n-alkanes) and other biomarkers in a total of 75 samples from 15 stratigraphic horizons from the late Paleocene (62 Ma) to early Eocene (52.5 Ma). By comparing terpenoid ratios with abundances estimated from plant megafossils, we can evaluate the utility of terpenoids as paleovegetation proxies. In nearly all samples, angiosperm triterpenoids are significantly lower in abundance than conifer diterpenoids. This contrasts with leaf fossil data that indicate paleofloras were dominated by angiosperms in both abundance and diversity. Traditional use of terpenoid paleovegetation proxies would therefore significantly overestimate the abundance of conifers, even when accounting for plant production differences. To determine if this overestimate is related to the loss of angiosperm triterpenoids (rather than enhanced production of diterpenoids in the geologic past), we compared angiosperm

  19. A summary of the U.S. Geological Survey 1999 resource assessment of selected coal zones in the Northern Rocky Mountains and Great Plains region, Wyoming, Montana, and North Dakota

    USGS Publications Warehouse

    Ellis, M.S.; Nichols, D.J.

    2002-01-01

    In 1999, 1,100 million short tons of coal were produced in the United States, 38 percent from the Northern Rocky Mountains and Great Plains region. This coal has low ash content, and sulfur content is in compliance with Clean Air Act standards (U.S. Statutes at Large, 1990).The National Coal Resource Assessment for this region includes geologic, stratigraphic, palynologic, and geochemical studies and resource calculations for 18 major coal zones in the Powder River, Williston, Green River, Hanna, and Carbon Basins. Calculated resources are 660,000 million short tons. Results of the study are available in U.S. Geological Survey Professional Paper 1625?A (Fort Union Coal Assess-ment Team, 1999) and Open-File Report 99-376 (Flores and others, 1999) in CD-ROM format.

  20. 75 FR 27361 - Notice of Public Meeting, Whiskey Mountain Bighorn Sheep Range Locatable Mineral Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... range and capital investments on the land described in the Public Land Order (PLO) at 55 FR 37878 (1990..., which was published in the Federal Register on January 8, 2010 (76 FR 1076-1077), is hereby modified to... Mineral Withdrawal Extension, WY AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY:...

  1. Utilizing ERTS-1 imagery for tectonic analysis through study of the Bighorn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparisons of imagery of three seasons, late summer-fall, winter, and spring indicate that for this region fall imagery is the best for overall geologic analysis. Winter scenes with light to moderate snow cover provide excellent topographic detail owing to snow enhancement, lower sun angle, and clarity of the atmosphere. Spring imagery has considerable reduction of tonal contrast owing to the low reflecting heavy green grass cover which subdues lithologic effects; heavy snow cover in the uplands masks topography. Mapping of geologic formations is impractical in most cases. Separation into tonal units can provide some general clues on structure. A given tonal unit can include parts of several geologic formations and different stratigraphic units can have the same tonal signature. Drainage patterns and anomalies provide the most consistent clues for detecting folds, monoclines, and homoclines. Vegetation only locally reflects lithology and structure. False color infrared 9 x 9 transparencies are the most valuable single imagery. Where these can be supplemented by U-2 color infrared for more detailed work, a tremendous amount of information is available. Adequately field checking such a large area just in one scene is the major logistic problem even in a fairly well known region.

  2. Correlates to colonizations of new patches by translocated populations of bighorn sheep

    USGS Publications Warehouse

    Singer, F.J.; Moses, M.E.; Bellew, S.; Sloan, W.

    2000-01-01

    By 1950, bighorn sheep were extirpated from large areas of their range. Most extant populations of bighorn sheep (Ovis canadensis) in the Intermountain West consist of <100 individuals occurring in a fragmented distribution across the landscape. Dispersal and successful colonizations of unoccupied habitat patches has been rarely reported, and, in particular, translocated populations have been characterized by limited population growth and limited dispersal rates. Restoration of the species is greatly assisted by dispersal and successful colonization of new patches within a metapopulation structure versus the existing scenario of negligible dispersal and fragmented, small populations. We investigated the correlates for the rate of colonizations of 79 suitable, but unoccupied, patches by 31 translocated populations of bighorn sheep released into nearby patches of habitat. Population growth rates of bighorn sheep in the release patches were correlated to Ne of the founder group, and early contact with a second released population in a nearby release patch (logistic regression, p = 0.08). Largest population size of all extant released populations in 1994 was correlated to potential Ne of the founder group, the number of different source populations represented in the founder, and early contact with a second released population (p = 0.016). Dispersal rates were 100% higher in rams than ewes (p = 0.001). Successful colonizations of unoccupied patches (n = 24 of 79 were colonized) were associated with rapid growth rates in the released population, years since release, larger area of suitable habitat in the release patch, larger population sizes, and a seasonal migratory tendency in the released population (p = 0.05). Fewer water barriers, more open vegetation and more rugged, broken terrain in the intervening habitat were also associated with colonizations (p = <0.05). We concluded that high dispersal rates and rapid reoccupation of large areas could occur if bighorn

  3. Glaciation of northwestern Wyoming interpreted from ERTS-1

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. M.

    1973-01-01

    Analysis of ERTS Imagery has shown a number of alpine glacial features can be recognized and mapped successfully. Although the Wyoming mountains are generally regarded as the type locality for Rocky Mountain glaciation some areas have not been studied from a glacial standpoint because of inaccessibility or lack of topographic control. ERTS imagery provides an excellent base for this type of regional geomorphic study. A map of maximum extent of Wisconsin Ice, flow directions and major glacial features was compiled from interpretation of the ERTS imagery. Features which can be mapped are large moraines, outwash fans and terraces. Present-day glaciers and snowfields are easily discriminated and mapped. Glaciers and glacial deposits which serve as aquifers play a significant role in the hydrologic cycle and are important because of the increasing demand placed on our water resources. ERTS provides a quick and effective method for change detection and inventory of these vital resources.

  4. MAP OF ECOREGIONS OF WYOMING

    EPA Science Inventory

    The ecoregions of Wyoming have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecore...

  5. Wyoming's "Education Reform & Cost Study."

    ERIC Educational Resources Information Center

    Meyer, Joseph B.

    A history of education in the state of Wyoming, along with a description of recent legislative initiatives, are presented in this paper. It opens with statewide reorganizations begun in the 1960s that unified school districts and equalized property valuation. A decade later a court order ruled the system inequitable and new laws provided for a…

  6. Wyoming Early Childhood Readiness Standards.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    Because children entering kindergarten come with a variety of preschool and home experiences, and accordingly, with varying levels of school readiness, the Wyoming Early Childhood Readiness Standards have been developed to provide a more consistent definition of school readiness. The goal for the Standards is to provide early childhood educators…

  7. Educational Finance Reform in Wyoming.

    ERIC Educational Resources Information Center

    Neely, Robert O.; Basom, Margaret R.

    This paper provides a history and analysis of educational finance in Wyoming. It offers a summary of the funding model that is currently in place and that has been challenged in court--the fourth such challenge in the past 30 years. The article focuses on the current litigation. It discusses the funding formula that was adopted by the state…

  8. New early eocene anaptomorphine primate (Omomyidae) from the Washakie Basin, Wyoming, with comments on the phylogeny and paleobiology of anaptomorphines.

    PubMed

    Williams, B A; Covert, H H

    1994-03-01

    Recent paleontological collecting in the Washakie Basin, southcentral Wyoming, has resulted in the recovery of over 100 specimens of omomyid primates from the lower Eocene Wasatch Formation. Much of what is known about anaptomorphine omomyids is based upon work in the Bighorn and Wind River Basins of Wyoming. This new sample documents greater taxonomic diversity of omomyids during the early Eocene and contributes to our understanding of the phylogeny and adaptations of some of these earliest North American primates. A new middle Wasatchian (Lysitean) anaptomorphine, Anemorhysis savagei, n. sp., is structurally intermediate between Teilhardina americana and other species of Anemorhysis and may be a sister group of other Anemorhysis and Trogolemur. Body size estimates for Anemorhysis, Tetonoides, Trogolemur, and Teilhardina americana indicate that these animals were extremely small, probably less than 50 grams. Analysis of relative shearing potential of lower molars of these taxa indicates that some were primarily insectivorous, some primarily frugivorous, and some may have been more mixed feeders. Anaptomorphines did not develop the extremes of molar specialization for frugivory or insectivory seen in extant prosimians. Incisor enlargement does not appear to be associated with specialization in either fruits or insects but may have been an adaptation for specialized grooming or food manipulation. PMID:8042695

  9. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep.

    PubMed

    Johnson, Heather E; Mills, L Scott; Wehausen, John D; Stephenson, Thomas R; Luikart, Gordon

    2011-12-01

    Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between

  10. Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum

    USGS Publications Warehouse

    Smith, J.J.; Hasiotis, S.T.; Kraus, M.J.; Woody, D.T.

    2008-01-01

    Vertical changes in distribution, abundance, and ichnodiversity of ichnocoenoses in alluvial deposits of the Willwood Formation suggest significantly drier moisture regimes in the Bighorn Basin, Wyoming, during the Paleocene-Eocene Thermal Maximum (PETM), a transient period of global warming. The Willwood Formation at Polecat Bench contains an abundant assemblage of ichnofossils, including various types of rhizoliths and invertebrate trace fossils, such as Naktodemasis bowni, Camborygma litonomos, Edaphichnium lumbricatum, cf. Cylindricum isp., cf. Planolites isp., cf. Steinichnus, and cocoon traces. These comprise six distinct ichnocoenoses, which are categorized as dominantly terraphilic, hygrophilic, or hydrophilic based on the inferred moisture regimes of their most abundant ichnofossil morphotypes and associated pedogenic features, including other trace fossils and rhizoliths. The interpreted moisture regimes correlate well with the paleoenvironments of their host lithofacies, as inferred from sedimentology and paleopedology. Outside the PETM interval at Polecat Bench, abundant avulsion deposits and thin, compound paleosols containing hygrophilic and hydrophilic ichnocoenoses suggest frequent depositional events and predominantly poor to imperfect soil-drainage conditions. Within the PETM interval, thick, cumulative paleosol profiles with abundant terraphilic to hygrophilic ichnocoenoses suggest significantly improved drainage conditions. Lithofacies and ichnocoenoses above the PETM interval are not significantly different from those below the interval, indicating a return to pre-PETM moisture regimes. These conclusions support previous studies that suggest the Bighorn Basin experienced transient drying during this interval. This study demonstrates that ichnocoenoses and their ichnopedologic associations can be used to refine paleohydrologic and paleoclimatic generalizations inferred from paleoclimate models. Copyright ?? 2008, SEPM (Society for Sedimentary

  11. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1972-01-01

    The author has identified the following significant results. Structurally linear elements in the vicinity of the Rock Springs Uplift, Sweetwater County, Wyoming are reported for the first time. One element trends N 40 deg W near Farson, Wyoming and the other N 65 deg E from Rock Springs. These elements confirm the block-like or mosaic pattern of major structural elements in Wyoming.

  12. Provenance of the Tullock Member of the Fort Union Formation, Powder River Basin, Wyoming and Montana: evidence for early Paleocene Laramide uplift

    USGS Publications Warehouse

    Hansley, P.L.; Brown, J.L.

    1993-01-01

    A petrologic and provenance study indicates that Laramide uplifts to the west and south of the Powder River Basin (PRB) were emergent and shedding detritus by early Paleocene time. This conclusion is based largely on the presence of abundant first-cycle carbonate clasts in the northwestern PRB, and metamorphic and igneous clasts and labile heavy-mineral grains in the Tullock throughout the basin. The proximity and composition of the north end of the Bighorn uplift strongly suggest that it was the source for carbonate, igneous, and metamorphic rock fragments in northwestern Tullock outcrops. The conclusions are supported by recent fission-track, palynological, and sedimentological studies that indicate that Laramide-style foreland deformation in southwestern Montana began in late Cenomanian to Turonian time and migrated through central Wyoming to the Colorado Front Range by late Maastrichtian time. -from Authors

  13. Wyoming DOE EPSCoR

    SciTech Connect

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  14. Working Behind Wyoming's Carbon Curtain.

    PubMed

    Neal, Dan

    2015-05-01

    Dan Neal, formerly the Executive Director of the Equality State Policy Center in Casper, Wyoming, was presented the Lorin Kerr Award by the Occupational Health and Safety Section of the American Public Health Association at its annual meeting in November 2014. The Kerr Award recognizes individuals who have stepped up to provide new leadership in occupational health and safety activism with sustained and outstanding efforts and dedication to improving the lives of workers. (Lorin Kerr [1909-1991] was a life-long activist and served for over forty years as a physician for the United Mine Workers. He was dedicated to improving access to health care for coal miners and other workers and to obtaining compensation for and preventing black lung disease.) Neal's acceptance speech introduces us to the health and safety concerns in Wyoming's expanding energy sector and explains how a coalition for occupational safety and health is organizing to address these concerns. PMID:25815745

  15. Smoke over Montana and Wyoming

    NASA Technical Reports Server (NTRS)

    2002-01-01

    California was not the only western state affected by fire during the last weekend of July. Parts of Montana and Wyoming were covered by a thick pall of smoke on July 30, 2000. This true-color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). It is much easier to distinguish smoke from cloud in the color SeaWiFS imagery than the black and white Geostationary Operational Environmental Satellite (GOES) imagery. However, GOES provides almost continuous coverage (animation of Sequoia National Forest fire) and has thermal infrared bands (Extensive Fires in the Western U.S.) which detect the heat from fires. On Monday July 31, 2000, eight fires covering 105,000 acres were burning in Montana, and three fires covering 12,000 acres were burning in Wyoming. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  16. Heat flow, radioactivity, gravity, and geothermal resources in northern Colorado and southern Wyoming

    SciTech Connect

    Decker, E.R.; Buelow, K.L.

    1981-12-01

    The surface heat flow values in the Sierra Madre-Medicine Bow-Laramie Mountains region are in the range 0.6 to 1.5 HFU. When the heat from local bedrock radioactivity is considered, the reduced flux in these mountains is low to normal (0.6 to 1.2 HFU). These data and the low to normal gradients (10 to 25/sup 0/C/km) in the studied drill holes strongly suggest that the resource potential of the Southern Rockies in Wyoming is low. The geothermal resource potential of the sedimentary basins in Wyoming that border these mountains also appears to be low because preliminary estimates for the flux in these areas are less than or equal to 1.5 HFU and the average gradients in analyzed drill holes are generally less than or equal to 30/sup 0/C/km. In contrast to southern Wyoming, the high surface and reduced heat flows strongly suggest that the Park areas and other parts of the Southern Rockies in northern Colorado are potentially valuable geothermal resource areas. The narrow northerly borders (less than or equal to 50 km) of these positive anomalies suggest that some of the resources could be shallow, as does the evidence for regional igneous and tectonic activity in the late Cenozoic. The small number of combined heat flow and radioactivity stations precludes detailed site-specific evaluations in these regions, but a few generalizations are made.

  17. HUSTON PARK ROADLESS AREA, WYOMING.

    USGS Publications Warehouse

    Houston, Robert S.; Lane, Michael

    1984-01-01

    A probable resource potential for the occurrence of metallic mineral resources in stratiform sulfide deposits is assigned to areas in the northern and southeastern parts of the Huston Park Roadless Area, Wyoming. These areas are underlain by volcanic rock successions favorable for stratiform sulfide deposits. However, no indication of mineralized rock was identified during a mineral survey. Study of granites of the southern Sierra Madre are needed to determine whether or not they have promise as a source of tin and tungsten.

  18. Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming

    SciTech Connect

    Duffy, R.J.

    2005-03-31

    The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

  19. Tar sand occurrences in the Bush Butte Quadrangle, Wyoming, with emphasis on the Trapper Canyon Deposit

    SciTech Connect

    VerPloeg, A.J.; DeBruin, R.H.

    1983-01-01

    The Trapper Canyon Tar Sand Deposit is located in the eastern Bighorn Basin, approximately 25 miles east of Greybull, Wyoming. This project not only involved detailed geologic mapping of the Trapper Canyon Tar Sand Deposit, but also sampling and describing the tar zone as well as the bounding barren zones. Samples were analyzed for porosity, permeability, oil saturation, and characteristics of the oil. Thin sections from both the tar zone and barren zones were made and examined to determine textural characteristics and kinds of pore-filling cements. In addition, samples were analyzed using the scanning electron microscope to gain insight into the diagenesis of the reservoir rock and trapping mechanisms. The Trapper Canyon Tar Sand Deposit was investigated because it was considered potentially commercial, and the results of the study could aid in forming an economical plan of development for this deposit and similar deposits elsewhere in the State. Also, the area provided an excellent opportunity to examine surface exposures of a tar sand deposit. The final phase of the study involved mapping the Bush Butte quadrangle and looking for additional tar sand deposits in the quadrangle. The search for additional deposits was carried out based on a model developed by examination of the Trapper Canyon Deposit. 16 references, 14 figures, 3 tables.

  20. Wyoming Community Colleges Annual Partnership Report, 2004

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2005

    2005-01-01

    The Annual Partnership Report is a collection of all established partnerships that Wyoming community colleges cultivated and maintained for fiscal year 2004. Serving as transfer preparation institutions, vocational educators, providers of workforce training and personal development education, and cultural centers, Wyoming comprehensive community…

  1. 75 FR 6332 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... protect society and the environment from the adverse effects of surface coal mining operations.'' Section... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program...

  2. 76 FR 80310 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find later actions... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public...

  3. 76 FR 36040 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find later actions... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public...

  4. 78 FR 13004 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... approval of the Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public...

  5. Subgroup Achievement and Gap Trends: Wyoming, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Wyoming for 2010. Wyoming's demographic profile is such that achievement trends could only be determined for white, Latino, male and female, and low-income student subgroups. In grade 8 (the only grade in which subgroup trends were analyzed by achievement level), the white,…

  6. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Wyoming. 81.351 Section 81.351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.351 Wyoming. Wyoming—SO2 Designated area Does not...

  7. Wyoming Geology and Geography, Unit I.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on the geology and geography of Wyoming for elementary school students provides activities for map and globe skills. Goals include reading and interpreting maps and globes, interpreting map symbols, comparing maps and drawing inferences, and understanding time and chronology. Outlines and charts are provided for Wyoming geology and…

  8. Precipitation, density, and population dynamics of desert bighorn sheep on San Andres National Wildlife Refuge, New Mexico

    USGS Publications Warehouse

    Bender, L.C.; Weisenberger, M.E.

    2005-01-01

    Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert

  9. BigHorn Home Improvement Center: Proof that a Retail Building Can Be a Low Energy Building: Preprint

    SciTech Connect

    Deru, M.; Torcellini, P.; Judkoff, R.

    2004-07-01

    The BigHorn Home Improvement Center in Silverthorne, Colorado was one of the first commercial buildings in the United States to integrate extensive high-performance design into a retail space. After monitoring and evaluation by NREL, the BigHorn Center was found to consume 54% less source energy and have 53% lower energy costs than typical retail buildings of similar size. The extensive use of daylighting to replace electric lighting reduced lighting energy requirements by 80% and significantly contributed to the reduced energy loads in the building.

  10. Sarcoptic mange found in wolves in the Rocky Mountains in western United States.

    PubMed

    Jimenez, Michael D; Bangs, Edward E; Sime, Carolyn; Asher, Valpa J

    2010-10-01

    We documented sarcoptic mange caused by mites (Sarcoptes scabiei) in 22 gray wolves (Canis lupus) in the northern Rocky Mountain states of Montana (n=16) and Wyoming (n=6), from 2002 through 2008. To our knowledge, this is the first report of sarcoptic mange in wolves in Montana or Wyoming in recent times. In addition to confirming sarcoptic mange, we recorded field observations of 40 wolves in Montana and 30 wolves in Wyoming displaying clinical signs of mange (i.e., alopecia, hyperkeratosis, and seborrhea). Therefore, we suspect sarcoptic mange may be more prevalent than we were able to confirm. PMID:20966263

  11. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1984-1990 Final Report.

    SciTech Connect

    Young, Lewis R.; Yde, Chris A.

    1990-06-01

    The results of habitat improvement project activities accomplished under contract No.84-38 for bighorn sheep mitigation along Koocanusa Reservoir from September 1, 1984, through June 30, 1990, are reported here. Habitat treatments were applied to ten areas and covered 1100 acres. Treatments used were prescribed fire, slashing combined with prescribed fire, and fertilization. Several variations in season or intensity were used within the slashing and prescribed fire treatments. This project was coordinated with and complemented concurrent Kootenai National Forest habitat improvement activities.

  12. A speedometer for the Heart Mountain allochthon, Wyoming

    SciTech Connect

    Hauge, T.A. )

    1993-04-01

    Rocks overlying the HM detachment include (1) Paleozoic sedimentary rocks, detached along an Ordovician bedding-plane and displaced up to 50 or more km across rocks as young as Eocene, and (2) Eocene volcanic rocks that overlie both the detachment and the allochthonous Paleozoic rocks. Models of HM faulting interpret the volcanic rocks as: (1) mostly younger than HM faulting, having been deposited catastrophically immediately after catastrophic emplacement of numerous HMD slide-blocks ( tectonic denudation'' model); (2) mostly involved in HM faulting, having been translated and downfaulted at noncatastrophic rates during extension of a continuous HMD allochthon ( continuous-allochthon'' model); or (3) deposited catastrophically as debris avalanche(s) either coeval with or immediately following HM faulting. Calcite-fiber lineations, which are present at many localities on normal and normal-oblique faults within allochthonous Paleozoic rocks and locally within Tertiary rocks, may be a speedometer for the HM allochthon. The lineated faults truncate downward at the detachment, having accommodated extension of the upper plate as it was emplaced. The calcite fibers are commonly parallel to slickenside striae on the upper-plate faults. If the calcite fibers and slickenside striae formed during HM faulting, as seems likely, then extension of the allochthon occurred at a rate compatible with pressure-solution and redeposition of calcite.

  13. Intraspecific phylogeography of red squirrels (Tamiasciurus hudsonicus) in the central Rocky Mountain region of North America.

    PubMed

    Wilson, Gregory M; Den Bussche, Ronald A; McBee, Karen; Johnson, Lacrecia A; Jones, Cheri A

    2005-11-01

    We used variation in a portion of the mitochondrial DNA control region to examine phylogeography of Tamiasciurus hudsonicus, a boreal-adapted small mammal in the central Rocky Mountain region. AMOVA revealed that 65.66% of genetic diversity was attributable to variation within populations, 16.93% to variation among populations on different mountain ranges, and 17.41% to variation among populations within mountain ranges. Nested clade analysis revealed two major clades that likely diverged in allopatry during the Pleistocene: a southern clade from southern Colorado and a northern clade comprising northern Colorado, Wyoming, eastern Utah, and eastern Idaho. Historically restricted gene flow as a result of geographic barriers was indicated between populations on opposite sides of the Green River and Wyoming Basin and among populations in eastern Wyoming. In some instances genetic structure indicated isolation by distance. PMID:16247688

  14. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  15. Quaternary history of the northeastern Bighorn Basin based on a climatically-controlled process-response model

    SciTech Connect

    Birdseye, R.U.

    1985-01-01

    The highest surfaces and oldest Pleistocene sediments in the northeastern Bighorn Basin are associated with the 600 kya North Kane Ash. Subsequent climatically-induced periods of aggradation and incision produced the remaining geomorphic elements. Processes associated with a typical interglacial-glacial cycle include: (1) interglacial stability with Bighorn River alluviation, pedimentation, and eolian deposition; (2) late-interglacial to early-glacial incision; (3) alluvial fan extension and increased landslide development during glacial intervals; and (4) an early-interglacial return to more stable conditions. Frequent stream captures during interglacial times were caused by the out-of-phase relationships between the Bighorn River and its tributaries. Quaternary climates of a given type have not been of equal magnitude or duration in the northeastern Bighorn Basin. The most intense glacial climates from which sediments are preserved are believed to have occurred ca. 600 kya, 440 kya an d140 kya. An abnormally dry climate existed between 400 kya and 275 kya, while extremely wet interglacial conditions prevailed about 100 kya. The last complete climatic cycle was the Bull Lake. The subsequent Holocene interglacial has been unusually dry. Thus not all Pleistocene climates have been capable of generating terraces of extensive alluvial fans.

  16. Defective bacterial clearance is responsible for the enhanced lung pathology characteristic of Mannheimia haemolytica pneumonia in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular and cellular basis for the enhanced lung pathology and mortality caused by Mannheimia haemolytica in bighorn sheep (BHS, Ovis canadenesis), in comparison to domestic sheep (DS, Ovis aries), is not clear. Polymorphonuclear leukocytes (PMNs) of BHS are four- to eight-fold more susceptibl...

  17. Genome Sequence of Bibersteinia trehalosi Strain Y31 Isolated from the Pneumonic Lung of a Bighorn Sheep

    PubMed Central

    Kugadas, Abirami; Humann, Jodi L.; Pierlé, Sebastián Aguilar; Srikumaran, Subramaniam

    2016-01-01

    Here, we report the genome sequence for Bibersteinia trehalosi strain Y31, isolated from the lungs of a bighorn sheep (Ovis canadensis) that had succumbed to pneumonia, which exhibits proximity-dependent inhibition (PDI) of Mannheimia haemolytica. The sequence will be used to understand the mechanism of PDI for these organisms. PMID:27445392

  18. BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal

    NASA Astrophysics Data System (ADS)

    Sokolowski, Marcin; Tremblay, Steven E.; Wayth, Randall B.; Tingay, Steven J.; Clarke, Nathan; Roberts, Paul; Waterson, Mark; Ekers, Ronald D.; Hall, Peter; Lewis, Morgan; Mossammaparast, Mehran; Padhi, Shantanu; Schlagenhaufer, Franz; Sutinjo, Adrian; Tickner, Jonathan

    2015-02-01

    The redshifted 21cm line of neutral hydrogen (Hi), potentially observable at low radio frequencies (~50-200 MHz), should be a powerful probe of the physical conditions of the inter-galactic medium during Cosmic Dawn and the Epoch of Reionisation (EoR). The sky-averaged Hi signal is expected to be extremely weak (~100 mK) in comparison to the foreground of up to 104 K at the lowest frequencies of interest. The detection of such a weak signal requires an extremely stable, well characterised system and a good understanding of the foregrounds. Development of a nearly perfectly (~mK accuracy) calibrated total power radiometer system is essential for this type of experiment. We present the BIGHORNS (Broadband Instrument for Global HydrOgen ReioNisation Signal) experiment which was designed and built to detect the sky-averaged Hi signal from the EoR at low radio frequencies. The BIGHORNS system is a mobile total power radiometer, which can be deployed in any remote location in order to collect radio frequency interference (RFI) free data. The system was deployed in remote, radio quiet locations in Western Australia and low RFI sky data have been collected. We present a description of the system, its characteristics, details of data analysis, and calibration. We have identified multiple challenges to achieving the required measurement precision, which triggered two major improvements for the future system.

  19. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1986 Annual Report.

    SciTech Connect

    Yde, Chris A.; Summerfield, Bob; Young, Lewis

    1987-02-01

    This report summarizes the results of the project activities from September 1, 1984 to December 31, 1986. To date, habitat treatments have been initiated on eight areas. The treatments include selective slash and burn, prescribed fire and fertilization. Inclement weather precluded the completion of the prescribed burns scheduled during fall 1985 and fall 1986. The lower Stonehill prescribed fire was rescheduled from fall 1985 to spring 1986 with the burn accomplished, producing varied results. Extensive pretreatment vegetative information has been collected from all units scheduled for habitat manipulations. Additionally, future projects have been delineated for other areas frequented by bighorn sheep. Ten adult bighorn sheep (5 ewes and 5 rams) have been fitted with radio transmitters. Systematic aerial and ground surveys were utilized to monitor the movements and seasonal habitat preferences of the instrumented sheep. Age and sex information was gathered whenever possible to aid in the development of a population model, Monthly pallet group collections were initiated in May 1985 to provide samples for 2.6 diaminopimetic acid (DAPA), food habits and lungworm larvae analysis. The majority of the data analysis is ongoing and will be presented in later reports.

  20. Role of carriers in the transmission of pneumonia in bighorn sheep (Ovis canadensis)

    PubMed Central

    Raghavan, Bindu; Erickson, Kayla; Kugadas, Abirami; Batra, Sai A.; Call, Douglas R.; Davis, Margaret A.; Foreyt, William J.

    2016-01-01

    ABSTRACT In the absence of livestock contact, recurring lamb mortality in bighorn sheep (Ovis canadensis) populations previously exposed to pneumonia indicates the likely presence of carriers of pneumonia-causing pathogens, and possibly inadequate maternally derived immunity. To investigate this problem we commingled naïve, pregnant ewes (n=3) with previously exposed rams (n=2). Post-commingling, all ewes and lambs born to them acquired pneumonia-causing pathogens (leukotoxin-producing Pasteurellaceae and Mycoplasma ovipneumoniae), with subsequent lamb mortality between 4-9 weeks of age. Infected ewes became carriers for two subsequent years and lambs born to them succumbed to pneumonia. In another experiment, we attempted to suppress the carriage of leukotoxin-producing Pasteurellaceae by administering an antibiotic to carrier ewes, and evaluated lamb survival. Lambs born to both treatment and control ewes (n=4 each) acquired pneumonia and died. Antibody titers against leukotoxin-producing Pasteurellaceae in all eight ewes were ‘protective’ (>1:800 and no apparent respiratory disease); however their lambs were either born with comparatively low titers, or with high (but non-protective) titers that declined rapidly within 2-8 weeks of age, rendering them susceptible to fatal disease. Thus, exposure to pneumonia-causing pathogens from carrier ewes, and inadequate titers of maternally derived protective antibodies, are likely to render bighorn lambs susceptible to fatal pneumonia. PMID:27185269

  1. Role of carriers in the transmission of pneumonia in bighorn sheep (Ovis canadensis).

    PubMed

    Raghavan, Bindu; Erickson, Kayla; Kugadas, Abirami; Batra, Sai A; Call, Douglas R; Davis, Margaret A; Foreyt, William J; Srikumaran, Subramaniam

    2016-01-01

    In the absence of livestock contact, recurring lamb mortality in bighorn sheep (Ovis canadensis) populations previously exposed to pneumonia indicates the likely presence of carriers of pneumonia-causing pathogens, and possibly inadequate maternally derived immunity. To investigate this problem we commingled naïve, pregnant ewes (n=3) with previously exposed rams (n=2). Post-commingling, all ewes and lambs born to them acquired pneumonia-causing pathogens (leukotoxin-producing Pasteurellaceae and Mycoplasma ovipneumoniae), with subsequent lamb mortality between 4-9 weeks of age. Infected ewes became carriers for two subsequent years and lambs born to them succumbed to pneumonia. In another experiment, we attempted to suppress the carriage of leukotoxin-producing Pasteurellaceae by administering an antibiotic to carrier ewes, and evaluated lamb survival. Lambs born to both treatment and control ewes (n=4 each) acquired pneumonia and died. Antibody titers against leukotoxin-producing Pasteurellaceae in all eight ewes were 'protective' (>1:800 and no apparent respiratory disease); however their lambs were either born with comparatively low titers, or with high (but non-protective) titers that declined rapidly within 2-8 weeks of age, rendering them susceptible to fatal disease. Thus, exposure to pneumonia-causing pathogens from carrier ewes, and inadequate titers of maternally derived protective antibodies, are likely to render bighorn lambs susceptible to fatal pneumonia. PMID:27185269

  2. Utilizing ERTS-A imagery for tectonic analysis through study of Big Horn Mountains Region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. NASA-provided color composite (1048-17234) which includes the southeastern portion of the Bighorn Mountains and the western Powder River basin is of excellent quality. The considerable variations in the red hues indicate that vegetational mapping will be enhanced over the black and white. Some additional delineation of rock units can be made, particularly the Chugwater formation. Preliminary look at just received winter scenes indicates that topographic features are enhanced both due to the snow cover and to the lower sun angle.

  3. Note on the Wyoming Resolution and ADE.

    ERIC Educational Resources Information Center

    Slevin, James F.

    1987-01-01

    Details the resolution passed at the Wyoming Conference on English, calling for major professional organizations in English, especially CCCC, to take steps to correct the exploitation of English faculty members, particularly writing teachers. (JC)

  4. Christmas Mountains

    Atmospheric Science Data Center

    2013-04-17

    article title:  Christmas Mountains     View Larger Image ... New Brunswick. Located above image center are the Christmas Mountains, a region of old-growth forest nestled in a remote wilderness. Within ...

  5. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana

    PubMed Central

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents. PMID:22195293

  6. Comparison of Passively Transferred Antibodies in Bighorn and Domestic Lambs Reveals One Factor in Differential Susceptibility of These Species to Mannheimia haemolytica-Induced Pneumonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannheimia haemolytica consistently causes fatal bronchopneumonia in bighorn sheep (BHS; Ovis canadensis) under natural and experimental conditions. Leukotoxin is the primary virulence factor of this organism. BHS are more susceptible to developing fatal pneumonia than the related species Ovis aries...

  7. Shared bacterial and viral respiratory agents in bighorn sheep (Ovis canadensis), domestic sheep (Ovis aries), and goats (Capra hircus) in Montana

    USGS Publications Warehouse

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack C.; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  8. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Appalachian Mountains     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . The true-color image at left is a ... from Lake Ontario to northern Georgia, and spanning the Appalachian Mountains. The three images to the right are also in true-color, ...

  9. Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah

    SciTech Connect

    Picard, M.D. )

    1993-08-01

    During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit, Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.

  10. Proceedings of the University of Wyoming Trustee Symposium (Jackson, Wyoming, August 3-6, 1986).

    ERIC Educational Resources Information Center

    Wyoming Univ., Jackson.

    The 1986 University of Wyoming Trustees Symposium examined five broad topics. Keynote speakers and topics are as follows: "An Introduction to the University of Wyoming" (Donald L. Veal); "What Is a University and What Is Its Role in Society?" (Walter Eggers); "Challenges for Universities in the Decades Ahead" (Jack H. Schuster); "Alternatives for…

  11. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  12. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  13. Algal and Water-Quality Data for the Yellowstone River and Tributaries, Montana and Wyoming, 1999-2000

    USGS Publications Warehouse

    Peterson, David A.

    2009-01-01

    Streams of the Yellowstone River Basin in Montana and Wyoming were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Algal communities were sampled in 1999 in conjunction with other ecological sampling and in 2000 during synoptic sampling. Water-quality measurements related to the algal sampling included light attenuation and dissolved-oxygen concentrations. Sites were sampled on the main-stem Yellowstone River, major tributaries such as the Clarks Fork Yellowstone River and the Bighorn River, and selected minor tributaries. Some of the data collected, such as the phytoplankton chlorophyll-a data, were referenced or summarized in previous U.S. Geological Survey reports but were not previously published in tabular form, and therefore are presented in this report, prepared in cooperation with the Montana Department of Environmental Quality. Data presented in this report include chlorophyll-a concentrations in phytoplankton and periphyton samples, as well as light attenuation and dissolved-oxygen production data from 1999-2000.

  14. Genetic Variation of Major Histocompatibility Complex and Microsatellite Loci: A Comparison in Bighorn Sheep

    PubMed Central

    Boyce, W. M.; Hedrick, P. W.; Muggli-Cockett, N. E.; Kalinowski, S.; Penedo, MCT.; Ramey-II, R. R.

    1997-01-01

    Examining and comparing genetic variation for major histocompatibility complex (MHC) and microsatellite (MS) loci in the same individuals provides an opportunity to understand the forces influencing genetic variation. We examined five MHC and three MS loci in 235 bighorn sheep (Ovis canadensis) from 14 populations and found that both types of loci were highly variable and were in Hardy-Weinberg proportions. Mean F(ST) values for both markers were very similar and MHC and MS genetic variability was predominantly distributed within rather than among populations. However, analyses of genetic distances and tree topologies revealed different spatial patterns of variation for the two types of loci. Collectively, these results indicated that neutral forces substantially influenced MS and MHC variation, and they provided limited evidence for selection acting on the MHC. PMID:9071595

  15. A Review of Hypothesized Determinants Associated with Bighorn Sheep (Ovis canadensis) Die-Offs

    PubMed Central

    Miller, David S.; Hoberg, Eric; Weiser, Glen; Aune, Keith; Atkinson, Mark; Kimberling, Cleon

    2012-01-01

    Multiple determinants have been hypothesized to cause or favor disease outbreaks among free-ranging bighorn sheep (Ovis canadensis) populations. This paper considered direct and indirect causes of mortality, as well as potential interactions among proposed environmental, host, and agent determinants of disease. A clear, invariant relationship between a single agent and field outbreaks has not yet been documented, in part due to methodological limitations and practical challenges associated with developing rigorous study designs. Therefore, although there is a need to develop predictive models for outbreaks and validated mitigation strategies, uncertainty remains as to whether outbreaks are due to endemic or recently introduced agents. Consequently, absence of established and universal explanations for outbreaks contributes to conflict among wildlife and livestock stakeholders over land use and management practices. This example illustrates the challenge of developing comprehensive models for understanding and managing wildlife diseases in complex biological and sociological environments. PMID:22567546

  16. Annual Performance Report. 2002-2003. Wyoming Department of Education.

    ERIC Educational Resources Information Center

    Wyoming State Department of Education, 2004

    2004-01-01

    Wyoming's Department of Education (WDE?s) Special Programs Unit conducts compliance monitoring for all IDEA procedural requirements on a five-year cycle. The current process began for Wyoming?s school districts in 1999-2000 and will be completed in 2004-05. The special education monitoring process is a comprehensive program review. The process…

  17. Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming ERTS-1 investigation during the first six months (July-December 1972) included: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks, (2) discovery of iron formation within the metasedimentary sequence, (3) mapping of previously unreported tectonic elements of major significance, (4) successful mapping of large scale fracture systems of the Wind River Mountains, (5) successful distinction of some metamorphic, igneous, and sedimentary lithologies by color additive viewing, (6) mapping of large scale glacial features, and (7) development of techniques for mapping small urban areas.

  18. The Geologic Story of the Uinta Mountains

    USGS Publications Warehouse

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  19. Suckers in headwater tributaries, Wyoming

    USGS Publications Warehouse

    Sweet, D.E.; Compton, R.I.; Hubert, W.A.

    2009-01-01

    Bluehead sucker (Catostomus discobolus) and flannelmouth sucker (Catostomus latipinnis) populations are declining throughout these species' native ranges in the Upper Colorado River Basin. In order to conserve these populations, an understanding of population dynamics is needed. Using age estimates from pectoral fin rays, we describe age and growth of these 2 species in 3 Wyoming stream systems: Muddy Creek, the Little Sandy River, and the Big Sandy River. Within all 3 stream systems, flannelmouth suckers were longer-lived than bluehead suckers, with maximum estimated ages of 16 years in Muddy Creek, 18 years in Little Sandy Creek, and 26 years in the Big Sandy River. Bluehead suckers had maximum estimated ages of 8 years in Muddy Creek, 10 years in Little Sandy Creek, and 18 years in the Big Sandy River. These maximum estimated ages were substantially greater than in other systems where scales have been used to estimate ages. Mean lengths at estimated ages were greater for flannelmouth suckers than for bluehead suckers in all 3 streams and generally less than values published from other systems where scales were used to estimate ages. Our observations of long life spans and slow growth rates among bluehead suckers and flannelmouth suckers were probably associated with our use of fin rays to estimate ages as well as the populations being in headwater tributaries near the northern edges of these species' ranges.

  20. Patterns of megafloral change across the Cretaceous-Tertiary boundary in the Northern Great Plains and Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Johnson, Kirk R.; Hickey, Leo J.

    1988-01-01

    The spatial and temporal distribution of vegetation in the terminal Cretaceous of Western Interior North America was a complex mosaic resulting from the interaction of factors including a shifting coastline, tectonic activity, a mild, possibly deteriorating climate, dinosaur herbivory, local facies effects, and a hypothesized bolide impact. In order to achieve sufficient resolution to analyze this vegetational pattern, over 100 megafloral collecting sites were established, yielding approximately 15,000 specimens, in Upper Cretaceous and lower Paleocene strata in the Williston, Powder River, and Bighorn basins in North Dakota, Montana, and Wyoming. These localities were integrated into a lithostratigraphic framework that is based on detailed local reference sections and constrained by vertebrate and palynomorph biostratigraphy, magnetostratigraphy, and sedimentary facies analysis. A regional biostratigraphy based on well located and identified plant megafossils that can be used to address patterns of floral evolution, ecology, and extinction is the goal of this research. Results of the analyses are discussed.

  1. The Cretaceous record in a northeast-trending transect, northern Utah to east-central Wyoming

    SciTech Connect

    Merewether, E.A. )

    1991-03-01

    Cretaceous sedimentary rocks in the Laramide basins of the middle Rocky Mountains include 16,600 ft (5060 m) of predominantly siliciclastic strata in the thrust-belt of northern Utah and 7800 ft (2380 m) of mainly siliciclastic and calcareous strata near the craton in east central Wyoming. Regional changes in the thickness of the strata indicate that crustal subsidence during the Cretaceous was generally greatest in northern Utah and western Wyoming where it was associated with tectonic and sediment loading. However, the considerable thickness of uppermost Cretaceous nonmarine beds in several other areas reflects pronounced basin subsidence during early stages of the Laramide orogeny. In a transect from northern Utah to east-central Wyoming, based on outcrop sections, borehole logs, and chronostratigraphic data, Cretaceous rocks grade northeastward from mainly fluvial and nearshore marine synorogenic conglomerate, sandstone, mudstone, coal, and bentonite to mostly nearshore and offshore marine sandstone, mudstone, calcareous shale, and bentonite. Lateral changes in the lithofacies and in the extent of enclosed unconformities indicate marine transgressions and regressions that were effected by structural deformation, sedimentation, and eustatic events. Significant unconformities have been found at the base of the Cretaceous strata, at two horizons within beds of Albian age, at two horizons within rocks of Cenomanian and Turonian ages, at one horizon within Coniacian strata, and at two horizons within Campanian beds. Most of these unconformities are either flooding surfaces or sequence boundaries.

  2. Detection and source tracking of Escherichia coli, harboring intimin and Shiga toxin genes, isolated from the Little Bighorn River, Montana.

    PubMed

    Hamner, Steve; Broadaway, Susan C; Berg, Ethan; Stettner, Sean; Pyle, Barry H; Big Man, Nita; Old Elk, Joseph; Eggers, Margaret J; Doyle, John; Kindness, Larry; Good Luck, Brandon; Ford, Timothy E; Camper, Anne C

    2014-08-01

    The Little Bighorn River flows through the Crow Indian Reservation in Montana. In 2008, Escherichia coli concentrations as high as 7179 MPN/100 ml were detected in the river at the Crow Agency Water Treatment Plant intake site. During 2008, 2009, and 2012, 10 different serotypes of E. coli, including O157:H7, harboring both intimin and Shiga toxin genes were isolated from a popular swim site of the Little Bighorn River in Crow Agency. As part of a microbial source tracking study, E. coli strains were isolated from river samples as well as from manure collected from a large cattle feeding operation in the upper Little Bighorn River watershed; 23% of 167 isolates of E. coli obtained from the manure tested positive for the intimin gene. Among these manure isolates, 19 were identified as O156:H8, matching the serotype of an isolate collected from a river sampling site close to the cattle feeding area. PMID:24044742

  3. Ground-water levels in Wyoming, 1976

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1977-01-01

    Ground-water levels are measured periodically in a network of about 280 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1976 to 1977. Well history, highest and lowest water levels , and hydrographs for most wells also are included. The program of groundwater observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne. (Woodard-USGS)

  4. Wyoming geo-notes No. 3

    SciTech Connect

    Glass, G.B.

    1984-01-01

    After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Data are also given on coal consumption by electric utilities, residential and commercial users and on coal transport by rail, river barge, and truck. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. Publications available from the Geological Survey of Wyoming are listed. 15 references, 6 figures, 8 tables.

  5. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Breckenridge, R. M.

    1973-01-01

    The author has identified the following significant results. The Wyoming investigation has progressed according to schedule during the Jan. - Feb., 1973 report period. A map of the maximum extent of Pleistocene glaciation was compiled for northwest Wyoming from interpretations of glacial features seen on ERTS-1 imagery. Using isodensitometry as a tool for image enhancement, techniques were developed which allowed accurate delineation of small urban areas and provided distinction of broad classifications within these small urban centers.

  6. High-Resolution Continental Records of Early Paleogene Hyperthermals from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Wing, S. L.; Clyde, W. C.; Gingerich, P. D.

    2012-12-01

    Between 50 and 60 million years ago the earth experienced several geologically brief and sudden episodes of global warming, called hyperthermals, each associated with a negative carbon isotope excursion indicating a perturbation of the global carbon cycle. Hyperthermals shed light on connections between the carbon cycle and climate that are important for understanding anthropogenic global warming, and as a result have been the subject of intense study, particularly in deep-sea cores. Hyperthermals are less well known in the terrestrial realm. The goal of the Bighorn Basin Coring Project (BBCP) is to produce high-resolution records that reveal changes in climate, landscapes and ecological communities that occurred in the middle of the North American continent during three hyperthermals. In the summer of 2011, BBCP scientists cored fluvial rocks representing the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma), Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) and H2 (~53.7 Ma). These cores provide continuous sections of fresh rock in direct stratigraphic superposition that are being analyzed for chemical and physical properties as well as fossils. High depositional rates at all three sites (30-50 cm/thousand years) permit resolution of events on a millenial timescale. The PETM was double cored at two sites, Basin Substation and Polecat Bench, that provide contrasting local environments. Basin Substation sediments were deposited on wet floodplains near the eastern flank of the Bighorn Basin and have higher concentrations of organic microfossils and biomarkers. Early studies of the ~140 m-thick Basin Substation cores, which were drilled with municipal water only, have focused on pollen and spores, n-alkanes, polycyclic aromatic hydrocarbons, GDGTs, plant mesofossils, and the isotopic composition of dispersed organic matter. The Polecat Bench site was closer to the depositional axis of the Bighorn Basin, but floodplain sediments were generally better drained and have higher

  7. Rangeland decision-making in Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangelands make up much of Wyoming’s diverse landscapes. In fact, around 85% of Wyoming is considered rangeland. So, what exactly is rangeland? Rangelands are a type of land dominated by some mix of mostly native grasses, forbs and shrubs. Some woodlands are considered rangelands too, particularly i...

  8. 77 FR 34894 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... 76 FR 80310, is withdrawn June 12, 2012. FOR FURTHER INFORMATION CONTACT: Jeffrey Fleischman..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... receipt of the proposed amendment in the December 23, 2011, Federal Register (76 FR 80310). In the...

  9. Wyoming Community Colleges Annual Partnership Report, 2008

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships assist…

  10. Wyoming Community Colleges Annual Partnership Report, 2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships assist…

  11. Wyoming Career and Technical Education Policy Analysis

    ERIC Educational Resources Information Center

    MPR Associates, Inc., 2009

    2009-01-01

    This policy analysis was produced for the Wyoming Department of Administration and Information by MPR Associates, Inc. Its purpose was to examine federal and state policy related to career and technical education (CTE) to determine whether existing policy (in the form of statutes, rules, regulations, and guidance) could either promote or impede…

  12. Wyoming: Open Range for Library Technology.

    ERIC Educational Resources Information Center

    Maul, Helen Meadors

    1996-01-01

    Describes the development of library technology and the need for telecommunications in a state with a lack of population density. Topics include the state library's role; shared library resources and library networks; government information; the Wyoming State Home Page on the World Wide Web; Ariel software; network coordinating; and central…

  13. Space Availability in Wyoming's Vocational Education Facilities.

    ERIC Educational Resources Information Center

    Ryan, Susan K.

    The space availability in public school vocational education facilities in Wyoming was determined and evaluated. Results were based on teacher response. The service areas involved were vocational agriculture, business and office education, health occupations education, home economics education, marketing and distributive education, and trade and…

  14. Wyoming Community Colleges Annual Partnership Report, 2014

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2014

    2014-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  15. Wyoming: The State and Its Educational System.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.

    Wyoming is a state of great natural beauty with only five people per square mile and a unique way of life that deserves to be preserved. The economy, though, is almost totally dependent on energy extraction, an area that has not done well of late. The state's small population makes "boutique" products and services not very profitable, and efforts…

  16. 76 FR 34815 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... Register (75 FR 6332). In the same document, we opened the public comment period and provided an... Rules and Regulations and was approved by OSMRE in a November 24, 1986, Federal Register notice (51...

  17. Wyoming Community College Commission Agency Annual Report.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This paper reports on outcomes of community college programs monitored by the Wyoming Community College Commission (WCCC). The document covers the following WCCC objectives: (1) Study of tuition rates for the community colleges; (2) Negotiation of contracts and provision of financial support for administrative computing system components and…

  18. 78 FR 16204 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... the November 26, 1980, Federal Register (45 FR 78637). You can also find later actions concerning... existing rights (VER) and a Federal Register notice (78 FR 10512) that disapproved several proposed VER... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program...

  19. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.351 Wyoming... Designation Date Type Classification Date Type Sheridan County: City of Sheridan 11/15/90 Nonattainment 11/15... County (part) Unclassifiable/Attainment. The portion within the City of Casper Cheyenne, WY:...

  20. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Editorial Note: For Federal Register citations affecting § 81.351 see the List of CFR Sections Affected... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.351 Wyoming... Sheridan County: City of Sheridan 11/15/90 Nonattainment 11/15/90 Moderate. Trona Industrial Area...

  1. Wyoming Community Colleges Annual Partnership Report, 2005

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2006

    2006-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  2. Wyoming Community Colleges Annual Partnership Report, 2007

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  3. Wyoming Social Studies Content and Performance Standards.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    The Wyoming Social Studies Content and Performance Standards were developed in the recognition that social studies is the integrated study of the social sciences and humanities to promote civic competence. The mission of social studies is to help young people develop the ability to make informed and reasoned decisions as citizens of a culturally…

  4. Disease and Predation: Sorting out Causes of a Bighorn Sheep (Ovis canadensis) Decline

    PubMed Central

    Smith, Joshua B.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2014-01-01

    Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis) improves understanding of population ecology and factors influencing recruitment. During 2010–2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70) died before 52 weeks of age. Pneumonia (36%) was the leading cause of mortality followed by predation (30%). We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2–8 wks, >8 wks} had the lowest AICc (Akaike’s Information Criterion corrected for small sample size) value, indicating that age (3-stage age-interval: 1 week, 2–8 weeks, and >8 weeks) best explained survival. Weekly survival estimates for 1 week, 2–8 weeks, and >8 weeks were 0.81 (95% CI = 0.70–0.88), 0.86 (95% CI = 0.81–0.90), and 0.94 (95% CI = 0.91–0.96), respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01–0.07). Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2–8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2–3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4–8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations. PMID:24516623

  5. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... possession and control of the University of Wyoming, Anthropology Department, Human Remains Repository... notice. A detailed assessment of the human remains was made by University of Wyoming,...

  6. 76 FR 14057 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... possession and control of the University of Wyoming Anthropology Department, Human Remains Repository... of Wyoming, Anthropology Department, Human Remains Repository, professional staff in...

  7. Stone Mountain

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This color image taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the part of the rock outcrop dubbed Stone Mountain at Meridiani Planum, Mars. Scientists are examining Stone Mountain with the instruments on the rover's instrument deployment device, or 'arm,' in search of clues about the composition of the rock outcrop. [figure removed for brevity, see original site] A Patch of Stone (Figure credit: NASA/JPL/Cornell/USGS)

    The colorless square in this color image of the martian rock formation called Stone Mountain is one portion of the rock being analyzed with tools on the Mars Exploration Rover Opportunity's instrument deployment device, or 'arm.' The square area is approximately 3 centimeters (1.2 inches) across. Stone Mountain is located within the rock outcrop on Meridiani Planum, Mars. The image was taken by the rover's panoramic camera.

  8. Mountain research

    NASA Astrophysics Data System (ADS)

    The newly incorporated International Mountain Society (IMS) will in May begin publication of an interdisciplinary scientific journal, Mountain Research and Development. The quarterly will be copublished with the United National University; additional support will come from UNESCO.A primary objective of IMS is to ‘help solve mountain land-use problems by developing a foundation of scientific and technical knowledge on which to base management decisions,’ according to Jack D. Ives, president of the Boulder-based organization. ‘The Society is strongly committed to the belief that a rational worldwide approach to mountain problems must involve a wide range of disciplines in the natural and human sciences, medicine, architecture, engineering, and technology.’

  9. Glacial-topographic interactions in the Teton Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Foster, David; Brocklehurst, Simon H.; Gawthorpe, Rob L.

    2010-03-01

    Understanding interactions among tectonics, topography, climate, and erosion is fundamental to studies of mountainous landscapes. Here, we combine topographic analyses with modeled distributions of precipitation, insolation, and flexural isostasy to present a conceptual model of topographic evolution in the Teton Range, Wyoming, and test whether efficient glacial relief production has contributed to summit elevations. The conceptual model reveals a high degree of complexity inherent in even a relatively small, glaciated, mountain range. Back tilting has caused topographic asymmetry, with the greatest relief characterizing eastern catchments in the center of the range. Two high summits, Grand Teton and Mount Moran, rise hundreds of meters above the surrounding landscape; their elevations set by the threshold hillslope angle and the spacing between valleys hosting large, erosionally efficient glaciers. Only basins >20 km2 held glaciers capable of eroding sufficiently rapidly to incise deeply and maintain shallow downvalley gradients on the eastern range flank. Glacial erosion here was promoted by (1) prevailing westerly winds transporting snow to high-relief eastern basins, leading to cross-range precipitation asymmetry; (2) the wind-blown redistribution of snow from open western headwaters into sheltered eastern cirques, with the associated erosion-driven migration of the drainage divide increasing eastern accumulation areas; and (3) tall, steep hillslopes providing shading, snow influx from avalanching, and insulating debris cover from rockfalls to valley floor glaciers. In comparison, the topographic enhancement of glacial erosion was less pronounced in western, and smaller eastern, basins. Despite dramatic relief production, insufficient rock mass is removed from the Teton Range to isostatically raise summit elevations.

  10. Depositional environments of Fort Union Formation, Bison Basin, Wyoming

    SciTech Connect

    Southwell, E.H.; Steidtmann, J.R.; Middleton, L.

    1983-08-01

    The Paleocene Fort Union Formation crops out in the vicinity of the Bison basin, approximately equidistant from the southeast terminus of the Wind River Range and the southwestern edge of the Granite Mountains uplift in central Wyoming. Early Laramide tectonic activity produced a series of uplifts north of the area forming a platform separating the Wind River and Great Divide basins. During middle to late Paleocene, aggrading fluvial systems flowing southward, rapidly deposited a sequence of thin, lenticular conglomerates and medium to coarse-grained planar-bedded sandstones in braided and anastomosing stream channels and carbonaceous overbank silt and claystones. Subaerially exposed interchannel areas developed cyclic pedogenic horizons. Early diagenetic cementation preserved tubular burrows and rhizoliths as well as impressions of fruits, nuts, leaves, and wood. Anomalous silicic cementation of mudstone, sandstone, and conglomerates probably are silcrete soil horizons developed in a warm temperature to subtropical humid climate. The sandstones are multicyclic containing fragments of preexisting siliceous sedimentary rocks (e.g., Tensleep Sandstone, Mowry Shale, and cherts from the Madison, Morrison, and Phosphoria Formations). Reworked glauconite is locally abundant in some Fort Union sandstones, reflecting the proximity of Paleozoic sources. Altered and embayed feldspars are present in trace amounts throughout most of the section, but significant accumulations of fresh feldspar are present near the top, indicating unroofing of Precambrian source before the Eocene.

  11. Measured and Estimated Sodium-Adsorption Ratios for Tongue River and its Tributaries, Montana and Wyoming, 2004-06

    USGS Publications Warehouse

    Cannon, M.R.; Nimick, David A.; Cleasby, Thomas E.; Kinsey, Stacy M.; Lambing, John H.

    2007-01-01

    The Tongue River drains an area of about 5,400 square miles and flows northward from its headwaters in the Bighorn National Forest of northeastern Wyoming to join the Yellowstone River at Miles City, Montana. Water from the Tongue River and its tributaries is extensively used for irrigation in both Wyoming and Montana. The Tongue River watershed contains vast coal deposits that are extracted at several surface mines. In some areas of the watershed, the coal beds also contain methane gas (coal-bed methane or natural gas), which has become the focus of intense exploration and development. Production of coal-bed methane requires the pumping of large volumes of ground water from the coal beds to reduce water pressure within the formation and release the stored gas. Water from the coal beds typically is high in sodium and low in calcium and magnesium, resulting in a high sodium-adsorption ratio (SAR). Disposal of ground water with high sodium concentrations into the Tongue River has the potential to increase salinity and SAR of water in the river, and potentially reduce the quality of water for irrigation purposes. This report documents SAR values measured in water samples collected at 12 monitoring sites in the Tongue River watershed and presents regression relations between specific conductance (SC) and SAR at each site for the years 2004-06. SAR in water samples was determined from laboratory-measured concentrations of sodium, calcium, and magnesium. The results of regression analysis indicated that SC and SAR were significantly related (p-values < 0.05) at most sites. The regression relations developed for most monitoring sites in the Tongue River watershed were used with continuous SC data to estimate daily SAR during the 2004 and 2005 irrigation seasons and to estimate 2006 provisional SAR values, which were displayed on the Web in real-time. Water samples were collected and analyzed from seven sites on the main stem of the Tongue River located at: (1) Monarch

  12. Temporal dynamics of linkage disequilibrium in two populations of bighorn sheep

    PubMed Central

    Miller, Joshua M; Poissant, Jocelyn; Malenfant, René M; Hogg, John T; Coltman, David W

    2015-01-01

    Linkage disequilibrium (LD) is the nonrandom association of alleles at two markers. Patterns of LD have biological implications as well as practical ones when designing association studies or conservation programs aimed at identifying the genetic basis of fitness differences within and among populations. However, the temporal dynamics of LD in wild populations has received little empirical attention. In this study, we examined the overall extent of LD, the effect of sample size on the accuracy and precision of LD estimates, and the temporal dynamics of LD in two populations of bighorn sheep (Ovis canadensis) with different demographic histories. Using over 200 microsatellite loci, we assessed two metrics of multi-allelic LD, D′, and χ′2. We found that both populations exhibited high levels of LD, although the extent was much shorter in a native population than one that was founded via translocation, experienced a prolonged bottleneck post founding, followed by recent admixture. In addition, we observed significant variation in LD in relation to the sample size used, with small sample sizes leading to depressed estimates of the extent of LD but inflated estimates of background levels of LD. In contrast, there was not much variation in LD among yearly cross-sections within either population once sample size was accounted for. Lack of pronounced interannual variability suggests that researchers may not have to worry about interannual variation when estimating LD in a population and can instead focus on obtaining the largest sample size possible. PMID:26380673

  13. Slip-shod or safely shod: the bighorn sheep as a natural model for research.

    PubMed Central

    Manning, D P; Cooper, J E; Jones, C; Bruce, M

    1990-01-01

    Over a million injuries caused by slipping of footwear are believed to require treatment by doctors every year in the United Kingdom and many domestic animals are injured by slipping. Recent research has revealed that surface roughness of solings and floors is an important determinant of grip on lubricated surfaces and it is also known that soling friction is affected by hardness. The bighorn sheep (Ovis canadensis) an animal species which has adapted to a slippery environment, was studied to elucidate optimum roughness and hardness and other features which influence grip. Four adult ewes were examined in the London Zoo. The cloven hooves of this species are very mobile and the cranial tips of the hooves are the first parts to make contact with the ground. A very small contact area ensures penetration of a film of water. Mean roughness of the contact area was found to be 53 microns Rtm and the mean hardness 63 Shore A. These characteristics appear to facilitate an excellent grip on wet slippery rock but not on smooth ice. Further studies of the feet of wild species could contribute to an understanding of the factors which determine the safety of solings and floors. Images Figure 1. Figure 3. PMID:2250262

  14. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    SciTech Connect

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.

  15. Geology and mineralization of the Wyoming Province

    USGS Publications Warehouse

    Hausel, W.D.; Edwards, B.R.; Graff, P.J.

    1991-01-01

    The Wyoming Province is an Archean craton which underlies portions of Idaho, Montana, Nevada, Utah, and much of Wyoming. The cratonic block consists of Archean age granite-gneiss with interspersed greenstone belts and related supracrustal terranes exposed in the cores of several Laramide uplifts. Resources found in the Province and in the adjacent accreted Proterozoic terrane include banded iron formation, Au, Pt, Pd, W, Sn, Cr, Ni, Zn, Cu, and diamonds. The Province shows many similarities to the mineral-rich cratons of the Canadian shield, the Rhodesian and Transvaal cratons of southern Africa, and the Pilbara and Yilgarn blocks of Western Australia, where much of the world's precious and strategic metal and gemstone resources are located.

  16. Rocky Mountain evolution: Tying Continental Dynamics of the Rocky Mountains and Deep Probe seismic experiments with receiver functions

    USGS Publications Warehouse

    Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.

    2009-01-01

    In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.

  17. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Wyoming. 81.436 Section 81.436... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504 81-787 USDI-NPS North Absaroka Wild 351,104 88-577 USDA-FS Teton Wild 557,311 88-577 USDA-FS...

  18. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Wyoming. 81.436 Section 81.436... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504 81-787 USDI-NPS North Absaroka Wild 351,104 88-577 USDA-FS Teton Wild 557,311 88-577 USDA-FS...

  19. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Wyoming. 81.436 Section 81.436... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504 81-787 USDI-NPS North Absaroka Wild 351,104 88-577 USDA-FS Teton Wild 557,311 88-577 USDA-FS...

  20. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Wyoming. 81.436 Section 81.436... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504 81-787 USDI-NPS North Absaroka Wild 351,104 88-577 USDA-FS Teton Wild 557,311 88-577 USDA-FS...

  1. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included. (Woodard-USGS)

  2. Pre- and Post-Cratonization History of the Northern Wyoming Province

    NASA Astrophysics Data System (ADS)

    Mogk, D.; Mueller, P.; Wooden, J.; Foster, D.

    2004-05-01

    Cratonization of the northern Wyoming Province (NWP) occurred ~2.8-2.9 Ga with the cessation of convergent margin magmatism and the development of passive margin sedimentary sequences. Cratonization was preceded by an extended period of crustal growth via episodic, convergent margin magmatism; major events are dated at 2.8-2.9 and 3.2-3.5 Ga. Earlier events are recorded by numerous detrital zircon and Nd model ages, which indicate felsic magmatism was ongoing by at least 4.0 Ga. TTG magmatism at 2.8-2.9 was the culminating event and is clearly imprinted in the isotopic systems of mantle xenoliths. Cratonization was followed by tectonic and magmatic quiescence from ~2.8-1.9 Ga. Subsequent tectonism is marked by a 2-stage Paleoproterozoic incorporation of the NWP into Laurentia. Stage 1 (~1.8-1.9 Ga) involved the juxtaposition of the NWP with the Archean Superior and Hearne cratons and the production of minor calc-alkaline magmatism (e.g., Little Belt Mountains of the Great Falls Tectonic Zone). Stage-2 (~1.7-1.8 Ga) involved the accretion of Paleoproterozoic terranes (2.4-1.8 Ga) to the amalgamated Wyoming-Laurentian continent, resulting in granulite facies metamorphism, but little magmatism, in the NWP (e.g., Tobacco Root Mountains). Paleoproterozoic tectonism in the NWP is distinctive because of: 1) a paucity of contemporaneous magmatism and 2) a lack of tectonic activity away from the active margins. These observations suggest that the NWP developed a long-lived and structurally robust tectosphere contemporaneously with the stabilization of a felsic crust 2.8-2.9 Ga. This tectosphere appears to have had a substantial impact on the subsequent geologic evolution of the northern Rocky Mountain crust, including the development of the Belt basin, the Yellowstone- Snake River Plain system, and a range of Laramide and Sevier-style structures.

  3. Caucasus Mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Often regarded as the southeastern border of Europe, the Caucasus Mountains can be seen here stretching from the Black Sea (left) to the Caspian Sea (right). The mountain range spans 700 miles (1125 km), crossing the countries of Russian Federation, Georgia, and Azerbaijan from left to right respectively. With a snowline of approximately 11,000 feet and peaks such as Mt. Elbrus, that reach 15,000 feet, much of the snow visible in this image is present year round. Also visible in this image are apparent phytoplankton blooms in the Caspian Sea, marked by blue-green swirls.

  4. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  5. Identification of the Skills Needed by Workers in Various Segments of the Mountain States Graphic Communications Industry.

    ERIC Educational Resources Information Center

    Dharavath, H. Naik

    The skills needed now and 5 years from now by workers in the graphic communications industry in New Mexico, Colorado, and Wyoming were identified through a mail survey of mountain states printing companies. Of the 478 companies to which surveys were mailed, 64 were returned (response rate, 13.40%). A paired t-test was conducted to identify…

  6. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although both domestic sheep (DS) and bighorn sheep (BHS) are affected by similar respiratory bacterial pathogens, experimental and field data indicate BHS are more susceptible to pneumonia. Cross-reactive monoclonal antibodies (mAbs) for use in flow cytometry (FC) are valuable reagents for interspe...

  7. Molecular cloning, characterization and in vitro expression of SERPIN B1 of bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries), and comparison with that of other species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a resu...

  8. Transmission of mannheimia haemolytica from domestic sheep (ovis aries) to bighorn sheep (ovis canadensis) : Unequivocal demonstration with green fluorescent protien-tagged organisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated that bighorn sheep (BHS) die of pneumonia when they commingle with domestic sheep (DS). However, these studies did not conclusively prove the transmission of pathogens from DS to BHS. The objective of this study was to determine unambiguously whether Mannheimia hae...

  9. Magnificent Mountains

    ERIC Educational Resources Information Center

    Anderson, Heather

    2004-01-01

    One way to increase awareness of endangered national heritage is to teach youth the importance of the land through the study of selected works of art. This article describes a lesson, in which students will study the work of Thomas Moran and create a mountain range collage. A short biography of Thomas Moran is included.

  10. Do Magnetic Minerals Record Paleoprecipitation? Insights from Paleocene-Eocene Paleosols in the Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Clyde, W.

    2015-12-01

    The magnetic mineralogy of soils and paleosols is a rich archive of paleoclimatic information. However, efforts to quantify parameters such as mean annual precipitation (MAP) or temperature using environmental magnetism are still in their infancy. Inherent in any magnetic paleoclimate proxy is a fundamental understanding of how the concentration, grain size distribution, and composition of iron oxides and oxyhydroxides formed during pedogenesis reflect the climatic conditions that prevailed during soil formation. The influence of diagenetic processes on magnetic minerals, particularly for paleosols in pre-Quaternary systems, may compromise our ability to recover a climatic signal due to mineral alterations or incomplete preservation. Here, we evaluate the rock magnetic properties of non-loessic paleosols across the Paleocene-Eocene Thermal Maximum (PETM, ~55.5 Ma) in the Bighorn Basin, WY. Our study compares data from nine paleosol layers sampled from outcrop, exposed to surficial weathering, as well as the equivalent paleosol layers sampled from drill core, all of which are preserved below a pervasive oxidative weathering front and presumably unweathered. Despite variation in magnetic properties within paleosol layers, there is no clear change in magnetic mineralogy that we can attribute to surficial weathering. Further, common measures of magnetic enhancement in susceptibility and remanence show similar trends across the PETM, in both core and outcrop, when compared to estimates of MAP from geochemical weathering indices. Taken together, our record suggests that the magnetic minerals preserved in ancient paleosols retain at least qualitative information about paleoprecipitation and could be an important source of information for paleoclimatic studies. Further work to improve our understanding of the relative preservation of various pedogenic components in paleosols will ultimately determine their viability as quantitative indicators of paleoclimate.

  11. Sampling and analyses report for December 1992 semiannual postburn sampling at the RMI UCG Site, Hanna, Wyoming

    SciTech Connect

    Lindblom, S.R.

    1993-03-01

    During December 1992, groundwater was sampled at the site of the November 1987--February 1988 Rocky Mountain 1 underground coal gasification test near Hanna, Wyoming. The groundwater in near baseline condition. Data from the field measurements and analyzes of samples are presented. Benzene concentrations in the groundwater are below analytical detection limits (<0.01 mg/L) for all wells, except concentrations of 0.016 mg/L and 0.013 mg/L in coal seam wells EMW-3 and EMW-1, respectively.

  12. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  13. 76 FR 18240 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that..., Wyoming, will be offered for competitive lease by sealed bid in accordance with the provisions of...

  14. 76 FR 11258 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Competitive Coal Lease Sale. SUMMARY: Notice is hereby given that..., Wyoming, will be offered for competitive lease by sealed bid in accordance with the provisions of...

  15. Wyoming's Early Settlement and Ethnic Groups, Unit IV.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming's early settlement and ethnic groups provides concepts, activities, stories, charts, and graphs for elementary school students. Concepts include the attraction Wyoming held for trappers; the major social, economic, and religious event called "The Rendezvous"; the different ethnic and religious groups that presently inhabit…

  16. A Communications System for Wyoming Libraries: A Study, with Recommendations.

    ERIC Educational Resources Information Center

    Bibliographical Center for Research - Rocky Mountain Region, Inc., Denver, CO.

    This is a feasibility study of a communications system for Wyoming libraries with recommendations for its installation. The basic recommendation calls upon the Wyoming State Library to undertake a demonstration project in rapid interlibrary communications, using teletype (TWX) facilities between selected libraries for a period commencing as soon…

  17. 77 FR 60719 - Filing of Plats of Survey, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Bureau of Land Management Filing of Plats of Survey, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: The Bureau of Land Management (BLM) is scheduled to file the plats of survey of... Yellowstone Road, P.O. Box 1828, Cheyenne, Wyoming 82003. SUPPLEMENTARY INFORMATION: This survey was...

  18. 78 FR 49286 - Filing of Plats of Survey, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Bureau of Land Management Filing of Plats of Survey, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. ] SUMMARY: The Bureau of Land Management (BLM) is scheduled to file the plats of survey... Yellowstone Road, P.O. Box 1828, Cheyenne, Wyoming 82003. SUPPLEMENTARY INFORMATION: The following...

  19. Impact of Surficial Weathering on the Magnetic Properties of Paleosols: a Core to Outcrop Comparison from the Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Maxbauer, D.; Fox, D. L.; Feinberg, J. M.; Clyde, W.

    2014-12-01

    Environmental magnetic studies of soils have generally focused on providing insights into the climate and environmental conditions that produce modern soils and geologically young paleosols (<5 Ma), but environmental magnetic analysis of more ancient paleosols has been limited. The Bighorn Basin Coring Project (BBCP) recently recovered ~300 m of sediment core spanning the Paleocene-Eocene boundary from the Polecat Bench locality in the Bighorn Basin, WY. Core scan images show that oxidative weathering extends some 20-30 m below the surface, suggesting that recent surficial weathering could have significantly altered the magnetic signals preserved in paleosols that crop out in this region. This study presents the first detailed core to outcrop comparison of paleosol magnetism of which we are aware. Nine paleosols from Polecat Bench, spanning the Paleocene-Eocene Thermal Maximum (PETM), have been sampled at high-resolution from outcrop trenches and core sediments. Importantly, these paleosols are stratigraphically below the weathering front in the core sediments, suggesting that they preserve an unweathered magnetic signature. We present results of preliminary comparison between the magnetic signals preserved in core sediments and the same sediments exposed as outcrops using detailed measurements of low-field magnetic susceptibility, frequency dependence of susceptibility, isothermal remanent magnetization (IRM), and anhysteretic remanent magnetization (ARM). We explore the implications of surficial weathering for environmental magnetism, including the application of magnetic paleoprecipitation proxies calibrated using modern soils to more ancient paleosols.

  20. Costs and benefits of group living with disease: a case study of pneumonia in bighorn lambs (Ovis canadensis)

    PubMed Central

    Manlove, Kezia R.; Cassirer, E. Frances; Cross, Paul C.; Plowright, Raina K.; Hudson, Peter J.

    2014-01-01

    Group living facilitates pathogen transmission among social hosts, yet temporally stable host social organizations can actually limit transmission of some pathogens. When there are few between-subpopulation contacts for the duration of a disease event, transmission becomes localized to subpopulations. The number of per capita infectious contacts approaches the subpopulation size as pathogen infectiousness increases. Here, we illustrate that this is the case during epidemics of highly infectious pneumonia in bighorn lambs (Ovis canadensis). We classified individually marked bighorn ewes into disjoint seasonal subpopulations, and decomposed the variance in lamb survival to weaning into components associated with individual ewes, subpopulations, populations and years. During epidemics, lamb survival varied substantially more between ewe-subpopulations than across populations or years, suggesting localized pathogen transmission. This pattern of lamb survival was not observed during years when disease was absent. Additionally, group sizes in ewe-subpopulations were independent of population size, but the number of ewe-subpopulations increased with population size. Consequently, although one might reasonably assume that force of infection for this highly communicable disease scales with population size, in fact, host social behaviour modulates transmission such that disease is frequency-dependent within populations, and some groups remain protected during epidemic events. PMID:25377464

  1. Compensating for diminishing natural water: Predicting the impacts of water development on summer habitat of desert bighorn sheep

    USGS Publications Warehouse

    Longshore, K.M.; Lowrey, C.; Thompson, D.B.

    2009-01-01

    Artificial water sources have been used for decades to enhance and restore wildlife habitat but the benefits of their use have been subject to debate. During the past century, the number of natural springs in Joshua Tree National Park, California, USA, has declined. In response to concerns about the viability of the bighorn sheep (Ovis canadensis nelsoni) population, a number of water developments were constructed throughout the park. We modeled potential historical and present-day summer habitat of female bighorn sheep to evaluate the effectiveness of the artificial and remaining natural water sources in maintaining habitat and to determine how loss of artificial sources might affect future habitat availability. Prior to 1950, 583.5 km2 of summer habitat was potentially available. Presently, only 170.6 km2 of habitat is available around natural water sources and 153.5 km2 is available around guzzlers. When all perennial water sources are included in the habitat model (minus overlap), 302.3 km2 of summer habitat is potentially available. This represents only 51.7% of summer habitat available prior to 1950. Without artificial water developments, 47.7% of present-day summer habitat would be lost, which raises important management questions regarding the debate about what is natural or artificial within otherwise protected areas.

  2. Costs and benefits of group living with disease: a case study of pneumonia in bighorn lambs (Ovis canadensis)

    USGS Publications Warehouse

    Manlove, Kezia R.; Cassirer, E. Frances; Cross, Paul C.; Plowright, Raina K.; Hudson, Peter J.

    2014-01-01

    Group living facilitates pathogen transmission among social hosts, yet temporally stable host social organizations can actually limit transmission of some pathogens. When there are few between-subpopulation contacts for the duration of a disease event, transmission becomes localized to subpopulations. The number of per capita infectious contacts approaches the subpopulation size as pathogen infectiousness increases. Here, we illustrate that this is the case during epidemics of highly infectious pneumonia in bighorn lambs (Ovis canadensis). We classified individually marked bighorn ewes into disjoint seasonal subpopulations, and decomposed the variance in lamb survival to weaning into components associated with individual ewes, subpopulations, populations and years. During epidemics, lamb survival varied substantially more between ewe-subpopulations than across populations or years, suggesting localized pathogen transmission. This pattern of lamb survival was not observed during years when disease was absent. Additionally, group sizes in ewe-subpopulations were independent of population size, but the number of ewe-subpopulations increased with population size. Consequently, although one might reasonably assume that force of infection for this highly communicable disease scales with population size, in fact, host social behaviour modulates transmission such that disease is frequency-dependent within populations, and some groups remain protected during epidemic events.

  3. Wyoming Community Colleges Partnership Report, July 1, 2001-June 30, 2002.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document offers individual institution reports for partnership programs in Wyoming's seven community colleges. The colleges are: (1) Casper College; (2) Central Wyoming College; (3) Eastern Wyoming College; (4) Laramie County Community College; (5) Northwest College; (6) Sheridan College; and (7) Western Wyoming Community College. Wyoming…

  4. Wyoming Community Colleges Partnership Report, July 1, 2002-June 30, 2003.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document offers individual institution reports for partnership programs in Wyoming's seven community colleges. The colleges are: (1) Casper College; (2) Central Wyoming College; (3) Eastern Wyoming College; (4) Laramie County Community College; (5) Northwest College; (6) Sheridan College; and (7) Western Wyoming Community College. Wyoming…

  5. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal mines in Wyoming, as specified in section 527 of the Act, shall comply with the approved State...

  6. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal mines in Wyoming, as specified in section 527 of the Act, shall comply with the approved State...

  7. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal mines in Wyoming, as specified in section 527 of the Act, shall comply with the approved State...

  8. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal mines in Wyoming, as specified in section 527 of the Act, shall comply with the approved State...

  9. What Does Energy Development Mean for Wyoming? A Community Study at Hanna, Wyoming.

    ERIC Educational Resources Information Center

    Nellis, Lee

    The enormous but often overlooked impact of energy resource development on small Western United States communities can be illustrated by the experiences of the traditional coal mining town of Hanna, Wyoming. Coal development doubled the population between 1970 and 1972, and required the addition of a sewer system and a police force, plus the…

  10. A Study of Wyoming School Resource Use and Instructional Improvement Strategies at Eight Wyoming Schools

    ERIC Educational Resources Information Center

    Parady, Elizabeth Skiles

    2013-01-01

    The intersection of the accountability measures found in NCLB with the legislative response to the Campbell decisions in Wyoming has resulted in an unprecedented focus on accountability for student achievement and resource use. Funding provided to schools has increased with a concomitant drive for accountability and transparency, the publication…

  11. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    USGS Publications Warehouse

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  12. Healthy Wyoming: Start with Youth Today. Results of the 1991 Wyoming Youth Risk Behavior and School Health Education Survey.

    ERIC Educational Resources Information Center

    Utah Univ., Salt Lake City. Health Behavior Lab.

    This report presents results of the 1991 Wyoming Youth Risk Behavior Survey (YRBS) and the 1991 Wyoming School Health Education Survey (SHES). Thirty-five schools participated in the YRBS, with 3,513 students in grades 9-12; 92 public schools with students in grades 7-12 participated in the SHES. Statistical data from the YRBS are provided in the…

  13. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  14. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  15. Depositional history of the Lower Triassic Dinwoody Formation in the Wind River basin area, Wyoming

    SciTech Connect

    Paul, R.K.; Paull, R.A. )

    1993-04-01

    Thirty-three measured sections of the Dinwoody Formation, including five from the literature, provide information on thickness, lithology, paleontology, and stratigraphic relations within the Wind River basin and immediately adjacent areas of Wyoming. Most of these sections are in Fremont County, and some lie within the Wind River Indian Reservation. The Dinwoody becomes progressively thinner eastward, from a maximum thickness of 54.6 m in the northwestern Wind River Mountains to zero near the Natrona County line. The formation is characterized by yellowish-weathering, gray siltstone and silty shale. Variable amounts of limestone, sandstone, gypsum, and claystone are also present. Marine bivalves, gastropods, brachiopods (Lingula), and conodonts are common in the western part of the study area, but are absent to the northeast in gypsiferous strata, and near the eastern limit of Dinwoody deposition. The Dinwoody in the Wind River Basin area was deposited unconformably on the Upper Permian Ervary Member of the Park City Formation during the initial Mesozoic flood onto the Wyoming shelf during the Griesbachian, and represents the first of three Lower Triassic transgressive sequences in the western miogeocline. Conodonts of the Isarcica Chronozone document the rapid nature of this eastward transgression. The Permian surface underlying the Dinwoody rarely shows evidence of the long hiatus separating rocks of this age and earliest Triassic deposits. The Dinwoody transgression was followed by westward progradation of the Red Peak Formation of the Chugwater Group across the study area.

  16. [Mountain sickness].

    PubMed

    Bultas, Jan

    2015-01-01

    Mountaineering brings many health risks, one of which is mountain sickness. Its mildest form - acute mountain sickness - is mainly characterized by subjective symptoms (headache, loss of appetite, insomnia, weakness, nausea and rarely also vomiting). Advanced and life-threatening forms are characterized by tissue edema - cerebral or pulmonary high altitude edema. The common denominator of these acute forms is the low oxygen tension leading to hypoxemia and tissue ischemia. Sum of maladaptive or adaptive processes can modify the clinical picture. Underlying mechanisms of the chronic forms of pulmonary disease are the adaptation processes - pulmonary hypertension and polycythemia leading to heart failure.The only causal therapeutic intervention is to restore adequate oxygen tension, descend to lower altitudes or oxygen therapy. Pharmacotherapy has only a supportive effect. The prophylaxis includes stimulation of the respiratory center by carbonic anhydrase inhibitors (acetazolamide) antiedematous treatment with glucocorticoids (dexamethasone), increase lymphatic drainage of the lungs and brain by β2-agonists (salmeterol) or mitigation of pulmonary hypertension by calcium channel blockers or phosphodiesterase-5 inhibitors (sildenafil or tadalafil). PMID:26750624

  17. Observing team from the University of Wyoming

    NASA Technical Reports Server (NTRS)

    2002-01-01

    July 19, 1994An observing team from the University of Wyoming , the University of Rochester, and the University of Minnesota is obtaining infrared images of the recent comet impacts on Jupiter. The observations are being made with the Wyoming Infrared Observatory 2.3-meter telescope near Laramie, using an infrared camera developed at Rochester. The accompanying image of Jupiter, obtained on the evening of Sunday July 17, shows three bright spots near the lower left. These are the impact sites of (from left to right) fragments C, A, and E. The other features visible are the bright polar and equatorial regions, and also the Great Red Spot, located below the equator and somewhat to the right.At this relatively short infrared wavelength (2.2 micrometers) the planet it mostly dark because the methane in the Jupiter atmosphere absorbs any sunlight which passes through a significant depth of that atmosphere. Bright regions usually correspond to high altitude clouds which reflect the sunlight before it can penetrate the deeper atmosphere and be absorbed. The bright nature of the impact spots therefore indicates the presence of high altitude haze or clouds -- material carried up from the lower atmosphere by the fireball and plume from the comet impact. More detailed measurements at a variety of wavelengths should reveal the chemical composition of the haze material. The observing team will be continuing their work throughout the comet impact period and expect to obtain images of the plumes from the other comet fragments which will be striking Jupiter later this week.Co ntact: Robert R. Howell Department of Physics and Astronomy University of Wyoming Laramie, WY 82070 307-766-6150

  18. Wyoming geo-notes No. 2

    SciTech Connect

    Glass, G.B.

    1984-01-01

    After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

  19. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  20. Vegetation analysis in the Laramie Basin, Wyoming from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Evans, M. A.; Redfern, F. R.

    1973-01-01

    The author has identified the following significant results. The application of ERTS-1 imagery to vegetation mapping and identification was tested and confirmed by field checking. ERTS-1 imagery interpretation and density contour mapping allows definition of minute vegetation features and estimation of vegetative biomass and species composition. Large- and small-scale vegetation maps were constructed for test areas in the Laramie Basin and Laramie mountains of Wyoming. Vegetative features reflecting grazing intensity, moisture availability, changes within the growing season, cutting of hay crops, and plant community constituents in forest and grassland are discussed and illustrated. Theoretical considerations of scattering, sun angle, slope, and instrument aperture upon image and map resolution were investigated. Future suggestions for applications of ERTS-1 data to vegetative analysis are included.

  1. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    USGS Publications Warehouse

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  2. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    USGS Publications Warehouse

    Johnson, Christopher J.; Morawski, A.R.; Carlson, C.M.; Chang, H.

    2013-01-01

    Background: Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results: We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R 154Q171). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R 154Q171genotype sheep. Conclusions: Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS, including

  3. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  4. Employment of satellite snowcover observations for improving seasonal runoff estimates. [Indus River and Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Rango, A.; Salomonson, V. V.; Foster, J. L.

    1975-01-01

    Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.

  5. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative: 2013 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R. H.; Boughton, Gregory K.; Chalfoun, Anna L.; Chong, Geneva W.; Dematatis, Marie K.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen; Hethcoat, Matthew G.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Kirk A.; Potter, Christopher J.; Schell, Spencer; Sweat, Michael J.; Walters, Annika W.; Wilson, Anna B.

    2014-01-01

    Milestone FY2013 accomplishments included completing the development of a WLCI inventory and monitoring framework and the associated monitoring strategies, protocols, and analytics; and initial development of an Interagency Inventory and Monitoring Database, which will be accessible through the Monitoring page of the WLCI Web site at http://www.wlci.gov/monitoring. We also completed the initial phase of the mountain shrub-mapping project in the Big Piney-La Barge mule deer winter range. Finally, a 3-year survey of pygmy rabbits in four major gas-field areas was completed and used to validate the pygmy rabbit habitat model/map developed earlier in the project. Important products that became available for use by WLCI partners included publication of USGS Data Series report (http://pubs.usgs.gov/ds/800/pdf/ds800.pdf) that compiles our WLCI land cover and land use data, which depict current and historical patterns of sage-grouse habitat in relation to energy development and will be used to pose “what-if” scenarios to evaluate possible outcomes of alternative land-use strategies and practices on habitat and wildlife. Another important FY2013 product was a journal article (http://aapgbull.geoscienceworld.org/content/97/6/899.full) that describes the Mowry Shale and Frontier formation, which harbors coalbed methane and shale gas resources in Wyoming, Colorado, and Utah, for use in future scenario-building work. We also produced maps and databases that depict the structure and condition of aspen stands in the Little Mountain Ecosystem, and then presented this information to the Bureau of Land Management, Wyoming Game and Fish Department, and other interested entities for supporting aspen-management objectives.

  6. Geochemical constraints on Cenozoic intraplate magmatism in the Upper Wind River Basin, Wyoming (USA)

    NASA Astrophysics Data System (ADS)

    Downey, A. C.; Dodd, Z. C.; Brueseke, M. E.; Adams, D. C.

    2014-12-01

    The Upper Wind River Basin is located in north-central Wyoming (USA). At the northwestern edge of the basin, preliminary work by others has identified <4 Ma igneous rocks (lavas and shallow intrusives in low volumes) that are exposed southeast of the Yellowstone Plateau volcanic field. Virtually no literature exists on these rocks aside from a few K-Ar ages. Pilot Knob is an augite-rich intrusive body that yields a 3.4 ± 0.06 Ma K-Ar age. Lava Mountain, which lies ~ 4 km south of Pilot Knob, is a shield volcano where ~25 lavas are exposed in what appear to be glacially truncated cliffs. At the summit, a small capping cinder cone overlies lavas; one of the youngest lavas yields a K-Ar age of 0.48 ± 0.06 Ma. Crescent Mountain lies ~6 miles northeast of Lava Mountain and one Crescent Mountain lava yielded an ~3.6 Ma K-Ar age. At Spring Mountain, ~14 km north of Dubois, WY, local eruptions of at least one thin basaltic lava occurred from fissures that cut Paleozoic and Eocene sedimentary strata. Materials sampled from all locations range from basalt to dacite and define a primarily calc-alkaline differentiation array. Pilot Knob and one Crescent Mountain sample have wt. % K2O values between 2.7 to 3.8 at ~53 to 56 wt. % SiO2, which are much more K-rich than any other sample. These samples are also characterized by enrichments in LILE (e.g., >2000 ppm Ba, >1500 ppm Sr), LREE (>100 ppm La, >250 ppm Ce), Zr, Pb, and HREE depletions, relative to the other samples. The least evolved basalts from Spring Mountain are primitive with Mg # ~70 and Cr >900 ppm. Preliminary field constraints and satellite imagery indicates that regional fault zones control the location of individual eruptive loci/intrusives. For example, Pilot Knob and Lava Mountain lie along the projection of a normal fault zone that extends southeast from the Yellowstone Plateau volcanic field. Work is ongoing to further physically, geochemically, and isotopically characterize these igneous rocks with the goal

  7. Wyoming's industrial siting permit process and environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Hyman, Eric L.

    1982-01-01

    The problem of management of industrial residuals can be reduced through a rational system for siting and planning major industrial facilities. In the United States, Wyoming has moved in the direction of establishing a one-stop permitting system that provides important information for air and water quality planning and solid waste management with a minimum of regulatory overlap. This paper describes Wyoming's Industrial Development Information and Siting Act of 1975 and suggests ways in which the Wyoming permitting system can be improved and applied elsewhere.

  8. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  9. View east over the Rocky Mountains and Great Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A color oblique view looking east over the Rocky Mountains and Great Plains (40.0N, 106.0W). This view covers a portion of the States of Colorado, Wyoming, and Nebraska. This entire region, covered with snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Only change to snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains that form the core of the Rocky Mountains. Individual mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton,

  10. Rare, large earthquakes at the laramide deformation front - Colorado (1882) and Wyoming (1984)

    USGS Publications Warehouse

    Spence, W.; Langer, C.J.; Choy, G.L.

    1996-01-01

    The largest historical earthquake known in Colorado occurred on 7 November 1882. Knowledge of its size, location, and specific tectonic environment is important for the design of critical structures in the rapidly growing region of the Southern Rocky Mountains. More than one century later, on 18 October 1984, an mb 5.3 earthquake occurred in the Laramie Mountains, Wyoming. By studying the 1984 earthquake, we are able to provide constraints on the location and size of the 1882 earthquake. Analysis of broadband seismic data shows the 1984 mainshock to have nucleated at a depth of 27.5 ?? 1.0 km and to have ruptured ???2.7 km updip, with a corresponding average displacement of about 48 cm and average stress drop of about 180 bars. This high stress drop may explain why the earthquake was felt over an area about 3.5 times that expected for a shallow earthquake of the same magnitude in this region. A microearthquake survey shows aftershocks to be just above the mainshock's rupture, mostly in a volume measuring 3 to 4 km across. Focal mechanisms for the mainshock and aftershocks have NE-SW-trending T axes, a feature shared by most earthquakes in western Colorado and by the induced Denver earthquakes of 1967. The only data for the 1882 earthquake were intensity reports from a heterogeneously distributed population. Interpretation of these reports also might be affected by ground-motion amplification from fluvial deposits and possible significant focal depth for the mainshock. The primary aftershock of the 1882 earthquake was felt most strongly in the northern Front Range, leading Kirkham and Rogers (1985) to locate the epicenters of the aftershock and mainshock there. The Front Range is a geomorphic extension of the Laramie Mountains. Both features are part of the eastern deformation front of the Laramide orogeny. Based on knowledge of regional tectonics and using intensity maps for the 1984 and the 1967 Denver earthquakes, we reinterpret prior intensity maps for the 1882

  11. 2. EAGLE MOUNTAIN SWITCHYARD. EAGLE MOUNTAIN PUMP PLANT CAN BE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAGLE MOUNTAIN SWITCHYARD. EAGLE MOUNTAIN PUMP PLANT CAN BE SEEN THROUGH SWITCHYARD IN BACKGROUND. 165MM LENS. - Eagle Mountain Pump Plant, Ten miles north of Route 10, southeast of Eagle Mountain, Eagle Mountain, Riverside County, CA

  12. Empirical evidence of climate's role in Rocky Mountain landscape evolution

    NASA Astrophysics Data System (ADS)

    Riihimaki, Catherine A.; Reiners, Peter W.

    2012-06-01

    Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on

  13. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  14. UPR, DOE team to find gas deposits in Wyoming`s Green River Basin

    SciTech Connect

    Clinton, C.L.; Guennewig, V.B.

    1996-04-01

    Union Pacific and the U.S. Department of Energy have entered into a project in an effort to find a more economic and technologically efficient method of drilling for and producing the exceptionally large gas resources trapped in tight sands in the Greater Green River Basin. The project will be conducted in the Frontier Formation in Southwestern Wyoming. A vertical well will be drilled and tested to evaluate the economic benefit of various technologies.

  15. Surface owner's estate becomes dominant: Wyoming's surface owner consent statute

    SciTech Connect

    Reese, T.

    1981-01-01

    This comment discusses the constitutionality of Wyoming's surface owner consent law in three areas. The first is whether Wyoming's statute is an unconstitutional taking without compensation of the dominant position of the mineral estate holder. The second theory will be that the federal government has preempted the area of mineral lands regulation and therefore Wyoming's statute is void. The third theory is that Wyoming's statute is unconstitutional because it denies equal protection of the law under the fourteenth amendment to the US Constitution. This comment will deal primarily with the reservations of mineral rights under lands the federal government disposed of to private interests. It will not deal with reservations of mineral estates by private parties.

  16. Guidelines for Operation of Wyoming Summer Migrant Education Centers. Revised.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    Instructions for administrators of Wyoming summer educational programs serving preschool through high school migrant students include guidelines for career education, responsibilities of program components, and staff job descriptions. Funds management, operational instructions, salary determinants, evaluation and recordkeeping requirements, and…

  17. 15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  18. Geology of photo linear elements, Great Divide Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  19. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    SciTech Connect

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  20. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  1. UMTRA project water sampling and analysis plan, Spook, Wyoming

    SciTech Connect

    Not Available

    1994-03-01

    Surface remedial action is complete at the Spook Uranium Mill Tailings Remedial Action Project site in Wyoming. Based on an evaluation of site characterization data, the US Nuclear Regulatory Commission, US Department of Energy, and state of Wyoming have concurred in the determination that a program to monitor ground water is not required because ground water in the uppermost aquifer is Class 3 (limited use) (40 CFR 192.21(g)(1993)).

  2. Rocky Mountain Snowpack Chemistry at Selected Sites, 2002

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Manthorne, David J.; Clow, David W.; Handran, Heather M.; Winterringer, Jesse A.; Campbell, Donald H.

    2004-01-01

    During spring 2002, the chemical composition of annual snowpacks in the Rocky Mountain region of the Western United States was analyzed. Snow samples were collected at 75 geographically distributed sites extending from New Mexico to Montana. Near the end of the 2002 snowfall season, the snow-water equivalent (SWE) in annual snowpacks sampled generally was below average in most of the region. Regional patterns in the concentrations of major ions (including ammonium, nitrate, and sulfate), mercury, and stable sulfur isotope ratios are presented. The 2002 snowpack chemistry in the region differed from the previous year. Snowpack ammonium concentrations were higher at 66 percent of sites in Montana compared to concentrations in the 2001 snowpack but were lower at 74 percent of sites in Wyoming, Colorado, and New Mexico. Nitrate was lower at all Montana sites and lower at all but one Wyoming site; nitrate was higher at all but two Colorado sites and higher at all New Mexico sites. Sulfate was lower across the region at 77 percent of sites. The range of mercury concentrations for the region was similar to those of 2001 but showed more variability than ammonium, nitrate, and sulfate concentrations. Concentrations of stable sulfur isotope ratios exhibited a strong regional pattern with values increasing northward from southern Colorado to northern Colorado and Wyoming.

  3. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  4. US hydropower resource assessment for Wyoming

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

  5. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-25

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming's diverse energy resources. WERIC was established in 2006 by the University of Wyoming's Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis

  6. 77 FR 24176 - Bridger-Teton National Forest; Wyoming; Long Term Special Use Authorization for Wyoming Game and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Game and Fish Commission To Use National Forest System Land for Their Winter Elk Management Programs.... SUMMARY: The Bridger-Teton National Forest received a request from the Wyoming Game and Fish...

  7. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains

  8. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  9. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  10. 77 FR 33235 - Public Land Order No. 7791; Extension of Public Land Order No. 6928; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ..., 43 U.S.C. 1714, it is ordered as follows: Public Land Order No. 6928 (57 FR 22659, (1992)), which... Schurman, Bureau Land Management, Wyoming State Office, 5353 Yellowstone Road, Cheyenne, Wyoming 82009,...

  11. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... University of Wyoming Anthropology Department, Human Remains Repository, Laramie, WY. The human remains were..., Anthropology Department, Human Remains Repository, professional staff in consultation with representatives...

  12. 77 FR 3792 - Filing of Plats of Survey, Wyoming and Nebraska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Bureau of Land Management Filing of Plats of Survey, Wyoming and Nebraska AGENCY: Bureau of Land... survey of the lands described below in the BLM Wyoming State Office, Cheyenne, Wyoming, on the dates... the west boundary and subdivisional lines, and the survey of the subdivision of section 18,...

  13. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  14. 76 FR 77829 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY... of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... Contamination near Pavillion, Wyoming'' is available via the Internet on the EPA Region 8 home page under...

  15. Wyoming Community Colleges. Annual Performance Report: Core Indicators of Effectiveness 2008-2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2010

    2010-01-01

    The "Core Indicators of Effectiveness Report" delineates the performance of Wyoming's community colleges as measured by the 14 indicators set forth by the American Association of Community Colleges (AACC) and adopted by the seven Wyoming community colleges and the Wyoming Community College Commission in 2002. These indicators, while providing some…

  16. Wyoming Community Colleges. Annual Performance Report: Core Indicators of Effectiveness 2009-2010

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2011

    2011-01-01

    The "Core Indicators of Effectiveness Report" delineates the performance of Wyoming's community colleges as measured by the 14 indicators set forth by the American Association of Community Colleges (AACC) and adopted by the seven Wyoming community colleges and the Wyoming Community College Commission in 2002. These indicators, while providing some…

  17. 78 FR 36238 - Filing of Plats of Survey, Wyoming and Nebraska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Meridian, Wyoming, Group No. 825, was accepted January 16, 2013. The plat and field notes representing the... West, Sixth Principal Meridian, Wyoming, Group No. 840, was accepted January 16, 2013. The plat and..., Sixth Principal Meridian, Wyoming, Group No. 628, was accepted April 10, 2013. The plat and field...

  18. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  19. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  20. Ground-water resources of the Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    McGreevy, Laurence J.; Hodson, Warren Gayler; Rucker, Samuel J., IV

    1969-01-01

    The area of this investigation is in the western part of the Wind River Basin and includes parts of the Absaroka, Washakie, Wind River, and Owl Creek Mountains. The purposes of the study were to determine the general hydrologic properties of the rocks in the area and the occurrence and quality c f the water in them. Structurally, the area is a downfolded basin surrounded by upfolded mountain ranges. Igneous and metamorphic rocks of Precambrian age are exposed in the mountains: folded sedimentary rocks representing all geologic periods, except the Silurian, crop out along the margins of the basin; and relatively flat-lying Tertiary rocks are at the surface in the central part of the basin. Surficial sand and gravel deposits of Quaternary age occur along streams and underlie numerous terraces throughout the basin. The potential yield and quality of water from most rocks in the area are poorly known, but estimates are possible, based on local well data and on data concerning similar rocks in nearby areas. Yields of more than 1,000 gpm are possible from the rocks comprising the Bighorn Dolomite (Ordovician), Darby Formation (Devonian), Madison Limestone (Mississippian), and Tensleep Sandstone (Pennsylvanian). Total dissolved solids in the water range from about 300 to 3,000 ppm. Yields of as much as several hundred gallons per minute are possible from the Nugget Sandstone (Jurassic? and Triassic?). Yields of 20 gpm or more are possible from the Crow Mountain Sandstone (Triassic) and Sundance Formation (Jurassic). Dissolved solids are generally high but are less than 1,000 ppm near outcrops in some locations. The Cloverly and Morrison (Cretaceous and Jurassic), Mesaverde (Cretaceous) and Lance(?) (Cretaceous) Formations may yield as much as several hundred gallons per minute, but most wells in Cretaceous rocks yield less than 20 gpm. Dissolved solids generally range from 1,000 to 5,000 ppm but may be higher. In some areas, water with less than 1,000 ppm dissolved solids

  1. Wyoming Landscape Conservation Initiative Science and Management Workshop Proceedings, May 12-14, 2009, Laramie, Wyoming

    USGS Publications Warehouse

    2010-01-01

    The U.S. Geological Survey (USGS) hosted the second Wyoming Landscape Conservation Initiative (WLCI) Science and Management Workshop at the University of Wyoming Conference Center and Hilton Garden Inn on May 12, 13, and 14, 2009, in Laramie, Wyo. The workshop focused on six topics seen as relevant to ongoing WLCI science and management activities: mapping and modeling resources for decisionmaking; data information and management; fish and wildlife research; changing landscapes; monitoring; and reclamation and offsite mitigation. Panelists gave presentations on ongoing research in these six areas during plenary sessions followed by audience discussions. Three breakout groups focused on discussing wildlife, reclamation, and monitoring. Throughout the plenary sessions, audience discussions, and breakout groups, several needs were repeatedly emphasized by panelists and workshop participants: developing a conservation plan and identifying priority areas and species for conservation actions; gaining a deeper understanding of sagebrush ecology; identifying thresholds for wildlife that can be used to create an 'early warning system' for managers; continuing to collect basic data across the landscape; facilitating even greater communication and partnership across agencies and between scientists and land managers; and engaging proactively in understanding new changes on the landscape such as wind energy development and climate change. Detailed proceedings from the workshop are captured and summarized in this report.

  2. Human Rabies - Wyoming and Utah, 2015.

    PubMed

    Harrist, Alexia; Styczynski, Ashley; Wynn, DonRaphael; Ansari, Safdar; Hopkin, Justin; Rosado-Santos, Harry; Baker, JoDee; Nakashima, Allyn; Atkinson, Annette; Spencer, Melanie; Dean, Debbie; Teachout, Leslie; Mayer, Jeanmarie; Condori, Rene E; Orciari, Lillian; Wadhwa, Ashutosh; Ellison, James; Niezgoda, Michael; Petersen, Brett; Wallace, Ryan; Musgrave, Karl

    2016-01-01

    In September 2015, a Wyoming woman was admitted to a local hospital with a 5-day history of progressive weakness, ataxia, dysarthria, and dysphagia. Because of respiratory failure, she was transferred to a referral hospital in Utah, where she developed progressive encephalitis. On day 8 of hospitalization, the patient's family told clinicians they recalled that, 1 month before admission, the woman had found a bat on her neck upon waking, but had not sought medical care. The patient's husband subsequently had contacted county invasive species authorities about the incident, but he was not advised to seek health care for evaluation of his wife's risk for rabies. On October 2, CDC confirmed the patient was infected with a rabies virus variant that was enzootic to the silver-haired bat (Lasionycteris noctivagans). The patient died on October 3. Public understanding of rabies risk from bat contact needs to be improved; cooperation among public health and other agencies can aid in referring persons with possible bat exposure for assessment of rabies risk. PMID:27253630

  3. Cretaceous biostratigraphy in the Wyoming thrust belt.

    USGS Publications Warehouse

    Nichols, D.J.; Jacobson, S.R.

    1982-01-01

    In the Cretaceous section of the thrust belt, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites) , which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonites are restricted to rocks of marine origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in the subsurface because they can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. Stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming are correlated with the occurrence of ammonites and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior. -from Authors

  4. Headcut Erosion in Wyoming's Sweetwater Subbasin.

    PubMed

    Cox, Samuel E; Booth, D Terrance; Likins, John C

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m-the generally available standard resolution for land management-and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m(-1) channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions. PMID:26410166

  5. Wyoming Basin Rapid Ecoregional Assessment: Work Plan

    USGS Publications Warehouse

    Carr, Natasha B.; Garman, Steven L.; Walters, Annika; Ray, Andrea; Melcher, Cynthia P.; Wesner, Jeff S.; O’Donnell, Michael S.; Sherrill, Kirk R.; Babel, Nils C.; Bowen, Zachary H.

    2013-01-01

    The overall goal of the Rapid Ecoregional Assessments (REAs) being conducted for the Bureau of Land Management (BLM) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change, and a predictive capacity for evaluating future risks. The REA also may be used for identifying priority areas for conservation or restoration and for assessing the cumulative effects of a variety of land uses. There are several components of the REAs. Management Questions, developed by the BLM and partners for the ecoregion, identify the information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant aquatic and terrestrial species and communities that are to be conserved and (or) restored. The REA also will evaluate major drivers of ecosystem change (Change Agents) currently affecting or likely to affect the status of Conservation Elements. We selected 8 major biomes and 19 species or species assemblages to be included as Conservation Elements. We will address the four primary Change Agents—development, fire, invasive species, and climate change—required for the REA. The purpose of the work plan for the Wyoming Basin REA is to document the selection process for, and final list of, Management Questions, Conservation Elements, and Change Agents. The work plan also presents the overall assessment framework that will be used to assess the status of Conservation Elements and answer Management Questions.

  6. Headcut Erosion in Wyoming's Sweetwater Subbasin

    NASA Astrophysics Data System (ADS)

    Cox, Samuel E.; Booth, D. Terrance; Likins, John C.

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m—the generally available standard resolution for land management—and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m-1 channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions.

  7. Stratigraphic sections of the Phosphoria formation in Wyoming, 1952

    USGS Publications Warehouse

    Sheldon, R.P.; Cressman, E.R.; Carswell, L.D.; Smart, R.A.

    1953-01-01

    The U.S. Geological Survey has measured and sampled the Phosphoria formation of Permian age at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1), during 1952, is the fourth Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953a). Many people have taken part in this investigation. T. M. Cheney participated in the description of strata and the collection of samples referred to in this report and T. K. Rigby assisted in the collection of samples. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  8. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  9. Pesticides in Ground Water - Campbell County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Campbell County. This fact sheet describes and summarizes results of the baseline monitoring in Campbell County.

  10. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.

  11. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  12. Rocky Mountain spotted fever

    MedlinePlus

    Rocky Mountain spotted fever is a disease caused by a type of bacteria carried by ticks. ... Rocky Mountain spotted fever is caused by the bacteria Rickettsia rickettsii (R. Rickettsii) , which is carried by ticks. The ...

  13. Acute mountain sickness

    MedlinePlus

    High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... Acute mountain sickness is caused by reduced air pressure and lower oxygen levels at high altitudes. The faster you ...

  14. Rocky Mountain spotted fever

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000654.htm Rocky Mountain spotted fever To use the sharing features on this page, please enable JavaScript. Rocky Mountain spotted fever is a disease caused by a ...

  15. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect

    Griffith, J.L.

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  16. An evaluation of the Wyoming gauge system for snowfall measurement

    USGS Publications Warehouse

    Yang, D.; Kane, D.L.; Hinzman, L.D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.Y.T.; Leavesley, G.H.; Emerson, D.G.; Hanson, C.L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind-induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this intercomparison experiment. The intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80-90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  17. Spatial mapping and attribution of Wyoming wind turbines

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  18. Jonah field, sublette county, Wyoming: Gas production from overpressured Upper Cretaceous Lance sandstones of the Green River basin

    USGS Publications Warehouse

    Montgomery, S.L.; Robinson, J.W.

    1997-01-01

    Jonah field, located in the northwestern Green River basin, Wyoming, produces gas from overpressured fluvial channel sandstones of the Upper Cretaceous Lance Formation. Reservoirs exist in isolated and amalgamated channel facies 10-100 ft (3-30 m) thick and 150-4000 ft (45-1210 m) wide, deposited by meandering and braided streams. Compositional and paleocurrent studies indicate these streams flowed eastward and had their source area in highlands associated with the Wyoming-Idaho thrust belt to the west. Productive sandstones at Jonah have been divided into five pay intervals, only one of which (Jonah interval) displays continuity across most of the field. Porosities in clean, productive sandstones range from 8 to 12%, with core permeabilities of .01-0.9 md (millidarcys) and in-situ permeabilities as low as 3-20 ??d (microdarcys), as determined by pressure buildup analyses. Structurally, the field is bounded by faults that have partly controlled the level of overpressuring. This level is 2500 ft (758 m) higher at Jonah field than in surrounding parts of the basin, extending to the top part of the Lance Formation. The field was discovered in 1975, but only in the 1990s did the area become fully commercial, due to improvements in fracture stimulation techniques. Recent advances in this area have further increased recoverable reserves and serve as a potential example for future development of tight gas sands elsewhere in the Rocky Mountain region.

  19. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  20. The boundary layer, the land surface, and orographic precipitation: the 2012 ASCII campaign in the Sierra Madre, Wyoming

    NASA Astrophysics Data System (ADS)

    Geerts, B.; Yang, Y.; Miao, Q.; Pokharel, B.; Breed, D. W.; Rasmussen, R.

    2011-12-01

    It remains a puzzle why even rather shallow orographic clouds hugging the terrain are remarkably efficient snowfall producers, at least under typical conditions in the Rocky Mountains in winter. We provide evidence for the importance of both boundary-layer turbulence and surface-induced ice crystal production in the explanation of the efficiency of orographic precipitation. This evidence will be examined more in a field campaign to be conducted in early 2012 in the Sierra Madre in Wyoming, a campaign which will deploy airborne profiling radar and lidar, dual-pol DOW radar, radiosondes, and ground-based snow observations, in the context of ongoing research into the effect of AgI seeding of orographic clouds to enhance snowfall.

  1. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V., Jr.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  2. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  3. After a century-Revised Paleogene coal stratigraphy, correlation, and deposition, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Kinney, Scott A.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    The stratigraphy, correlation, mapping, and depositional history of coal-bearing strata in the Paleogene Fort Union and Wasatch Formations in the Powder River Basin were mainly based on measurement and description of outcrops during the early 20th century. Subsequently, the quality and quantity of data improved with (1) exploration and development of oil, gas, and coal during the middle 20th century and (2) the onset of coalbed methane (CBM) development during the late 20th and early 21st centuries that resulted in the drilling of more than 26,000 closely spaced wells with accompanying geophysical logs. The closeness of the data control points, which average 0.5 mi (805 m) apart, made for better accuracy in the subsurface delineation and correlation of coal beds that greatly facilitated the construction of regional stratigraphic cross sections and the assessment of resources. The drillhole data show that coal beds previously mapped as merged coal zones, such as the Wyodak coal zone in the Wyoming part of the Powder River Basin, gradually thinned into several discontinuous beds and sequentially split into as many as 7 hierarchical orders westward and northward. The thinning and splitting of coal beds in these directions were accompanied by as much as a ten-fold increase in the thicknesses of sandstone-dominated intervals within the Wyodak coal zone. This probably resulted from thrust loading by the eastern front of the Bighorn uplift accompanied by vertical displacement along lineaments that caused subsidence of the western axial part of the Powder River Basin during Laramide deformation in Late Cretaceous and early Tertiary time. Accommodation space was thereby created for synsedimentary alluvial infilling that controlled thickening, thinning, splitting, pinching out, and areal distribution of coal beds. Equally important was differential subsidence between this main accommodation space and adjoining areas, which influenced the overlapping, for example, of the

  4. The Wyoming Business Education Standards of Excellence Handbook. Revised.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    This three-part package was prepared to assist business education teachers in Wyoming to improve their programs to meet the entry-level requirements of the state's employers. Three documents are included in this package: the Standards of Excellence handbook, the 1984 Report of Basic Entry-Level Competencies Needed for Employment, and a…

  5. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  6. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  7. LEVEL IV ECOREGION DELINEATION FOR THE STATE OF WYOMING

    EPA Science Inventory

    Level III ecoregions were refined and subdivided into level IV for the state of Wyoming in a manner consistent with ecoregion revision and subdivision that has been completed or is on-going in 37 of the conterminous United States. The project was collaborative, involving the scie...

  8. The Oregon Trail: Wyoming Students Construct a CD-ROM.

    ERIC Educational Resources Information Center

    Holt, Pol William

    1998-01-01

    Describes the work of four Wyoming high school students who created a CD-ROM collection of Oregon Trail documents for use by fourth graders. The students reviewed 60 boxes of diaries, government documents, prints, and artifacts, becoming historians themselves as they created the electronic database. Includes photographs and illustrations. (MJP)

  9. Ethnic Medicine on the Frontier: A Case Study in Wyoming.

    ERIC Educational Resources Information Center

    Meredith, John D.

    1984-01-01

    Utilizing both quantitative and qualitative approaches, the study assessed the strengths of selected components of the Mexican American ethnic medical system within the local community of Casper, Wyoming. Findings indicated that few local Hispanics adhered to much of the system, except in the realm of some easily available home remedies.…

  10. RECOVERY AND STRUCTURAL CHARACTERISTICS OF MECHANICALLY TREATED WYOMING BIG SAGEBRUSH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh) steppe plant communities are common across the Intermountain West. These plant communities provide critical wildlife habitat and serve as a forage base for livestock production. Sagebrush is frequently me...

  11. National Environmental/Energy Workforce Assessment for Wyoming.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    This report presents existing workforce levels, training programs and career potentials and develops staffing level projections (1976-1982) based on available information for the State of Wyoming. The study concerns itself with the environmental pollution control areas of air, noise, potable water, pesticides, radiation, solid waste, wastewater,…

  12. Wyoming Department of Education Deaf-Blind Project Final Report.

    ERIC Educational Resources Information Center

    Whitson, Joanne B.

    This final report describes activities and accomplishments of the Wyoming Department of Education Deaf-Blind Project, a 4-year federally supported project to identify children who have deaf-blindness and to provide technical assistance in the development of educational services for these children. Major accomplishments of the project included:…

  13. 76 FR 35465 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that... offered for competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing...

  14. 76 FR 28063 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land... lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will be held at 10 a.m., on Wednesday, July 13, 2011. Sealed bids must...

  15. 77 FR 31385 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land... lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will be held at 10 a.m. on Thursday, June 28, 2012. Sealed bids must be...

  16. 77 FR 3790 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land... lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will be held at 10 a.m. on Wednesday, February 29, 2012. Sealed bids must...

  17. 76 FR 64099 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that..., will be offered for competitive lease by sealed bid in accordance with the provisions of the...

  18. 77 FR 22607 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land... competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will be held at 10 a.m. on Thursday, May 17, 2012. Sealed bids must...

  19. Ethology of Omniablautus nigronotum (Wilcox) (Diptera: Asilidae) in Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In southwest Wyoming, Omniablautus nigronotum (Wilcox), hunted primarily from the surface of the sandy substrate in a greasewood community. Prey, captured in flight, represented four insect orders with Diptera and Hymenoptera predominating. Courtship consisted of the male approaching the female from...

  20. A HANDBOOK FOR TEACHERS OF MIGRANT CHILDREN IN WYOMING, 1967.

    ERIC Educational Resources Information Center

    BENITENDI, WILMA LEE; AND OTHERS

    A SURVEY MADE DURING THE SUMMER OF 1967 SHOWED THAT ALMOST ONE THOUSAND SCHOOL-AGE MIGRANT CHILDREN WERE IN THE STATE OF WYOMING FOR 6 TO 8 WEEKS DURING THE SUGAR BEET SEASON. THIS HANDBOOK, PREPARED FOR THE USE OF THOSE TEACHERS AND ADMINISTRATORS WHO WORK IN SUMMER SCHOOL PROGRAMS, IS DIVIDED INTO FIVE CHAPTERS. CHAPTERS 1 AND 2 DEAL WITH THE…

  1. Precision fertilization of Wyoming sugar beets: A case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field Studies were conducted on a farm in northwest Wyoming to compare variable-rate fertilization (VRF) with uniform-rate fertilization (URF) of sugar beets. Results from this study failed to show an economic advantage from VRF compared to URF, implying producers should be very cautious to adopt VR...

  2. Wyoming Landscape Conservation Initiative data management and integration

    USGS Publications Warehouse

    Latysh, Natalie; Bristol, R. Sky

    2011-01-01

    Six Federal agencies, two State agencies, and two local entities formally support the Wyoming Landscape Conservation Initiative (WLCI) and work together on a landscape scale to manage fragile habitats and wildlife resources amidst growing energy development in southwest Wyoming. The U.S. Geological Survey (USGS) was tasked with implementing targeted research and providing scientific information about southwest Wyoming to inform the development of WLCI habitat enhancement and restoration projects conducted by land management agencies. Many WLCI researchers and decisionmakers representing the Bureau of Land Management, U.S. Fish and Wildlife Service, the State of Wyoming, and others have overwhelmingly expressed the need for a stable, robust infrastructure to promote sharing of data resources produced by multiple entities, including metadata adequately describing the datasets. Descriptive metadata facilitates use of the datasets by users unfamiliar with the data. Agency representatives advocate development of common data handling and distribution practices among WLCI partners to enhance availability of comprehensive and diverse data resources for use in scientific analyses and resource management. The USGS Core Science Informatics (CSI) team is developing and promoting data integration tools and techniques across USGS and partner entity endeavors, including a data management infrastructure to aid WLCI researchers and decisionmakers.

  3. Woody fuels reduction in Wyoming big sagebrush communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  4. Career Objectives of Wyoming Secondary Students Compared with Parental Occupations.

    ERIC Educational Resources Information Center

    Church, Olive

    The study was conducted to determine the influence of current parental occupations upon the career objectives of secondary students in Wyoming, including variables related to sex and to mother's employment. The study also sought to delineate the career clusters in which there was scant parental occupation and few students' career objectives, to…

  5. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  6. Wyoming Community College System Summer 2004 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2005

    2005-01-01

    This publication gives detailed statistics about enrollment for the Wyoming Community College System for the summer of 2004. Statistics relating to the following are tabulated: credit headcount; credit FTE (full time enrollment); credit headcount by age; credit headcount by county; credit FTE by county; headcount by credit hours; headcount by…

  7. Wyoming Community College System Summer 2007 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    This report includes Summer 2007 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 12 tables.) [For the Spring 2007 enrollment report, see ED502750.

  8. Wyoming Tombstone Symbolism: A Reflection of Western Culture.

    ERIC Educational Resources Information Center

    Cochenour, John; Rezabek, Landra L.

    Eleven cemeteries in Wyoming are examined for visuals pertaining to life in the West. The purpose is to demonstrate the importance of Western culture tradition evidenced through tombstone symbolism--representations of the activities and environments of the living through the memory provided by the deceased. The visual symbols found on the…

  9. Ecological Assessment of Streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06

    USGS Publications Warehouse

    Peterson, D.A.; Wright, P.R.; Edwards, G.P., Jr.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul

    2009-01-01

    . Macroinvertebrate communities showed similarity at the river-drainage scale. Macroinvertebrate communities at sites with mountainous headwaters and snowmelt-driven hydrology, such as Clear Creek, Crazy Woman Creek, and Goose Creek, showed similarity with communities from the main-stem Tongue River. The data also indicated similarity among sites on the main-stem Powder River and among small tributaries of the Tongue River. Data analyses using macroinvertebrate observed/expected models and multimetric indices developed by the States of Wyoming and Montana indicated a tendency toward declining biological condition in the downstream direction along the Tongue River. Biological condition for the main-stem Powder River generally improved downstream, from below Salt Creek to near the Wyoming/Montana border, followed by a general decline downstream from the border to the confluence with the Yellowstone River. The biological condition generally was not significantly different between 2005 and 2006, although streamflow was less in 2006 because of drought. Algal communities showed similarity at the river-drainage scale with slight differences from the pattern observed in the macroinvertebrate communities. Although the algal communities from Clear Creek and Goose Creek were similar to those from the main-stem Tongue River, as was true of the macroinvertebrate communities, the algal communities from Crazy Woman Creek had more similarity to those of main-stem Powder River sites than to the Tongue River sites, contrary to the macroinvertebrates. Ordination of algal communities, as well as diatom metrics including salinity and dominant taxa, indicated substantial variation at two sites along the main stem of the Powder River. Fish communities of the PRB were most diverse in the Tongue River drainage. In part due to the effects of Tongue River Reservoir, 15 species of fish were found in the Tongue River drainage that were not found in the Cheyenne, Belle Fourche,

  10. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  11. Bison basin, central Wyoming - geologic overview

    SciTech Connect

    Pinnell, M.L.

    1984-07-01

    The northeastern part of the Great Divide basin is a separate, unique, and until recently, little-explored subbasin sometimes called the Bison basin. It is bounded by the Wind River Mountains, Sweetwater-Granite Mountain foreland uplift, Lost Soldier-Wertz structure, and a little-studied very positive east-west structural arch approximately coincident with the Sweetwater-Fremont county line. A comprehensive seismic, Landsat, and subsurface geologic examination or, better, dissection of the Bison basin was initiated in 1978. Numerous oil and gas prospects were delineated by this study. Since this small, 12 by 40 mi (19 by 64 km) basin is bordered by known reserves of 260 million bbl of oil and 90 million bcf of gas, these prospects proved to be a popular target of the drill bit. At least one of these prospects appears to be productive; others are currently being drilled. The presence of major east-west wrench faults, a well-documented foreland uplift, until recently undrilled surface and subsurface structures, faults with throw measured in tens of thousands of feet, and an oil seep indicate possible additional hydrocarbon potential in the Bison basin that could exceed presently known reserves. Currently drilling wells and abundant already acquired reflection seismic data are the beginning step in an ongoing exploration program of an interesting, complex, and rewarding small basin with a lot of promise.

  12. Wyoming Indian High School [WIHS], Ethete, Wyoming. Evaluation Report, May 1973. Research and Evaluation Report Series No. 04-B.

    ERIC Educational Resources Information Center

    Streiff, Paul; And Others

    The first full year of the Wyoming Indian High School at Ethete is evaluated in this report which presents area recommendations calling for programs and/or adjustments as follows: (1) Goals and Objectives (needs assessment and community involvement in school philosophy); (2) Cultural Awareness (student enrollment; Native art and the Traditional…

  13. Weathering, diagenesis, and pedogenesis in Paleocene-Eocene paleosols from the Bighorn Basin, WY: evidence from environmental magnetism

    NASA Astrophysics Data System (ADS)

    Maxbauer, Daniel P.; Feinberg, Joshua M.; Fox, David L.; Clyde, William C.

    2016-04-01

    Environmental magnetism of loessic soils and recent paleosols has proven to be a useful tool in the reconstruction of climatic conditions in Quaternary systems. However, it remains unclear how applicable these tools are in more ancient systems where diagenetic and surficial weathering processes may act to alter the original assemblage of magnetic minerals. Here, we evaluate the magnetic properties of nine paleosols that span the Paleocene-Eocene Thermal Maximum (PETM ~55 Ma) in the Bighorn Basin, WY. Each paleosol layer has been sampled from both drill core and outcrop exposure. Outcrops in this system are exposed to a pervasive weathering front, which is observed to alter sediment color in the upper 25 meters of drill cores. Importantly, these nine paleosol layers occur in the core far below this pervasive weathering front and are presumably unweathered. Our results show a consistent increase in both magnetic remanence measured between 100 - 1000 mT and a quantitative redness index in outcrops relative to equivalent core sediment. We suggest these patterns indicate the production of pigmentary hematite in outcrops as a result of oxidative weathering processes. There is no clear affect of weathering on the low-coercivity mineral component. However, comparison of the low-coercivity component with pedogenic magnetite in modern soils suggests that additional diagenetic processes may act to alter low-coercivity minerals irrespective of surface weathering. Despite these alterations, magnetic enhancement ratios for paleosol B-horizons show strong correlations with independent geochemical paleoprecipitation estimates across the PETM, derived from the same paleosol B-horizons. This suggests that magnetic minerals and bulk geochemistry record similar information about pedogenesis and that more work should continue to pursue environmental magnetism as a tool in reconstructing paleoclimate in ancient terrestrial systems.

  14. Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep

    PubMed Central

    Batra, Sai A.; Shanthalingam, Sudarvili; Munske, Gerhard R.; Raghavan, Bindu; Kugadas, Abirami; Bavanthasivam, Jegarubee; Highlander, Sarah K.

    2015-01-01

    Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin. PMID:26216418

  15. VEGETATION CHARACTERISTICS OF MOUNTAIN AND WYOMING BIG SAGEBRUSH PLANT COMMUNITIES IN THE NORTHERN GREAT BASIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and therefore, may be more useful indicators of plant community potential and provide more precise information for...

  16. Whirling disease among snake river cutthroat trout in two spring streams in Wyoming

    USGS Publications Warehouse

    Hubert, W.A.; Joyce, M.P.; Gipson, R.; Zafft, D.; Money, D.; Hawk, D.; Taro, B.

    2002-01-01

    We assessed endemic age-0 cutthroat trout Oncorhynchus clarki for evidence of pathology associated with Myxobolus cerebralis in two streams formed by springs in western Wyoming. We hypothesized that the location of spawning sites in spring streams would affect the extent of exposure of cutthroat trout fry to M. cerebralis triactinomyxons (tams), occurrence of the parasite in their bodies, and clinical signs of whirling disease. The spring streams were warm relative to nearby streams flowing from the mountains or spawning and emergence of fry was early compared with fish in mountain streams. Tams were abundant early in the summer and clinical signs of whirling disease among age-0 fish were seen as early as mid-June in one stream. There were high densities of tams in one stream, and densities declined with upstream progression from May through July, whereas in the other stream, low densities of tams were observed in the downstream portion early in the summer, and they were not detected in July and August. Age-0 cutthroat trout were abundant; clinical signs of whirling disease were evident, and histological evidence of whirling disease was common in the stream where tams were abundant. Low densities of age-0 cutthroat trout and no clinical signs of whirling disease were observed in the stream where tams were not abundant. Among sentinel fish in the stream with abundant tams, we found extensive occurrence of M. cerebralis, with many fish showing clinical signs and histological evidence of pathology associated with M. cerebralis. The proportion of sentinel fish with clinical and histological signs of whirling disease decreased with upstream progression. In the stream with low tam, densities sentinel fish became infected with M. cerebralis, but there were essentially no clinical signs or histological indications of whirling disease. ?? 2002 by the American Fisheries Society.

  17. Evaluating potential overlap between pack stock and Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in Sequoia and Kings Canyon National Parks, California

    USGS Publications Warehouse

    Klinger, Robert C.; Few, Alexandra P.; Knox, Kathleen A.; Hatfield, Brian E.; Clark, Jonathan; German, David W.; Stephenson, Thomas R.

    2015-01-01

    The association analyses indicated the potential for overlap between pack stock and SNBS was minimal; only 1 percent of the potential meadow area in the SNBS herd home ranges overlapped that of pack stock meadows. There were no systematic differences in overall vegetation structure or composition, or in diversity, cover, or composition of forage species, that indicated pack stock were altering SNBS habitat or affecting their nutrition. Variation in plant species composition was influenced primarily by random differences among meadows and environmental gradients, and there was little evidence that pack stock use contributed in meaningful ways to this variation. The few differences among meadows with different levels of use by bighorn sheep and pack stock either were minor or were not in a direction consistent with negative effects of pack stock on SNBS. We conclude that the current plan for managing pack stock grazing has been successful in minimizing significant negative effects on Sierra Nevada bighorn sheep at Sequoia and Kings Canyon National Parks.

  18. Response of phytoplankton and zooplankton to nutrient enrichment in Big Brooklyn Lake, Wyoming

    SciTech Connect

    Payne, F.E.

    1983-01-01

    Between July and November of 1978 and 1979 microcosms were placed in Big Brooklyn Lake, an alpine lake located in the Snowy Mountain Range of the Medicine Bow National Forest, southeastern Wyoming, and loaded with various combinations of phosphorus and nitrogen. In general, as the concentration of nutrients (i.e., phosphorus and nitrogen) increased, the phytoplankton biomass increased. However, the zooplankton biomass data, except for the biomass of Pseudochydorus globosus and other rotifers, did not increase with increasing nutrient loads. The results of Pearson Product-Moment correlation analyses between zooplankton biomass and the algal size categories GALD (greatest axial length dimension), SGALD (second greatest axial length dimension), and VOLUME (volume) suggest: 1) Cyclops bicuspidatus uses long narrow particles; 2) Daphnia rosea prefers short narrow particles of small volume; 3) Pseudochydorus globosus uses long wide particles; and 4) rotifers appear to use long narrow particles with small and large volumes. Two advantages attributed to microcosms are reproducibility and replicability. Neither of these advantages were found associated with this study.

  19. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  20. Post-Laramide uplift and erosional history of northern Wind River Basin, Wyoming

    SciTech Connect

    Conel, J.E.; Lang, H.R.; Paylor, E.D.

    1985-02-01

    Landsat Thematic Mapper (TM) multispectral scanner images together with aerial photographs have been used to infer Laramide to Holocene tectonic events along the northern fringe of Wind River basin near Wind River Canyon, Wyoming. TM images reveal the presence of a large system of alluvial fans, terraces, and residual tongue-shaped debris deposits covering an area of 90 mi/sup 2/ at the base of Copper Mountain. The debris system contains predominantly dark metasedimentary clasts. Both Eocene (Wind River and Wagon Bed Formations) and Quaternary deposits are present, and some Eocene gravel has been reworked into the later units. These deposits contrast sharply in brightness and color with rocks in adjacent areas. Detailed topographic analysis of the terraces and fan remnants disclosed an episodic history of post-Wagon Bed (upper to middle Eocene) uplift and pediment cutting. At least 3 principal stages covering a vertical interval possibly as great as 1300 ft have been identified. Soil profiles in Quaternary gravels capping the pediments show increase in maturity consistent with age inferred from topographic elevations. These local erosional stages may record tectonic events of regional significance. Their absolute ages need to be determined.