Science.gov

Sample records for bilirubin oxidase bound

  1. Bilirubin oxidases in bioelectrochemistry: features and recent findings.

    PubMed

    Mano, Nicolas; Edembe, Lise

    2013-12-15

    Bilirubin oxidases, a sub class of the Multicopper oxidases family, were discovered in 1981 by Tanaka and Murao (Murao and Tanaka, 1981) and first used for the detection of bilirubin. Since 2001 and the pioneering work of Tsujimura, these BODs have attracted a lot of attention for the reduction of O2. Unlike laccases, these BODs are stable in physiological conditions (20mM phosphate buffer, pH 7.4, 0.14 M NaCl, 37 °C) and more than 120 papers have been published in the last 7 years. Here, we will first briefly describe some general features of BODs and then review the use of BODs for bilirubin biosensors and the recent achievements and progress toward the elaboration of efficient O2 reducing cathodes. PMID:23911663

  2. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myrothecium verrucaria 3.2190 is a nonligninolytic fungus that produces bilirubin oxidase. Both Myrothecium verrucaria and the extracellular bilirubin oxidase were tested for their ability to decolorize indigo carmine. The biosorption and biodegradation of the dye were detected during the process of...

  3. Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode.

    PubMed

    Pita, Marcos; Gutierrez-Sanchez, Cristina; Toscano, Miguel D; Shleev, Sergey; De Lacey, Antonio L

    2013-12-01

    Gold disk electrodes modified with gold nanoparticles have been used as a scaffold for the covalent immobilization of bilirubin oxidase. The nanostructured bioelectrodes were tested as mediator-less biosensors for oxygen in a buffer that mimics the content and the composition of human physiological fluids. Chronoamperometry measurements showed a detection limit towards oxygen of 6 ± 1 μM with a linear range of 6-300 μM, i.e. exceeding usual physiological ranges of oxygen in human tissues and fluids. The biosensor presented is the first ever-reported oxygen amperometric biosensor based on direct electron transfer of bilirubin oxidase. PMID:23973738

  4. Protein-Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study.

    PubMed

    Matanovic, Ivana; Babanova, Sofia; Chavez, Madelaine Seow; Atanassov, Plamen

    2016-04-21

    An example of biocathode based on bilirubin oxidase (BOx) was used to demonstrate how density functional theory can be combined with docking simulations in order to study the interface interactions between the enzyme and specifically designed electrode surface. The electrode surface was modified through the adsorption of bilirubin, the natural substrate for BOx, and the prepared electrode was electrochemically characterized using potentiostatic measurements. The experimentally determined current densities showed that the presence of bilirubin led to significant improvement of the cathode operation. On the basis of the computationally calculated binding energies of bilirubin to the graphene support and BOx and the analysis of the positioning of bilirubin relative to the support and T1 Cu atom of the enzyme, we hypothesize that the bilirubin serves as a geometric and electronic extension of the support. The computational results further confirm that the modification of the electrode surface with bilirubin provides an optimal orientation of BOx toward the support but also show that bilirubin facilitates the interfacial electron transfer by decreasing the distance between the electrode surface and the T1 Cu atom. PMID:27015361

  5. Inducible bilirubin oxidase: A novel function for the mouse cytochrome P450 2A5

    SciTech Connect

    Abu-Bakar, A'edah; Arthur, Dionne Maioha; Aganovic, Simona; Ng, Jack C.; Lang, Matti A.

    2011-11-15

    We have previously shown that bilirubin (BR), a breakdown product of haem, is a strong inhibitor and a high affinity substrate of the mouse cytochrome P450 2A5 (CYP2A5). The antioxidant BR, which is cytotoxic at high concentrations, is potentially useful in cellular protection against oxygen radicals if its intracellular levels can be strictly controlled. The mechanisms that regulate cellular BR levels are still obscure. In this paper we provide preliminary evidence for a novel function of CYP2A5 as hepatic 'BR oxidase'. A high-performance liquid chromatography/electrospray ionisation mass spectrometry screening showed that recombinant yeast microsomes expressing the CYP2A5 oxidise BR to biliverdin, as the main metabolite, and to three other smaller products with m/z values of 301, 315 and 333. The metabolic profile is significantly different from that of chemical oxidation of BR. In chemical oxidation the smaller products were the main metabolites. This suggests that the enzymatic reaction is selective, towards biliverdin production. Bilirubin treatment of primary hepatocytes increased the CYP2A5 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A5 compared to cells treated only with CHX. Collectively, the observations suggest that the CYP2A5 is potentially an inducible 'BR oxidase' where BR may accelerate its own metabolism through stabilization of the CYP2A5 protein. It is possible that this metabolic pathway is potentially part of the machinery controlling intracellular BR levels in transient oxidative stress situations, in which high amounts of BR are produced. -- Highlights: Black-Right-Pointing-Pointer CYP2A5 metabolizes bilirubin to biliverdin and dipyrroles. Black-Right-Pointing-Pointer Bilirubin increased the hepatic CYP2A5 protein and activity levels. Black-Right-Pointing-Pointer Bilirubin does not change the hepatic CYP2A5

  6. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction.

    PubMed

    Lalaoui, Noémie; Le Goff, Alan; Holzinger, Michael; Cosnier, Serge

    2015-11-16

    The efficient immobilization and orientation of bilirubin oxidase from Myrothecium verrucaria on multi-walled carbon nanotube electrodes by using π-stacked porphyrins as a direct electron-transfer promoter is reported. By comparing the use of different types of porphyrin, the rational effect of the porphyrin structure on both the immobilization and orientation of the enzyme is demonstrated. The best performances were obtained for protoporphyrin IX, which is the natural precursor of bilirubin. These electrodes exhibit full orientation of the enzyme, as confirmed by the observable non-catalytic redox system corresponding to the T1 copper center associated with pure Nernstian electrocatalytic behavior with high catalytic currents of almost 5 mA cm(-2) at neutral pH. PMID:26449635

  7. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins.

    PubMed

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    2014-05-21

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin. PMID:24589992

  8. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

    PubMed

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-04-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme. PMID:26544631

  9. Increasing the catalytic activity of Bilirubin oxidase from Bacillus pumilus: Importance of host strain and chaperones proteins.

    PubMed

    Gounel, Sébastien; Rouhana, Jad; Stines-Chaumeil, Claire; Cadet, Marine; Mano, Nicolas

    2016-07-20

    Aggregation of recombinant proteins into inclusion bodies (IBs) is the main problem of the expression of multicopper oxidase in Escherichia coli. It is usually attributed to inefficient folding of proteins due to the lack of copper and/or unavailability of chaperone proteins. The general strategies reported to overcome this issue have been focused on increasing the intracellular copper concentration. Here we report a complementary method to optimize the expression in E. coli of a promising Bilirubin oxidase (BOD) isolated from Bacillus pumilus. First, as this BOD has a disulfide bridge, we switched E.coli strain from BL21 (DE3) to Origami B (DE3), known to promote the formation of disulfide bridges in the bacterial cytoplasm. In a second step, we investigate the effect of co-expression of chaperone proteins on the protein production and specific activity. Our strategy allowed increasing the final amount of enzyme by 858% and its catalytic rate constant by 83%. PMID:27165502

  10. Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss

    PubMed Central

    Tasca, Federico; Farias, Diego; Castro, Carmen; Acuna-Rougier, Cristina; Antiochia, Riccarda

    2015-01-01

    The oxygen reduction reaction is one of the most important chemical processes in energy converting systems and living organisms. Mediator-less, direct electro-catalytic reduction of oxygen to water was achieved on spectrographite electrodes modified by physical adsorption of bilirubin oxidases from Myrothecium verrucaria. The existence of an alternative resting form of the enzyme is validated. The effect on the catalytic cycle of temperature, pH and the presence of halogens in the buffer was investigated. Previous results on the electrochemistry of bilirubin oxidase and on the impact of the presence of halogens are reviewed and reinterpreted. PMID:26196288

  11. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    SciTech Connect

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi

    2014-07-18

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.

  12. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal

    PubMed Central

    Mizutani, Kimihiko; Toyoda, Mayuko; Sagara, Kenta; Takahashi, Nobuyuki; Sato, Atsuko; Kamitaka, Yuji; Tsujimura, Seiya; Nakanishi, Yuji; Sugiura, Toshiyuki; Yamaguchi, Shotaro; Kano, Kenji; Mikami, Bunzo

    2010-01-01

    Bilirubin oxidase (BOD), a multicopper oxidase found in Myrothecium verrucaria, catalyzes the oxidation of bilirubin to biliverdin. Oxygen is the electron acceptor and is reduced to water. BOD is used for diagnostic analysis of bilirubin in serum and has attracted considerable attention as an enzymatic catalyst for the cathode of biofuel cells that work under neutral conditions. Here, the crystal structure of BOD is reported for the first time. Blue bipyramid-shaped crystals of BOD obtained in 2-methyl-2,4-pentanediol (MPD) and ammonium sulfate solution were merohedrally twinned in space group P63. Structure determination was achieved by the single anomalous diffraction (SAD) method using the anomalous diffraction of Cu atoms and synchrotron radiation and twin refinement was performed in the resolution range 33–2.3 Å. The overall organization of BOD is almost the same as that of other multicopper oxidases: the protein is folded into three domains and a total of four copper-binding sites are found in domains 1 and 3. Although the four copper-binding sites were almost identical to those of other multicopper oxidases, the hydrophilic Asn residue (at the same position as a hydrophobic residue such as Leu in other multicopper oxidases) very close to the type I copper might contribute to the characteristically high redox potential of BOD. PMID:20606269

  13. Substrate recycling scheme for tetrachloro-p-benzoquinone using bilirubin oxidase and NADH: Application for pentachlorophenol assay

    SciTech Connect

    Cybulski, D.; Luong, J.H.T.; Male, K.B.; Scharer, J.M.; Moo-Young, M.

    1999-03-01

    A novel assay for tetrachloro-p-benzoquinone (TCBQ), the main oxidation product of pentachlorophenol (PCP), was developed using bilirubin oxidase (BOX) in the presence of excess NADH. TCBQ was easily and rapidly reduced by NADH to 1,4-tetrachlorohydroquinone (TCHQ), which was then recycled back to TCBQ by the enzyme. BOX exhibited no reactivity toward NADH while its catalytic activity for the oxidation of TCHQ was very high. Under an optimized condition, the rate of NADH consumption determined by measuring the absorbance decrease at 340 nm yielded a detection limit for TCBQ of 110 nM. Fluorescence detection of the NADH using a lower enzyme concentration with excitation and emission wavelengths of 345 and 450 nm, respectively, allowed for a TCBQ detection limit of 30 nM. PCP was oxidized to TCBQ with high yield using bis(trifluoroacetoxy)iodobenzene in 0.05 M trichloroacetic acid. Coupling this oxidation reaction to the BOX/NADH assay attained PCT detection limits of 170 and 50 nM using absorbance and fluorescence measurements, respectively. When tested on PCP-contaminated soil samples, the BOX assay compared very well with HPLC measurements.

  14. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction.

    PubMed

    Mazurenko, Ievgen; Monsalve, Karen; Rouhana, Jad; Parent, Philippe; Laffon, Carine; Goff, Alan Le; Szunerits, Sabine; Boukherroub, Rabah; Giudici-Orticoni, Marie-Thérèse; Mano, Nicolas; Lojou, Elisabeth

    2016-09-01

    Due to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH. An original electrochemical approach allows determination of the best interface for direct or mediated electron transfer processes as a function of enzyme, nanomaterial type, and adsorption conditions. We correlate these experimental results to theoric voltammetric curves. Such an integrative study suggests strategies for designing efficient bioelectrochemical interfaces toward the elaboration of biodevices such as enzymatic fuel cells for sustainable electricity production. PMID:27533778

  15. Bilirubin - urine

    MedlinePlus

    ... or gallbladder Considerations Bilirubin can break down in light. That is why babies with jaundice are sometimes placed under blue fluorescent lamps. Alternative Names Conjugated bilirubin - urine; Direct bilirubin - ...

  16. Bilirubin Test

    MedlinePlus

    ... test in conjunction with other laboratory tests ( alkaline phosphatase , aspartate aminotransferase , alanine aminotransferase ) when someone shows signs ... Gilbert syndrome, due to low levels of the enzyme that produces conjugated bilirubin If conjugated (direct) bilirubin ...

  17. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    PubMed

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. PMID:24967753

  18. Membraneless enzymatic ethanol/O2 fuel cell: Transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode

    NASA Astrophysics Data System (ADS)

    Aquino Neto, Sidney; Milton, Ross D.; Hickey, David P.; De Andrade, Adalgisa R.; Minteer, Shelley D.

    2016-08-01

    The bioelectrooxidation of ethanol was investigated in a fully enzymatic membraneless ethanol/O2 biofuel cell assembly using hybrid bioanodes containing multi-walled carbon nanotube (MWCNT)-decorated gold metallic nanoparticles with either a pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) enzyme or a nicotinamide adenine dinucleotide (NAD+)-dependent ADH enzyme. The biofuel cell anode was prepared with the PQQ-dependent enzyme and designed using either a direct electron transfer (DET) architecture or via a mediated electron transfer (MET) configuration through a redox polymer, 1,1‧-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI). In the case of the bioanode containing the NAD+-dependent enzyme, only the mediated electron transfer mechanism was employed using an electropolymerized methylene green film to regenerate the NAD+ cofactor. Regardless of the enzyme being employed at the anode, a bilirubin oxidase-based biocathode prepared within a DET architecture afforded efficient electrocatalytic oxygen reduction in an ethanol/O2 biofuel cell. The power curves showed that DET-based bioanodes via the PQQ-dependent ADH still lack high current densities, whereas the MET architecture furnished maximum power density values as high as 226 ± 21 μW cm-2. Considering the complete membraneless enzymatic biofuel cell with the NAD+-dependent ADH-based bioanode, power densities as high as 111 ± 14 μW cm-2 were obtained. This shows the advantage of PQQ-dependent ADH for membraneless ethanol/O2 biofuel cell applications.

  19. Membraneless enzymatic ethanol/O2 fuel cell: Transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode

    NASA Astrophysics Data System (ADS)

    Aquino Neto, Sidney; Milton, Ross D.; Hickey, David P.; De Andrade, Adalgisa R.; Minteer, Shelley D.

    2016-08-01

    The bioelectrooxidation of ethanol was investigated in a fully enzymatic membraneless ethanol/O2 biofuel cell assembly using hybrid bioanodes containing multi-walled carbon nanotube (MWCNT)-decorated gold metallic nanoparticles with either a pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) enzyme or a nicotinamide adenine dinucleotide (NAD+)-dependent ADH enzyme. The biofuel cell anode was prepared with the PQQ-dependent enzyme and designed using either a direct electron transfer (DET) architecture or via a mediated electron transfer (MET) configuration through a redox polymer, 1,1‧-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI). In the case of the bioanode containing the NAD+-dependent enzyme, only the mediated electron transfer mechanism was employed using an electropolymerized methylene green film to regenerate the NAD+ cofactor. Regardless of the enzyme being employed at the anode, a bilirubin oxidase-based biocathode prepared within a DET architecture afforded efficient electrocatalytic oxygen reduction in an ethanol/O2 biofuel cell. The power curves showed that DET-based bioanodes via the PQQ-dependent ADH still lack high current densities, whereas the MET architecture furnished maximum power density values as high as 226 ± 21 μW cm-2. Considering the complete membraneless enzymatic biofuel cell with the NAD+-dependent ADH-based bioanode, power densities as high as 111 ± 14 μW cm-2 were obtained. This shows the advantage of PQQ-dependent ADH for membraneless ethanol/O2 biofuel cell applications.

  20. Bilirubin - blood

    MedlinePlus

    ... bilirubin is not processed normally by the liver ( Gilbert disease ) The following problems with gallbladder or bile ... Choledocholithiasis Cirrhosis Crigler-Najjar syndrome Dubin-Johnson syndrome Gilbert disease Glucose-6-phosphate dehydrogenase deficiency Hemoglobin Hemolytic ...

  1. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes.

    PubMed

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-06-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength. PMID:26754561

  2. Purification and structural analysis of membrane-bound polyphenol oxidase from Fuji apple.

    PubMed

    Liu, Fang; Zhao, Jin-Hong; Wen, Xin; Ni, Yuan-Ying

    2015-09-15

    Membrane-bound polyphenol oxidase (mPPO) in Fuji apple (Malus domestica Borkh. cv. Red Fuji) was purified and analyzed with a nanoelectrospray ionization mass spectrometer. The three-dimensional model and binding site of mPPO to 4-methyl catechol were also studied using molecular docking. mPPO was purified 54.41-fold using temperature-induced phase partitioning technique and ion exchange chromatography. mPPO had a molecular weight of 67.3kDa. Even though a significant level of homology was observed between mPPO and the soluble polyphenol oxidase in the copper binding sequence, there was another region, rich in histidine residues, which differed in 13 amino acids. The three-dimensional structure of mPPO consisted of six α-helices, two short β-strands, and ten random coils. The putative substrate-binding pocket contained six polar or charged amino acids, His191, His221, Trp224, Trp228, Phe227, and Val190. Trp224 and Trp228 formed hydrogen bonds with 4-methyl-catechol. PMID:25863612

  3. The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase

    PubMed Central

    Houslay, Miles D.; Tipton, Keith F.

    1973-01-01

    1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O2 concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN3, benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate. PMID:4778271

  4. Bilirubin present in diverse angiosperms

    PubMed Central

    Pirone, Cary; Johnson, Jodie V.; Quirke, J. Martin E.; Priestap, Horacio A.; Lee, David

    2010-01-01

    Background and aims Bilirubin is an orange-yellow tetrapyrrole produced from the breakdown of heme by mammals and some other vertebrates. Plants, algae and cyanobacteria synthesize molecules similar to bilirubin, including the protein-bound bilins and phytochromobilin which harvest or sense light. Recently, we discovered bilirubin in the arils of Strelitzia nicolai, the White Bird of Paradise Tree, which was the first example of this molecule in a higher plant. Subsequently, we identified bilirubin in both the arils and the flowers of Strelitzia reginae, the Bird of Paradise Flower. In the arils of both species, bilirubin is present as the primary pigment, and thus functions to produce colour. Previously, no tetrapyrroles were known to generate display colour in plants. We were therefore interested in determining whether bilirubin is broadly distributed in the plant kingdom and whether it contributes to colour in other species. Methodology In this paper, we use HPLC/UV and HPLC/UV/electrospray ionization-tandem mass spectrometry (HPLC/UV/ESI-MS/MS) to search for bilirubin in 10 species across diverse angiosperm lineages. Principal results Bilirubin was present in eight species from the orders Zingiberales, Arecales and Myrtales, but only contributed to colour in species within the Strelitziaceae. Conclusions The wide distribution of bilirubin in angiosperms indicates the need to re-assess some metabolic details of an important and universal biosynthetic pathway in plants, and further explore its evolutionary history and function. Although colour production was limited to the Strelitziaceae in this study, further sampling may indicate otherwise. PMID:22476078

  5. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes

    PubMed Central

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-01-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase–cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength. PMID:26754561

  6. Purification and characterization of membrane-bound semicarbazide-sensitive amine oxidase (SSAO) from bovine lung.

    PubMed Central

    Lizcano, J M; Tipton, K F; Unzeta, M

    1998-01-01

    Semicarbazide-sensitive amine oxidase (SSAO) has been purified from bovine lung microsomes in a form which is catalytically active and stable to storage. The enzyme, an integral membrane protein, was solubilized with Triton X-100 and purification was achieved, in the presence of detergent, by chromatography with Cibacron Blue 3GA-agarose, hydroxylapatite, Lens culinaris-agarose, Resource Q-FPLC and gel filtration on Superdex 200 HR-FPLC. This is the first reported procedure for the extensive purification of a membrane-bound SSAO. The purified enzyme had an apparent Mr of 400000 but exhibited microheterogeneity with SDS/PAGE and isoelectric focusing, probably as a result of its glycoprotein nature. It behaved as a tetramer with subunits with apparent Mr values of 100. Antibodies raised towards the purified enzyme cross-reacted with the enzymes from human lung and bovine plasma. Redox-cycling staining and reaction with carbonyl reagents were consistent with the presence of a quinone cofactor, possibly topa quinone. The enzyme was also shown to contain two mol of Cu/mol of enzyme and removal of half of this bound copper resulted essentially in complete inhibition of enzyme activity. In contrast to the reported behaviour of the SSAO enzymes from plasma, the bovine lung enzyme was relatively insensitive to inhibition by cyanide, copper-chelating agents and amiloride. The specificity of the bovine lung enzyme was also narrower than reported for soluble SSAO. It catalysed the oxidative deamination of benzylamine, methylamine, 2-phenylethylamine and histamine but had no significant activity towards dopamine, 5-hydroxytryptamine, tryptamine or tyramine. PMID:9512463

  7. Fluorescent protein-based detection of unconjugated bilirubin in newborn serum

    PubMed Central

    Iwatani, Sota; Nakamura, Hajime; Kurokawa, Daisuke; Yamana, Keiji; Nishida, Kosuke; Fukushima, Sachiyo; Koda, Tsubasa; Nishimura, Noriyuki; Nishio, Hisahide; Iijima, Kazumoto; Miyawaki, Atsushi; Morioka, Ichiro

    2016-01-01

    Increased serum levels of unconjugated bilirubin are associated with the development of brain damage in newborns. In current clinical settings, there are no methods for directly determining serum levels of unconjugated bilirubin. UnaG, a fluorescent protein from Japanese eel muscle that specifically binds to unconjugated bilirubin was used in this study. Linear regression analysis was carried out to compare unconjugated bilirubin levels measured by UnaG and conventional bilirubin oxidase methods. Unconjugated bilirubin levels in the serum of newborns who were untreated or treated with phototherapy were compared. Effects of interfering factors in the serum (conjugated bilirubin, hemoglobin, and lipid) on unconjugated bilirubin concentration measured by the UnaG method were also evaluated. Unconjugated bilirubin levels measured by the UnaG method were highly correlated with those determined by the bilirubin oxidase assay. Unconjugated bilirubin levels determined by bilirubin oxidase and UnaG assays were similar in serum samples containing conjugated bilirubin. The performance of the UnaG assay was unaffected by phototherapy and the presence of serum hemoglobin and lipid emulsion. These results demonstrate the clinical applicability of the UnaG method for direct measurement of unconjugated bilirubin levels in newborn serum. PMID:27324682

  8. Fluorescent protein-based detection of unconjugated bilirubin in newborn serum.

    PubMed

    Iwatani, Sota; Nakamura, Hajime; Kurokawa, Daisuke; Yamana, Keiji; Nishida, Kosuke; Fukushima, Sachiyo; Koda, Tsubasa; Nishimura, Noriyuki; Nishio, Hisahide; Iijima, Kazumoto; Miyawaki, Atsushi; Morioka, Ichiro

    2016-01-01

    Increased serum levels of unconjugated bilirubin are associated with the development of brain damage in newborns. In current clinical settings, there are no methods for directly determining serum levels of unconjugated bilirubin. UnaG, a fluorescent protein from Japanese eel muscle that specifically binds to unconjugated bilirubin was used in this study. Linear regression analysis was carried out to compare unconjugated bilirubin levels measured by UnaG and conventional bilirubin oxidase methods. Unconjugated bilirubin levels in the serum of newborns who were untreated or treated with phototherapy were compared. Effects of interfering factors in the serum (conjugated bilirubin, hemoglobin, and lipid) on unconjugated bilirubin concentration measured by the UnaG method were also evaluated. Unconjugated bilirubin levels measured by the UnaG method were highly correlated with those determined by the bilirubin oxidase assay. Unconjugated bilirubin levels determined by bilirubin oxidase and UnaG assays were similar in serum samples containing conjugated bilirubin. The performance of the UnaG assay was unaffected by phototherapy and the presence of serum hemoglobin and lipid emulsion. These results demonstrate the clinical applicability of the UnaG method for direct measurement of unconjugated bilirubin levels in newborn serum. PMID:27324682

  9. Blood Test: Bilirubin

    MedlinePlus

    ... two forms in the body: indirect (unconjugated) and direct (conjugated). Indirect bilirubin, which doesn't dissolve in ... liver to be changed into the soluble form, direct bilirubin. Why It's Done Healthy newborns — especially those ...

  10. Enzymic oxidation of unconjugated bilirubin by rat liver.

    PubMed Central

    Cardenas-Vazquez, R; Yokosuka, O; Billing, B H

    1986-01-01

    The presence of the enzyme bilirubin oxidase, which degrades bilirubin in vitro, was demonstrated in the liver. Subcellular-fractionation experiments indicate that bilirubin oxidase is located in both the inner and outer membranes of the mitochondria. The mean rate of the reaction is 1.57 +/- 0.38 (S.D.) nmol of bilirubin degraded/min per mg of mitochondrial protein (munits/mg of protein). With respect to the overall breakdown of bilirubin, the enzyme has a Km' of 136 microM-bilirubin and a Vmax.' of 9.13 munits/mg of protein. Its activity is influenced by the ionic strength of the media and is inhibited by KCN, thiol reagents, NADH and albumin. The enzyme is aerobic, and between 1 and 1.5 mol of O2 are consumed per mol of bilirubin degraded. The products of the reaction include propentdyopents. The hepatic bilirubin oxidase activity of the jaundiced Gunn-rat liver is not significantly different from that of the Sprague-Dawley rat, and it is not induced by beta-naphthoflavone. PMID:3790083

  11. [Cytoprotective effects of bilirubin].

    PubMed

    Vítek, L

    2005-01-01

    Bilirubin, a major product of heme catabolism, belongs to compounds with pleiotropic biologic effects. For a long time bilirubin was considered as a metabolite dangerous for human health, neonatologists know well serious clinical complication of neonatal jaundice called bilirubin encephalopathy. Nevertheless, recent data has demonstrated that bilirubin exhibits potent antioxidant and even anti-inflammatory effects with substantial clinical impacts. The aim of the present study was to summarize present knowledge in this rapidly evolving field and suggest further possible clinical consequences. PMID:15981989

  12. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

    PubMed Central

    Sinigaglia, Giulietta; Magro, Massimiliano; Miotto, Giovanni; Cardillo, Sara; Agostinelli, Enzo; Zboril, Radek; Bidollari, Eris; Vianello, Fabio

    2012-01-01

    Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN–RITC–BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g−1 nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, characterized by a specific activity of 0.81 IU g−1, could be used in the presence of polyamines to create a fluorescent magnetically drivable H2O2 and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system. PMID:22619559

  13. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase

    PubMed Central

    Pundir, C.S.; Narang, Jagriti; Chauhan, Nidhi; Sharma, Preety; Sharma, Renu

    2012-01-01

    Background & objectives: The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Methods: Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. Results: The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. Km and Imax for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4±2.8 and 92.3±3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4°C. Interpretation & conclusions: The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential. PMID:23168704

  14. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    PubMed

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. PMID:26720747

  15. Inherited Disorders of Bilirubin Clearance

    PubMed Central

    Memon, Naureen; Weinberger, Barry I; Hegyi, Thomas; Aleksunes, Lauren M

    2016-01-01

    Inherited disorders of hyperbilirubinemia may be caused by increased bilirubin production or decreased bilirubin clearance. Reduced hepatic bilirubin clearance can be due to defective 1) unconjugated bilirubin uptake and intrahepatic storage, 2) conjugation of glucuronic acid to bilirubin (e.g. Gilbert syndrome, Crigler-Najjar syndrome, Lucey-Driscoll syndrome, breast milk jaundice), 3) bilirubin excretion into bile (Dubin-Johnson syndrome), or 4) conjugated bilirubin re-uptake (Rotor syndrome). In this review, the molecular mechanisms and clinical manifestations of these conditions are described, as well as current approaches to diagnosis and therapy. PMID:26595536

  16. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  17. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, James W.

    1993-01-01

    A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  18. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1993-11-09

    A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.

  19. Bilirubin measurements in neonates

    NASA Astrophysics Data System (ADS)

    Newman, Gregory J.

    2000-04-01

    Infant Jaundice is a physiologic condition of elevated bilirubin in the tissue that affects nearly 60 percent of all term newborns and virtually 100 percent of premature infants. The high production of bilirubin in the newborn circulatory system and the inability of the immature liver to process and eliminate it case the condition. When the bilirubin levels rise, it starts to deposit in the baby's skin and in the brain. The deposits in the brain can cause neurologic impairment and death. The BiliCheck is a handheld, battery-powered device that measures the level of jaundice non-invasively using BioPhotonics at the point of care. The result is displayed on an LCD screen immediately, so physicians can now make treatment decision without waiting for results to return from the lab. The BiliCheck System has been marketed worldwide since April of 1998 and has received FDA clearance for use in the USA on pre-photo therapy infants in March of 1999.

  20. Destabilization of the Quaternary Structure of Bovine Heart Cytochrome c Oxidase upon Removal of Tightly Bound Cardiolipin.

    PubMed

    Sedlák, Erik; Robinson, Neal C

    2015-09-15

    The quaternary structural stability of cardiolipin-containing (CcO(CL+)) versus CL-free cytochrome c oxidase (CcO(CL-)) was compared using structural perturbants as probes. Exposure to increasing concentrations of urea or guanidinium chloride causes sequential dissociation of five subunits from CcO(CL+) in the order VIa and VIb, followed by III and VIIa, and ultimately Vb. Removal of CL from CcO destabilizes the association of each of these five subunits with the core of CcO. Subunits VIa and VIb spontaneously dissociate from CcO(CL-) even in the absence of denaturant and are no longer present after purification of the CL-free 11-subunit complex by ion exchange chromatography. The other 11 subunits remain associated in a partially active complex, but the association of subunits III, VIIa, and Vb is weakened; i.e., the midpoints for the subunit dissociation curves are each shifted to a lower perturbant concentration (lower by 1.1-1.7 M urea; lower by 0.3-0.4 M GdmCl). This corresponds to a decrease of ∼9 kJ in the Gibbs free association energy for each of these subunits when CL is removed from CcO. With either CcO(CL+) or CcO(CL-), loss of enzymatic activity occurs coincident with dissociation of subunits III and VIIa. The loss of activity is irreversible, and reactivation of CcO(CL-) by exogenous CL occurs only if both subunits remain associated with the core of CcO. Inclusion of sulfate anions stabilizes the association of VIIa more than III, resulting in a slight separation of the urea-induced dissociation curves. In this case, activity loss correlates much better with dissociation of subunit VIIa than III. We conclude that (1) bound cardiolipin is an important stabilizing factor in the quaternary structure of CcO and (2) association of subunit VIIa (possibly together with subunit III) is critical for functional CL binding and full electron-transfer activity of CcO. PMID:26284624

  1. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.

    PubMed

    Troise, Antonio Dario; Buonanno, Martina; Fiore, Alberto; Monti, Simona Maria; Fogliano, Vincenzo

    2016-12-01

    Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37°C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods. PMID:27374589

  2. The Biological Effects of Bilirubin Photoisomers.

    PubMed

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950's, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells. PMID:26829016

  3. Bilirubin Binding Capacity in the Preterm Neonate.

    PubMed

    Amin, Sanjiv B

    2016-06-01

    Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. PMID:27235205

  4. Ligand-Bound GeneSwitch Causes Developmental Aberrations in Drosophila that Are Alleviated by the Alternative Oxidase

    PubMed Central

    Andjelković, Ana; Kemppainen, Kia K.; Jacobs, Howard T.

    2016-01-01

    Culture of Drosophila expressing the steroid-dependent GeneSwitch transcriptional activator under the control of the ubiquitous α-tubulin promoter was found to produce extensive pupal lethality, as well as a range of dysmorphic adult phenotypes, in the presence of high concentrations of the inducing drug RU486. Prominent among these was cleft thorax, seen previously in flies bearing mutant alleles of the nuclear receptor Ultraspiracle and many other mutants, as well as notched wings, leg malformations, and bristle abnormalities. Neither the α-tubulin-GeneSwitch driver nor the inducing drug on their own produced any of these effects. A second GeneSwitch driver, under the control of the daughterless promoter, which gave much lower and more tissue-restricted transgene expression, exhibited only mild bristle abnormalities in the presence of high levels of RU486. Coexpression of the alternative oxidase (AOX) from Ciona intestinalis produced a substantial shift in the developmental outcome toward a wild-type phenotype, which was dependent on the AOX expression level. Neither an enzymatically inactivated variant of AOX, nor GFP, or the alternative NADH dehydrogenase Ndi1 from yeast gave any such rescue. Users of the GeneSwitch system should be aware of the potential confounding effects of its application in developmental studies. PMID:27412986

  5. Photoacoustic microscopy of bilirubin in tissue phantoms

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  6. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells.

    PubMed

    Prasad, Ram; Kappes, John C; Katiyar, Santosh K

    2016-02-16

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  7. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells

    PubMed Central

    Prasad, Ram; Kappes, John C.; Katiyar, Santosh K.

    2016-01-01

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  8. Comparison in different species of biliary bilirubin-IX alpha conjugates with the activities of hepatic and renal bilirubin-IX alpha-uridine diphosphate glycosyltransferases.

    PubMed Central

    Fevery, J; Van de Vijver, M; Michiels, R; Heirwegh, K P

    1977-01-01

    The bilrubin-IXalpha conjugates in bile and the activities of bilirubin-IX alpha--UDP-glycosyltransferases in liver and kidney were determined for ten species of mammals and for the chicken. 1. In the mammalian species, bilirubin-IX alpha glucuronide was the predominant bile pigment. Excretion of neutral glycosides was unimportant, except in the cat, the mouse, the rabbit and the dog, where glucose and xylose represented 12--41% of total conjugating groups bound to bilirubin-IX alpha. In chicken bile, glucoside and glucuronide conjugates were of equal importance. They probably represent only a small fraction of the total bile pigment. 2. The transferase activities in liver showed pronounced species variation. This was also apparent with regard to activation by digitonin, pH optimum and relative activities of transferases acting on either UDP-glucuronic acid or neutral UDP-sugars. 3. Man, the dog, the cat and the rat excrete bilirubin-IX alpha largely as diconjugated derivatives. In general, diconjugated bilirubin-IX alpha could also be synthesized in vitro with liver homogenate, bilirubin-IX alpha and UDP-sugar. In contrast, for the other species examined, bilirubin pigments consisted predominantly of monoconjugated bilirubin-IX alpha. Synthesis in vitro with UDP-glucuronic acid, UDP-glucose or UDP-xylose as the sugar donor led exclusively to the formation of monoconjugated bilirubin-IX alpha. 4. The transferase activities in the kidney were restricted to the cortex and were important only for the rat and the dog. No activity at all could be detected for several species, including man. 5. Comparison of the transferase activities in liver with reported values of the maximal rate of excretion in bile suggests a close linkage between conjugation and biliary secretion of bilirubin-IX alpha. PMID:407905

  9. The Biological Effects of Bilirubin Photoisomers

    PubMed Central

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells. PMID:26829016

  10. Structure of the Acinetobacter baumannii Dithiol Oxidase DsbA Bound to Elongation Factor EF-Tu Reveals a Novel Protein Interaction Site

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K.; King, Gordon J.; Halili, Maria A.; Heras, Begoña; Martin, Jennifer L.

    2014-01-01

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA. PMID:24860094

  11. Bilirubin chemistry and metabolism; harmful and protective aspects.

    PubMed

    Vítek, Libor; Ostrow, J Donald

    2009-01-01

    Unconjugated bilirubin (UCB), the principal mammalian bile pigment, is the end product of heme catabolism. Both belong to the superfamily of tetrapyrrolic compounds that serve multiple biological functions in animals and plants. Its six internal hydrogen bonds give UCB a unique structure responsible for its physico-chemical properties and biological effects. Like many weakly-polar, poorly-soluble compounds, UCB is transported in blood tightly bound to albumin, with less than 0.01% of total bilirubin circulating in an unbound form (free bilirubin, Bf). This fraction governs the diffusion of UCB into tissues, and therefore Bf is responsible for both its beneficial and toxic effects on cells. Although, UCB was long thought to be a non-functional waste product, recent studies have shown that the antioxidant effects of mildly elevated serum bilirubin levels, as well as activation of heme oxygenase, may protect against diseases associated with oxidative stress, such as atherosclerosis. By contrast, markedly elevated serum UCB levels may cause severe neurological damage, especially in neonates. The regulation of cellular UCB content, by its conjugation, oxidation, and export, are, therefore of paramount importance to cellular health. PMID:19754364

  12. Bilirubin Binding to PPARα Inhibits Lipid Accumulation.

    PubMed

    Stec, David E; John, Kezia; Trabbic, Christopher J; Luniwal, Amarjit; Hankins, Michael W; Baum, Justin; Hinds, Terry D

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  13. Bilirubin Binding to PPARα Inhibits Lipid Accumulation

    PubMed Central

    Stec, David E.; John, Kezia; Trabbic, Christopher J.; Luniwal, Amarjit; Hankins, Michael W.; Baum, Justin

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  14. Bilirubin and Its Carbohydrate Conjugates

    NASA Astrophysics Data System (ADS)

    Blanckaert, Norbert J. C.

    In mammals, the open tetrapyrrole bilirubin (structure 2, Fig. 1) is the principal degradation product of iron-protoporphyrin-IX (heme). The latter molecule is a tetrapyrrolic macrocycle and plays a critical role in aerobic metabolism by reversibly binding oxygen in hemoglobin and myoglobin, and by serving as the active site in oxidation reactions catalyzed by hemoprotein enzymes. Important cyclic tetrapyrroles in nature related to heme are chlorophylls, which contain magnesium and are derived from protoporphyrin-IX, and vitamin B12, a corrinoid derived from uroporphyrinogen-III.

  15. Clinical assessment of bilirubin-induced neurotoxicity in premature infants.

    PubMed

    Amin, Sanjiv B

    2004-10-01

    The clinical assessment of bilirubin-induced neurotoxicity in premature infants remains difficult in the absence of a gestational age-specific total or free (unbound) bilirubin level that predicts bilirubin-induced neurotoxicity. Because the total serum bilirubin concentration is an unreliable predictor of bilirubin-induced neurotoxicity in premature infants, alternative mean for predicting bilirubin-induced neurotoxicity in jaundiced preterm newborns is needed. Over the last few years, we have witnessed substantial gain in our knowledge involving usefulness of bilirubin-binding variables (total bilirubin, free bilirubin, bilirubin:albumin molar ratio) for clinical assessment of bilirubin-induced neurotoxicity in preterm infants. The knowledge gained has provided impetus for more clinical studies that are geared toward confirming the usefulness of free bilirubin as a predictor of bilirubin-induced neurotoxicity and identifying the gestational age-specific free bilirubin level that may increase the risk of bilirubin-induced neurotoxicity in premature infants. The paper has attempted to provide an overview of bilirubin-induced auditory toxicity along with the existing clinical evidence in favor of free bilirubin assay and usefulness of auditory brainstem evoked response for evaluation of bilirubin-induced neurotoxicity in premature infants. In addition, the author has described findings that suggest an association of apnea, a clinical manifestation, with acute bilirubin encephalopathy in premature infants. PMID:15686265

  16. An amperometric bilirubin biosensor based on a conductive poly-terthiophene-Mn(II) complex.

    PubMed

    Rahman, Md Aminur; Lee, Kyung-Sun; Park, Deog-Su; Won, Mi-Sook; Shim, Yoon-Bo

    2008-01-18

    An amperometric bilirubin biosensor was fabricated by complexing the Mn(II) ion with a conducting polymer and the final biosensor surface was coated with a thin polyethyleneimine (PEI) film containing an enzyme, ascorbate oxidase (AsOx). The complexation between poly-5,2'-5',2''-terthiophene-3-carboxylic acid (PolyTTCA) and Mn(II) through the formation of Mn-O bond was confirmed by XPS. The PolyTTCA-Mn(II) complex was also characterized using cyclic voltammetry. The PolyTTCA-Mn(II)/PEI-AsOx biosensor specifically detect bilirubin through the mediated electron transfer by the Mn(II) ion. To optimize the experimental condition, various experimental parameters such as pH, temperature, and applied potential were examined. A linear calibration plot for bilirubin was obtained between 0.1 microM and 50 microM with the detection limit of 40+/-3.8 nM. Interferences from other biological compounds, especially ascorbate and dopamine were efficiently minimized by coating the biosensor surface with PEI-AsOx. The bilirubin sensor exhibited good stability and fast response time (<5s). The applicability of this bilirubin sensor was tested in a human serum sample. PMID:17964773

  17. Interaction of bilirubin and indocyanine green with the binding and conjugation of sulfobromophthalein by rat liver cytosol proteins.

    PubMed

    Davis, D R; Yeary, R A

    1980-02-01

    The interaction of bilirubin and indocyanine green with sulfobromophthalein (BSP) binding and conjugation by rat liver cytosol proteins was studied. BSP bound to cytosol proteins X, ligandin and Z and the BSP-glutathione conjugate were isolated by sephadex gel chromatography. Neither bilirubin nor indocyanine green affected the binding of BSP to ligandin and Z protein. However, indocyanine green did significantly reduce BSP conjugation in both in vitro and in vivo experiments. Diethyl maleate significantly reduced liver glutathione levels and BSP conjugation. It is suggested that indocyanine gree competitively binds at the ligandin catalytic site whereas the primary binding site for bilirubin is probably a noncatalytic site. PMID:7367753

  18. Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme

    SciTech Connect

    Degani, Y.; Heller, A.

    1987-03-12

    Glucose-reduced glucose oxidase does not directly transfer electrons to conventional electrodes because the distance between its redox centers and the electrode surface exceeds, even on closest approach, the distance across which electrons are transferred at sufficient rates. Therefore, electrical communication between the redox centers of this enzyme and electrodes required either the presence, and diffusion to and from the enzyme's redox center, of O/sub 2/ and H/sub 2/O/sub 2/, or the presence of members of a redox couple, or the use of special electrodes like TTF/TCNQ. They show here that direct electrical communication between the redox center of a large enzyme molecule and a simple metal electrode can be established through chemical modification of the enzyme. When a sufficient number of electron-relaying centers are attached through covalent bonding to the protein of glucose oxidase, electrons are transferred from the enzyme's redox centers to relays that are closer to the periphery of the enzyme. Because some of the relays are located sufficiently close to the enzyme's surface, electrons are transferred at practical rates to the electrode. As a result, a glucose-concentration-dependent current flows in an electrochemical cell made with conventional electrodes when the electrolytic solution contains the relay-modified enzyme. Such a current does not flow when the solution contains the natural enzyme. Specifically, electrical communication is established between the FAD/FADH/sub 2/ centers of glucose oxidase and gold, platinum, or carbon electrodes through the covalent bonding of an average of 12 molecules of ferrocenecarboxylic acid per glucose oxidase molecule.

  19. Determination of bilirubin glucuronide and assay of glucuronyltransferase with bilirubin as acceptor

    PubMed Central

    Van Roy, F. P.; Heirwegh, K. P. M.

    1968-01-01

    1. Conjugated bilirubin is conveniently determined by coupling with the diazonium salt of ethyl anthranilate. 2. This method has been used in the development of assays for UDP-glucuronyltransferase (EC 2.4.1.17), with bilirubin as substrate, in rat liver homogenates, microsomal preparations and partly purified fractions. 3. Chromatographic analysis suggests that bilirubin monoglucuronide is the product of the enzyme systems studied. PMID:5660631

  20. Intermolecular interactions in the bilirubin-cholate-silica system

    NASA Astrophysics Data System (ADS)

    Vlasova, N. N.; Golovkova, L. P.; Severinovskaya, O. V.

    2007-06-01

    Bilirubin-cholate interactions in aqueous solutions were studied. The constants of binding of bilirubin with taurocholate dimers and taurodeoxycholate trimers were calculated. The adsorption of bilirubin and cholates on the surface of highly dispersed silica was studied. It was shown that taurine-conjugated cholates are poorly adsorbed from micellar solutions on the silica surface, the specific amount of bilirubin adsorbed decreases with increasing concentration of cholates in the solution, the affinity of free bilirubin for the silica surface is independent of the nature of the cholic acid, and that the affinity of cholate-bilirubin complexes for the silica surface is lower than the affinity of free bilirubin.

  1. Universal bilirubin screening for severe neonatal hyperbilirubinemia.

    PubMed

    Bhutani, V K; Vilms, R J; Hamerman-Johnson, L

    2010-10-01

    To reduce the incidence of severe neonatal hyperbilirubinemia affecting newborns with jaundice in the United States and to prevent kernicterus, there is a need to implement proven prevention strategies for severe neonatal hyperbilirubinemia as recommended in the 2004 American Academy of Pediatrics Guidelines for newborns >35 weeks gestational age. The purpose of universal predischarge bilirubin screening is to identify infants with bilirubin levels >75th percentile for age in hours and track those with rapid rates of bilirubin rise (>0.2 mg per 100 ml per h). Early identification has been reported to predict severe hyperbilirubinemia and allow for evidence-based targeted interventions. A systems approach is likely to reduce the preventable causes of acute bilirubin encephalopathy. To do so, highest priority should be given to (i) designating extreme hyperbilirubinemia (total serum bilirubin >427 μmol l(-1) or >25 mg per 100 ml) as a reportable condition by laboratories and health-care providers through public health mandates; (ii) implementation of Joint Commission's Sentinel Report for kernicterus; (iii) nursing outreach to communities for education of prospective parents; (iv) development of clinical pathways to monitor, evaluate and track infants with extreme hyperbilirubinemia; and (v) societal awareness. These efforts should be monitored by a state and national surveillance system in order to critically improve the timeliness and completeness of notifications and to allow evaluation and interventions at the policy and individual family level. PMID:20877410

  2. PPARα: A Master Regulator of Bilirubin Homeostasis.

    PubMed

    Bigo, Cyril; Kaeding, Jenny; El Husseini, Diala; Rudkowska, Iwona; Verreault, Mélanie; Vohl, Marie Claude; Barbier, Olivier

    2014-01-01

    Hypolipidemic fibrates activate the peroxisome proliferator-activated receptor (PPAR) α to modulate lipid oxidation and metabolism. The present study aimed at evaluating how 3 PPARα agonists, namely, fenofibrate, gemfibrozil, and Wy14,643, affect bilirubin synthesis and metabolism. Human umbilical vein epithelial cells (HUVEC) and coronary artery smooth muscle cells (CASMC) were cultured in the absence or presence of the 3 activators, and mRNA, protein, and/or activity levels of the bilirubin synthesizing heme oxygenase- (HO-) 1 and biliverdin reductase (BVR) enzymes were determined. Human hepatocytes (HH) and HepG2 cells sustained similar treatments, except that the expression of the bilirubin conjugating UDP-glucuronosyltransferase (UGT) 1A1 enzyme and multidrug resistance-associated protein (MRP) 2 transporter was analyzed. In HUVECs, gemfibrozil, fenofibrate, and Wy14,643 upregulated HO-1 mRNA expression without affecting BVR. Wy14,643 and fenofibrate also caused HO-1 protein accumulation, while gemfibrozil and fenofibrate favored the secretion of bilirubin in cell media. Similar positive regulations were also observed with the 3 PPARα ligands in CASMCs where HO-1 mRNA and protein levels were increased. In HH and HepG2 cells, both UGT1A1 and MRP2 transcripts were also accumulating. These observations indicate that PPARα ligands activate bilirubin synthesis in vascular cells and metabolism in liver cells. The clinical implications of these regulatory events are discussed. PMID:25147562

  3. Initial photochemistry of bilirubin probed by femtosecond spectroscopy.

    PubMed

    Zietz, Burkhard; Gillbro, Tomas

    2007-10-18

    Bilirubin is a breakdown product from heme catabolism, and reduced excretion of bilirubin can lead to jaundice. Phototherapy is the most common treatment for neonatal jaundice, a condition frequently encountered in newborn infants. Knowledge of the photochemistry of bilirubin, which is dominated by (ultra)fast components, is necessary for the profound understanding of the processes in phototherapy. Here, we report results from femtosecond fluorescence upconversion measurements on bilirubin and half-bilirubin model compounds, as well as pump-probe absorption measurements on bilirubin. A fast component of ca. 120 fs in the multiexponential fluorescence decay, being only visible in the bilirubin molecule, is interpreted as exciton localization within the molecular halves. The slower components of several hundreds of femtoseconds and a few picoseconds, occurring in bilirubin and the half-bilirubin model, are interpreted as relaxation to a (twisted) intermediate, which decays further with ca. 15 ps to the ground state. PMID:17927274

  4. Crystal Structures of Multicopper Oxidase CueO Bound to Copper(I) and Silver(I): Functional Role of a Methonine-Rich Sequence

    SciTech Connect

    Singh, Satish K.; Roberts, Sue A.; McDevitt, Sylvia F.; Weichsel, Andrzej; Wildner, Guenter F.; Grass, Gregor B.; Rensing, Christopher; Montfort, William R.

    2011-10-24

    The multicopper oxidase CueO oxidizes toxic Cu(I) and is required for copper homeostasis in Escherichia coli. Like many proteins involved in copper homeostasis, CueO has a methionine-rich segment that is thought to be critical for copper handling. How such segments function is poorly understood. Here, we report the crystal structure of CueO at 1.1 {angstrom} with the 45-residue methionine-rich segment fully resolved, revealing an N-terminal helical segment with methionine residues juxtaposed for Cu(I) ligation and a C-terminal highly mobile segment rich in methionine and histidine residues. We also report structures of CueO with a C500S mutation, which leads to loss of the T1 copper, and CueO with six methionines changed to serine. Soaking C500S CueO crystals with Cu(I), or wild-type CueO crystals with Ag(I), leads to occupancy of three sites, the previously identified substrate-binding site and two new sites along the methionine-rich helix, involving methionines 358, 362, 368, and 376. Mutation of these residues leads to a {approx}4-fold reduction in kcat for Cu(I) oxidation. Ag(I), which often appears with copper in nature, strongly inhibits CueO oxidase activities in vitro and compromises copper tolerance in vivo, particularly in the absence of the complementary copper efflux cus system. Together, these studies demonstrate a role for the methionine-rich insert of CueO in the binding and oxidation of Cu(I) and highlight the interplay among cue and cus systems in copper and silver homeostasis.

  5. Mechanisms of bilirubin toxicity: clinical implications.

    PubMed

    Hansen, Thor Willy Ruud

    2002-12-01

    The basic mechanism of kernicterus and bilirubin encephalopathy has not been unequivocally determined. Much knowledge has been gained about phenomena that contribute to bilirubin neurotoxicity, and this knowledge has implications for clinical practice. Conditions that impact on blood-brain barrier function, increase brain blood flow, or impact on bilirubin metabolism, including its transport in serum, should be avoided, if possible. Such conditions include drugs and drug stabilizers that compete with bilirubin binding to albumin, or that inhibit P-glycoprotein in the blood-brain barrier, prematurity/immaturity, and clinically significant illness in the infant that involves hemolysis, respiratory and metabolic acidosis, infection, asphyxia, hypoxia and (perhaps) hyperoxia, and hyperosmolality. If these conditions are not avoidable then there should be a more aggressive approach to the treatment of hyperbilirubinemia. The limits of tolerance for hyperbilirubinemia varies among neonates and there are no tools to determine with certainty when a particular infant is approaching the danger zone. Neurological symptoms in a jaundiced infant require extreme vigilance, and, in most cases, immediate intervention. PMID:12516745

  6. Alteration of serum bilirubin level in schizophrenia.

    PubMed

    Semnani, Yousef; Nazemi, Farzad; Azariyam, Aileen; Ardakani, Mohammad Javad Ehsani

    2010-11-01

    Abstract Objective. Alteration of serum bilirubin level in acute episodes of psychosis in patients with schizophrenia has been reported but the pattern of this alteration is controversial. Methods. Patients diagnosed as schizophrenia (162, group S) or bipolar disorder (155, group B) entered the study. The control group consisted of 95 patients admitted to cardiac care unit who had no personal or family history of major psychiatric disorders. Pre- and post-admission levels of bilirubin were measured and compared within and between the groups. Patients were examined to exclude all other causes of hyperbilirubinemia. Group S and B participants were also evaluated using positive and negative syndrome subscale (PANSS) both at admission and discharge. Results. The mean admission bilirubin levels of all the groups were in the normal range (significantly higher in group S than groups B and C) and were affected by the score of general psychopathology subscale rather than the scores of positive symptoms subscale. Conclusions. Although bilirubin decreased in all three groups at discharge, the rate of decrease was significantly higher in group S. The reason for this is not clear and needs further study. PMID:24917437

  7. Can Excess Bilirubin Levels Cause Learning Difficulties?

    ERIC Educational Resources Information Center

    Pretorius, E.; Naude, H.; Becker, P. J.

    2002-01-01

    Examined learning problems in South African sample of 7- to 14-year-olds whose mothers reported excessively high infant bilirubin shortly after the child's birth. Found that this sample had lowered verbal ability with the majority also showing impaired short-term and long-term memory. Findings suggested that impaired formation of astrocytes…

  8. Association of cytochrome c with membrane-bound cytochrome c oxidase proceeds parallel to the membrane rather than in bulk solution.

    PubMed

    Spaar, Alexander; Flöck, Dagmar; Helms, Volkhard

    2009-03-01

    Electron transfer between the water-soluble cytochrome c and the integral membrane protein cytochrome c oxidase (COX) is the terminal reaction in the respiratory chain. The first step in this reaction is the diffusional association of cytochrome c toward COX, and it is still not completely clear whether cytochrome c diffuses in the bulk solution while encountering COX, or whether it prefers to diffuse laterally on the membrane surface. This is a rather crucial question, since in the latter case the association would be strongly dependent on the lipid composition and the presence of additional membrane proteins. We applied Brownian dynamics simulations to investigate the effect of an atomistically modeled dipalmitoyl phosphatidylcholine membrane on the association behavior of cytochrome c toward COX from Paracoccus denitrificans. We studied the negatively charged, physiological electron-transfer partner of COX, cytochrome c(552), and the positively charged horse-heart cytochrome c. As expected, both cytochrome c species prefer diffusion in bulk solution while associating toward COX embedded in a membrane, where the partial charges of the lipids were switched off, and the corresponding optimal association pathways largely overlap with the association toward fully solvated COX. Remarkably, after switching on the lipid partial charges, both cytochrome c species were strongly attracted by the inhomogeneous charge distribution caused by the zwitterionic lipid headgroups. This effect is particularly enhanced for horse-heart cytochrome c and is stronger at lower ionic strength. We therefore conclude that in the presence of a polar or even a charged membrane, cytochrome c diffuses laterally rather than in three dimensions. PMID:19254533

  9. Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-covalently to an Active Site Peptide Ligand

    PubMed Central

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A.; Fairlie, David P.; Martin, Jennifer L.

    2014-01-01

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  10. Crystal structure of the dithiol oxidase DsbA enzyme from proteus mirabilis bound non-covalently to an active site peptide ligand.

    PubMed

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A; Fairlie, David P; Martin, Jennifer L

    2014-07-11

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  11. Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells.

    PubMed

    Ziberna, Lovro; Martelanc, Mitja; Franko, Mladen; Passamonti, Sabina

    2016-01-01

    Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9-1.5 pmol mg(-1) protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3-5 pmol mg(-1) protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5-13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function. PMID:27381978

  12. Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells

    PubMed Central

    Ziberna, Lovro; Martelanc, Mitja; Franko, Mladen; Passamonti, Sabina

    2016-01-01

    Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9–1.5 pmol mg−1 protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3–5 pmol mg−1 protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5–13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function. PMID:27381978

  13. Studies of the conformation of bilirubin and its dimethyl ester in dimethyl sulphoxide solutions by nuclear magnetic resonance.

    PubMed Central

    Kaplan, D; Navon, G

    1982-01-01

    The conformation of bilirubin and its dimethyl ester in dimethyl sulphoxide (DMSO) was investigated by n.m.r. spectroscopy. The chemical shifts of the pyrrole NH and Lactam protons of bilirubin and its dimethyl ester in DMSO indicate a strong interaction with the solvent. Inter-proton distances were calculated from nuclear Overhauser effects (NOE), selective and non-selective relaxation times (T1) and rotational correlation times taken from 13C relaxation times. The interproton distances indicate that the conformation of the skeleton of bilirubin and its dimethyl ester in DMSO is similar to that of bilirubin and mesobilirubin in the crystalline state and in chloroform solutions, except for a possible slight twist of the pyrrolenone rings about the methine bonds, which may be a consequence of solvation of the NH groups by DMSO. Unlike in chloroform solutions, no direct hydrogen-bonding occurs between the carboxylic acid and the lactam groups of bilirubin in DMSO, as shown by the absence of an NOE between these groups. The fast exchange of the pyrrole NH protons with 2H shows that no hydrogen-bonding occurs between these protons and the propionic residues, in line with their solvation by DMSO. From the above results, and from the slowness of the internal motion of the propionic residues of bilirubin and its dimethyl ester, it is concluded that these residues are tied to the skeleton via bound solvent molecules. PMID:6284124

  14. Bilirubin-Induced Neurotoxicity in the Preterm Neonate.

    PubMed

    Watchko, Jon F

    2016-06-01

    Bilirubin-induced neurotoxicity in preterm neonates remains a clinical concern. Multiple cellular and molecular cascades likely underlie bilirubin-induced neuronal injury, including plasma membrane perturbations, excitotoxicity, neuroinflammation, oxidative stress, and cell cycle arrest. Preterm newborns are particularly vulnerable secondary to central nervous system immaturity and concurrent adverse clinical conditions that may potentiate bilirubin toxicity. Acute bilirubin encephalopathy in preterm neonates may be subtle and manifest primarily as recurrent symptomatic apneic events. Low-bilirubin kernicterus continues to be reported in preterm neonates, and although multifactorial in nature, is often associated with marked hypoalbuminemia. PMID:27235209

  15. Functionalized Magnetic Fe3O4-β-Cyclodextran Nanoparticles for Efficient Removal of Bilirubin.

    PubMed

    Han, Lulu; Chu, Simin; Wei, Houliang; Ren, Jun; Xu, Li; Jia, Lingyun

    2016-06-01

    Bilirubin (BR), as a lipophilic toxin, can binds and deposits in various tissues, especially the brain tissue, leading to hepatic coma and even death. Magnetic nanoparticles adsorbent modified by β-cyclodextran (Fe3O4-β-CD) was developed to remove the BR from the plasma. Fe3O4-β-CD nanoparticles was prepared through Schiff base reaction between the polyethylenimine (PEI)-modified Fe3O4 and aldehyde-functionalized β-CD, and characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and dynamic light scattering (DLS). Under optimized conditions, the Fe3O4-β-CD adsorbent could adsorb 225.6 mg/g free BR in PBS and reach the adsorption equilibrium within 90 min mainly through hydrophobic interaction; Moreover, the adsorbent displayed better adsorption capability in a dialysis system for BSA-bound bilirubin, plasma bilirubin and total bile acid, and the removal rates of those were 66%, 31% and 41% respectively. Because of the advantages of fast separation and purification process, low preparation cost, good adsorption capability for plasma bilirubin, Fe3O4-β-CD may become an economical and promising absorbent of BR for clinical applications. PMID:27427594

  16. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    SciTech Connect

    Crawford, J.M.; Gollan, J.L. )

    1988-07-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer ({sup 14}C)bilirubin-({sup 3}H)bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous ({sup 14}C)bilirubin monoglucuronide-({sup 3}H)bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism.

  17. Preliminary Development of a Fiber Optic Sensor for Measuring Bilirubin

    PubMed Central

    Babin, Steven M; Sova, Raymond M

    2014-01-01

    Preliminary development of a fiber optic bilirubin sensor is described, where an unclad sensing portion is used to provide evanescent wave interaction of the transmitted light with the chemical environment. By using a wavelength corresponding to a bilirubin absorption peak, the Beer–Lambert Law can be used to relate the concentration of bilirubin surrounding the sensing portion to the amount of absorbed light. Initial testing in vitro suggests that the sensor response is consistent with the results of bulk absorption measurements as well as the Beer–Lambert Law. In addition, it is found that conjugated and unconjugated bilirubin have different peak absorption wavelengths, so that two optical frequencies may potentially be used to measure both types of bilirubin. Future development of this device could provide a means of real-time, point-of-care monitoring of intravenous bilirubin in critical care neonates with hyperbilirubinemia. PMID:25057239

  18. Preliminary development of a fiber optic sensor for measuring bilirubin.

    PubMed

    Babin, Steven M; Sova, Raymond M

    2014-01-01

    Preliminary development of a fiber optic bilirubin sensor is described, where an unclad sensing portion is used to provide evanescent wave interaction of the transmitted light with the chemical environment. By using a wavelength corresponding to a bilirubin absorption peak, the Beer-Lambert Law can be used to relate the concentration of bilirubin surrounding the sensing portion to the amount of absorbed light. Initial testing in vitro suggests that the sensor response is consistent with the results of bulk absorption measurements as well as the Beer-Lambert Law. In addition, it is found that conjugated and unconjugated bilirubin have different peak absorption wavelengths, so that two optical frequencies may potentially be used to measure both types of bilirubin. Future development of this device could provide a means of real-time, point-of-care monitoring of intravenous bilirubin in critical care neonates with hyperbilirubinemia. PMID:25057239

  19. Bilirubin UDP-glucuronyltransferase activity of wistar rat kidney.

    PubMed

    Foliot, A; Christoforov, B; Petite, J P; Etienne, J P; Housset, E; Dubois, M

    1975-08-01

    Wistar rat kidneys have been shown to possess a bilirubin glucuronyltransferase (BGT) activity capable of conjugating about 3/5 of the total pool of unconjugated bilirubin within 48 h of being grafted to Gunn rat hosts. Bilirubin conjugated by the kidney is taken up by the liver and excreted in the bile. Except when the bile duct is ligated, no conjugated bilirubin appears in the plasma or urine. Renal BGT activity is about 1/20th of the hepatic activity on a weight basis in Wistar rats. The Gunn rat's hyperbilirubinemia probably causes an induction of the renal enzyme since its activity doubles in 48 h. PMID:808968

  20. Bilirubin and its oxidation products damage brain white matter.

    PubMed

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-11-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  1. Bilirubin and its oxidation products damage brain white matter

    PubMed Central

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  2. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    SciTech Connect

    Muhsain, Siti Nur Fadzilah; Lang, Matti A.; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  3. Incorporation of copper into lysyl oxidase.

    PubMed

    Kosonen, T; Uriu-Hare, J Y; Clegg, M S; Keen, C L; Rucker, R B

    1997-10-01

    Lysyl oxidase is a copper-dependent enzyme involved in extracellular processing of collagens and elastin. Although it is known that copper is essential for the functional activity of the enzyme, there is little information on the incorporation of copper. In the present study we examined the insertion of copper into lysyl oxidase using 67Cu in cell-free transcription/translation assays and in normal skin fibroblast culture systems. When a full-length lysyl oxidase cDNA was used as a template for transcription/translation reactions in vitro, unprocessed prolysyl oxidase appeared to bind copper. To examine further the post-translational incorporation of copper into lysyl oxidase, confluent skin fibroblasts were incubated with inhibitors of protein synthesis (cycloheximide, 10 microg/ml), glycosylation (tunicamycin, 10 microg/ml), protein secretion (brefeldin A, 10 microg/ml) and prolysyl oxidase processing (procollagen C-peptidase inhibitor, 2.5 microg/ml) together with 300 microCi of carrier-free 67Cu. It was observed that protein synthesis was a prerequisite for copper incorporation, but inhibition of glycosylation by tunicamycin did not affect the secretion of 67Cu as lysyl oxidase. Brefeldin A inhibited the secretion of 67Ci-labelled lysyl oxidase by 46%, but the intracellular incorporation of copper into lysyl oxidase was not affected. In addition, the inhibition of the extracellular proteolytic processing of prolysyl oxidase to lysyl oxidase had minimal effects on the secretion of protein-bound 67Cu. Our results indicate that, similar to caeruloplasmin processing [Sato and Gitlin (1991) J. Biol. Chem. 266, 5128-5134], copper is inserted into prolysyl oxidase independently of glycosylation. PMID:9355764

  4. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  5. INDUCTION OF BILIRUBIN CLEARANCE BY THE CONSTITUTIVE ANDROSTANE RECEPTOR (CAR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bilirubin clearance is one of the numerous important functions of the liver. Defects in this process result in jaundice, which is particularly common in neonates. Elevated bilirubin levels can be decreased by treatment with phenobarbital. Because the nuclear hormone receptor constitutive androstane ...

  6. Conjugated Bilirubin Triggers Anemia by Inducing Erythrocyte Death

    PubMed Central

    Lang, Elisabeth; Gatidis, Sergios; Freise, Noemi F; Bock, Hans; Kubitz, Ralf; Lauermann, Christian; Orth, Hans Martin; Klindt, Caroline; Schuier, Maximilian; Keitel, Verena; Reich, Maria; Liu, Guilai; Schmidt, Sebastian; Xu, Haifeng C; Qadri, Syed M; Herebian, Diran; Pandyra, Aleksandra A; Mayatepek, Ertan; Gulbins, Erich; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Föller, Michael; Lang, Philipp A

    2015-01-01

    Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca2+ influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Conclusion: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. (Hepatology 2015;61:275–284) PMID:25065608

  7. Bilirubin Nanoparticles as a Nanomedicine for Anti-inflammation Therapy.

    PubMed

    Lee, Yonghyun; Kim, Hyungjun; Kang, Sukmo; Lee, Jinju; Park, Jinho; Jon, Sangyong

    2016-06-20

    Despite the high potency of bilirubin as an endogenous anti-inflammatory compound, its clinical translation has been hampered because of its insolubility in water. Bilirubin-based nanoparticles that may overcome this critical issue are presented. A polyethylene glycol compound (PEG) was covalently attached to bilirubin, yielding PEGylated bilirubin (PEG-BR). The PEG-BR self-assembled into nanoscale particles with a size of approximately 110 nm, termed bilirubin nanoparticles (BRNPs). BRNPs are highly efficient hydrogen peroxide scavengers, thereby protecting cells from H2 O2 -induced cytotoxicity. In a murine model of ulcerative colitis, intravenous injection of BRNPs showed preferential accumulation of nanoparticles at the sites of inflammation and significantly inhibited the progression of acute inflammation in the colon. Taken together, BRNPs show potential for use as a therapeutic nanomedicine in various inflammatory diseases. PMID:27144463

  8. In Cellulo Mapping of Subcellular Localized Bilirubin.

    PubMed

    Park, Jong-Seok; Nam, Eunju; Lee, Hye-Kyeong; Lim, Mi Hee; Rhee, Hyun-Woo

    2016-08-19

    Bilirubin (BR) is a de novo synthesized metabolite of human cells. However, subcellular localization of BR in the different organelles of human cells has been largely unknown. Here, utilizing UnaG as a genetically encoded fluorescent BR sensor, we report the existence of relatively BR-enriched and BR-depleted microspaces in various cellular organelles of live cells. Our studies indicate that (i) the cytoplasmic facing membrane of the endoplasmic reticulum (ER) and the nucleus are relatively BR-enriched spaces and (ii) mitochondrial intermembrane space and the ER lumen are relatively BR-depleted spaces. Thus, we demonstrate a relationship between such asymmetrical BR distribution in the ER membrane and the BR metabolic pathway. Furthermore, our results suggest plausible BR-transport and BR-regulating machineries in other cellular compartments, including the nucleus and mitochondria. PMID:27232847

  9. Trans-Cutaneous Bilirubinometery versus Serum Bilirubin in Neonatal Jaundice.

    PubMed

    Mahram, Manoochehr; Oveisi, Sonia; Jaberi, Najmeh

    2015-12-01

    Hyperbilirubinemia is a common problem in neonates and causes serious complications. Thus, serial measurements of bilirubin should be done. This assessment is done through two methods of laboratory measurement in serum sample and transcutaneous bilirubinometer. This descriptive study compared transcutaneous bilirubin assessment and laboratory serum bilirubin. Bilirubin level was assessed among 256 neonates admitted to the Qods Children's Hospital in Qazvin- Iran, because of neonatal indirect jaundice, through two methods of transcutaneous bilirubinometery from two sites of forehead and sternum and laboratory measurement of bilirubin in serum. The cases were non-hemolytic icteric term neonates weighing 2500 gram or more and had not received phototherapy or other treatments. Neonates with hemolytic forms of jaundice, sepsis and suspicious to metabolic disorders were excluded. Assessments by means of KJ-8000 transcutaneous bilirubinometer from two sites of forehead and sternum and through laboratory measurement of serum bilirubin were registered and analyzed. The results of the current study showed that there was a correlation of 0.82 between serum bilirubin and transcutaneous forehead bilirubin assessment and for the used device sensitivity of 0.844; specificity of 0.842, Youden Index of 0.709 and Shortest of 0.042 for a cut-off of 12.4 in bilirubin of participants. Furthermore, Likelihood Ratio positive and negative (LR) were 5.665 and 0.164, respectively and diagnostic Odds Ratio (LR+/LR-) was 34.56. Transcutaneous bilirubinometery can be considered as a reliable tool to assess bilirubin for the screening of neonatal jaundice in term neonates. PMID:26749233

  10. [Does bilirubin interfere with capillary electrophoresis of serum proteins?].

    PubMed

    Hellara, Ilhem; Fekih, Ons; Triki, Sonia; Elmay, Ahlem; Neffati, Fadoua; Najjar, Mohamed Fadhel

    2014-01-01

    Capillary electrophoresis of serum proteins is a fast, reliable and simple technique, but many interference exist. The objective of our work is to study the interference of bilirubin on this technique; 70 icteric sera were analysed on Capillarys ™ (Sebia). A second electrophoresis was performed on 40 samples after bilirubin photodegradation. The bilirubin and serum proteins were determinated respectively by Jendrassik and Grof and biuret methods on Konélab 20i ™ (Thermo Electron Corporation). We found abnormal spreading of the albumin fraction of the anode side wich constitute sometimes an isolated fraction in the traditional area of pre-albumin migration. This fraction varies from 2.0 ± 2.0% (0.0 to 7.3%) or 0.98 ± 1.53 g/L (0 to 5.3 g/L) and it seems to be related to the direct bilirubin since, following overloading sera with a solution of bilirubin, no further fraction was recovered. An average decrease of bilirubin after photodegradation of 58 ± 17% (26-89%) is followed by a decrease in the same order 64 ± 38% (10-100%) of the additional fraction. Acetate cellulose electrophoresis of the same samples showed no variation. The high bilirubin levels seem modify slightly the electrophoretic profile. However the impact of the interference on the interpretation of electrophoretic trace is negligible. PMID:24492101

  11. Association of abnormal plasma bilirubin with aggressive hepatocellular carcinoma phenotype.

    PubMed

    Carr, Brian I; Guerra, Vito; Giannini, Edoardo G; Farinati, Fabio; Ciccarese, Francesca; Ludovico Rapaccini, Gian; Di Marco, Maria; Benvegnù, Luisa; Zoli, Marco; Borzio, Franco; Caturelli, Eugenio; Chiaramonte, Maria; Trevisani, Franco

    2014-04-01

    Cirrhosis-related abnormal liver function is associated with predisposition to hepatocellular carcinoma (HCC). It features in several HCC classification systems and is an HCC prognostic factor. The aim of the present study was to examine the phenotypic tumor differences in HCC patients with normal or abnormal plasma bilirubin levels. A 2,416-patient HCC cohort was studied and dichotomized into normal and abnormal plasma bilirubin groups. Their HCC characteristics were compared for tumor aggressiveness features, namely, blood alpha-fetoprotein (AFP) levels, tumor size, presence of portal vein thrombosis (PVT) and tumor multifocality. In the total cohort, elevated bilirubin levels were associated with higher AFP levels, increased PVT and multifocality, and lower survival, despite similar tumor sizes. When different tumor size terciles were compared, similar results were found, even among patients with small tumors. A multiple logistic regression model for PVT or tumor multifocality showed increased odds ratios for elevated levels of gamma glutamyl transpeptidase (GGTP), bilirubin, and AFP and for larger tumor sizes. We conclude that HCC patients with abnormal bilirubin levels had worse prognosis than patients with normal bilirubin. They also had an increased incidence of PVT and tumor multifocality, and higher AFP levels, in patients with both small and larger tumors. The results show an association between bilirubin levels and indices of HCC aggressiveness. PMID:24787296

  12. Acute Alcohol Consumption Elevates Serum Bilirubin, an Endogenous Antioxidant

    PubMed Central

    O’Malley, Stephanie S.; Gueorguieva, Ralitza; Wu, Ran; Jatlow, Peter I.

    2015-01-01

    Background Moderate alcohol consumption has been associated with both negative and favorable effects on health. The mechanisms responsible for reported favorable effects remain unclear. Higher (not necessarily elevated) concentrations of serum bilirubin, an antioxidant, have also been associated with reduced risk of cardiovascular disease and all-cause mortality. This study tests the hypothesis that single dose alcohol consumption elevates bilirubin providing a potential link between these observations. Methods 18 healthy individuals (8 cigarette smokers) were administered alcohol, calibrated to achieve blood concentrations of 20, 80 and 120 mg/dL, in random order in 3 laboratory sessions separated by a week. Each session was preceded by and followed by 5–7 days of alcohol abstinence. Serum bilirubin was measured at 7:45 am prior to drinking, at 2 pm, and at 7:45 the next morning. Mixed effects regression models compared baseline and 24 hr. post-drinking bilirubin concentrations. Results Total serum bilirubin (sum of indirect and direct) concentration increased significantly after drinking from baseline to 24 hours in non-smokers (from Mean=0.38, SD=0.24 to Mean=0.51 SD=0.30, F(1, 32.2) =24.24, p<.0001) but not in smokers (from Mean=0.25, SD=0.12 to Mean=0.26, SD=0.15, F(1, 31.1) =0.04, p=0.84). In nonsmokers the indirect bilirubin concentration and the ratio of indirect (unconjugated) to direct (conjugated) bilirubin also increased significantly. Conclusions Alcohol consumption leads to increases in serum bilirubin in nonsmokers. Considering the antioxidant properties of bilirubin, our findings suggest one possible mechanism for the reported association between alcohol consumption and reduced risk of some disorders that could be tested in future longitudinal studies. PMID:25707709

  13. Bilirubin Neurotoxicity in Preterm Infants: Risk and Prevention

    PubMed Central

    Bhutani, Vinod K.; Wong, Ronald J.

    2013-01-01

    Hemolytic conditions in preterm neonates, including Rhesus (Rh) disease, can lead to mortality and long-term impairments due to bilirubin neurotoxicity. Universal access to Rh immunoprophylaxis, coordinated perinatal-neonatal care, and effective phototherapy has virtually eliminated the risk of kernicterus in many countries. In the absence of jaundice due to isoimmunization and without access to phototherapy or exchange transfusion (in 1955), kernicterus was reported at 10.1%, 5.5%, and 1.2% in babies <30, 31-32, and 33-34 wks gestational age, respectively. Phototherapy initiated at 24±12 hr effectively prevented hyperbilirubinemia in infants <2,000 g even in the presence of hemolysis. This approach (in 1985) reduced exchange transfusions from 23.9% to 4.8%. Now with 3 decades of experience in implementing effective phototherapy, the need for exchange transfusions has virtually been eliminated. However, bilirubin neurotoxicity continues to be associated with prematurity alone. The ability to better predict this risk, other than birthweight and gestation, has been elusive. Objective tests such as total bilirubin, unbound or free bilirubin, albumin levels, and albumin-bilirubin binding, together with observations of concurrent hemolysis, sepsis, and rapid rate of bilirubin rise have been considered, but their individual or combined predictive utility has yet to be refined. The disruptive effects of immaturity, concurrent neonatal disease, cholestasis, use of total parenteral nutrition or drugs that alter bilirubin-binding abilities augment the clinical risk of neurotoxicity. Current management options rely on the “fine-tuning” of each infant's exposure to beneficial antioxidants and avoidance of silent neurotoxic properties of bilirubin navigated within the safe spectrum of operational thresholds demarcated by experts. PMID:24049745

  14. Bilirubin as an endogenous modulator of neurotrophin redox signaling.

    PubMed

    Mancuso, Cesare; Capone, Caterina; Ranieri, Sofia Chiatamone; Fusco, Salvatore; Calabrese, Vittorio; Eboli, Maria Luisa; Preziosi, Paolo; Galeotti, Tommaso; Pani, Giovambattista

    2008-08-01

    Bilirubin is neurotoxic upon excess accumulation in the brain, but it also plays important physiological roles related to its antioxidant properties. Here we report that exposure of PC12 and primary rat cerebellar granule neurons to bilirubin (0.5-10 microM) drastically decreases nerve growth factor (NGF)/brain-derived neurotrophic factor signaling to Akt and extracellular signal-regulated kinases (ERKs), indicating a direct interference of the molecule with crucial prosurvival signaling pathways. This effect likely involves the scavenging capacity of bilirubin, the latter being able to inhibit, in PC12 cells, accumulation of intracellular reactive oxygen species and phosphorylation of Akt and ERKs in response to extracellular hydrogen peroxide. Interestingly, in the absence of exogenous growth factor, bilirubin elicited the phosphorylation of ERKs and of the cAMP responsive element binding (CREB) transcription factor, a signature of NGF-dependent survival signaling. These growth factor-like signaling effects were paralleled by the induction of the neuronal nitric oxide synthase (nNOS) and generation of nitric oxide (NO). Pharmacological dissection of the signaling cascade triggered by bilirubin revealed that phosphorylation of ERKs requires NO signaling through soluble guanylyl cyclase, and, further upstream, influx of extracellular calcium is necessary for nNOS induction and NO release, likely through calcium-dependent phosphorylation of CREB. Importantly, the cascade elicited by bilirubin through NO and ERK is cytoprotective, as revealed by exacerbated bilirubin toxicity in cultures treated by either NOS or MEK inhibitors. Taken together, these observations indicate an important action of bilirubin on redox signaling by neurotrophins, with either inhibitory or agonistic effects based on growth factor availability. PMID:18338802

  15. Hepatic Conversion of Bilirubin Monoglucuronide to Diglucuronide in Uridine Diphosphate-Glucuronyl Transferase-Deficient Man and Rat by Bilirubin Glucuronoside Glucuronosyltransferase

    PubMed Central

    Chowdhury, J. Roy; Jansen, P. L. M.; Fischberg, E. B.; Daniller, A.; Arias, I. M.

    1978-01-01

    The microsomal enzyme uridine diphosphate (UDP) glucuronate glucuronyltransferase (E.C. 2.4.1.17) catalyzes formation of bilirubin mono-glucuronide from bilirubin and UDPglucuronic acid. Bilirubin glucuronoside glucuronosyltransferase (E.C. 2.4.1.95), an enzyme concentrated in plasma membrane-enriched fractions of rat liver, converts bilirubin monoglucuronide to bilirubin diglucuronide. Bilirubin glucuronoside glucuronosyltransferase activity was studied in homogenates of liver biopsy specimens obtained from patients with the Crigler-Najjar syndrome (Type I) and in subcellular liver fractions of rats homozygous for UDP glucuronate glucuronyltransferase deficiency (Gunn strain). In patients with the Crigler-Najjar syndrome (Type I) and in Gunn rats, hepatic UDPglucuronate glucuronyltransferase activity was not measurable; however, bilirubin glucuronoside glucuronosyltransferase activity was similar to that in normal controls. The subcellular distribution of bilirubin glucuronoside glucuronosyltransferase activity in Gunn rat liver was similar to the distribution observed in normal Wistar rat liver. When bilirubin monoglucuronide was infused intravenously into Gunn rats, 29±5% of the conjugated bilirubin excreted in bile was bilirubin diglucuronide. After transplantation of normal Wistar rat kidney, which contained UDPglucuronate glucuronyltransferase activity, in Gunn rats, the serum bilirubin concentration decreased by 80% in 4 days. The major route of bilirubin removal was biliary excretion of conjugated bilirubin, approximately 70% of which was bilirubin diglucuronide. Although patients with the Crigler-Najjar syndrome (Type I) and Gunn rats lack UDP glucuronate glucuronyltransferase, their livers enzymatically convert bilirubin monoglucuronide to diglucuronide in vitro. Conversion in bilirubin monoglucuronide to diglucuronide was demonstrated in Gunn rats in vivo. PMID:96142

  16. Influence of hemoglobin on non-invasive optical bilirubin sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  17. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress.

    PubMed

    Muhsain, Siti Nur Fadzilah; Lang, Matti A; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. PMID:25478736

  18. [Micelle-mediated extraction for concentrating conjugated bilirubin in urine].

    PubMed

    Matsudo, T; Saitoh, T; Matsubara, C

    2001-02-01

    An extraction method based on the phase separation of aqueous micellar solutions of n-octyl-beta-D-thioglucoside (OTG) was applied to the concentrating conjugated bilirubin in urine. The analyte in sample solutions could be efficiently concentrated into a small volume of surfactant-rich phase, while hydrophilic matrix components including urinary protein, ascorbic acid, and saccharide remained in the aqueous phase. The concentrated OTG negligibly affected the diazo reaction and the subsequent spectrophotometric detection. Conjugated bilirubin was successfully determined in the concentration range from 0.05 microgram/ml to 5 micrograms/ml with a 96-well microplate reader absorption spectrophotometer. PMID:11218735

  19. Bilirubin-Induced Audiologic Injury in Preterm Infants.

    PubMed

    Olds, Cristen; Oghalai, John S

    2016-06-01

    Although hyperbilirubinemia is extremely common among neonates and is usually mild and transient, it sometimes leads to bilirubin-induced neurologic damage (BIND). The auditory pathway is highly sensitive to the effects of elevated total serum/plasma bilirubin (TB) levels, with damage manifesting clinically as auditory neuropathy spectrum disorder. Compared to full-term neonates, preterm neonates are more susceptible to BIND and suffer adverse effects at lower TB levels with worse long-term outcomes. Furthermore, although standardized guidelines for management of hyperbilirubinemia exist for term and late preterm neonates, similar guidelines for neonates less than 35 weeks gestational age are limited. PMID:27235210

  20. Galactosaemia: an unusual cause of chronic bilirubin encephalopathy.

    PubMed

    Sahoo, Tanushree; Thukral, Anu; Agarwal, Ramesh; Sankar, Mari Jeeva

    2015-01-01

    Galactosaemia is a disorder of galactose metabolism in which raised levels of galactose and galactose-1-phosphate damage various organs. Although galactosaemia is a common metabolic liver disease in childhood, it is a rare cause of neonatal hyperbilirubinemia requiring intervention. We report an unusual case of neonatal galactosaemia that at presentation had features of acute bilirubin encephalopathy requiring exchange transfusion and at discharge had features of chronic bilirubin encephalopathy. This case report emphasises the need for timely suspicion and diagnosis of this disease for prevention of chronic morbidity. PMID:25618877

  1. Neonatal jaundice: a critical review of the role and practice of bilirubin analysis.

    PubMed

    Kirk, Jean M

    2008-09-01

    Neonatal jaundice is common, and usually harmless, because of physiological jaundice or breast-feeding. In some neonates unconjugated bilirubin concentration, coupled with other risk factors, is sufficient to allow free bilirubin to cross the blood-brain barrier and cause kernicterus. Another subgroup of infants is jaundiced because of elevated conjugated bilirubin; a marker for a number of pathological conditions. Bilirubin measurement must identify those infants at risk. Transcutaneous bilirubin measurement is increasingly used in healthy infants, especially before early discharge or at home, to assess the need for laboratory bilirubin measurement. Transcutaneous measurements are not covered by laboratory quality assessment schemes. Guidelines on management of neonatal jaundice utilize age in hours and other risk factors to define bilirubin action thresholds, which may be as low as 100 micromol/L for sick premature infants, whereas early discharged babies may only present after bilirubin concentrations are extremely high. Hence, there is a requirement for accurate total bilirubin measurement from <100 to >500 micromol/L, with sufficient precision to assess the rate of bilirubin change with time. Babies presenting with late jaundice always require conjugated bilirubin measurement. It is of concern that many total and direct bilirubin automated kit methods suffer from haemolysis interference, while use of in-house methods or modification of commercial methods has virtually disappeared. External quality assessment has a vital role in providing data on different methods' performance, including accuracy, precision and susceptibility to interference. Laboratories should consider whether their adult bilirubin methods are suitable for neonates. PMID:18753416

  2. Developmental onset of bilirubin-induced neurotoxicity involves Toll-like receptor 2-dependent signaling in humanized UDP-glucuronosyltransferase1 mice.

    PubMed

    Yueh, Mei-Fei; Chen, Shujuan; Nguyen, Nghia; Tukey, Robert H

    2014-02-21

    Biological and signaling events that connect developmentally induced hyperbilirubinemia to bilirubin-induced neurological dysfunction (BIND) and CNS toxicity in humans are poorly understood. In mammals, UDP-glucuronosyltransferase 1A1 (UGT1A1) is the sole enzyme responsible for bilirubin glucuronidation, a rate-limiting step necessary for bilirubin metabolism and clearance. Humanized mice that express the entire UGT1 locus (hUGT1) and the UGT1A1 gene, develop neonatal hyperbilirubinemia, with 8-10% of hUGT1 mice succumbing to CNS damage, a phenotype that is presented by uncontrollable seizures. We demonstrate that neuroinflammation and reactive gliosis are prominent features of bilirubin brain toxicity, and a disturbed redox status resulting from activation of NADPH oxidase is an important contributing mechanism found in BIND. Using knock-out mice and primary brain cells, we connect a key pattern recognition receptor, Toll-like receptor 2 (TLR2), to hyperbilirubinemia-induced signaling. We illustrate a requirement for TLR2 signaling in regulating gliosis, proinflammatory mediators, and oxidative stress when neonatal mice encounter severe hyperbilirubinemia. TLR2-mediated gliosis strongly correlates with pronounced neuroinflammation in the CNS with up-regulation of TNFα, IL-1β, and IL-6, creating a pro-inflammatory CNS environment. Gene expression and immunohistochemistry staining show that hUGT1/Tlr2(-/-) mice fail to activate glial cells, proinflammatory cytokines, and stress response genes. In addition, bilirubin-induced apoptosis was significantly enhanced by blocking TLR2 signaling indicating its anti-apoptotic property. Consequently, a higher neonatal death rate (57.1%) in hUGT1/Tlr2(-/-) mice was observed when compared with hUGT1 mice (8.7%). These results suggest that TLR2 signaling and microglia neuroinflammation are linked to a repair and/or protection mode against BIND. PMID:24403077

  3. Biphasic Effect of Rifampicin on Bilirubin- A Case Report

    PubMed Central

    Seshadri, Mandalam Subramanian

    2016-01-01

    Drug induced hepatitis is a major problem which a physician encounters in his clinical practice. In view of increasing incidence of tuberculosis in our country a large number of infected individuals are started on Antituberculous (ATT) drugs and rifampicin is invariably part of the regimen. One of the major adverse effects of ATT drugs is drug- induced hepatitis which is characterized by elevation of liver enzymes and bilirubin. Hepatotoxicity is usually idiosyncratic or dose-dependent. Rifampicin causes transient elevation of transaminases in 10-20 percent of individuals and this does not warrant dose adjustments of the drug. Rarely rifampicin can lead to severe hepatitis with hyperbilirubinaemia and marked elevations of SGOT and SGPT and in some patients this can be fatal. The exact mechanism of Rifampicin induced hepatotoxicity is not known but it is postulated to be due to idiosyncratic reaction to rifampicin metabolites which may be directly toxic or induce an immunologically mediated liver injury. Rarely rifampicin may cause hyperbilirubinaemia without enzyme elevation. Here we report a patient with bilateral pulmonary tuberculosis who developed transient severe indirect hyperbilirubinaemia on rifampicin. On review of relevant literature we find that rifampicin can have a biphasic effect on bilirubin, an initial increase in indirect bilirubin and later normalization of bilirubin. We have reported this case because of its rarity in clinical practice. PMID:27190870

  4. Solar Irradiation of Bilirubin: An Experiment in Photochemical Oxidation

    ERIC Educational Resources Information Center

    Pillay A. E.; Salih, F. M.

    2006-01-01

    An experiment in photochemical oxidation, which deals with bilirubin, a well-known light-sensitive biological compound that is pedagogically ideal for photochemical experiments at tertiary institutes, is presented. The experiment would benefit students in chemistry who eventually branch out into the health sciences or biochemistry.

  5. The pharmacological features of bilirubin: the question of the century.

    PubMed

    Zahir, Farhana; Rabbani, Gulam; Khan, Rizwan Hasan; Rizvi, Shamim J; Jamal, Mohammad Sarwar; Abuzenadah, Adel M

    2015-09-01

    This review looks at the toxicity and metabolism of bilirubin in terms of its pharmacological potential. Its role has gained importance as more research has revealed the functional significance and interrelationship between the gasotransmitters nitric oxide and carbon monoxide. The biological actions of bilirubin have mostly been characterized in the high micromolar range where toxic effects occur. However, it could also prove to be an important cytoprotector for brain tissue, which is inherently less equipped for antioxidant defense. Plasma bilirubin levels negatively correlate to a number of disease states. Higher levels of bilirubin that are still within the normal range provide a protective effect to the body. The effects on various disorders could be tested using controlled pharmacological upregulation of the molecule with animal models. At nanomolar concentrations, considerable benefits have been obtained when the molecule was delivered pharmacologically under in vitro or in vivo test conditions, particularly in neurodegenerative disorders and after tissue or organ transplantation. The induction of heme oxygenase-1 (HMOX-1) via the activation of nuclear factor erythroid 2-related factor or the use of bile pigments in the harvesting of diseased tissue are novel applications, and like every new therapy, should be used with caution. HMOX-1 is tissue specific, and in exceptional states, such as schizophrenia and specific types of renal disorder, the same therapy may have disastrous effects. PMID:26208389

  6. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.

    PubMed

    Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng

    2016-08-16

    Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields. PMID:27481656

  7. Biphasic Effect of Rifampicin on Bilirubin- A Case Report.

    PubMed

    Gopi, Manigandan; Seshadri, Mandalam Subramanian

    2016-04-01

    Drug induced hepatitis is a major problem which a physician encounters in his clinical practice. In view of increasing incidence of tuberculosis in our country a large number of infected individuals are started on Antituberculous (ATT) drugs and rifampicin is invariably part of the regimen. One of the major adverse effects of ATT drugs is drug- induced hepatitis which is characterized by elevation of liver enzymes and bilirubin. Hepatotoxicity is usually idiosyncratic or dose-dependent. Rifampicin causes transient elevation of transaminases in 10-20 percent of individuals and this does not warrant dose adjustments of the drug. Rarely rifampicin can lead to severe hepatitis with hyperbilirubinaemia and marked elevations of SGOT and SGPT and in some patients this can be fatal. The exact mechanism of Rifampicin induced hepatotoxicity is not known but it is postulated to be due to idiosyncratic reaction to rifampicin metabolites which may be directly toxic or induce an immunologically mediated liver injury. Rarely rifampicin may cause hyperbilirubinaemia without enzyme elevation. Here we report a patient with bilateral pulmonary tuberculosis who developed transient severe indirect hyperbilirubinaemia on rifampicin. On review of relevant literature we find that rifampicin can have a biphasic effect on bilirubin, an initial increase in indirect bilirubin and later normalization of bilirubin. We have reported this case because of its rarity in clinical practice. PMID:27190870

  8. An overview on alcohol oxidases and their potential applications.

    PubMed

    Goswami, Pranab; Chinnadayyala, Soma Sekhar R; Chakraborty, Mitun; Kumar, Adepu Kiran; Kakoti, Ankana

    2013-05-01

    Alcohol oxidases (Alcohol: O₂ Oxidoreductase; EC 1.1.3.x) are flavoenzymes that catalyze the oxidation of alcohols to the corresponding carbonyl compounds with a concomitant release of hydrogen peroxide. Based on substrate specificity, alcohol oxidases may be categorized broadly into four different groups namely, (a) short chain alcohol oxidase (SCAO), (b) long chain alcohol oxidase (LCAO), (c) aromatic alcohol oxidase (AAO), and (d) secondary alcohol oxidase (SAO). The sources reported for these enzymes are mostly limited to bacteria, yeast, fungi, plant, insect, and mollusks. However, the quantum of reports for each category of enzymes considerably varies across these sources. The enzymes belonging to SCAO and LCAO are intracellular in nature, whereas AAO and SAO are mostly secreted to the medium. SCAO and LCAO are invariably reported as multimeric proteins with very high holoenzyme molecular masses, but the molecular characteristics of these enzymes are yet to be clearly elucidated. One of the striking features of the alcohol oxidases that make them distinct from the widely known alcohol dehydrogenase is the avidly bound cofactor to the redox center of these enzymes that obviate the need to supplement cofactor during the catalytic reaction. These flavin-based redox enzymes have gained enormous importance in the development of various industrial processes and products primarily for developing biosensors and production of various industrially useful carbonyl compounds. The present review provides an overview on alcohol oxidases from different categories focusing research on these oxidases during the last decade along with their potential industrial applications. PMID:23525937

  9. Ultrafast deactivation of bilirubin: dark intermediates and two-photon isomerization.

    PubMed

    Carreira-Blanco, Carlos; Singer, Patrick; Diller, Rolf; Luis Pérez Lustres, J

    2016-03-01

    Bilirubin is a neurotoxic product responsible for neonatal jaundice, which is generally treated by phototherapy. The photoreaction involves ultrafast internal conversion via an elusive intermediate and Z-E isomerization with minor yield (less than 3% in solution). The structure of the intermediate remains unclear. Here, the combination of UV-vis and mid-IR ultrafast transient absorption spectroscopy reports a comprehensive picture of the mechanism and provides essential structural information about the intermediate species. Thus, spectral dynamics during the earliest ps unveils a wavepacket travelling from the Franck-Condon region to the crossing point with a dark state. The latter shows a tighter molecular skeleton than the ground state and decays with 15 ps time constant. Remarkably, the relative contribution of a non-decaying component increases linearly with pump energy, suggesting that Z-E isomerization could also be triggered by two-photon excitation. Implications for the photochemistry of protein-bound open tetrapyrroles are discussed. PMID:26887629

  10. Twenty-five years of progress in bilirubin metabolism (1952-77).

    PubMed Central

    Billing, B H

    1978-01-01

    This review deals with the development of our understanding of the chemistry of bilirubin and its glucuronide derivatives during the years 1952-1977. It examines the relation between haem metabolism and bilirubin formation and our present knowledge of hepatic transport of bilirubin. The heterogeneity of familial hyperbilirubinaemia is discussed. PMID:98394

  11. Distant Determination of Bilirubin Distribution in Skin by Multi-Spectral Imaging

    NASA Astrophysics Data System (ADS)

    Saknite, I.; Jakovels, D.; Spigulis, J.

    2011-01-01

    For mapping the bilirubin distribution in bruised skin the multi-spectral imaging technique was employed, which made it possible to observe temporal changes of the bilirubin content in skin photo-types II and III. The obtained results confirm the clinical potential of this technique for skin bilirubin diagnostics.

  12. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy.

    PubMed

    Lee, Yonghyun; Lee, Soyoung; Lee, Dong Yun; Yu, Byeongjun; Miao, Wenjun; Jon, Sangyong

    2016-08-26

    Although stimuli-responsive materials hold potential for use as drug-delivery carriers for treating cancers, their clinical translation has been limited. Ideally, materials used for the purpose should be biocompatible and nontoxic, provide "on-demand" drug release in response to internal or external stimuli, allow large-scale manufacturing, and exhibit intrinsic anticancer efficacy. We present multistimuli-responsive nanoparticles formed from bilirubin, a potent endogenous antioxidant that possesses intrinsic anticancer and anti-inflammatory activity. Exposure of the bilirubin nanoparticles (BRNPs) to either reactive oxygen species (ROS) or external laser light causes rapid disruption of the BRNP nanostructure as a result of a switch in bilirubin solubility, thereby releasing encapsulated drugs. In a xenograft tumor model, BRNPs loaded with the anticancer drug doxorubicin (DOX@BRNPs), when combined with laser irradiation of 650 nm, significantly inhibited tumor growth. This study suggests that BRNPs may be used as a drug-delivery carrier as well as a companion medicine for effectively treating cancers. PMID:27485478

  13. Bilirubin oxidation products (BOXes): synthesis, stability and chemical characteristics

    PubMed Central

    Wurster, W. L.; Pyne-Geithman, G. J.; Peat, I. R.; Clark, J. F.

    2009-01-01

    Summary Bilirubin oxidation products (BOXes) have been a subject of interest in neurosurgery because they are purported to be involved in subarachnoid hemorrhage induced cerebral vasospasm. There is a growing body of information concerning their putative role in vasospasm; however, there is a dearth of information concerning the chemical and biochemical characteristics of BOXes. A clearer understanding of the synthesis, stability and characteristics of BOXes will be important for a better understanding of the role of BOXes post subarachnoid hemorrhage. We used hydrogen peroxide to oxidize bilirubin and produce BOXes. BOXes were extracted and analyzed using conventional methods such as HPLC and mass spectrometry. Characterization of the stability BOXes demonstrates that light can photodegrade BOXes with a t1/2 of up to 10 h depending upon conditions. Mixed isomers of BOXes have an apparent extinction coefficient of ε = 6985, and a λmax of 310 nm. BOXes are produced by the oxidation of bilirubin, yielding a mixture of isomers: 4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide (BOX A) and 3-methyl-5-oxo-4-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide (BOX B). The BOXes are photodegraded by ambient light and can be analyzed spectrophotometrically with their extinction coefficient as well as with HPLC or mass spectrometry. Their small molecular weight and photodegradation may have made them difficult to characterize in previous studies. PMID:18456996

  14. Bilirubin binding with liver cystatin induced structural and functional changes.

    PubMed

    Mustafa, Mir Faisal; Bano, Bilqees

    2014-05-01

    Cysteine proteinases and their inhibitors play a significant role in the proteolytic environment of the cells. Inhibitors of cysteine proteinases regulate the activity of these enzymes helping in checking the degdration activity of cathepsins. The bilirubin secreated by liver cells can bind to cystatin present in the liver resulting in its functional inactivation, which may further lead to the increase in cathepsins level causing liver cirrhosis. In case of some pathophysiological conditions excess bilirubin gets accumulated e.g. in presence of Fasciola hepatica (liver fluke) in mammals and humans, leading to liver cirrhosis and possibly jaundice or normal blockade of bile duct causing increased level of bilirubin in blood. Protease-cystatin imbalance causes disease progression. In the present study, Bilirubin (BR) and liver cystatin interaction was studied to explore the cystatin inactivation and structural alteration. The binding interaction was studied by UV-absorption, FT-IR and fluorescence spectroscopy. The quenching of protein fluorescence confirmed the binding of BR with buffalo liver cystatin (BLC). Stern-Volmer analysis of BR-BLC system indicates the presence of static component in the quenching mechanism and the number of binding sites to be close to 1. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR-cystatin complex formation. FTIR analysis of BR-Cystatin complex revealed change in the secondary structure due to perturbation in the microenvironment further confirmed by the decreased caseinolytic activity of BLC against papain. Fluorescence measurements also revealed quenching of fluorescence and shift in peak at different time intervals and at varying pH values. Photo-illumination of BR-cystatin complex causes change in the surrounding environment of liver cystatin as indicated by red-shift. The binding constant for BR-BLC complex was found to be 9.279 × 10(4) M(-1). The cystatin binding with

  15. Association of bilirubin and malondialdehyde levels with retinopathy in type 2 diabetes mellitus

    PubMed Central

    Dave, Apoorva; Kalra, Pramila; Gowda, B. H. Rakshitha; Krishnaswamy, Malavika

    2015-01-01

    Introduction: Bilirubin as an antioxidant and malondialdehyde (MDA) as an oxidant have been shown to be associated with various complications of type 2 diabetes mellitus (DM). Aims and Objectives: The aim was to measure the levels of serum bilirubin and MDA in type 2 DM patients with and without diabetic retinopathy (DR) and to correlate them with severity of DR. Materials and Methods: A total number of 120 subjects out of which 40 were controls without type 2 DM and the rest 80 were type 2 DM patients were included in the study. Of those 80 diabetics, 44 patients did not have DR and 36 patients had DR. Results: The total bilirubin, direct bilirubin, indirect bilirubin were higher in controls as compared to cases (P = 0.017, 0.033, 0.024). Serum MDA levels were found to be higher in diabetics as compared to controls (P = 0.00). The values of all the three parameters, that is, total bilirubin, direct bilirubin and indirect bilirubin were lower in patients with retinopathy as compared to those without retinopathic changes (P = 0.00, 0.020, and 0.007). Subjects were assigned to quartiles based on serum total bilirubin concentration. The prevalence of DR was significantly lower among persons with the highest bilirubin quartile compared to those with the lowest quartile. The severity of DR was inversely proportional to the total bilirubin levels (P = 0.001). The multiple logistic regression analysis showed total bilirubin to be associated with prevalence of DR (P = 0.035). Conclusions: The levels of total bilirubin were significantly lower in patients with DR and also in the late stages of retinopathy as compared to those without retinopathy and in controls but MDA levels did not show any association with DR. PMID:25932393

  16. Unconjugated Bilirubin and an Increased Proportion of Bilirubin Monoconjugates in the Bile of Patients with Gilbert's Syndrome and Crigler-Najjar Disease

    PubMed Central

    Fevery, Johan; Blanckaert, Norbert; Heirwegh, Karel P. M.; Préaux, Anne-Marie; Berthelot, Pierre

    1977-01-01

    Bilirubin pigments were studied in the bile of 20 normal adults, 25 patients with Gilbert's syndrome, 9 children with Crigler-Najjar disease, and 6 patients with hemolysis, to determine how a deficiency of hepatic bilirubin UDP-glucuronosyltransferase would affect the end products of bilirubin biotransformation. In the bile from patients with Gilbert's syndrome, a striking increase was found in the proportion of bilirubin monoconjugates (48.6±9.8% of total conjugates) relative to that in normal bile (27.2±7.8%). This increase was even more pronounced in children with Crigler-Najjar disease, in whom, even in the most severe cases, glucuronide could always be demonstrated in the bile. Furthermore, unconjugated bilirubin-IXα was unquestionably present in the bile of these children and amounted to 30-57% of their total bilirubin pigments (<1% in the controls). It was not possible to predict from the biliary bilirubin composition whether a child would respond to phenobarbital therapy or not. Bile composition was normal in patients with hemolysis, except when there was associated deficiency of hepatic glucuronosyltransferase. Therefore, the observed alterations were not a simple consequence of unconjugated hyperbilirubinemia. The present findings suggest that Crigler-Najjar disease represents a more pronounced expression than Gilbert's syndrome of a common biochemical defect. Hepatic bilirubin UDP-glucuronosyltransferase deficiency leads to decreased formation of diconjugates with an ensuing increase in the proportion of bilirubin monoconjugates in bile; in the most severe cases, an elevated content of biliary unconjugated bilirubin is also found. PMID:409736

  17. Bilirubin release induced by tumor necrosis factor in combination with galactosamine is toxic to mice.

    PubMed

    Van Molle, W; Libert, C

    2003-08-01

    Application of tumor necrosis factor (TNF) in combination with galactosamine (GalN) in mice causes severe apoptosis of hepatocytes, resulting in complete destruction of the liver. Administration of high levels of unconjugated bilirubin and abnormally high production of unconjugated bilirubin have been reported to cause liver damage and are associated with several human pathologies. Serum alanine aminotransferase as well as total and direct bilirubin levels in mice were determined. Bilirubin levels are shown to significantly increase after a challenge with TNF/GalN in mice. Pretreatment with a heme oxygenase-1 inhibitor significantly prevents this release in bilirubin and offers significant protection against TNF/GalN-induced lethality. A correlation between the release of unconjugated bilirubin and the toxicity accompanied with this release is provided. PMID:12906872

  18. Heme/copper terminal oxidases

    SciTech Connect

    Ferguson-Miller, S.; Babcock, G.T.

    1996-11-01

    Spatially well-organized electron-transfer reactions in a series of membrane-bound redox proteins form the basis for energy conservation in both photosynthesis and respiration. The membrane-bound nature of the electron-transfer processes is critical, as the free energy made available in exergonic redox chemistry is used to generate transmembrane proton concentration and electrostatic potential gradients. These gradients are subsequently used to drive ATP formation, which provides the immediate energy source for constructive cellular processes. The terminal heme/copper oxidases in respiratory electron-transfer chains illustrate a number of the thermodynamic and structural principles that have driven the development of respiration. This class of enzyme reduces dioxygen to water, thus clearing the respiratory system of low-energy electrons so that sustained electron transfer and free-energy transduction can occur. By using dioxygen as the oxidizing substrate, free-energy production per electron through the chain is substantial, owing to the high reduction potential of O{sub 2} (0.815 V at pH 7). 122 refs.

  19. 21 CFR 862.1115 - Urinary bilirubin and its conjugates (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1115 Urinary bilirubin and its conjugates (nonquantitative)...

  20. 21 CFR 862.1113 - Bilirubin (total and unbound) in the neonate test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1113 Bilirubin (total and unbound) in the neonate test system....

  1. 21 CFR 862.1115 - Urinary bilirubin and its conjugates (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1115 Urinary bilirubin and its conjugates (nonquantitative)...

  2. 21 CFR 862.1113 - Bilirubin (total and unbound) in the neonate test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1113 Bilirubin (total and unbound) in the neonate test system....

  3. 21 CFR 862.1113 - Bilirubin (total and unbound) in the neonate test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1113 Bilirubin (total and unbound) in the neonate test system....

  4. 21 CFR 862.1115 - Urinary bilirubin and its conjugates (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1115 Urinary bilirubin and its conjugates (nonquantitative)...

  5. 21 CFR 862.1113 - Bilirubin (total and unbound) in the neonate test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1113 Bilirubin (total and unbound) in the neonate test system....

  6. 21 CFR 862.1115 - Urinary bilirubin and its conjugates (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1115 Urinary bilirubin and its conjugates (nonquantitative)...

  7. 21 CFR 862.1113 - Bilirubin (total and unbound) in the neonate test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1113 Bilirubin (total and unbound) in the neonate test system....

  8. 21 CFR 862.1115 - Urinary bilirubin and its conjugates (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1115 Urinary bilirubin and its conjugates (nonquantitative)...

  9. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels.

    PubMed

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  10. Unconjugated bilirubin mediates heme oxygenase-1-induced vascular benefits in diabetic mice.

    PubMed

    Liu, Jian; Wang, Li; Tian, Xiao Yu; Liu, Limei; Wong, Wing Tak; Zhang, Yang; Han, Quan-Bin; Ho, Hing-Man; Wang, Nanping; Wong, Siu Ling; Chen, Zhen-Yu; Yu, Jun; Ng, Chi-Fai; Yao, Xiaoqiang; Huang, Yu

    2015-05-01

    Heme oxygenase-1 (HO-1) exerts vasoprotective effects. Such benefit in diabetic vasculopathy, however, remains unclear. We hypothesize that bilirubin mediates HO-1-induced vascular benefits in diabetes. Diabetic db/db mice were treated with hemin (HO-1 inducer) for 2 weeks, and aortas were isolated for functional and molecular assays. Nitric oxide (NO) production was measured in cultured endothelial cells. Hemin treatment augmented endothelium-dependent relaxations (EDRs) and elevated Akt and endothelial NO synthase (eNOS) phosphorylation in db/db mouse aortas, which were reversed by the HO-1 inhibitor SnMP or HO-1 silencing virus. Hemin treatment increased serum bilirubin, and ex vivo bilirubin treatment improved relaxations in diabetic mouse aortas, which was reversed by the Akt inhibitor. Biliverdin reductase silencing virus attenuated the effect of hemin. Chronic bilirubin treatment improved EDRs in db/db mouse aortas. Hemin and bilirubin reversed high glucose-induced reductions in Akt and eNOS phosphorylation and NO production. The effect of hemin but not bilirubin was inhibited by biliverdin reductase silencing virus. Furthermore, bilirubin augmented EDRs in renal arteries from diabetic patients. In summary, HO-1-induced restoration of endothelial function in diabetic mice is most likely mediated by bilirubin, which preserves NO bioavailability through the Akt/eNOS/NO cascade, suggesting bilirubin as a potential therapeutic target for clinical intervention of diabetic vasculopathy. PMID:25475440

  11. CHARACTERISTICS OF POLYPHENOL OXIDASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.14.18.1 or EC 1.10.3.1) catalyzes the oxidation of o-diphenols to o-quinones. Highly reactive o-quinones couple with phenolics and specific amino acids on proteins to form the characteristic browning products in many wounded fruits, vegetables, and leaf tissues of plant...

  12. Reproducibility and intragastric variation of duodenogastric reflux using ambulatory gastric bilirubin monitoring.

    PubMed

    Manifold, D K; Anggiansah, A; Marshall, R E; Owen, W J

    2001-01-01

    Duodenogastric reflux has long been considered to be important in the pathogenesis of many gastric disorders that exhibit regional variation within the stomach. Ambulatory gastric bilirubin monitoring is a new technique and, although extensively validated, reproducibility and gastric regional variation have not been specifically addressed. Fourteen patients with symptoms of gastroesophageal reflux and 12 healthy subjects underwent 24-h ambulatory gastric bilirubin monitoring with the bilirubin sensor in the upper stomach. Gastric bilirubin monitoring with two simultaneous bilirubin probes, one in the upper stomach and the other in the antrum, was performed on a separate occasion. Gastric bilirubin exposure in the initial and repeat studies showed a good correlation (R = 0.60, P < 0.01). Gastric bilirubin exposure in the upper stomach and the antrum showed a high degree of correlation (R = 0.90, P < 0.01). In conclusion, reproducible results are obtained with ambulatory gastric bilirubin monitoring and duodenogastric reflux does not exhibit significant regional variation within the stomach. PMID:11270798

  13. Bilirubin content and 4-nitrophenol glucuronosyltransferase activity in Gunn rat liver.

    PubMed

    Celier, C; Foliot, A

    1984-04-01

    The purpose of this study was to determine whether the hepatic content of bilirubin could influence liver 4-nitrophenolglucuronosyltransferase (4-NP-GT) in the Gunn rat. In animals fed on a 45% lipid diet, compared with rats fed on a normal lipid diet (3%), the bilirubin content of the hepatic microsomal fraction decreased and the bilirubin/protein ratio was reduced. 4-NP-GT activities were comparable in both groups. Administration of clofibrate to Gunn rats greatly enhanced the bilirubin content of liver microsomal fraction. Since this treatment raised the microsomal protein content, the bilirubin/protein ratio was not modified. No significant change in 4-NP-GT was noted. After bilirubin perfusion in Gunn and Wistar rats, no change was observed in hepatic monooxygenase activities or in 4-NP-GT, although the bilirubin/protein ratio was dramatically increased in the microsomal fraction. From these results the low activity of liver 4-NP-GT in Gunn rats does not seem directly related to the hepatic content of bilirubin. PMID:6421531

  14. Measurement of serum bilirubin and its mono- and diconjugates: application to patients with hepatobiliary disease.

    PubMed Central

    Scharschmidt, B F; Blanckaert, N; Farina, F A; Kabra, P M; Stafford, B E; Weisiger, R A

    1982-01-01

    A technique has recently been described by Blanckaert and his colleagues that specifically and accurately quantifies unconjugated bilirubin, diconjugated bilirubin, and the C-8 and C-12 isomers of monoconjugated bilirubin. This technique has now been used to determine the distribution pattern of bilirubin and its ester conjugates in 91 sera from 65 patients with hepatobiliary disease, and the results were compared with two conventional diazo assays. Both diazo assays yielded values for total bilirubin concentration that were markedly and unpredictably higher than those obtained by the new technique, and the direct-reacting fraction by diazo assay showed little or no agreement with the fraction of total ester conjugates determined by the new method. Previous studies using the new method had shown that bilirubin conjugates are undetectable in sera from healthy adults or individuals with Gilbert's syndrome, but they were found in 89 of the 91 present patient sera. The fraction of total serum bilirubin represented by C-8 monoconjugates, C-12 monoconjugates, diconjugates, and total ester conjugates was higher in patients with biliary obstruction than in those with parenchymal liver disease, but extensive overlap between groups prevented determination of these conjugated species from being diagnostically useful. Overall, bilirubin ester conjugates in serum consisted of 30% C-8 monoconjugates, 37% C-12 monoconjugates, and 33% diconjugates, while urine contained predominantly diconjugates. PMID:7095558

  15. Relationship of Bilirubin Levels in Infancy to Later Intellectual Development. Interim Report No. 20.

    ERIC Educational Resources Information Center

    Rubin, Rosalyn A.; And Others

    The relationship of bilirubin (a red bile pigment that is sometimes found in the urine and occurs in the blood and tissues in jaundice) in infancy to later intellectual development was investigated in 241 infants with moderately elevated and high bilirubin levels. Ss were administered motor, psycholinguistic, and intelligence tests at age 8…

  16. Hepatocellular uptake of sulfobromophthalein and bilirubin is selectively inhibited by an antibody to the liver plasma membrane sulfobromophthalein/bilirubin binding protein.

    PubMed Central

    Stremmel, W; Berk, P D

    1986-01-01

    To clarify sulfobromophthalein (BSP) and bilirubin uptake mechanisms, isolated rat hepatocytes were incubated with [35S]BSP. The initial uptake velocity (V0), determined from the first, linear portion of the cumulative uptake curve, was saturable (Michaelis constant [Km] = 6.2 +/- 0.5 microM; Vmax = 638 +/- 33 pmol X min-1 per 10(5) hepatocytes), maximal at 37 degrees C and pH 7.4, and competitively inhibited by bilirubin, but not by taurocholate, cholate, or oleate. Preloading with unlabeled BSP led to trans-stimulation of V0. Sodium substitution or pretreatment of hepatocytes with ouabain or metabolic inhibitors had no effect on V0; trypsin reduced V0 by 39% (P less than 0.001). A rabbit antiserum to the rat liver plasma membrane (LPM)-BSP/bilirubin binding protein selectively reduced V0 of 5 microM [35S]BSP and [14C]bilirubin by 41 and 42%, respectively (P less than 0.01); uptakes of [3H]oleate, [3H]cholate and [3H]taurocholate were not affected. Hence, the LPM-BSP/bilirubin binding protein plays a role in the carrier-mediated uptake of BSP and bilirubin by hepatocytes. PMID:3745441

  17. Metabolism of bilirubin by human cytochrome P450 2A6

    SciTech Connect

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2

  18. Revalidation and rationale for high pKa values of unconjugated bilirubin

    PubMed Central

    Ostrow, J Donald; Mukerjee, Pasupati

    2007-01-01

    Background Our prior solvent partition analysis, published in 1992, yielded pKa values for unconjugated bilirubin of about 8.1 and 8.4, but these results have been challenged and studies by other methods have suggested pKa values below 5.0. Methods We repeated our published solvent partition studies, using 14C-unconjugated bilirubin highly purified by extraction of residual labeled impurities from CHCl3 into an aqueous buffer, pH 7.0. Partition ratios at six pH values from 5.0 to 9.0 were determined by radioassay and compared with our prior values obtained by diazo assay. Results At pH values ranging from 4.8 to 9.2, stable aqueous/chloroform 14C-partition ratios did not differ significantly from our published partition ratios based on diazo assay. Conclusion These results support the high pKa values of unconjugated bilirubin, above 8.0, derived from our earlier solvent partition study. In both studies, our measurements were based on the rapid analysis of clearly under-saturated solutions of highly-purified bilirubin over a wide pH range, using properly purified and preserved solvents. No previous direct estimate of the aqueous pKa values of unconjugated bilirubin meets all these preconditions. Three theoretical factors acting in combination, each related to the unique, extensive internal H-bonding of the -COOH groups, are proposed to support high pKa values of unconjugated bilirubin in water: a) donation of an H-bond from the -OH moiety of the -COOH group, which is broken on ionization; b) hindered solvation of the -COO- group after ionization; and c) restricted rotation of the -COO- and -COOH groups. Our findings and rationale rebut methodological and theoretical criticisms leveled against our prior work. High pKa values for unconjugated bilirubin dictate that: a) bilirubin diacid, which readily diffuses across membranes and can cause neurotoxicity, is the dominant unbound bilirubin species of unconjugated bilirubin in plasma at physiological pH; b) at the near

  19. Hepatic bilirubin UDP-glucuronyltransferase in patients with sickle cell anemia.

    PubMed

    Maddrey, W C; Cukier, J O; Maglalang, A C; Boitnott, J K; Odell, G B

    1978-02-01

    In sickle cell anemia the shortened survival of red blood cells presents the liver with an augmented load of bilirubin for hepatic clearance. To determine the effects of this excessive bilirubin load on the microsomal conjugating enzyme, hepatic bilirubin UDP-glucuronyltransferase, levels of this enzyme were measured in liver biopsies from patients with sickle cell anemia and several comparison groups. UDP-glucuronyltransferase activity in 14 patients with sickle cell anemia was 2-fold greater (P less than 0.005) than in 14 nonjaundiced comparison patients without liver disease. The elevated UDP-glucuronyltransferase activity in sickle cell anemia was similar to that found in 10 patients who chronically ingested drugs (barbiturates or estrogens) known to increase UDP-glucuronyltransferase activity. These observations suggest enhanced conjugation of bilirubin in patients with sickle cell anemia may result from substrate (bilirubin) induction of UDP-glycuronyltransferase. PMID:413760

  20. Metabolism of heme and bilirubin in rat and human small intestinal mucosa.

    PubMed Central

    Hartmann, F; Bissell, D M

    1982-01-01

    Formation of heme, bilirubin, and bilirubin conjugates has been examined in mucosal cells isolated from the rat upper small intestine. Intact, viable cells were prepared by enzymatic dissociation using a combined vascular and luminal perfusion and incubated with an isotopically labeled precursor, delta-amino-[2,3-3H]levulinic acid. Labeled heme and bile pigment were formed with kinetics similar to those exhibited by hepatocytes. Moreover, the newly formed bilirubin was converted rapidly to both mono- and diglucuronide conjugates. In addition, cell-free extracts of small intestinal mucosa from rats or humans exhibited a bilirubin-UDP-glucuronyl transferase activity that was qualitatively similar to that present in liver. The data suggest that the small intestinal mucosa normally contributes to bilirubin metabolism. PMID:6806320

  1. Comparison of transcutaneous and total serum bilirubin measurement in Turkish newborns.

    PubMed

    Şimşek, Fatih Mehmet; Narter, Fatma; Ergüven, Müferet

    2014-01-01

    Severe neonatal hyperbilirubinemia can be prevented by screening for neonatal jaundice. Transcutaneous bilirubin (TcB) measurement is a noninvasive method for screening neonates. The aim of this study was to examine the correlation between TcB measurement (using the JM-103 bilirubinometer) and total serum bilirubin (TSB) measurement. To our knowledge, this is the first study evaluating the usefulness of the JM-103 bilirubinometer in Turkish neonates. Two hundred and fifty healthy infants in our well-baby nurseries and follow-up clinic with a gestational age of ≥36 weeks who were ≤15 days old were enrolled in this study. TcB measurements were taken usinng the JM-103; almost simultaneously, TSB was checked using a spectrophotometric method. The mean±SD TSB level was 11.2±4.6 mg/dl (range, 0.9-27.0 mg/dl); 17.2% of cases had TSB>15 mg/dl. There was good correlation between transcutaneous bilirubin and total serum bilirubin measurements (Pearson's correlation coefficient 0.87 for TcB from the forehead, 0.88 for TcB from the sternum; p<0.001). The transcutaneous bilirubin measurement tended to underestimate the value with increasing discrepancy at higher TSB values. The mean difference between serum bilirubin and transcutaneous (from the sternum and forehead) bilirubin values was significantly lower in cases not requiring phototherapy than in those requiring phototherapy [2.6 mg/dl (sternum) vs 4.8 mg/dl, 2.9 mg/dl (forehead) vs. 5.2 mg/dl, respectively; p<0.001] Although the JM-103 bilirubinometer tends to underestimate serum bilirubin, especially in patients with high bilirubin levels, it is a suitable screening tool to identify jaundiced infants that require a serum bilirubin check and may reduce the need for TSB measurements. PMID:26388591

  2. Activity of glucose oxidase functionalized onto magnetic nanoparticles

    PubMed Central

    Kouassi, Gilles K; Irudayaraj, Joseph; McCarty, Gregory

    2005-01-01

    Background Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. Methods Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. Results The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles Conclusion Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications PMID:15762994

  3. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  4. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  5. Outward Bound.

    ERIC Educational Resources Information Center

    Outward Bound, Inc., Andover, MA.

    The Outward Bound concept was developed in Germany and Great Britain with the saving of human life as the ultimate goal. Courses are designed to help students discover their true physical and mental limits through development of skills including emergency medical aid, firefighting, search and rescue, mountaineering, and sailing. Five Outward Bound…

  6. Enterohepatic circulation of nonconjugated bilirubin in rats fed with human milk

    SciTech Connect

    Alonso, E.M.; Whitington, P.F.; Whitington, S.H.; Rivard, W.A.; Given, G. )

    1991-03-01

    To test the hypothesis that enhanced intestinal absorption of bilirubin may contribute to prolonged nonconjugated hyperbilirubinemia in human milk-fed infants, we studied a cross-section of 36 healthy infants and mothers. Milk from mothers and serum from infants were collected at 16.3 +/- 2.4 days. Milk was studied for its effect on the absorption of bilirubin labeled with carbon 14 in rats and compared with buffer and iron-fortified infant formula (Similac With Iron). The percentage of a 1 mg bilirubin dose absorbed by the rat was 25.29 +/- 4.0% when it was administered into the duodenum with buffer, 4.67 +/- 2.4% with Similac formula, and 7.7 +/- 2.9% with human milk. Linear regression analysis, using the infant's serum nonconjugated bilirubin level as the dependent variable and the percentage of (14C)bilirubin absorbed by the rat with the corresponding mother's milk as the independent variable, revealed a significant correlation (r = 0.40; p = 0.016). Inspection of the data suggested that absorptive permissiveness correlated closely with infant serum bilirubin values greater than 24 mumol/L (1.4 mg/dl) (r = 0.55; p = 0.007), whereas in those with bilirubin values less than or equal to 24 mumol/L, there was no apparent correlation. Milk was also analyzed for beta-glucuronidase, nonesterified fatty acids, and the ability to inhibit glucuronosyltransferase activity of rat liver microsomes in vitro, none of which correlated with the infant's serum bilirubin. These data support the theory that enhanced intestinal absorption of bilirubin contributes to the jaundice associated with breast-feeding.

  7. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6.

    PubMed

    Hu, Hao; Yu, Ting; Arpiainen, Satu; Lang, Matti A; Hakkola, Jukka; Abu-Bakar, A'edah

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. PMID:26343999

  8. The alternative oxidases: simple oxidoreductase proteins with complex functions.

    PubMed

    Young, Luke; Shiba, Tomoo; Harada, Shigeharu; Kita, Kiyoshi; Albury, Mary S; Moore, Anthony L

    2013-10-01

    The alternative oxidases are membrane-bound monotopic terminal electron transport proteins found in all plants and in some agrochemically important fungi and parasites including Trypansoma brucei, which is the causative agent of trypanosomiasis. They are integral membrane proteins and reduce oxygen to water in a four electron process. The recent elucidation of the crystal structure of the trypanosomal alternative oxidase at 2.85 Å (1 Å=0.1 nm) has revealed salient structural features necessary for its function. In the present review we compare the primary and secondary ligation spheres of the alternative oxidases with other di-iron carboxylate proteins and propose a mechanism for the reduction of oxygen to water. PMID:24059524

  9. Bilirubin as a Determinant for Altered Neurogenesis, Neuritogenesis, and Synaptogenesis

    PubMed Central

    Fernandes, Adelaide; Falcão, Ana Sofia; Abranches, Elsa; Bekman, Evguenia; Henrique, Domingos; Lanier, Lorene M.; Brites, Dora

    2009-01-01

    Elevated levels of serum unconjugated bilirubin (UCB) in the first weeks of life may lead to long-term neurologic impairment. We previously reported that an early exposure of developing neurons to UCB, in conditions mimicking moderate to severe neonatal jaundice, leads to neuritic atrophy and cell death. Here, we have further analyzed the effect of UCB on nerve cell differentiation and neuronal development, addressing how UCB may affect the viability of undifferentiated neural precursor cells and their fate decisions, as well as the development of hippocampal neurons in terms of dendritic and axonal elongation and branching, the axonal growth cone morphology, and the establishment of dendritic spines and synapses. Our results indicate that UCB reduces the viability of proliferating neural precursors, decreases neurogenesis without affecting astrogliogenesis, and increases cellular dysfunction in differentiating cells. In addition, an early exposure of neurons to UCB decreases the number of dendritic and axonal branches at 3 and 9 days in vitro (DIV), and a higher number of neurons showed a smaller growth cone area. UCB-treated neurons also reveal a decreased density of dendritic spines and synapses at 21 DIV. Such deleterious role of UCB in neuronal differentiation, development, and plasticity may compromise the performance of the brain in later life. PMID:19449315

  10. Crystallization of Mitochondrial Cytochrome Oxidase

    NASA Astrophysics Data System (ADS)

    Ozawa, Takayuki; Tanaka, Masashi; Wakabayashi, Takashi

    1982-12-01

    Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) was purified from beef heart mitochondria. By washing the oxidase with detergent on a hydrophobic interaction column, phospholipids were depleted to the level of 1 mol of cardiolipin per mol of heme a. Hydrophobic impurities and partially denatured oxidase were separated from the intact oxidase on an affinity column with cytochrome c as the specific ligand. The final preparation of the oxidase contained seven distinct polypeptides. The molecular weight of the oxidase was estimated to be 130,000 from its specific heme a and copper content and from the subunit composition. Crystals of the oxidase were obtained by slow removal of the detergent from the buffer in which the oxidase was dissolved. The needle-shaped crystals were 100 μ m in average length and 5 μ m in width, and they strongly polarized visible light. Electron diffraction patterns were obtained with an unstained glutaraldehyde-fixed single crystal by electron microscopy using 1,000-kV electrons. From electron micrographs and the diffraction patterns of the crystal, it was concluded that the crystal is monoclinic in the space group P21, with unit cell dimensions a = 92 angstrom, b = 84 angstrom, and c = 103 angstrom, and α =β 90 degrees, γ = 126 degrees.

  11. Solvation and crystal effects in bilirubin studied by NMR spectroscopy and density functional theory.

    PubMed

    Rohmer, Thierry; Matysik, Jörg; Mark, Franz

    2011-10-27

    The open-chain tetrapyrrole compound bilirubin was investigated in chloroform and dimethyl sulfoxide solutions by liquid-state NMR and as solid by (1)H, (13)C, and (15)N magic-angle spinning (MAS) solid-state NMR spectroscopy. Density functional theory (DFT) calculations were performed to interpret the data, using the B3LYP exchange-correlation functional to optimize geometries and to compute NMR chemical shieldings by the gauge-including atomic orbital method. The dependence of geometries and chemical shieldings on the size of the basis sets was investigated for the reference molecules tetramethylsilane, NH(3), and H(2)O, and for bilirubin as a monomer and in clusters consisting of up to six molecules. In order to assess the intrinsic errors of the B3LYP approximation in calculating NMR shieldings, complete basis set estimates were obtained for the nuclear shielding values of the reference molecules. The experimental liquid-state NMR data of bilirubin are well reproduced by a monomeric bilirubin molecule using the 6-311+G(2d,p) basis set for geometry optimization and for calculating chemical shieldings. To simulate the bilirubin crystal, a hexameric model was required. It was constructed from geometry-optimized monomers using information from the X-ray structure of bilirubin to fix the monomeric entities in space and refined by partial optimization. Combining experimental (1)H-(13)C and (1)H-(15)N NMR correlation spectroscopy and density functional theory, almost complete sets of (1)H, (13)C, and (15)N chemical shift assignments were obtained for both liquid and solid states. It is shown that monomeric bilirubin in chloroform solution is formed by 3-vinyl anti conformers, while bilirubin crystals are formed by 3-vinyl syn conformers. This conformational change leads to characteristic differences between the liquid- and solid-state NMR resonances. PMID:21846145

  12. Association of Serum Bilirubin with SYNTAX Score and Future Cardiovascular Events in Patients Undergoing Coronary Intervention

    PubMed Central

    Chang, Chun-Chin; Hsu, Chien-Yi; Huang, Po-Hsun; Chiang, Chia-Hung; Huang, Shao-Sung; Leu, Hsin-Bang; Huang, Chin-Chou; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Background Bilirubin has emerged as an important endogenous antioxidant molecule, and increasing evidence shows that bilirubin may protect against atherosclerosis. The SYNTAX score has been developed to assess the severity and complexity of coronary artery disease. The aim of this study was to evaluate whether serum bilirubin levels are associated with SYNTAX scores and whether they could be used to predict future cardiovascular events in patients undergoing coronary intervention. Methods Serum bilirubin levels and other blood parameters in patients with at least 12-h fasting states were determined. The primary endpoint was any composite cardiovascular event within 1 year, including death, nonfatal myocardial infarction, and target-vessel revascularization. Results In total, 250 consecutive patients with stable coronary artery disease (mean age 70 ± 13) who had received coronary intervention were enrolled. All study subjects were divided into two groups: group 1 was defined as high SYNTAX score (> 22), and group 2 was defined as low SYNTAX score (≤ 22). Total bilirubin levels were significantly lower in the high SYNTAX score group than in the low SYNTAX score group (0.51 ± 0.22 vs. 0.72 ± 0.29 mg/dl, p < 0.001). By multivariate analysis, serum total bilirubin levels were identified as an independent predictor for high SYNTAX score (adjusted odds ratio: 0.28, 95% confidence interval 0.04-0.42; p = 0.004). Use of the Kaplan-Meier analysis demonstrated a significant difference in 1-year cardiovascular events between high (> 0.8 mg/dl), medium (> 0.5, ≤ 0.8 mg/dl), and low (≤ 0.5 mg/dl) bilirubin levels (log-rank test p = 0.011). Conclusions Serum bilirubin level is associated with SYNTAX score and predicts future cardiovascular events in patients undergoing coronary intervention. PMID:27471354

  13. Bilirubin as a potential causal factor in type 2 diabetes risk: a Mendelian randomization study

    PubMed Central

    Abbasi, Ali; Deetman, Petronella E.; Corpeleijn, Eva; Gansevoort, Ron T.; Gans, Rijk O.B.; Hillege, Hans L.; van der Harst, Pim; Stolk, Ronald P.; Navis, Gerjan; Alizadeh, Behrooz Z.; Bakker, Stephan J.L.

    2014-01-01

    Circulating bilirubin, a natural antioxidant, is associated with decreased risk of type 2 diabetes (T2D), but the nature of the relationship remains unknown. We performed Mendelian randomization in a prospective cohort of 3,381 participants free of diabetes at baseline (aged 28-75 years; women, 52.6%). We used rs6742078 located in UDP-glucuronosyltransferase (UGT1A1) locus as instrumental variable (IV) to study a potential causal effect of serum total bilirubin on T2D risk. T2D developed in a total of 210 (6.2%) participants during a median follow-up of 7.8 years. In adjusted analyses, rs6742078, which explained 19.5% of bilirubin variation, was strongly associated with total bilirubin (a 0.68-SD increase in bilirubin levels per T allele; P<1×10−122) and was also associated with T2D risk (OR 0.69 [95%CI, 0.54-0.90]; P=0.006). Per 1-SD increase in log-transformed bilirubin levels, we observed a 25% (OR 0.75 [95%CI, 0.62-0.92]; P=0.004) lower risk of T2D. In Mendelian randomization analysis, the causal risk reduction for T2D was estimated to be 42% (causal ORIVestimation per 1-SD increase in log-transformed bilirubin 0.58 [95%CI, 0.39-0.84]; P=0.005), which was comparable to the observational estimate (Durbin-Wu-Hausman chi-square test Pfor difference =0.19). These novel results provide evidence that elevated bilirubin is causally associated with risk of T2D and support its role as a protective determinant. PMID:25368098

  14. The origins and kinetics of bilirubin in dogs with hepatobiliary and haemolytic diseases.

    PubMed

    Rothuizen, J; van den Brom, W E; Fevery, J

    1992-05-01

    In 35 dogs with spontaneous hepatobiliary liver disease the kinetics and the sources of bilirubin were quantified. The disorders were extrahepatic bile duct obstruction (n = 4), fulminant hepatitis (n = 2), (sub)acute hepatitis (n = 5), chronic active hepatitis (CAH) with cirrhosis (n = 6), hepatic lymphosarcoma (n = 5), centrizonal necrosis secondary to haemolytic anaemia (n = 6) and other (n = 2). The plasma disappearance of [3H]bilirubin was analyzed with a two-compartment model in all dogs. The ratio early labeled/late labeled bilirubin was determined by measuring the incorporation of [14C]glycine into erythrocyte haem and faecal stercobilin. By introducing this relation in the model analysis the bilirubin production rates from erythrocyte destruction (PE), ineffective erythropoiesis (PI) and hepatic haemoprotein (PL) could be quantified. Total bilirubin turnover was increased in both primary haemolytic disease and most cases of hepatobiliary disease. Erythrocyte survival was reduced in all cases but one. The bilirubin clearance was impaired to 30-50% of the normal value in most cases of hepatobiliary disease and also in primary haemolysis. In dogs with fulminant hepatitis, and cirrhosis with or without CAH, the clearance rates were reduced to values below 15% of normal. In these dogs both an impaired clearance and an increased production were important determinants of hyperbilirubinaemia. In other cases plasma bilirubin was primarily determined by increased production. These clearances and production rates were similar in haemolysis and in many cases of primary hepatobiliary disease. The hepatic haemoprotein turnover was quite variable in all subgroups, ranging from 1-74% of the total bilirubin turnover.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1506635

  15. Extended mathematical model for "in vivo" quantification of the interaction betweeen atazanavir and bilirubin.

    PubMed

    Lozano, Roberto; Domeque, Nieves; Apesteguia, Alberto-Fermín

    2014-02-01

    The objective of the present work was to conduct an "in vivo" analysis of the atazanavir-bilirubin interaction. We developed a new mathematical approach to PK/PDPK models for competitive interaction based on the Michaelis-Menten equation, which was applied to patients with polymorphisms in the gene for UDP-glucuronosyltransferase 1A1 (UGT1A1). Atazanavir is known to induce concentration-dependent increases in bilirubin plasma levels. Thus, we employed our mathematical model to analyse rises in steady state atazanavir and bilirubin concentrations, ultimately plotting a nomogram for detection of suboptimal atazanavir exposure. Application of our model revealed that an absolute value or a steady state increase in bilirubin falling below 3.8Φ µmol/L (where Φ is a correction factor, =1 for UGT1A1 wild type and ≠1 for UGT1A1 variants) could be used to predict suboptimal atazanavir exposure and treatment failure. Thus, we have successfully established a new mathematical approach for pharmacodynamic-pharmacokinetic modelling of the interaction between atazanavir and bilirubin, as it relates to genetic variants of UGT1A1. Taken together, our findings indicate that bilirubin plasma levels represent a valuable marker of atazanavir exposure. PMID:24243081

  16. Quantitative assessment of the multiple processes responsible for bilirubin homeostasis in health and disease

    PubMed Central

    Levitt, David G; Levitt, Michael D

    2014-01-01

    Serum bilirubin measurements are commonly obtained for the evaluation of ill patients and to screen for liver disease in routine physical exams. An enormous research effort has identified the multiple mechanisms involved in the production and metabolism of conjugated (CB) and unconjugated bilirubin (UB). While the qualitative effects of these mechanisms are well understood, their expected quantitative influence on serum bilirubin homeostasis has received less attention. In this review, each of the steps involved in bilirubin production, metabolism, hepatic cell uptake, and excretion is quantitatively examined. We then attempt to predict the expected effect of normal and defective function on serum UB and CB levels in health and disease states including hemolysis, extra- and intrahepatic cholestasis, hepatocellular diseases (eg, cirrhosis, hepatitis), and various congenital defects in bilirubin conjugation and secretion (eg, Gilbert’s, Dubin–Johnson, Crigler–Najjar, Rotor syndromes). Novel aspects of this review include: 1) quantitative estimates of the free and total UB and CB in the plasma, hepatocyte, and bile; 2) detailed discussion of the important implications of the recently recognized role of the hepatic OATP transporters in the maintenance of CB homeostasis; 3) discussion of the differences between the standard diazo assay versus chromatographic measurement of CB and UB; 4) pharmacokinetic implications of the extremely high-affinity albumin binding of UB; 5) role of the enterohepatic circulation in physiologic jaundice of newborn and fasting hyperbilirubinemia; and 6) insights concerning the clinical interpretation of bilirubin measurements. PMID:25214800

  17. Surface-modified anodic aluminum oxide membrane with hydroxyethyl celluloses as a matrix for bilirubin removal.

    PubMed

    Xue, Maoqiang; Ling, Yisheng; Wu, Guisen; Liu, Xin; Ge, Dongtao; Shi, Wei

    2013-01-01

    Microporous anodic aluminum oxide (AAO) membranes were modified by 3-glycidoxypropyltrimethoxysilane to produce terminal epoxy groups. These were used to covalently link hydroxyethyl celluloses (HEC) to amplify reactive groups of AAO membrane. The hydroxyl groups of HEC-AAO composite membrane were further modified with 1,4-butanediol diglycidyl ether to link arginine as an affinity ligand. The contents of HEC and arginine of arginine-immobilized HEC-AAO membrane were 52.1 and 19.7mg/g membrane, respectively. As biomedical adsorbents, the arginine-immobilized HEC-AAO membranes were tested for bilirubin removal. The non-specific bilirubin adsorption on the unmodified HEC-AAO composite membranes was 0.8mg/g membrane. Higher bilirubin adsorption values, up to 52.6mg/g membrane, were obtained with the arginine-immobilized HEC-AAO membranes. Elution of bilirubin showed desorption ratio was up to 85% using 0.3M NaSCN solution as the desorption agent. Comparisons equilibrium and dynamic capacities showed that dynamic capacities were lower than the equilibrium capacities. In addition, the adsorption mechanism of bilirubin and the effects of temperature, initial concentration of bilirubin, albumin concentration and ionic strength on adsorption were also investigated. PMID:23290920

  18. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2010-03-01

    An impairment of glucose-stimulated insulin secretion--reflecting decreased glucokinase expression--and a moderate decrease in beta cell mass attributable to increased apoptosis, constitute the key features of beta cell failure in type 2 diabetes. Oxidative stress, provoked by prolonged exposure to excessive levels of glucose and/or fatty acids (glucolipotoxicity), appears to be a key mediator of these defects. Oxidant-provoked JNK activation induces nuclear export of the PDX-1 transcription factor, required for expression of glucokinase and other beta cell proteins. Conversely, increases in cAMP induced by incretin hormones promote the nuclear importation of PDX-1, counteracting the diabetogenic impact of oxidant stress; this may explain the utility of measures that slow dietary carbohydrate absorption for diabetes prevention. The ability of oxidative stress to boost apoptosis in beta cells is poorly understood, but may also entail JNK activation. Recent work establishes a phagocyte-type NADPH oxidase as the chief source of glucotoxicity-mediated oxidative stress in beta cells. Since bilirubin is now known to function physiologically as an inhibitor of NADPH oxidase, and phycocyanobilin (PCB) derived from spirulina likewise can inhibit this enzyme complex, supplemental PCB may have utility in the prevention and control of diabetes, and Gilbert syndrome, associated with chronically elevated free bilirubin, may be associated with decreased diabetes risk. PMID:19576699

  19. Bilirubin scavenges chloramines and inhibits myeloperoxidase-induced protein/lipid oxidation in physiologically relevant hyperbilirubinemic serum.

    PubMed

    Boon, A C; Hawkins, C L; Coombes, J S; Wagner, K H; Bulmer, A C

    2015-09-01

    Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl(-) oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl(-) to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl(-)-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9-125µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl. PMID:26057938

  20. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  1. Development of a System Model for Non-Invasive Quantification of Bilirubin in Jaundice Patients

    NASA Astrophysics Data System (ADS)

    Alla, Suresh K.

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. Excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. An optical system integrated with a signal processing system is used as a platform to noninvasively quantify bilirubin concentration through the measurement of diffuse skin reflectance. Initial studies have lead to the generation of a clinical analytical model for neonatal jaundice which generates spectral reflectance data for jaundiced skin with varying levels of bilirubin concentration in the tissue. The spectral database built using the clinical analytical model is then used as a test database to validate the signal processing system in real time. This evaluation forms the basis for understanding the translation of this research to human trials. The clinical analytical model and signal processing system have been successful validated on three spectral databases. First spectral database is constructed using a porcine model as a surrogate for neonatal skin tissue. Samples of pig skin were soaked in bilirubin solutions of varying concentrations to simulate jaundice skin conditions. The resulting skins samples were analyzed with our skin reflectance systems producing bilirubin concentration values that show a high correlation (R2 = 0.94) to concentration of the bilirubin solution that each porcine tissue sample is soaked in. The second spectral database is the spectral measurements collected on human volunteers to quantify the different chromophores and other physical properties of the tissue such a Hematocrit, Hemoglobin etc. The third spectral database is the spectral data collected at different time periods from the moment a bruise is induced.

  2. Dexmedetomidine Attenuates Bilirubin-Induced Lung Alveolar Epithelial Cell Death In Vitro and In Vivo*

    PubMed Central

    Cui, Jian; Zhao, Hailin; Yi, Bin; Zeng, Jing; Lu, Kaizhi

    2015-01-01

    Objective: To investigate bilirubin-induced lung alveolar epithelial cell injury together with the protection afforded by dexmedetomidine. Design: Prospective, randomized, controlled study. Setting: Research laboratory. Subjects: Sprague Dawley rats. Interventions: Alveolar epithelial A549 cell lines were cultured and received bilirubin (from 0 to 160 μM) to explore the protective pathway of dexmedetomidine on bilirubin-induced alveolar epithelial cell injury assessed by immunochemistry and flow cytometry. Sprague-Dawley rats were subjected to common bile duct ligation surgery to explore the protective effect of dexmedetomidine on hyperbilirubinemia-induced alveolar epithelial cell injury and respiratory failure in comparison with the Sham (subjected to the surgery procedure but without bile duct ligation) or dexmedetomidine control (only received intraperitoneal injection of dexmedetomidine). Measurements and Main Results: In vitro, dexmedetomidine reversed the collapse of mitochondrial membrane potential (Δψm), upregulation of cytochrome C, B cell leukemia 2 associated X protein, and cleaved-caspase 3 and 9 in A549 epithelial cells with bilirubin challenge. Furthermore, dexmedetomidine reversed the arrest of cell cycle and the downregulation of the transforming growth factorβ, phosphorylated mammalian target of rapamycin, and p42/44 mitogen-activated protein kinase induced by bilirubin. In vivo, pulmonary edema and inflammation were found after common bile duct ligation. Bilirubin and Paco2 were significantly increased, and oxygen (Pao2) was significantly decreased in the blood of common bile duct ligation rats from the postsurgery day 7 to day 21 when compared with those in the sham controls, respectively (p < 0.01). Daily intraperitoneal injection of dexmedetomidine significantly alleviated the lung edema and injury and prevented respiratory failure. Conclusion: Our data both in vitro and in vivo demonstrated that dexmedetomidine protected alveolar

  3. Serum total bilirubin levels and coronary heart disease--Causal association or epiphenomenon?

    PubMed

    Kunutsor, Setor K

    2015-12-01

    Observational epidemiological evidence supports a linear inverse and independent association between serum total bilirubin levels and coronary heart disease (CHD) risk, but whether this association is causal remains to be ascertained. A Mendelian randomization approach was employed to test whether serum total bilirubin is causally linked to CHD. The genetic variant rs6742078--well known to specifically modify levels of serum total bilirubin and accounting for up to 20% of the variance in circulating serum total bilirubin levels--was used as an instrumental variable. In pooled analysis of estimates reported from published genome-wide association studies, every copy of the T allele of rs6742078 was associated with 0.42 standard deviation (SD) higher levels of serum total bilirubin (95% confidence interval, 0.40 to 0.43). Based on combined data from the Coronary Artery Disease Genome wide Replication and Meta-analyses and the Coronary Artery Disease (C4D) Genetics Consortium involving a total of 36,763 CHD cases and 76,997 controls, the odds ratio for CHD per copy of the T allele was 1.01 (95% confidence interval, 0.99 to 1.04). The odds ratio of CHD for a 1 SD genetically elevated serum total bilirubin level was 1.03 (95% confidence interval, 0.98 to 1.09). The current findings casts doubt on a strong causal association of serum total bilirubin levels with CHD. The inverse associations demonstrated in observational studies may be driven by biases such as unmeasured confounding and/or reverse causation. However, further research in large-scale consortia is needed. PMID:26408227

  4. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    PubMed

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients. PMID:26679676

  5. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects.

    PubMed

    Zhao, Mouming; Zhu, Dashuai; Sun-Waterhouse, Dongxiao; Su, Guowan; Lin, Lianzhu; Wang, Xiao; Dong, Yi

    2014-08-01

    This study aimed to explore the potential of polished adlay, brown adlay, adlay bran, and adlay hull to prevent and treat hyperuricemia. Brown adlay extract effectively decreased the serum uric acid levels of oxonate-induced hyperuricemic rats. Free and bound phenolic extracts from these materials contained significant amounts of phenolics, with free phenolics dominated by chlorogenic acid and p-coumaric acid while bound phenolics dominated by p-coumaric acid and ferulic acid. Free and bound phenolics of adlay bran exhibited significant xanthine oxidase inhibition activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical absorbance capacities, and superoxide radical scavenging activities. Adlay bran phenolics could be effective xanthine oxidase inhibitors and radical scavengers. p-Coumaric acid is a xanthine oxidase inhibitor with strong superoxide radical scavenging activity. However, ferulic acid is a xanthine oxidase inhibitor with weak superoxide radical scavenging activity. Chlorogenic acid is a superoxide radical scavenger with weak xanthine oxidase inhibitory activity. PMID:25029106

  6. A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

    PubMed Central

    Milton, Jacqueline N.; Sebastiani, Paola; Solovieff, Nadia; Hartley, Stephen W.; Bhatnagar, Pallav; Arking, Dan E.; Dworkis, Daniel A.; Casella, James F.; Barron-Casella, Emily; Bean, Christopher J.; Hooper, W. Craig; DeBaun, Michael R.; Garrett, Melanie E.; Soldano, Karen; Telen, Marilyn J.; Ashley-Koch, Allison; Gladwin, Mark T.; Baldwin, Clinton T.; Steinberg, Martin H.; Klings, Elizabeth S.

    2012-01-01

    Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities. PMID:22558097

  7. Physiological Antioxidative Network of the Bilirubin System in Aging and Age-Related Diseases

    PubMed Central

    Kim, Sung Young; Park, Sang Chul

    2012-01-01

    Oxidative stress is detrimental to life process and is particularly responsible for aging and age-related diseases. Thus, most organisms are well equipped with a spectrum of biological defense mechanisms against oxidative stress. The major efficient antioxidative mechanism is the glutathione system, operating a redox cycling mechanism for glutathione utilization, which consists of glutathione and its peroxidase and reductase. However, this system is mainly effective for hydrophilic oxidants, while lipophilic oxidants require another scavenging system. Since many age-related pathological conditions are related to lipid peroxidation, especially in association with the aging process, the physiological role of the scavenging system for lipophilic oxidants should be considered. In this regard, the biliverdin to bilirubin conversion pathway, via biliverdin reductase (BVR), is suggested to be another major protective mechanism that scavenges lipophilic oxidants because of the lipophilic nature of bilirubin. The efficiency of this bilirubin system might be potentiated by operation of the intertwined bicyclic systems of the suggested redox metabolic cycle of biliverdin and bilirubin and the interactive control cycle of BVR and heme oxygenase. In order to combat oxidative stress, both antioxidative systems against hydrophilic and lipophilic oxidants are required to work cooperatively. In this regard, the roles of the bilirubin system in aging and age-related diseases are reassessed in this review, and their interacting networks are evaluated. PMID:22457648

  8. Potential Cardiovascular Risk Protection of Bilirubin in End-Stage Renal Disease Patients under Hemodialysis

    PubMed Central

    do Sameiro-Faria, Maria; Kohlova, Michaela; Ribeiro, Sandra; Rocha-Pereira, Petronila; Teixeira, Laetitia; Nascimento, Henrique; Reis, Flávio; Miranda, Vasco; Bronze-da-Rocha, Elsa; Quintanilha, Alexandre; Belo, Luís; Costa, Elísio; Santos-Silva, Alice

    2014-01-01

    We evaluated the potential cardiovascular risk protection of bilirubin in hemodialysis (HD) patients. An enlarged set of studies were evaluated in 191 HD patients, including hematological study, lipid profile, iron metabolism, nutritional, inflammatory markers, and dialysis adequacy. The TA duplication screening in the UDP-glucuronosyltransferase 1 A1 (UGT1A1) promoter region was also performed. The UGT1A1 genotype frequencies in HD patients were 49.2%, 42.4%, and 8.4% for 6/6, 6/7, and 7/7 genotypes, respectively. Although no difference was found in UGT1A1 genotype distribution between the three tertiles of bilirubin, significant differences were found with increasing bilirubin levels, namely, a decrease in platelet, leukocyte, and lymphocyte counts, transferrin, oxidized low-density lipoprotein (ox-LDL), ox-LDL/low-density lipoprotein cholesterol ratio, apolipoprotein (Apo) A, Apo B, and interleukin-6 serum levels and a significant increased concentration of hemoglobin, hematocrit, erythrocyte count, iron, transferrin saturation, Apo A/Apo B ratio, adiponectin, and paraoxonase 1 serum levels. After adjustment for age these results remained significant. Our data suggest that higher bilirubin levels are associated with beneficial effects in HD patients, by improving lipid profile and reducing the inflammatory grade, which might contribute to increase in iron availability. These results suggest a potential cardiovascular risk protection of bilirubin in HD patients. PMID:25276769

  9. Pro-healing effects of bilirubin in open excision wound model in rats.

    PubMed

    Ahanger, Azad A; Leo, Marie D; Gopal, Anu; Kant, Vinay; Tandan, Surendra K; Kumar, Dinesh

    2016-06-01

    Bilirubin, a by-product of heme degradation, has an important role in cellular protection. Therefore, we speculated that bilirubin could be of potential therapeutic value in wound healing. To validate the hypothesis, we used a full-thickness cutaneous wound model in rats. Bilirubin (30 mg/kg) was administered intraperitoneally every day for 9 days. The surface area of the wound was measured on days 0, 2, 4, 7 and 10 after the creation of the wound. The granulation tissue was collected on day 10 post-wounding for analysing various parameters of wound healing. Bilirubin treatment accelerated wound contraction and increased hydroxyproline and glucosamine contents. mRNA expression of pro-inflammatory factors such as intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) were down-regulated and that of anti-inflammatory cytokine interleukin-10 (IL-10) was up-regulated. The findings suggest that bilirubin could be a new agent for enhancing cutaneous wound healing. PMID:24947136

  10. Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.

    PubMed

    Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi

    2016-05-01

    Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit. PMID:26818600

  11. Bilirubin Levels and Thrombus Burden in Patients With ST-Segment Elevation Myocardial Infarction.

    PubMed

    Hamur, Hikmet; Duman, Hakan; Bakirci, Eftal Murat; Kucuksu, Zafer; Demirelli, Selami; Kalkan, Kamuran; Degirmenci, Husnu

    2016-07-01

    We investigated whether serum bilirubin level (a marker of heme oxygenase activity) is a predictor of thrombus burden in patients with acute myocardial infarction. Patients (n = 229; male 72.9%; mean age 63 ± 13.4 years) who were admitted with ST-segment elevation myocardial infarction (STEMI) were enrolled. Patients were divided into 2 groups. Group 1 was defined as low thrombus burden and group 2 was defined as high thrombus burden. Patients with high thrombus burden had higher total bilirubin levels (14.4 [4.3-22.9] vs 7.7 [2.4-20.3] µmol/L, P ≤ .001), (0.84 [0.25-1.34] vs 0.45 [0.14-1.19] mg/dL P ≤ .001) and direct bilirubin levels (3.1 [2.1-8.4] vs 1.7 [0.5-6.5] µmol/L, P ≤ .001), (0.18 [0.03-0.49] vs 0.10 [0.03-0.38] mg/dL, P ≤ .001). At multivariate analysis, total bilirubin (odds ratio: 1.05, 95% confidence interval: 1.03-1.08, P ≤ .001) was the independent predictor of high thrombus burden. In conclusion, total bilirubin level is independently associated with high thrombus burden in patients with STEMI. PMID:26339042

  12. Bilirubin Encephalopathy in a Domestic Shorthair Cat With Increased Osmotic Fragility and Cholangiohepatitis.

    PubMed

    Contreras, E T; Giger, U; Malmberg, J L; Quimby, J M; Schaffer, P A

    2016-05-01

    A 7-month-old female domestic shorthair cat was diagnosed with chronic regenerative hemolytic anemia characterized by increased osmotic fragility of unknown etiology. At 13 months of age, the cat was evaluated for acute collapse. The cat was icteric with severe hyperbilirubinemia but no hematocrit changes. Severe obtundation and lateral recumbency progressed to tetraparesis and loss of proprioception in all 4 limbs, and a cerebellar or brainstem lesion was suspected. Postmortem examination revealed suppurative cholangiohepatitis and acute neuronal necrosis in the nuclei of the brainstem and cerebellum, consistent with bilirubin encephalopathy. This is the first known occurrence of cholangiohepatitis and bilirubin encephalopathy in an adult cat with chronic hemolytic anemia. Although rare, bilirubin encephalopathy should be considered a possible sequela to hyperbilirubinemia in adult patients. It remains unknown whether increased osmotic fragility was related to the cholangiohepatopathy. PMID:26354310

  13. Neonatal bilirubin management as an implementation example of interdisciplinary continuum of care tools.

    PubMed

    Thornton, Sidney N; Thompson, Bryce S; Millar, Jean A; Eggert, Larry D; Wilcox, Adam B

    2007-01-01

    Management of newborn bilirubin spans the inpatient and outpatient continuum of care. Intermountain Healthcare has developed and implemented a web-based tool for managing bilirubin that follows newborn patients across care settings and providers with a consistent plan of care. The underlying model for the tool is derived from published guidelines. The model divides the time-sensitive data into risk zones and associates each zone with the appropriate order set for follow-up care. The tool integrates Intermountain's Help2 infrastructure for authoring terms, guidelines, and order sets, with alerts, results, and data entry within the context of the care model. Implementation of the bilirubin management tool is shown to improve communication, ease workflow, and improve guideline compliance. Lessons learned from the implementation include recommendations for handling point-of-care laboratory data and managing archival views, which are insightful to health networks managing longitudinal data. PMID:18693932

  14. Role of bilirubin overproduction in revealing Gilbert's syndrome: is dyserythropoiesis an important factor?

    PubMed Central

    Metreau, J M; Yvart, J; Dhumeaux, D; Berthelot, P

    1978-01-01

    Gilbert's syndrome was diagnosed in 37 patients with unconjugated hyperbilirubinaemia without overt haemolysis or structural liver abnormality, who had a marked reduction in hepatic bilirubin UDP-glucuronosyltransferase activity (B-GTA) (as compared with that of 23 normal subjects). No significant correlation existed in these patients between serum bilirubin level and the values of B-GTA, thus suggesting that factors other than a low B-GTA must influence the degree of hyperbilirubinaemia in Gilbert's syndrome. Studies of 51Cr erythrocyte survival and 59Fe kinetics in 10 unselected patients demonstrated slight haemolysis in eight, whereas mild ineffective erythropoiesis was suggested in all from a low 24-hour incorporation of radioactive iron into circulating red cells. This overproduction of bilirubin resulting from mild haemolysis and perhaps dyserythropoiesis might reflect only an extreme degree of the normal situation. It certainly contributes to the hyperbilirubinaemia of Gilbert's syndrome and may play a major role in the manifestation of this condition. PMID:101425

  15. Magnetic Resonance Imaging of Bilirubin Encephalopathy: Current Limitations and Future Promise

    PubMed Central

    Wisnowski, Jessica L.; Panigrahy, Ashok; Painter, Michael J.; Watchko, Jon F.

    2014-01-01

    Infants with chronic bilirubin encephalopathy often demonstrate abnormal bilateral, symmetric, high-signal intensity on T2-weighted magnetic resonance imaging of the globus pallidus and subthalamic nucleus, consistent with the neuropathology of kernicterus. Early magnetic resonance imaging of at risk infants, while frequently showing increased T1-signal in these regions, may give false positive findings due to the presence of myelin in these structures. Advanced magnetic resonance imaging including diffusion-weighted imaging, magnetic resonance spectroscopy, and diffusion tensor imaging with tractography may shed new insights into the pathogenesis of bilirubin-induced brain injury and the neural basis of long-term disability in infants and children with chronic bilirubin encephalopathy. PMID:25267277

  16. Sensitizing effect of Z,Z-bilirubin IXα and its photoproducts on enzymes in model solutions

    NASA Astrophysics Data System (ADS)

    Plavskii, V. Yu.; Mostovnikov, V. A.; Tret'yakova, A. I.; Mostovnikova, G. R.

    2008-05-01

    In model systems, we have studied side effects which may be induced by light during phototherapy of hyperbilirubinemia (jaundice) in newborn infants, with the aim of reducing the Z,Z-bilirubin IXα (Z,Z-BR IXα) level. We have shown that the sensitizing effect of Z,Z-BR IXα, localized at strong binding sites of the human serum albumin (HSA) macromolecule, is primarily directed at the amino acid residues of the carrier protein and does not involve the molecules of the enzyme (lactate dehydrogenase (LDH)) present in the buffer solution. The detected photodynamic damage to LDH is due to sensitization by bilirubin photoisomers, characterized by lower HSA association constants and located (in contrast to native Z,Z-BR IXα) on the surface of the HSA protein globule. Based on study of the spectral characteristics of the photoproducts of Z,Z-BR IXα and comparison of their accumulation kinetics in solution and the enzyme photo-inactivation kinetics, we concluded that the determining role in sensitized damage to LDH is played by lumirubin. The photosensitization effect depends on the wavelength of the radiation used for photoconversion of bilirubin. When (at the beginning of exposure) we make sure that identical numbers of photons are absorbed by the pigment in the different spectral ranges, the side effect is minimal for radiation corresponding to the long-wavelength edge of the bilirubin absorption band. We have shown that for a bilirubin/HSA concentration ratio >2 (when some of the pigment molecules are sorbed on the surface of the protein globule), the bilirubin can act as a photosensitizing agent for the enzyme present in solution. We discuss methods for reducing unfavorable side effects of light on the body of newborn infants during phototherapy of hyperbilirubinemia.

  17. Separation by thin-layer chromatography and structure elucidation of bilirubin conjugates isolated from dog bile.

    PubMed Central

    Heirwegh, K P; Fevery, J; Michiels, R; van Hees, G P; Compernolle, F

    1975-01-01

    1. A system for separation of bile pigments by t.l.c. and for their structure elucidation is presented. Separated bile pigments are characterized by t.l.c. of derived dipyrrolic azopigments. 2. At the tetrapyrrolic stage hydrolysis in strongly alkaline medium followed by t.l.c. demonstrates the presence of bilirubin-IIIalpha, -IXalpha and -XIIIalpha and allows assessment of their relative amounts. 3. Most structural information is derived from analysis of dipyrrolic azopigments. Such derivatives, obtained by treatment of separated bile pigments with diazotized ethyl anthranilate, were separated and purified by t.l.c. Micro methods showed (a) the nature of the dipyrrolic aglycone, (b) the nature of the bonds connecting aglycone to a conjugating group, (c) the ratio of vinyl/isovinyl isomers present in the aglycone and, (d) the nature of the conjugating groups (by suitable derivative formation and t.l.c. with reference to known compounds). 4. In bile of normal dogs at least 20 tetrapyrrolic, diazo-positive bile pigments could be recognized. Except for two pigments the tetrapyrrolic nucleus corresponded predominantly to bilirubin-IXalpha. All conjugated pigments had their conjugating groups connected in ester linkage to the tetrapyrrolic aglycone, Apart from bilirubin-IXalpha, monoconjugates and homogeneous and mixed diconjugates of bilirubin were demonstrated; conjugating groups of major importance were xylose, glucose and glucuronic acid. 5. Bilirubin isomer determination on native bile and isolated bile pigments, and dipyrrole-exchange assays with [14C8]bilirubin indicated (a) that the conjugates pre-exist in bile, and (b) that no significant dipyrrole exchange occurs during isolation of the pigments. PMID:1156357

  18. Reduction of bilirubin by targeting human heme oxygenase-1 through siRNA.

    PubMed

    Xia, Zhen-Wei; Li, Chun-E; Jin, You-Xin; Shi, Yi; Xu, Li-Qing; Zhong, Wen-Wei; Li, Yun-Zhu; Yu, Shan-Chang; Zhang, Zi-Li

    2007-04-01

    Neonatal hyperbilirubinemia is a common clinical condition caused mainly by the increased production and decreased excretion of bilirubin. Current treatment is aimed at reducing the serum levels of bilirubin. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that generates bilirubin. In this study we intended to suppress HO-1 using the RNA interference technique. Small interfering RNA (siRNA)-A, -B, and -C were designed based on human HO-1 (hHO-1) mRNA sequences. siRNA was transfected into a human hepatic cell line (HL-7702). hHO-1 transcription and protein levels were then determined. In addition, the inhibitory effect of siRNA on hHO-1 was assessed in cells treated with hemin or transfected with an hHO-1 plasmid. siRNA-C showed the most potent suppressive effect on hHO-1. This inhibition is dose and time dependent. Compared with control, both hemin and hHO-1 plasmids up-regulated hHO-1 expression in HL-7702 cells. However, the up-regulation was significantly attenuated by siRNA-C. Furthermore, the decrease in hHO-1 activity was coincident with the suppression of its transcription. Finally, siRNA-C was shown to reduce hHO-1 enzymatic activity and bilirubin levels. Thus, this study provides a novel therapeutic rationale by blocking bilirubin formation via siRNA for preventing and treating neonatal hyperbilirubinemia and bilirubin encephalopathy at an early clinical stage. PMID:17392485

  19. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice

    PubMed Central

    Bortolussi, Giulia; Baj, Gabriele; Vodret, Simone; Viviani, Giulia; Bittolo, Tamara; Muro, Andrés F.

    2014-01-01

    Neonatal jaundice is caused by high levels of unconjugated bilirubin. It is usually a temporary condition caused by delayed induction of UGT1A1, which conjugates bilirubin in the liver. To reduce bilirubin levels, affected babies are exposed to phototherapy (PT), which converts toxic bilirubin into water-soluble photoisomers that are readily excreted out. However, in some cases uncontrolled hyperbilirubinemia leads to neurotoxicity. To study the mechanisms of bilirubin-induced neurological damage (BIND) in vivo, we generated a mouse model lacking the Ugt1a1 protein and, consequently, mutant mice developed jaundice as early as 36 hours after birth. The mutation was transferred into two genetic backgrounds (C57BL/6 and FVB/NJ). We exposed mutant mice to PT for different periods and analyzed the resulting phenotypes from the molecular, histological and behavioral points of view. Severity of BIND was associated with genetic background, with 50% survival of C57BL/6‑Ugt1−/− mutant mice at postnatal day 5 (P5), and of FVB/NJ-Ugt1−/− mice at P11. Life-long exposure to PT prevented cerebellar architecture alterations and rescued neuronal damage in FVB/NJ-Ugt1−/− but not in C57BL/6-Ugt1−/− mice. Survival of FVB/NJ-Ugt1−/− mice was directly related to the extent of PT treatment. PT treatment of FVB/NJ-Ugt1−/− mice from P0 to P8 did not prevent bilirubin-induced reduction in dendritic arborization and spine density of Purkinje cells. Moreover, PT treatment from P8 to P20 did not rescue BIND accumulated up to P8. However, PT treatment administered in the time-window P0–P15 was sufficient to obtain full rescue of cerebellar damage and motor impairment in FVB/NJ-Ugt1−/− mice. The possibility to modulate the severity of the phenotype by PT makes FVB/NJ-Ugt1−/− mice an excellent and versatile model to study bilirubin neurotoxicity, the role of modifier genes, alternative therapies and cerebellar development during high bilirubin conditions. PMID

  20. Regression approach to non-invasive determination of bilirubin in neonatal blood

    NASA Astrophysics Data System (ADS)

    Lysenko, S. A.; Kugeiko, M. M.

    2012-07-01

    A statistical ensemble of structural and biophysical parameters of neonatal skin was modeled based on experimental data. Diffuse scattering coefficients of the skin in the visible and infrared regions were calculated by applying a Monte-Carlo method to each realization of the ensemble. The potential accuracy of recovering the bilirubin concentration in dermis (which correlates closely with that in blood) was estimated from spatially resolved spectrometric measurements of diffuse scattering. The possibility to determine noninvasively the bilirubin concentration was shown by measurements of diffuse scattering at λ = 460, 500, and 660 nm at three source-detector separations under conditions of total variability of the skin biophysical parameters.

  1. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy

    PubMed Central

    Riordan, Sean M.; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F.; Wennberg, Richard P.; Shapiro, Steven M.

    2016-01-01

    Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity

  2. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy.

    PubMed

    Riordan, Sean M; Bittel, Douglas C; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F; Wennberg, Richard P; Shapiro, Steven M

    2016-01-01

    Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60-80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a "load" is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity in

  3. A Novel Perspective on the Biology of Bilirubin in Health and Disease.

    PubMed

    Gazzin, Silvia; Vitek, Libor; Watchko, Jon; Shapiro, Steven M; Tiribelli, Claudio

    2016-09-01

    Unconjugated bilirubin (UCB) is known to be one of the most potent endogenous antioxidant substances. While hyperbilirubinemia has long been recognized as an ominous sign of liver dysfunction, recent data strongly indicate that mildly elevated bilirubin (BLB) levels can be protective against an array of diseases associated with increased oxidative stress. These clinical observations are supported by new discoveries relating to the role of BLB in immunosuppression and inhibition of protein phosphorylation, resulting in the modulation of intracellular signaling pathways in vascular biology and cancer, among others. Collectively, the evidence suggests that targeting BLB metabolism could be considered a potential therapeutic approach to ameliorate a variety of conditions. PMID:27515064

  4. Coupling in cytochrome c oxidase

    PubMed Central

    Kessler, R. J.; Blondin, G. A.; Zande, H. Vande; Haworth, R. A.; Green, D. E.

    1977-01-01

    Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) can be resolved into an electron transfer complex (ETC) and an ionophore transfer complex (ITC). Coupling requires an interaction between the moving electron in the ETC and a moving, positively charged ionophore-cation adduct in the ITC. The duplex character of cytochrome oxidase facilitates this interaction. The ITC mediates cyclical cation transport. It can be replaced as the coupling partner by the combination of valinomycin and nigericin in the presence of K+ when cytochrome oxidase is incorporated into liposomes containing acidic phospholipids or by the combination of lipid cytochrome c and bile acids in an ITC-resolved preparation of the ETC. Respiratory control can be induced by incorporating cytochrome oxidase into vesicles of unfractionated whole mitochondrial lipid. The activity of the ITC is suppressed by such incorporation and this suppression leads to the emergence of respiratory control. The ionophoroproteins of the ITC can be extracted into organic solvents; some 50% of the total protein of cytochrome oxidase is extractable. The release of free ionophore is achieved by tryptic digestion of the ionophoroprotein. Preliminary to this release the ionophoroprotein is degraded to an ionophoropeptide. Electrogenic ionophores, as well as uncoupler, are liberated by such proteolysis. The ITC contains a set of ionophoroproteins imbedded in a matrix of phospholipid. Images PMID:198794

  5. Association between bilirubin and risk of Non-Alcoholic Fatty Liver Disease based on a prospective cohort study.

    PubMed

    Tian, Jianbo; Zhong, Rong; Liu, Cheng; Tang, Yuhan; Gong, Jing; Chang, Jiang; Lou, Jiao; Ke, Juntao; Li, Jiaoyuan; Zhang, Yi; Yang, Yang; Zhu, Ying; Gong, Yajie; Xu, Yanyan; Liu, Peiyi; Yu, Xiao; Xiao, Lin; Du, Min; Yang, Ling; Yuan, Jing; Wang, Youjie; Chen, Weihong; Wei, Sheng; Liang, Yuan; Zhang, Xiaomin; He, Meian; Wu, Tangchun; Yao, Ping; Miao, Xiaoping

    2016-01-01

    The study aimed to assess the association between total, direct, and indirect bilirubin and nonalcoholic fatty live disease (NAFLD) risk given its high prevalence and serious clinical prognosis. Among 27,009 subjects who participated in a healthy screening program from the Dongfeng-Tongji cohort study in 2008, 8189 eligible subjects (aged 35-86 years; males, 43.95%) were ultimately enrolled. The incidence rates of NAFLD in 2013 were compared with respect to baseline bilirubin levels among subjects free of NAFLD, and the effect sizes were estimated by logistic regression analysis. During 5 years follow-up, we observed 1956 cases of newly developed NAFLD with the overall incidence of 23.88%. Direct bilirubin was presented to inversely associate with NAFLD risk. Compared with quartile 1 of direct bilirubin, the multivariable-adjusted ORs (95% CIs) for NAFLD of quartile 2 to 4 were 1.104 (0.867-1.187), 0.843 (0.719-0.989), and 0.768 (0.652-0.905), respectively, P for trend 0.002). Similarly, inverse effects of direct bilirubin on NAFLD incidence were also observed when stratified by sex and BMI. However, no significant associations were found between total, and indirect bilirubin and NAFLD risk. Direct bilirubin reduced NAFLD risk independent of possible confounders among middle-aged and elderly Chinese population, probably based on the endogenous antioxidation of bilirubin. PMID:27484402

  6. Association between bilirubin and risk of Non-Alcoholic Fatty Liver Disease based on a prospective cohort study

    PubMed Central

    Tian, Jianbo; Zhong, Rong; Liu, Cheng; Tang, Yuhan; Gong, Jing; Chang, Jiang; Lou, Jiao; Ke, Juntao; Li, Jiaoyuan; Zhang, Yi; Yang, Yang; Zhu, Ying; Gong, Yajie; Xu, Yanyan; Liu, Peiyi; Yu, Xiao; Xiao, Lin; Du, Min; Yang, Ling; Yuan, Jing; Wang, Youjie; Chen, Weihong; Wei, Sheng; Liang, Yuan; Zhang, Xiaomin; He, Meian; Wu, Tangchun; Yao, Ping; Miao, Xiaoping

    2016-01-01

    The study aimed to assess the association between total, direct, and indirect bilirubin and nonalcoholic fatty live disease (NAFLD) risk given its high prevalence and serious clinical prognosis. Among 27,009 subjects who participated in a healthy screening program from the Dongfeng-Tongji cohort study in 2008, 8189 eligible subjects (aged 35–86 years; males, 43.95%) were ultimately enrolled. The incidence rates of NAFLD in 2013 were compared with respect to baseline bilirubin levels among subjects free of NAFLD, and the effect sizes were estimated by logistic regression analysis. During 5 years follow-up, we observed 1956 cases of newly developed NAFLD with the overall incidence of 23.88%. Direct bilirubin was presented to inversely associate with NAFLD risk. Compared with quartile 1 of direct bilirubin, the multivariable-adjusted ORs (95% CIs) for NAFLD of quartile 2 to 4 were 1.104 (0.867–1.187), 0.843 (0.719–0.989), and 0.768 (0.652–0.905), respectively, P for trend 0.002). Similarly, inverse effects of direct bilirubin on NAFLD incidence were also observed when stratified by sex and BMI. However, no significant associations were found between total, and indirect bilirubin and NAFLD risk. Direct bilirubin reduced NAFLD risk independent of possible confounders among middle-aged and elderly Chinese population, probably based on the endogenous antioxidation of bilirubin. PMID:27484402

  7. Effect of sodium phenobarbital on bilirubin metabolism in an infant with congenital, nonhemolytic, unconjugated hyperbilirubinemia, and kernicterus

    PubMed Central

    Crigler, John F.; Gold, Norman I.

    1969-01-01

    Sodium phenobarbital and various hormones, compounds capable of hepatic enzyme induction, were given to an infant boy with congenital, nonhemolytic, unconjugated, hyperbilirubinemia and severe kernicterus for prolonged periods between the ages of 2 and 25 months to determine their effect on serum bilirubin concentrations. Phenobarbital, 5 mg/day orally, on two occasions decreased serum bilirubin concentrations approximately threefold over a period of 30 days. Withdrawal of phenobarbital after the first study resulted in a gradual (30 days) return of serum bilirubin to pretreatment levels. The lower serum bilirubin concentrations observed when phenobarbital therapy was reinstituted were maintained for 61 days on 2.5 mg/kg per day of the drug. Orally administered L-triiodothyronine, 0.05-0.1 mg/day for 71 days, intramuscular human growth hormone, 1 mg/day for 21 days, and testosterone propionate, 0.1 mg/day for 9 days, did not decrease serum bilirubin levels below lowest control values of 18 mg/100 ml. Bilirubin-3H was administered twice before and once with bilirubin-14C during phenobarbital therapy to study the kinetics of bilirubin metabolism. Results of the first and second control studies and of the bilirubin-3H and bilirubin-14C phenobarbital studies, respectively, were as follows: total body bilirubin pools, 200, 184, 73, and 72 mg; half-lives, 111, 84, 37, and 39 hr; and turnover, 30, 37, 33, and 31 mg/day. The data show that the approximate threefold decrease in serum bilirubin concentration and total body pool resulted from a comparable decrease in bilirubin half-life without a significant change in turnover. In vitro histological (electron microscopy) and enzymological studies of liver obtained by surgical biopsies before and during phenobaribtal administration showed that both the hepatocyte content of agranular endoplasmic reticulum (AER) and the ability of liver homogenate to conjugate p-nitrophenol were significantly increased during phenobarbital

  8. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  9. Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?

    PubMed

    Peake, M; Mazzachi, B; Fudge, A; Bais, R

    2001-09-01

    The reliability of a recently released total bilirubin assay for a blood gas analyser was assessed in two Australian hospital laboratories. The instrument computes total bilirubin concentration from multi-wavelength absorbance measurements of undiluted whole blood or plasma. Performance of the Radiometer ABL 735 blood gas analyser bilirubin method (software version 3.6) was compared with a proven Roche diazo method for Hitachi analysers, calibrated using primary standards prepared from NIST SRM 916a bilirubin. Acceptable bilirubin results were found over a wide concentration range for most neonatal samples of whole blood or plasma. For adult specimens, bilirubin results were approximately 10% lower on the blood gas analyser. Within-run imprecision (whole blood) was < 2.5%, between-day imprecision (synthetic controls) < 1.0%, and the bilirubin assay for both whole blood and plasma was linear to 1,000 micromol/L. Using sampling options from 35 microL to 195 microL, bilirubin results differed by less than 3%, with a 95 microL syringe option producing the highest results. We conclude that the Radiometer ABL 735 bilirubin assay is suitable for near-patient assessment of neonatal jaundice using whole blood, thus eliminating the need for sample centrifugation. Verification using laboratory methods can be used when required. A positive correction of approximately 10% is required for adult specimens to conform with Hitachi results (SRM 916a calibration), possibly due to the optical characteristics of the higher proportion of conjugated bilirubin and other substances present in most adult samples. PMID:11587132

  10. Association between Serum Bilirubin and Acute Intraoperative Hyperglycemia Induced by Prolonged Intermittent Hepatic Inflow Occlusion in Living Liver Donors

    PubMed Central

    Han, Sangbin; Jin, Sang-Man; Ko, Justin Sangwook; Kim, Young Ri; Gwak, Mi Sook; Son, Hee Jeong; Joh, Jae-Won; Kim, Gaab Soo

    2016-01-01

    Background Intermittent hepatic inflow occlusion (IHIO) is associated with acute hyperglycemia during living donor hepatectomy when the ischemia is prolonged. Bilirubin is a potent antioxidant to play an important role for maintaining insulin sensitivity and preventing hyperglycemia. Thus, we aimed to test whether serum bilirubin level is associated with prolonged IHIO-induced intraoperative hyperglycemia. Methods Seventy-five living liver donors who underwent a prolonged IHIO with a >30 minute cumulative ischemia were included. The association between preoperative serum bilirubin concentrations and the risk of intraoperative hyperglycemia (blood glucose concentration >180 mg/dl) was analyzed using binary logistic regression with adjusting for potential confounders including age and steatosis. Results The number of donors who underwent 3, 4, 5, and 6 rounds of IHIO was 41, 22, 7, and 5, respectively. Twenty-nine (35%) donors developed intraoperative hyperglycemia. Total bilirubin concentration was inversely associated with hyperglycemia risk (odds ratio [OR] 0.033, 95% confidence interval [CI] 0.004–0.313, P = 0.003). There was an interaction between age and total bilirubin concentration: the effect of lower serum total bilirubin (≤0.7 mg/dl) on the development of hyperglycemia was greater in older donors (>40 years) than in younger donors (P = 0.0.028 versus P = 0.212). Both conjugated bilirubin (OR 0.001 95% CI 0.001–0.684) and unconjugated bilirubin (OR 0.011 95% CI 0.001–0.246) showed an independent association with hyperglycemia risk. Conclusions Lower preoperative serum bilirubin was associated with greater risk of prolonged IHIO-induced hyperglycemia during living donor hepatectomy particularly in older donors. Thus, more meticulous glycemic management is recommended when prolonged IHIO is necessary for surgical purposes in old living donors with lower serum bilirubin levels. PMID:27367602

  11. 21 CFR 862.1110 - Bilirubin (total or direct) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bilirubin (total or direct) test system. 862.1110 Section 862.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  12. 21 CFR 862.1110 - Bilirubin (total or direct) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bilirubin (total or direct) test system. 862.1110 Section 862.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  13. 21 CFR 862.1110 - Bilirubin (total or direct) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bilirubin (total or direct) test system. 862.1110 Section 862.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  14. 21 CFR 862.1110 - Bilirubin (total or direct) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bilirubin (total or direct) test system. 862.1110 Section 862.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. 21 CFR 862.1110 - Bilirubin (total or direct) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bilirubin (total or direct) test system. 862.1110 Section 862.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  16. Bilirubin, platelet activation and heart disease: a missing link to cardiovascular protection in Gilbert's syndrome?

    PubMed

    Kundur, Avinash R; Singh, Indu; Bulmer, Andrew C

    2015-03-01

    Gilbert's syndrome (GS) is a relatively common condition, inducing a benign, non-hemolytic, unconjugated hyperbilirubinemia. Gilbert's Syndrome is associated with mutation in the Uridine Glucuronosyl Transferase 1A1 (UGT1A1) gene promoter, reducing UGT1A1 activity, which normally conjugates bilirubin allowing its elimination from the blood. Individuals with GS demonstrate mildly elevated plasma antioxidant capacity caused by elevated levels of unconjugated bilirubin (UCB), reduced thiols and glutathione. Interestingly, the development of, and risk of mortality from, cardiovascular disease is remarkably reduced in GS individuals. An explanation for this protection may be explained by bilirubin's ability to inhibit multiple processes that induce platelet hyper-reactivity and thrombosis, thus far under-appreciated in the literature. Reactive oxygen species are produced continuously via metabolic processes and have the potential to oxidatively modify proteins and lipids within cell membranes, which may encourage the development of thrombosis and CVDs. Oxidative stress induced platelet hyper-reactivity significantly increases the risk of thrombosis, which can potentially lead to tissue infarction. Here, we discuss the possible mechanisms by which increased antioxidant status might influence platelet function and link this to cardiovascular protection in GS. In summary, this is the first article to discuss the possible role of bilirubin as an anti-thrombotic agent, which inhibits platelet activation and potentially, organ infarction, which could contribute to the reduced mortality rate in mildly hyperbilirbinemic individuals. PMID:25576848

  17. Selective nonenzymatic bilirubin detection in blood samples using a Nafion/Mn-Cu sensor.

    PubMed

    Noh, Hui-Bog; Won, Mi-Sook; Shim, Yoon-Bo

    2014-11-15

    The specific detection of biological organics without the use of an enzyme is challenging, and it is crucial for analytical and clinical chemistry. We report specific nonenzymatic bilirubin detection through the catalytic oxidation of bilirubin molecule on the Nafion/Mn-Cu surface. The catalytic ability, true surface area, morphology, crystallinity, composition, and oxidation state of the sensor surface were assessed using voltammetry, coulometry, XPS, XRD, Brunauer-Emmett-Teller (BET), SEM, EDXS, and TOF-SIMS experiments. The results showed that the surface was composed of microporous Mn-Cu bimetallic crystal in flake shape with a large BET surface area (3.635 m(2)g(-1)), where the surface area and crystallinity mainly affected the sensor performance. Product analysis of the catalytic reaction on the sensor probe revealed a specific two-electron oxidation of dipyrromethane moiety to dipyrromethene in the bilirubin molecule. Experimental variables affecting the analysis of bilirubin were optimized in terms of probe composition, temperature, pH, and potential. At the optimized condition, the dynamic range was between 1.2 μM and 0.42 mM, which yielded the equation of ΔI (μA)=(1.03 ± 0.72)+(457.0 ± 4.03) [C] (mM) with 0.999 of correlation coefficient, and the detection limit was 25.0 ± 1.8 nM (n=5, k=3). The stability test, interference effects, and analysis of real clinical samples, human whole blood and certified serum samples were demonstrated to confirm the reliability of the proposed bilirubin sensor. PMID:24953842

  18. [Quantifying intestino-esophageal reflux with a fiberoptic bilirubin detection probe].

    PubMed

    Stein, H J; Kraemer, S J; Feussner, H; Siewert, J R

    1994-05-01

    Currently available methods to assess reflux of duodenal contents into the esophagus are cumbersome, unphysiologic, and inaccurate. The role of intestino-esophageal reflux has therefore been controversial. We assessed intestino-esophageal reflux using a new system which allows prolonged intraesophageal measurement of bilirubin, the major pigment of bile. Measurements were made with a newly developed fiber-optic sensor electrode connected to a portable data processing unit (BILITEC 2000, Synectics Medical Inc., Sweden). Light absorption was measured at the absorption peak of bilirubin and a reference point. Studies were performed in 9 subjects without esophagitis, 9 subjects with esophagitis and primary reflux disease and 7 subjects with erosive esophagitis after a total or subtotal gastrectomy. The fiberoptic electrode was placed 5 cm above the lower esophageal sphincter. In vitro studies showed linear correlations between absorbance measurements obtained with the BILITEC-unit and known bilirubin and bile acid concentrations, respectively (p < 0.01). Compared to both other groups, light absorption was markedly increased in the subjects who had esophagitis after a total or subtotal gastrectomy (p < 0.05) indicating severe biliary reflux. An increase in bilirubin absorption occurred particularly during the post-prandial and supine periodes (p < 0.01). A Roux-en-Y biliary diversion procedure completely abolished bile reflux in 2 of these patients. These data indicate that ambulatory 24-hour fiberoptic measurement of bilirubin in the esophagus is feasible and allows quantitation of intestino-esophageal reflux. Intestino-esophageal reflux occurs particularly during the postprandial period and the early morning hours in patients who had a previous subtotal or total gastrectomy. PMID:8073796

  19. The Role of Bilirubin in Diabetes, Metabolic Syndrome, and Cardiovascular Diseases

    PubMed Central

    Vítek, Libor

    2012-01-01

    Bilirubin belongs to a phylogenetically old superfamily of tetrapyrrolic compounds, which have multiple biological functions. Although for decades bilirubin was believed to be only a waste product of the heme catabolic pathway at best, and a potentially toxic compound at worst; recent data has convincingly demonstrated that mildly elevated serum bilirubin levels are strongly associated with a lower prevalence of oxidative stress-mediated diseases. Indeed, serum bilirubin has been consistently shown to be negatively correlated to cardiovascular diseases (CVD), as well as to CVD-related diseases and risk factors such as arterial hypertension, diabetes mellitus, metabolic syndrome, and obesity. In addition, the clinical data are strongly supported by evidence arising from both in vitro and in vivo experimental studies. This data not only shows the protective effects of bilirubin per se; but additionally, of other products of the heme catabolic pathway such as biliverdin and carbon monoxide, as well as its key enzymes (heme oxygenase and biliverdin reductase); thus, further underlining the biological impacts of this pathway. In this review, detailed information on the experimental and clinical evidence between the heme catabolic pathway and CVD, and those related diseases such as diabetes, metabolic syndrome, and obesity is provided. All of these pathological conditions represent an important threat to human civilization, being the major killers in developed countries, with a steadily increasing prevalence. Thus, it is extremely important to search for novel markers of these diseases, as well as for novel therapeutic modalities to reverse this unfavorable situation. The heme catabolic pathway seems to fulfill the criteria for both diagnostic purposes as well as for potential therapeutical interventions. PMID:22493581

  20. Protoporphyrinogen Oxidase-Inhibiting Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protoporphyrinogen oxidase-inhibiting herbicides (also referred to as Protox- or PPO-inhibiting herbicides) were commercialized in the 1960s and their market share reached approximately 10% (total herbicide active ingredient output) in the late 1990’s. The wide-spread adoption of glyphosate-resista...

  1. Chromate reduction by rabbit liver aldehyde oxidase

    SciTech Connect

    Banks, R.B.; Cooke, R.T. Jr.

    1986-05-29

    Chromate was reduced during the oxidation of 1-methylnicotinamide chlorine by partially purified rabbit liver aldehyde oxidase. In addition to l-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors or aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.

  2. The effect of bilirubin on the excitability of mitral cells in the olfactory bulb of the rat

    PubMed Central

    Chen, Xiao-Juan; Zhou, Hui-Qun; Ye, Hai-bo; Li, Chun-Yan; Zhang, Wei-Tian

    2016-01-01

    Olfactory dysfunction is a common clinical phenomenon observed in various liver diseases. Previous studies have shown a correlation between smell disorders and bilirubin levels in patients with hepatic diseases. Bilirubin is a well-known neurotoxin; however, its effect on neurons in the main olfactory bulb (MOB), the first relay in the olfactory system, has not been examined. We investigated the effect of bilirubin (>3 μM) on mitral cells (MCs), the principal output neurons of the MOB. Bilirubin increased the frequency of spontaneous firing and the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). TTX completely blocked sEPSCs in almost all of the cells tested. Bilirubin activity was partially blocked by N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepro pionic acid (AMPA) receptor antagonists. Furthermore, we found that bilirubin increased the frequency of intrinsic firing independent of synaptic transmission in MCs. Our findings suggest that bilirubin enhances glutamatergic transmission and strengthens intrinsic firing independent of synaptic transmission, all of which cause hyperexcitability in MCs. Our findings provide the basis for further investigation into the mechanisms underlying olfactory dysfunction that are often observed in patients with severe liver disease. PMID:27611599

  3. The effect of bilirubin on the excitability of mitral cells in the olfactory bulb of the rat.

    PubMed

    Chen, Xiao-Juan; Zhou, Hui-Qun; Ye, Hai-Bo; Li, Chun-Yan; Zhang, Wei-Tian

    2016-01-01

    Olfactory dysfunction is a common clinical phenomenon observed in various liver diseases. Previous studies have shown a correlation between smell disorders and bilirubin levels in patients with hepatic diseases. Bilirubin is a well-known neurotoxin; however, its effect on neurons in the main olfactory bulb (MOB), the first relay in the olfactory system, has not been examined. We investigated the effect of bilirubin (>3 μM) on mitral cells (MCs), the principal output neurons of the MOB. Bilirubin increased the frequency of spontaneous firing and the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). TTX completely blocked sEPSCs in almost all of the cells tested. Bilirubin activity was partially blocked by N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepro pionic acid (AMPA) receptor antagonists. Furthermore, we found that bilirubin increased the frequency of intrinsic firing independent of synaptic transmission in MCs. Our findings suggest that bilirubin enhances glutamatergic transmission and strengthens intrinsic firing independent of synaptic transmission, all of which cause hyperexcitability in MCs. Our findings provide the basis for further investigation into the mechanisms underlying olfactory dysfunction that are often observed in patients with severe liver disease. PMID:27611599

  4. Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity.

    PubMed

    Gambaro, Sabrina E; Robert, Maria C; Tiribelli, Claudio; Gazzin, Silvia

    2016-02-01

    In the Crigler-Najjar type I syndrome, the genetic absence of efficient hepatic glucuronidation of unconjugated bilirubin (UCB) by the uridine 5'-diphospho-glucuronosyltransferase1A1 (UGT1A1) enzyme produces the rise of UCB level in blood. Its entry to central nervous system could generate toxicity and neurological damage, and even death. In the past years, a compensatory mechanism to liver glucuronidation has been indicated in the hepatic cytochromes P450 enzymes (Cyps) which are able to oxidize bilirubin. Cyps are expressed also in the central nervous system, the target of bilirubin toxicity, thus making them theoretically important to confer a protective activity toward bilirubin accumulation and neurotoxicity. We therefore investigated the functional induction (mRNA, EROD/MROD) and the ability to oxidize bilirubin of Cyp1A1, 1A2, and 2A3 in primary astrocytes cultures obtained from two rat brain region (cortex: Cx and cerebellum: Cll). We observed that Cyp1A1 was the Cyp isoform more easily induced by beta-naphtoflavone (βNF) in both Cx and Cll astrocytes, but oxidized bilirubin only after uncoupling by 3, 4,3',4'-tetrachlorobiphenyl (TCB). On the contrary, Cyp1A2 was the most active Cyp in bilirubin clearance without uncoupling, but its induction was confined only in Cx cells. Brain Cyp2A3 was not inducible. In conclusion, the exposure of astrocytes to βNF plus TCB significantly enhanced Cyp1A1 mediating bilirubin clearance, improving cell viability in both regions. These results may be a relevant groundwork for the manipulation of brain Cyps as a therapeutic approach in reducing bilirubin-induced neurological damage. PMID:25370011

  5. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    PubMed

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. PMID:26381705

  6. Photoaffinity labeling of protoporphyrinogen oxidase, the molecular target of diphenylether-type herbicides.

    PubMed

    Camadro, J M; Matringe, M; Thome, F; Brouillet, N; Mornet, R; Labbe, P

    1995-05-01

    Diphenylether-type herbicides are extremely potent inhibitors of protoporphyrinogen oxidase, a membrane-bound enzyme involved in the heme and chlorophyll biosynthesis pathways. Tritiated acifluorfen and a diazoketone derivative of tritiated acifluorfen were specifically bound to a single class of high-affinity binding sites on yeast mitochondrial membranes with apparent dissociation constants of 7 nM and 12.5 nM, respectively. The maximum density of specific binding sites, determined by Scatchard analysis, was 3 pmol.mg-1 protein. Protoporphyrinogen oxidase specific activity was estimated to be 2500 nmol protoporphyrinogen oxidized h-1.mol-1 enzyme. The diazoketone derivative of tritiated acifluorfen was used to specifically photolabel yeast protoporphyrinogen oxidase. The specifically labeled polypeptide in wild-type mitochondrial membranes had an apparent molecular mass of 55 kDa, identical to the molecular mass of the purified enzyme. This photolabeled polypeptide was not detected in a protoporphyrinogen-oxidase-deficient yeast strain, but the membranes contained an equivalent amount of inactive immunoreactive protoporphyrinogen oxidase protein. PMID:7758461

  7. Amyloid-β Peptide Binds to Cytochrome C Oxidase Subunit 1

    PubMed Central

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H.; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1–42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1–42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1–42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1–42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1–42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. PMID:22927926

  8. Enhancements of the production of bilirubin and the expression of β-globin by carbon monoxide during erythroid differentiation.

    PubMed

    Mu, Anfeng; Li, Ming; Tanaka, Masakazu; Adachi, Yasushi; Tai, Tran Tien; Liem, Pham Hieu; Izawa, Shingo; Furuyama, Kazumichi; Taketani, Shigeru

    2016-05-01

    Heme is degraded by heme oxygenase to form iron, carbon monoxide (CO), and biliverdin. However, information about the catabolism of heme in erythroid cells is limited. In this study, we showed the production and export of bilirubin in murine erythroleukemia (MEL) cells. The production of bilirubin by MEL cells was enhanced when heme synthesis was induced. When mouse bone marrow cells were induced with erythropoietin to differentiate into erythroid cells, the synthesis of bilirubin increased. The expression of β-globin was enhanced by CO at the transcriptional level. These results indicate that constant production of CO from heme regulates erythropoiesis. PMID:27087140

  9. Examination of Cholesterol oxidase attachment to magnetic nanoparticles

    PubMed Central

    Kouassi, Gilles K; Irudayaraj, Joseph; McCarty, Gregory

    2005-01-01

    Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications. PMID:15661076

  10. Water-soluble adsorbent β-cyclodextrin-grafted polyethyleneimine for removing bilirubin from plasma.

    PubMed

    Wang, Zhi; Wei, Houliang; Jia, Lingyun; Xu, Li; Zou, Chunyi; Xie, Jian

    2012-10-01

    A water-soluble adsorbent was developed for removing bilirubin from the plasma of hyperbilirubinemia patient. The adsorbent was synthesized by grafting β-cyclodextrin (β-CD) to branched polyethyleneimine (PEI) matrix. The resulting β-CD-PEI polymer had an average molecular weight of 163.7 kD, and it contained 56.3 β-CD functional groups. In β-CD-PEI-spiked dialysis, 35.8% of plasma bilirubin was removed, which was higher than that removed by the same concentration of bovine serum albumin. β-CD-PEI also removed aromatic amino acids and bile acids. The results indicated that β-CD-PEI could be an effective adsorbent for blood purification application aiming at the removal of toxins. PMID:22836125

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases bilirubin formation but hampers quantitative hepatic conversion of biliverdin to bilirubin in rats with wild-type AH receptor.

    PubMed

    Niittynen, Marjo; Simanainen, Ulla; Pohjanvirta, Raimo; Sankari, Satu; Tuomisto, Jouni T

    2014-06-01

    In haem degradation, haem oxygenase-1 (HO-1) first cleaves haem to biliverdin, which is reduced to bilirubin by biliverdin IXα reductase (BVR-A). The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes hepatic accumulation of biliverdin in moderately TCDD-resistant line B (Kuopio) rats. Using line B and two TCDD-sensitive rat strains, the present study set out to probe the dose-response and biochemical mechanisms of this accumulation. At 28 days after exposure to 3-300 μg/kg TCDD in line B rats, already the lowest dose of TCDD tested, 3 μg/kg, affected serum bilirubin conjugates, and after doses ≥100 μg/kg, the liver content of bilirubin, biliverdin and their conjugates (collectively 'bile pigments') as well as HO-1 was elevated. BVR-A activity and serum bile acids were increased only by the doses of 100 and 300 μg/kg TCDD, respectively. Biliverdin conjugates correlated best with biliverdin suggesting it to be their immediate precursor. TCDD (100 μg/kg, 10 days) increased hepatic bilirubin and biliverdin levels also in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. Hepatic bilirubin and bile acids, but not biliverdin, were increased in feed-restricted L-E control rats. In TCDD-sensitive line C (Kuopio) rats, 10 μg/kg of TCDD increased the body-weight-normalized biliary excretion of bilirubin. Altogether, the results suggest that at acutely toxic doses, TCDD induces the formation of bilirubin in rats. However, concurrently, TCDD seems to hamper the quantitative conversion of biliverdin to bilirubin in line B and L-E rats' liver. Biliverdin conjugates are most likely formed as secondary products of biliverdin. PMID:24418412

  12. Urate oxidase: primary structure and evolutionary implications.

    PubMed Central

    Wu, X W; Lee, C C; Muzny, D M; Caskey, C T

    1989-01-01

    Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyzes the oxidation of uric acid to allantoin in most mammals. In humans and certain other primates, however, the enzyme has been lost by some unknown mechanism. To identify the molecular basis for this loss, urate oxidase cDNA clones were isolated from pig, mouse, and baboon, and their DNA sequences were determined. The mouse urate oxidase open reading frame encodes a 303-amino acid polypeptide, while the pig and baboon urate oxidase cDNAs encode a 304-amino acid polypeptide due to a single codon deletion/insertion event. The authenticity of this single additional codon was confirmed by sequencing the mouse and pig genomic copies of the gene. The urate oxidase sequence contains a domain similar to the type 2 copper binding motif found in other copper binding proteins, suggesting that the copper ion in urate oxidase is coordinated as a type 2 structure. Based upon a comparison of the NH2-terminal peptide and deduced sequences, we propose that the maturation of pig urate oxidase involves the posttranslational cleavage of a six-amino acid peptide. Two nonsense mutations were found in the human urate oxidase gene, which confirms, at the molecular level, that the urate oxidase gene in humans is nonfunctional. The sequence comparisons favor the hypothesis that the loss of urate oxidase in humans is due to a sudden mutational event rather than a progressive mutational process. Images PMID:2594778

  13. Direct Antioxidant Properties of Bilirubin and Biliverdin. Is there a Role for Biliverdin Reductase?

    PubMed Central

    Jansen, Thomas; Daiber, Andreas

    2012-01-01

    Reactive oxygen species (ROS) and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on ROS. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g., HOPE, HOPE-TOO), antioxidant molecules and agents are important players to influence the critical balance between production and elimination of reactive oxygen and nitrogen species. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO) has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide and biliverdin/bilirubin. With the present review we would like to highlight the important antioxidant role of the HO system and especially discuss the contribution of the biliverdin, bilirubin, and biliverdin reductase (BVR) to these beneficial effects. The BVR was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the BVR, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic. PMID:22438843

  14. Association between Serum Bilirubin and Estimated Glomerular Filtration Rate among Diabetic Patients

    PubMed Central

    Katoh, Takeaki; Kawamoto, Ryuichi; Kohara, Katsuhiko; Miki, Tetsuro

    2015-01-01

    The subjects comprised 230 men aged 77 ± 10 (range: 50–100) years and 279 women aged 81 ± 10 (50–101) years that visited the medical department. We examined the relationship between increased serum bilirubin and renal function evaluated by estimated glomerular filtration rate (eGFR) using CKD-EPI equations modified by a Japanese coefficient. Compared with the fourth quartile in serum bilirubin (1.01–1.97 mg/dL), the nonadjusted, age and gender-adjusted, and multivariate-adjusted odds ratios {95% confidence interval (CI)} of eGFR <60 mL/min/1.73 m2 for the first quartile in serum bilirubin (0.13–0.50 mg/dL) were 2.08 (1.25–3.44), 1.82 (1.07–3.09), and 1.53 (0.83–2.81), respectively. Moreover, compared with the fourth quartile, nonadjusted, age and gender-adjusted, and multivariate-adjusted odds ratios (95% CI) of eGFR <45 mL/min/1.73 m2 for the first quartile were 3.50 (1.95–6.23), 3.12 (1.72–5.65), and 3.53 (1.71–7.26), respectively. The data were further stratified by gender, age, medication (antihypertensive, antidyslipidemic, and antidiabetic agents), and prevalence of cardiovascular disease (CVD). The standardized coefficients for eGFR were significant in all the subgroups other than the prevalence of CVD, and there were significant interactions between the two groups regarding CVD. Our data demonstrated an independent positive association between serum bilirubin and eGFR among diabetic patients.

  15. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.

    PubMed

    Wagner, Martin; Halilbasic, Emina; Marschall, Hanns-Ulrich; Zollner, Gernot; Fickert, Peter; Langner, Cord; Zatloukal, Kurt; Denk, Helmut; Trauner, Michael

    2005-08-01

    Induction of hepatic phase I/II detoxification enzymes and alternative excretory pumps may limit hepatocellular accumulation of toxic biliary compounds in cholestasis. Because the nuclear xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate involved enzymes and transporters, we aimed to induce adaptive alternative pathways with different CAR and PXR agonists in vivo. Mice were treated with the CAR agonists phenobarbital and 1,4-bis-[2-(3,5-dichlorpyridyloxy)]benzene, as well as the PXR agonists atorvastatin and pregnenolone-16alpha-carbonitrile. Hepatic bile acid and bilirubin-metabolizing/detoxifying enzymes (Cyp2b10, Cyp3a11, Ugt1a1, Sult2a1), their regulatory nuclear receptors (CAR, PXR, farnesoid X receptor), and bile acid/organic anion and lipid transporters (Ntcp, Oatp1,2,4, Bsep, Mrp2-4, Mdr2, Abcg5/8, Asbt) in the liver and kidney were analyzed via reverse-transcriptase polymerase chain reaction and Western blotting. Potential functional relevance was tested in common bile duct ligation (CBDL). CAR agonists induced Mrp2-4 and Oatp2; PXR agonists induced only Mrp3 and Oatp2. Both PXR and CAR agonists profoundly stimulated bile acid-hydroxylating/detoxifying enzymes Cyp3a11 and Cyp2b10. In addition, CAR agonists upregulated bile acid-sulfating Sult2a1 and bilirubin-glucuronidating Ugt1a1. These changes were accompanied by reduced serum levels of bilirubin and bile acids in healthy and CBDL mice and by increased levels of polyhydroxylated bile acids in serum and urine of cholestatic mice. Atorvastatin significantly increased Oatp2, Mdr2, and Asbt, while other transporters and enzymes were moderately affected. In conclusion, administration of specific CAR or PXR ligands results in coordinated stimulation of major hepatic bile acid/bilirubin metabolizing and detoxifying enzymes and hepatic key alternative efflux systems, effects that are predicted to counteract cholestasis. PMID:15986414

  16. Somatostatin inhibits the effect of secretin on bile flow and on hepatic bilirubin transport in the rat.

    PubMed Central

    Ricci, G L; Fevery, J

    1989-01-01

    Increasing amounts of porcine secretion (0.05 to 2.00 clinical units/h/100 g body wt) given to rats during a continuous infusion of bilirubin, increased bile flow and the apparent maximal biliary excretion of bilirubin ('Tm'). This increment was caused by an enhanced biliary output of bilirubin monoconjugates. The effect was dose dependent but maximal at a secretin infusion of 0.80 CU. Somatostatin 0.2 and 0.8 microgram/h/100 g body wt caused a dose related inhibition of the hepatic effects of secretin both on bile flow and on biliary output of bilirubin conjugates. As secretin elicits the release of somatostatin, a feed-back system could be envisaged whereby the somatostatin released stops the effects of secretin. PMID:2572517

  17. Bilirubin induces auditory neuropathy in neonatal guinea pigs via auditory nerve fiber damage.

    PubMed

    Ye, Hai-Bo; Shi, Hai-Bo; Wang, Jian; Ding, Da-Lian; Yu, Dong-Zhen; Chen, Zheng-Nong; Li, Chun-Yan; Zhang, Wei-Tian; Yin, Shan-Kai

    2012-11-01

    Bilirubin can cause temporary or permanent sensorineural deafness in newborn babies with hyperbilirubinemia. However, the underlying targets and physiological effects of bilirubin-induced damage in the peripheral auditory system are unclear. Using cochlear functional assays and electron microscopy imaging of the inner ear in neonatal guinea pigs, we show here that bilirubin exposure resulted in threshold elevation in both compound action potential (CAP) and auditory brainstem response (ABR), which was apparent at 1 hr and peaked 8 hr after drug administration. The threshold elevation was associated with delayed wave latencies and elongated interwave intervals in ABR and CAP. At 72 hr postinjection, these measures returned to control levels, except for the CAP amplitude. Cochlear microphonics remained unchanged during the experiment. Morphological abnormalities were consistent with the electrophysiological dysfunction, revealing fewer auditory nerve fibers (ANFs) in the basal turn, myelin sheath lesions of spiral ganglion neurons (SGNs) and ANFs, and loss of type 1 afferent endings beneath inner hair cells (IHCs) without loss of hair cells at 8 hr posttreatment. Similar to the electrophysiological findings, morphological changes were mostly reversed 10 days after treatment, except for the ANF reduction in the basal turn. These results suggest that hyperbilirubinemia in neonatal guinea pigs impaired auditory peripheral neuromechanisms that targeted mainly the IHC synapses and the myelin sheath of SGNs and their fibers. Our observations indicate a potential connection between hyperbilirubinemia and auditory neuropathy. PMID:22847875

  18. Interference of Bilirubin in the Determination of Magnesium with Methyl Thymol Blue

    PubMed Central

    Maksinovic, Rada; Ketin, Sonja; Biocanin, Rade

    2015-01-01

    Introduction: Jaundice is a disease named for the yellow color of the skin. This color is the result of elevated levels of bilirubin in the blood serum. In Roma from Krusevac region in the last few years have seen the emergence of jaundice. Material and methods: In 80 of them (40 suffering and 40 from control group) were performed tests of numerous parameters in the laboratories of the Health Center in Krusevac. Magnesium was determined by spectrophotometry with methyl thymol blue, titanium yellow and blue xylidene. Bilirubin was determined by Jandrešek Grofov’s method. Results: The results were within the expectations, in addition to magnesium which was determined with methyl thymol blue. In all patients suffering from jaundice concentration of magnesium (0.67 ±0.14 mmol/l) statistically was significantly lower than tested of the control group (0.91± 0.059 mmol/). There is no theoretical data to reduce the concentration of magnesium in serum as a result of jaundice. That’s why we determined magnesium both in the control group and in sufferings with two methods as the titanium yellow, and xylidene blew. With these two methods we obtained results that were examined were within normal limits. Conclusion: This has led us to conclude that the determination of bilirubin interferes with magnesium methyl thymol blue. PMID:26244045

  19. The urinary concentrating defect in the Gunn strain of rat. Role of bilirubin.

    PubMed

    Call, N B; Tisher, C C

    1975-02-01

    The role of high serum and tissue levels of unconjegated bilirubin in the pathogenesis of the impaired urinary concentrating ability was investigated in homozygous (jj) Gunn rats with the congenital absence of hepatic glucuronyl transferase. Continuous phototherapy with blue fluorescent lights at a wave length of 460 nm or oral cholestyramine feeding or both reduced serum levels of unconjugated hilirubin to levels consistently below 3.0 mg/100 ml for several weeks in both weanling and adult jj Gunn rats. The renal concentrating defect was already present in weanling jj Gunn rats by 21 days of age. In treated weanling jj animals, maximum concentrating ability and the concentration of urea and nonurea solutes in the papilla and medulla, determined after 24 h of fluid deprivation, were normal when compared to unaffected heterozygous (Jj) littermates. Solute-free water reabsorption which is reduced in jaundiced jj Gunn rats was restored to normal in treated weanling jj rats. The tissue concentration of unconjugated bilirubin was reduced throughout the papilla and inner and outer medulla in the treated jj rats in comparison with untreated jj littermates. The defect in urinary concentrating ability was only partially reversible and sometimes irreversible in adult jj rats, probably because of permanent renal parenchymal damage occurring secondary to massive crystalline deposits in the papilla and medulla. It is concluded that unconjugated bilirubin is directly involved in the pathogenesis of the concentrating defect in jaundiced jj Gunn rats. PMID:1127102

  20. Serum Bilirubin Is Inversely Associated with Increased Arterial Stiffness in Men with Pre-Hypertension but Not Normotension

    PubMed Central

    Huang, Yao-Hsien; Yang, Yi-Ching; Lu, Feng-Hwa; Sun, Zih-Jie; Wu, Jin-Shang; Chang, Chih-Jen

    2016-01-01

    Objective Serum bilirubin level has shown to be inversely associated with coronary atherosclerosis, and may serve as a protective biomarker of coronary artery disease. Serum bilirubin has also been shown to be negatively associated with brachial-ankle pulse wave velocity (baPWV) in men without a history of hypertension, and in men with hypertension. It is unknown whether such associations can be observed in the pre-hypertensive or normotensive population. This study thus aimed to investigate the relationship between serum bilirubin level and increased arterial stiffness in subjects with pre-hypertension and normotension for both genders. Methods A cross-sectional sample of 3,399 apparently healthy subjects undergoing a medical check-up at National Cheng Kung University Hospital was enrolled between October 2006 and August 2009, after excluding subjects with serum total bilirubin level greater than 20.52 μmol/L. Increased arterial stiffness was defined as baPWV of 1,400 cm/s or higher as the dichotomous variable and bilirubin as the continuous variable. Results Based on multiple linear regression analysis, serum bilirubin level was inversely associated with baPWV in non-hypertensive men (β = -0.066, p < 0.001) but not in non-hypertensive women. In addition, the inverse relationship between bilirubin level and baPWV was found statistically significant only in pre-hypertensive men (β = -0.110, p < 0.001). Multiple logistic regression analysis showed that serum bilirubin was inversely associated with increased arterial stiffness in men with pre-hypertension (odds ratio = 0.955, 95% confidence interval = 0.916–0.996, p < 0.05) but not normotension after adjustment for other confounding factors. However, the relationship between total bilirubin level and increased arterial stiffness did not reach statistical significance for female subjects with pre-hypertension and normotension. Conclusion Serum bilirubin is inversely associated with increased arterial stiffness in

  1. Crystal structures of intermediates in the nitroalkane oxidase reaction.

    PubMed

    Héroux, Annie; Bozinovski, Dragana M; Valley, Michael P; Fitzpatrick, Paul F; Orville, Allen M

    2009-04-21

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 A resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes [Valley, M. P., and Fitzpatrick, P. F. (2003) J. Am. Chem. Soc. 125, 8738-8739]. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped [Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066]. The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle. PMID:19265437

  2. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  3. Significance and prognostic value of increased serum direct bilirubin level for lymph node metastasis in Chinese rectal cancer patients

    PubMed Central

    Gao, Chun; Fang, Long; Li, Jing-Tao; Zhao, Hong-Chuan

    2016-01-01

    AIM: To determine the significance of increased serum direct bilirubin level for lymph node metastasis (LNM) in Chinese rectal cancer patients, after those with known hepatobiliary and pancreatic diseases were excluded. METHODS: A cohort of 469 patients, who were treated at the China-Japan Friendship Hospital, Ministry of Health (Beijing, China), in the period from January 2003 to June 2011, and with a pathological diagnosis of rectal adenocarcinoma, were recruited. They included 231 patients with LNM (49.3%) and 238 patients without LNM. Follow-up for these patients was taken through to December 31, 2012. RESULTS: The baseline serum direct bilirubin concentration was (median/inter-quartile range) 2.30/1.60-3.42 μmol/L. Univariate analysis showed that compared with patients without LNM, the patients with LNM had an increased level of direct bilirubin (2.50/1.70-3.42 vs 2.10/1.40-3.42, P = 0.025). Multivariate analysis showed that direct bilirubin was independently associated with LNM (OR = 1.602; 95%CI: 1.098-2.338, P = 0.015). Moreover, we found that: (1) serum direct bilirubin differs between male and female patients; a higher concentration was associated with poor tumor classification; (2) as the baseline serum direct bilirubin concentration increased, the percentage of patients with LNM increased; and (3) serum direct bilirubin was associated with the prognosis of rectal cancer patients and higher values indicated poor prognosis. CONCLUSION: Higher serum direct bilirubin concentration was associated with the increased risk of LNM and poor prognosis in our rectal cancers. PMID:26937145

  4. Serum bilirubin value predicts hospital admission in carbon monoxide-poisoned patients. Active player or simple bystander?

    PubMed Central

    Cervellin, Gianfranco; Comelli, Ivan; Buonocore, Ruggero; Picanza, Alessandra; Rastelli, Gianni; Lippi, Giuseppe

    2015-01-01

    OBJECTIVES: Although carbon monoxide poisoning is a major medical emergency, the armamentarium of recognized prognostic biomarkers displays unsatisfactory diagnostic performance for predicting cumulative endpoints. METHODS: We performed a retrospective and observational study to identify all patients admitted for carbon monoxide poisoning during a 2-year period. Complete demographical and clinical information, along with the laboratory data regarding arterial carboxyhemoglobin, hemoglobin, blood lactate and total serum bilirubin, was retrieved. RESULTS: The study population consisted of 38 poisoned patients (23 females and 15 males; mean age 39±21 years). Compared with discharged subjects, hospitalized patients displayed significantly higher values for blood lactate and total serum bilirubin, whereas arterial carboxyhemoglobin and hemoglobin did not differ. In a univariate analysis, hospitalization was significantly associated with blood lactate and total serum bilirubin, but not with age, sex, hemoglobin or carboxyhemoglobin. The diagnostic performance obtained after combining the blood lactate and total serum bilirubin results (area under the curve, 0.90; 95% CI, 0.81-0.99; p<0.001) was better than that obtained for either parameter alone. CONCLUSION: Although it remains unclear whether total serum bilirubin acts as an active player or a bystander, we conclude that the systematic assessment of bilirubin may, alongside lactate levels, provide useful information for clinical decision making regarding carbon monoxide poisoning. PMID:26375565

  5. Unilobar Versus Bilobar Biliary Drainage: Effect on Quality of Life and Bilirubin Level Reduction

    PubMed Central

    Gamanagatti, Shivanand; Singh, Tejbir; Sharma, Raju; Srivastava, Deep N; Dash, Nihar Ranjan; Garg, Pramod Kumar

    2016-01-01

    Background: Percutaneous biliary drainage is an accepted palliative treatment for malignant biliary obstruction. Purpose: To assess the effect on quality of life (QOL) and bilirubin level reduction in patients with inoperable malignant biliary obstruction treated by unilobar or bilobar percutaneous transhepatic biliary drainage (PTBD). Materials and Methods: Over a period of 2 years, 49 patients (age range, 22–75 years) of inoperable malignant biliary obstruction were treated by PTBD. Technical and clinical success rates, QOL, patency rates, survival rates, and complications were recorded. Clinical success rates, QOL, and bilirubin reduction were compared in patients treated with complete (n = 21) versus partial (n = 28) liver parenchyma drainage. QOL before and 1 month after biliary drainage were analyzed retrospectively between these two groups. Results: Biliary drainage was successful in all 49 patients, with an overall significant reduction of the postintervention bilirubin levels (P < 0.001) resulting in overall clinical success rate of 89.97%. Clinical success rates were similar in patients treated with whole-liver drainage versus partial-liver drainage. Mean serum bilirubin level before PTBD was 19.85 mg/dl and after the procedure at 1 month was 6.02 mg/dl. The mean baseline functional score was 39.35, symptom scale score was 59.55, and global health score was 27.45. At 1 month, mean functional score was 61.25, symptom scale score was 36.0 4, and global health score was 56.33, with overall significant improvement in QOL (<0.001). There was a statistically significant difference in the improvement of the QOL scores (P = 0.002), among patients who achieved clinical success, compared with those patients who did not achieve clinical success at 1 month. We did not find any significant difference in the QOL scores in patients according to the amount of liver drained (unilateral or bilateral drainage), the type of internalization used (ring biliary or stent

  6. Arsenite Oxidase Also Functions as an Antimonite Oxidase

    PubMed Central

    Wang, Qian; Warelow, Thomas P.; Kang, Yoon-Suk; Romano, Christine; Osborne, Thomas H.; Lehr, Corinne R.; Bothner, Brian; McDermott, Timothy R.

    2015-01-01

    Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency. Significant advances have been made in understanding microbe-arsenic interactions and how they influence arsenic redox speciation in the environment. However, even the most basic features of how and why a microorganism detects and reacts to antimony remain poorly understood. Previous work with Agrobacterium tumefaciens strain 5A concluded that oxidation of antimonite [Sb(III)] and arsenite [As(III)] required different biochemical pathways. Here, we show with in vivo experiments that a mutation in aioA [encoding the large subunit of As(III) oxidase] reduces the ability to oxidize Sb(III) by approximately one-third relative to the ability of the wild type. Further, in vitro studies with the purified As(III) oxidase from Rhizobium sp. strain NT-26 (AioA shares 94% amino acid sequence identity with AioA of A. tumefaciens) provide direct evidence of Sb(III) oxidation but also show a significantly decreased Vmax compared to that of As(III) oxidation. The aioBA genes encoding As(III) oxidase are induced by As(III) but not by Sb(III), whereas arsR gene expression is induced by both As(III) and Sb(III), suggesting that detection and transcriptional responses for As(III) and Sb(III) differ. While Sb(III) and As(III) are similar with respect to cellular extrusion (ArsB or Acr3) and interaction with ArsR, they differ in the regulatory mechanisms that control the expression of genes encoding the different Ars or Aio activities. In summary, this study documents an enzymatic basis for microbial Sb(III) oxidation, although additional Sb(III) oxidation activity also is apparent in this bacterium. PMID:25576601

  7. Bound states and the Bekenstein bound

    SciTech Connect

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  8. Manganese(IV) Oxide Production by Acremonium sp. Strain KR21-2 and Extracellular Mn(II) Oxidase Activity

    PubMed Central

    Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke

    2006-01-01

    Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194

  9. Crystal structure and site-directed mutagenesis of a nitroalkane oxidase from Streptomyces ansochromogenes.

    PubMed

    Li, Yanhua; Gao, Zengqiang; Hou, Haifeng; Li, Lei; Zhang, Jihui; Yang, Haihua; Dong, Yuhui; Tan, Huarong

    2011-02-18

    Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure. PMID:21147069

  10. Studies on the Mechanism of Aldehyde Oxidase and Xanthine Oxidase

    PubMed Central

    Alfaro, Joshua F.

    2009-01-01

    DFT calculations support a concerted mechanism for xanthine oxidase and aldehyde oxidase hydride displacement from the sp2 carbon of 6-substituted 4-quinazolinones. The variations in transition state structure show that C-O bond formation is nearly complete in the transition state and the transition state changes are anti-Hammond with the C-H and C-O bond lengths being more product-like for the faster reactions. The C-O bond length in the transition state is around 90% formed. However, the C-H bond is only about 80% broken. This leads to a very tetrahedral transition state with an O-C-N angle of 109 degrees. Thus, while the mechanism is concerted, the anti-bonding orbital of the C-H bond that is broken is not directly attacked by the nucleophile and instead hydride displacement occurs after almost complete tetrahedral transition state formation. In support of this the C=N bond is lengthened in the transition state indicating that attack on the electrophilic carbon occurs by addition to the C=N bond with negative charge increasing on the nitrogen. Differences in experimental reaction rates are accurately reproduced by these calculations, and tend to support this mechanism. PMID:18998731

  11. Studies on the mechanism of aldehyde oxidase and xanthine oxidase.

    PubMed

    Alfaro, Joshua F; Jones, Jeffrey P

    2008-12-01

    DFT calculations support a concerted mechanism for xanthine oxidase and aldehyde oxidase hydride displacement from the sp(2) carbon of 6-substituted 4-quinazolinones. The variations in transition state structure show that C-O bond formation is nearly complete in the transition state and the transition state changes are anti-Hammond with the C-H and C-O bond lengths being more product-like for the faster reactions. The C-O bond length in the transition state is around 90% formed. However, the C-H bond is only about 80% broken. This leads to a very tetrahedral transition state with an O-C-N angle of 109 degrees. Thus, while the mechanism is concerted, the antibonding orbital of the C-H bond that is broken is not directly attacked by the nucleophile and instead hydride displacement occurs after almost complete tetrahedral transition state formation. In support of this the C=N bond is lengthened in the transition state indicating that attack on the electrophilic carbon occurs by addition to the C=N bond with negative charge increasing on the nitrogen. Differences in experimental reaction rates are accurately reproduced by these calculations and tend to support this mechanism. PMID:18998731

  12. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  13. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  14. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  15. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  16. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    PubMed Central

    Dahiya, Tulika; Pundir, C.S.

    2013-01-01

    Background & objectives: High level of urinary oxalate substantially increases the risk of hyperoxaluria, a significant risk factor for urolithiasis. The primary goal of this study was to reduce urinary oxalate excretion employing liposome encapsulated oxalate oxidase in animal model. Methods: A membrane bound oxalate oxidase was purified from Bougainvillea leaves. The enzyme in its native form was less effective at the physiological pH of the recipient animal. To increase its functional viability, the enzyme was immobilized on to ethylene maleic anhydride (EMA). Rats were injected with liposome encapsulated EMA- oxalate oxidase and the effect was observed on degradation of oxalic acid. Results: The enzyme was purified to apparent homogeneity with 60-fold purification and 31 per cent yield. The optimum pH of EMA-derivative enzyme was 6.0 and it showed 70 per cent of its optimal activity at pH 7.0. The EMA-bound enzyme encapsulated into liposome showed greater oxalate degradation in 15 per cent casein vitamin B6 deficient fed rats as compared with 30 per cent casein vitamin B6 deficient fed rats and control rats. Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones. PMID:23481063

  17. Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus

    PubMed Central

    Smirnova, Irina; Chang, Hsin-Yang; von Ballmoos, Christoph; Ädelroth, Pia; Gennis, Robert B.; Brzezinski, Peter

    2014-01-01

    The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa3-type oxidases proton uptake to the catalytic site and “pump site” occur simultaneously. However, with the ba3 oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than with the aa3 oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba3 CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though the ba3 CytcO uses only a single proton pathway for transfer of the substrate and “pumped” protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site, respectively. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site. PMID:24004023

  18. Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters.

    PubMed

    Watanabe, Tomoko; Miyake, Manami; Shimizu, Toshinobu; Kamezawa, Miho; Masutomi, Naoya; Shimura, Takesada; Ohashi, Rikiya

    2015-04-01

    It is useful to identify endogenous substrates for the evaluation of drug-drug interactions via transporters. In this study, we investigated the utility of bilirubins, substrates of OATPs and MRP2, and bile acids and substrates of NTCP and BSEP, as biomarkers for the inhibition of transporters. In rats administered 20 and 80 mg/kg rifampicin, the plasma levels of bilirubin glucuronides were elevated, gradually decreased, and almost returned to the baseline level at 24 hours after administration without an elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This result indicates the transient inhibition of rOatps and/or rMrp2. Although the correlation between free plasma concentrations and IC50 values of rOatps depended on the substrates used in the in vitro studies, the inhibition of rOatps by rifampicin was confirmed in the in vivo study using valsartan as a substrate of rOatps. In rats administered 10 and 30 mg/kg cyclosporin A, the plasma levels of bile acids were elevated and persisted for up to 24 hours after administration without an elevation of ALT and AST. This result indicates the continuous inhibition of rNtcp and/or rBsep, although there were differences between the free plasma or liver concentrations and IC50 values of rNtcp or rBsep, respectively. This study suggests that the monitoring of bilirubins and bile acids in plasma is useful in evaluating the inhibitory potential of their corresponding transporters. PMID:25581390

  19. Physical Uncertainty Bounds (PUB)

    SciTech Connect

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  20. Asymptotic entropy bounds

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2016-07-01

    We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum null energy condition, of the generalized Second Law, and of the quantum Bousso bound.

  1. Self-assembly of aqueous bilirubin ditaurate, a natural conjugated bile pigment, to contraposing enantiomeric dimers and M(-) and P(+) tetramers and their selective hydrophilic disaggregation by monomers and micelles of bile salts.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-02-24

    The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 μM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7β-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile. PMID:25671490

  2. RRM analysis of protoporphyrinogen oxidase.

    PubMed

    Sauren, M; Pirogova, E; Cosic, I

    2004-12-01

    Enzymes are crucial in accelerating metabolic reactions in living organisms. Protoporphyrinogen oxidase (PpOI) is an enzyme that catalyses the production of protoporphyrin IX (PpIX), a protein used in a cancer treatment known as photodynamic therapy (PDT). In this study, a structure-function analysis of PpOI was carried out using the Resonant Recognition Model (RRM), a physico-mathematical approach for analysis of proteins interactions. This method is based on the finding that the distribution of delocalised electron energies along the protein plays a crucial role in determining the protein's biological activity. Two digital signal processing (DSP) methods were used: Fourier Transform (FT) and Continuous Wavelet Transform (CWT). Here we have determined the characteristic frequencies and the "hot spot" amino acids, and predicted the location of proteins' active site(s). Several proteins that potentially belong to the PpOI functional group were also analysed to distinguish their viability in this role. PMID:15712584

  3. Impact of Rhesus disease on the global problem of bilirubin-induced neurologic dysfunction.

    PubMed

    Zipursky, Alvin; Bhutani, Vinod K

    2015-02-01

    Clinical experience with Rhesus (Rh) disease and its post-icteric sequelae is limited among high-income countries because of nearly over four decades of effective prevention care. We hypothesized that Rh disease is prevalent in other regions of the world because it is likely that protection is limited or non-existent. Following a worldwide study, it has been concluded that Rh hemolytic disease is a significant public health problem resulting in stillbirths and neonatal deaths, and is a major cause of severe hyperbilirubinemia with its sequelae, kernicterus and bilirubin-induced neurologic dysfunction. Knowing that effective Rh-disease prophylaxis depends on maternal blood-type screening, healthcare afforded to the high-risk mothers needs to be free of bottlenecks and coupled with unfettered access to effective Rh-immunoglobulin. Future studies that match the universal identification of Rh-negative status of women and targeted use of immunoprophylaxis to prevent childhood bilirubin neurotoxicity are within reach, based on vast prior experiences. PMID:25582277

  4. Method for Estimating Bilirubin Isomerization Efficiency in Phototherapy to Treat Neonatal Jaundice

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2014-11-01

    We propose a method for quantitative assessment of the efficacy of phototherapy to treat neonatal jaundice using the diffuse reflectance spectrum for the newborn's skin, based on the analytical dependence of the measured spectrum on the structural and morphological parameters of the skin, affecting the optical conditions in the medium, and an algorithm for rapid calculation of the bilirubin photoisomerization rate in the skin tissues as a function of the structural and morphological parameters of the skin and the wavelength of the exciting radiation. From the results of a numerical simulation of the process of radiation transport in the skin, we assess the stability of our method to variations in the scattering properties of the skin and the concentrations of its optically active chromophores (melanin, oxyhemoglobin, deoxyhemoglobin). We show that in order to achieve the maximum efficacy of phototherapy, we should use light from the range 484-496 nm. In this case, the intensity of the exciting radiation should be selected individually for each newborn according to the bilirubin photoisomerization rate characteristic for it.

  5. Unconjugated Bilirubin exerts Pro-Apoptotic Effect on Platelets via p38-MAPK activation

    PubMed Central

    NaveenKumar, Somanathapura K.; Thushara, Ram M.; Sundaram, Mahalingam S.; Hemshekhar, Mahadevappa; Paul, Manoj; Thirunavukkarasu, Chinnasamy; Basappa; Nagaraju, Ganesh; Raghavan, Sathees C.; Girish, Kesturu S.; Kemparaju, Kempaiah; Rangappa, Kanchugarakoppal S.

    2015-01-01

    Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation. PMID:26459859

  6. Effects of aluminum chloride on serum proteins, bilirubin, and hepatic trace elements in chickens.

    PubMed

    Wang, Ben; Zhu, Yanzhu; Zhang, Hongling; Liu, Liming; Li, Guojiang; Song, Yongli; Li, Yanfei

    2016-09-01

    The aim of this study was to reveal the effects of aluminum chloride (AlCl3) on the hepatic metabolism function and trace elements' distribution. Two hundred healthy male chickens (1 day old) were intraperitoneally administered with AlCl3 (0, 18.31, 27.47, and 36.62 mg kg(-1) day(-1) of Al(3+)) consecutively for 3 days. Then the chickens were allowed to rest for 1 day. The cycle lasted four days. The cycle was repeated 15 times (60 days). The contents of serum total protein (TP), albumin (ALB), total bilirubin (TBI), direct bilirubin (DBI), hepatic aluminum (Al), copper (Cu), iron (Fe), and zinc (Zn) were examined. The results showed that the contents of serum TP and ALB and hepatic Fe and Zn decreased and the contents of serum TBI and DBI and hepatic Al and Cu increased in the chickens with AlCl3 This indicates that chronic administration of AlCl3 impairs the hepatic metabolism function and disorders the hepatic trace elements' distribution. PMID:25896954

  7. Crosstalk between mitochondria and NADPH oxidases

    PubMed Central

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain condition may stimulate NADPH oxidases. This crosstalk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions. PMID:21777669

  8. Fluorescence excitation spectrum of bilirubin in blood: a model for the action spectrum for phototherapy of neonatal jaundice.

    PubMed

    Lamola, Angelo A; Russo, Marie

    2014-01-01

    A recent report (Lamola et al. 2013 Pediatric Research, 74, 54-60) presents a semiempirical model for facile calculation of an action spectrum for bilirubin photochemistry in vivo using the most current knowledge of the optics of neonatal skin. The calculations indicate that competition for phototherapy light by hemoglobin in the skin is the predominant factor that defines the spectrum of light absorbed by bilirubin. If the latter is correct, a valid physical analog of the calculated spectrum is the excitation spectrum of bilirubin in blood. The fluorescence excitation spectrum was recorded and, indeed, found to be very similar to the calculated spectrum. Both spectra exhibit maxima near 476 nm and widths at half height of about 50 nm. This result supports the conclusion that light between 460 and 490 nm is most effective for phototherapy of neonatal jaundice. PMID:23998276

  9. Molecular basis of bilirubin UDP-glucuronosyltransferase induction in spontaneously diabetic rats, acetone-treated rats and starved rats.

    PubMed Central

    Braun, L; Coffey, M J; Puskás, F; Kardon, T; Nagy, G; Conley, A A; Burchell, B; Mandl, J

    1998-01-01

    The co-ordinated induction of several hepatic drug-metabolizing enzymes is a common feature in the regulation of drug biotransformation under normal and pathological conditions. In the present study the activity and expression of bilirubin UDP-glucuronosyltransferase (UGT1A1) were investigated in livers of BioBreeding/Worcester diabetic, fasted and acetone-treated rats. Bilirubin glucuronidation was stimulated by all three treatments; this was correlated with an increase in the UGT1A1 protein concentration in hepatic microsomes. Transcriptional induction of UGT1A1 was also observed in diabetes and starvation but not with acetone treatment, which apparently caused translational stabilization of the enzyme protein. The hormonal/metabolic alterations in diabetes and starvation might be a model for postnatal development. The sudden interruption of maternal glucose supply signals the enhanced expression of UGT1A1, giving a novel explanation for the physiological induction of bilirubin glucuronidation in newborn infants. PMID:9841869

  10. Predictive effects of bilirubin on response of colorectal cancer to irinotecan-based chemotherapy

    PubMed Central

    Yu, Qian-Qian; Qiu, Hong; Zhang, Ming-Sheng; Hu, Guang-Yuan; Liu, Bo; Huang, Liu; Liao, Xin; Li, Qian-Xia; Li, Zhi-Huan; Yuan, Xiang-Lin

    2016-01-01

    AIM: To examine the predictive effects of baseline serum bilirubin levels and UDP-glucuronosyltransferase (UGT) 1A1*28 polymorphism on response of colorectal cancer to irinotecan-based chemotherapy. METHODS: The present study was based on a prospective multicenter longitudinal trial of Chinese metastatic colorectal cancer (mCRC) patients treated with irinotecan-based chemotherapy (NCT01282658). Baseline serum bilirubin levels, including total bilirubin (TBil) and unconjugated bilirubin (UBil), were measured, and genotyping of UGT1A1*28 polymorphism was performed. Receiver operating characteristic curve (ROC) analysis was used to determine cutoff values of TBil and UBil. The TBil values were categorized into > 13.0 or ≤ 13.0 groups; the UBil values were categorized into > 4.1 or ≤ 4.1 groups. Combining the cutoff values of TBil and UBil, which was recorded as CoBil, patients were classified into three groups. The classifier’s performance of UGT1A1*28 and CoBil for predicting treatment response was evaluated by ROC analysis. Associations between response and CoBil or UGT1A1*28 polymorphism were estimated using simple and multiple logistic regression models. RESULTS: Among the 120 mCRC patients, the serum bilirubin level was significantly different between the UGT1A1*28 wild-type and mutant genotypes. Patients with the mutant genotype had an increased likelihood of a higher TBil (P = 0.018) and a higher UBil (P = 0.014) level compared with the wild-type genotype. Patients were stratified into three groups based on CoBil. Group 1 was patients with TBil > 13.0 and UBil > 4.1; Group 2 was patients with TBil ≤ 13.0 and UBil > 4.1; and Group 3 was patients with TBil ≤ 13.0 and UBil ≤ 4.1. Patients in Group 3 had more than a 10-fold higher likelihood of having a response in the simple (OR = 11.250; 95%CI: 2.286-55.367; P = 0.003) and multiple (OR = 16.001; 95%CI: 2.802 -91.371; P = 0.002) analyses compared with the Group 1 individuals. Patients carrying the UGT1