Science.gov

Sample records for billion electron volts

  1. The VESUVIO electron volt neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Mayers, J.; Reiter, G.

    2012-04-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ˜1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3He, 4He, Li, C and O and measurement of eV electronic and magnetic excitations.

  2. Feasibility study for mega-electron-volt electron beam tomography

    SciTech Connect

    Hampel, U.; Baertling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.

    2012-09-15

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  3. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  4. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability. PMID:26233391

  5. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K. Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  6. Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution

    NASA Astrophysics Data System (ADS)

    Chutjian, Ara

    1999-10-01

    The technique of rare-gas photoionization(J. M. Ajello and A. Chutjian, J. Chem. Phys. 65), 5524 (1976). has been extended(A. Kortyna, M. Darrach and A. Chutjian, Bull. Am. Phys. Soc. 43), 1336 (1998). by use of direct laser ionization to electron energies ɛ in the range 0-100 meV, with a resolution Δɛ of 0.4-0.5 meV (FWHM). Tunable UV light at λ276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at λ92 nm, is then used to photoionize Xe at its ^2P_1/2 threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF6 will be reported which show resonance structure at the opening of the ground-state vibrational channels.^3,(H. Hotop et al., AIP Conf. Proc. Ser. 360 (AIP, New York, 1995), and private communication.) This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

  7. Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Kortyna, A.; Darrach, M. R.; Howe, P. -T.

    1999-01-01

    The technique of rare-gas photoionization has been extended by use of direct laser ionization to electron energies epsilon in the range 0-100 meV, with a resolution Delta(epsilon) of 0.4-0.5 meV (FWHM). Tunable UV light at (Lambda)276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at (Lambda)92 nm, is then used to photoionize Xe at its 2P(sub 1/2) threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF(sub 6) will be reported which show resonance structure at the opening of the ground-state vibrational channels. This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

  8. Bistable defect in mega-electron-volt proton implanted 4H silicon carbide

    NASA Astrophysics Data System (ADS)

    Martin, D. M.; Kortegaard Nielsen, H.; Lévêque, P.; Hallén, A.; Alfieri, G.; Svensson, B. G.

    2004-03-01

    Epitaxial 4H-SiC n-type layers implanted at room temperature with a low fluence of mega-electron-volt protons have been measured by deep level transient spectroscopy (DLTS). The proton fluence of 1×1012cm-2 creates an estimated initial concentration of intrinsic point defects of about 1014 cm-3 of which about 10% remain after the implantation and gives rise to deep states in the upper part of the band gap. Here, we investigate the samples prior to high-temperature annealing and a very complex spectrum is revealed. In particular, a bistable defect M is discovered having two DLTS peaks, M1 and M3 at EC-0.42 and around EC-0.75 eV, respectively, in one configuration and one peak, M2 at EC-0.70 eV in the other configuration. The charge dependent thermal activation energies for the transformation between the bistable defect peaks are 0.90 and 1.40 eV.

  9. FOREWORD: VI Workshop in Electron Volt Neutron Spectroscopy: Frontiers and Horizons

    NASA Astrophysics Data System (ADS)

    Seel, A. G.; Senesi, R.; Fernandez-Alonso, F.

    2014-12-01

    January 2014 saw the congregation in Abingdon (UK) of scientists from across the world, to discuss the current state and future of spectroscopy using epithermal neutrons. This meeting was the sixth in a series of workshops held in collaboration between the Science and Technology Facilities Council (UK) and the Consiglio Nazionale delle Ricerche (Italy), aimed at bringing together researchers with an interest in the use of electron-volt neutrons in spectroscopic studies [1]. This technique is termed Deep Inelastic Neutron Scattering (DINS), and also Neutron Compton Scattering (NCS) in reference to the analogy with Compton scattering of X-rays from electrons. In particular, this meeting centred jointly around experimentalists and theoreticians, formulating animated discussions as to the current overview of DINS and future horizons facing the field. The use of electron Volt neutrons for spectroscopic measurements dates back to the advent of proton-driven spallation neutron sources in the 1970s and 1980s. Following an initial scientific meeting in Los Alamos (USA) [2], the first two meetings in this series were held in Abingdon (UK) in 1995 and 1998, with subsequent meetings held in Santa Fe (USA) in 2005 [3], Oak Ridge National Laboratory (USA) in 2006 [4], and Rome, Italy; in 2010 [5]. The flagship instrument serving a continual user-programme for DINS measurements, and the main focus of this meeting, has been the VESUVIO spectrometer at ISIS [6, 7]. Subsequent instruments like SEQUOIA in the USA [8, 9] and a newer spectrometer in the Bariloche LINAC in Argentina [10, 11] have also been commissioned and began serving a growing user community. The availability of DINS measurements has extended the range of possible spectroscopic techniques that utilise neutrons into the kinematic region of high energy and momentum transfers, shown schematically in Figure 1. Spectroscopic instrument suites such as that of ISIS are thus able to probe processes on timescales across nine

  10. Direct observation of radiation-belt electron acceleration from electron-volt energies to megavolts by nonlinear whistlers.

    PubMed

    Mozer, F S; Agapitov, O; Krasnoselskikh, V; Lejosne, S; Reeves, G D; Roth, I

    2014-07-18

    The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth's outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of ∼ 0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed. PMID:25083648

  11. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-15

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (1–30 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  12. FOREWORD: VI Workshop in Electron Volt Neutron Spectroscopy: Frontiers and Horizons

    NASA Astrophysics Data System (ADS)

    Seel, A. G.; Senesi, R.; Fernandez-Alonso, F.

    2014-12-01

    January 2014 saw the congregation in Abingdon (UK) of scientists from across the world, to discuss the current state and future of spectroscopy using epithermal neutrons. This meeting was the sixth in a series of workshops held in collaboration between the Science and Technology Facilities Council (UK) and the Consiglio Nazionale delle Ricerche (Italy), aimed at bringing together researchers with an interest in the use of electron-volt neutrons in spectroscopic studies [1]. This technique is termed Deep Inelastic Neutron Scattering (DINS), and also Neutron Compton Scattering (NCS) in reference to the analogy with Compton scattering of X-rays from electrons. In particular, this meeting centred jointly around experimentalists and theoreticians, formulating animated discussions as to the current overview of DINS and future horizons facing the field. The use of electron Volt neutrons for spectroscopic measurements dates back to the advent of proton-driven spallation neutron sources in the 1970s and 1980s. Following an initial scientific meeting in Los Alamos (USA) [2], the first two meetings in this series were held in Abingdon (UK) in 1995 and 1998, with subsequent meetings held in Santa Fe (USA) in 2005 [3], Oak Ridge National Laboratory (USA) in 2006 [4], and Rome, Italy; in 2010 [5]. The flagship instrument serving a continual user-programme for DINS measurements, and the main focus of this meeting, has been the VESUVIO spectrometer at ISIS [6, 7]. Subsequent instruments like SEQUOIA in the USA [8, 9] and a newer spectrometer in the Bariloche LINAC in Argentina [10, 11] have also been commissioned and began serving a growing user community. The availability of DINS measurements has extended the range of possible spectroscopic techniques that utilise neutrons into the kinematic region of high energy and momentum transfers, shown schematically in Figure 1. Spectroscopic instrument suites such as that of ISIS are thus able to probe processes on timescales across nine

  13. Coherent kilo-electron-volt backscattering from plasma-wave boosted relativistic electron mirrors

    SciTech Connect

    Li, F. Y.; Chen, M. Liu, Y.; Zhang, J.; Sheng, Z. M. E-mail: zmsheng@sjtu.edu.cn; Wu, H. C.; Meyer-ter-Vehn, J.; Mori, W. B.

    2014-10-20

    A different parameter regime of laser wakefield acceleration driven by sub-petawatt femtosecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation, including both the mirror formation and Thomson scattering, demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driving laser intensities and high density gas targets.

  14. Absolute differential cross sections for electron capture and loss by kilo-electron-volt hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Smith, G. J.; Johnson, L. K.; Gao, R. S.; Smith, K. A.; Stebbings, R. F.

    1991-01-01

    This paper reports measurements of absolute differential cross sections for electron capture and loss for fast hydrogen atoms incident on H2, N2, O2, Ar, and He. Cross sections have been determined in the 2.0- to 5.0-keV energy range over the laboratory angular range 0.02-2 deg, with an angular, resolution of 0.02 deg. The high angular resolution allows observation of the structure at small angles in some of the cross sections. Comparison of the present results with those of other authors generally shows very good agreement.

  15. Backscattering and electron microscopy study of mega-electron volt gold implantation into silicon

    NASA Astrophysics Data System (ADS)

    Alford, T. L.; Theodore, N. David

    1994-12-01

    Rutherford backscattering spectrometry and cross-section transmission electron microscopy have been used to study implantation of MeV Au(+) ions into silicon. Measured range (Rp) and straggle (Delta Rp) values for MeV Au(+) implanted silicon are found to be consistently larger than values predicted by TRIM simulations. The magnitude of the discrepancies are such that the differences cannot be attributed to implantation effects alone. We conclude that the TRIM computer program does not accurately predict Rp and Delta Rp values for MeV Au(+) implantation into crystalline Si. Experimental results show that for low-current low-energy implants a single Gaussian Au profile is achieved. Low-power implants produce a single band of damage consisting of simple point defects. High-current high-energy implants lead to the creation of more complex defect structures such as dislocation networks; these arise as a result of dynamic beam recrystallization. Multiple layers of precipitation are observed in silicon implanted with MeV Au(+) ions in those samples where dynamic recrystallization occurred. Precipitation occurs as a result of the local Au concentration exceeding the solid-solubility during beam-induced recrystallization. Different mechanisms operate in conjunction to cause anomalous Au motion which results in formation of multiple precipitate layers. A first mechanism has the implanted Au segregating into a densely defected region; when the concentration exceeds the local solid solubility Au precipitates out of the matrix. A second mechanism has motion of Au along dislocations in a network; the diffusing Au reaches a dislocation-node where it exceeds the local threshold for precipitation and the Au therefore precipitates. Enhanced Au diffusion is dependent upon the magnitude of dynamic recrystallization occurring during the implantation.

  16. Sub-electron-volt chemical shifts and strong interference effects measured in the resonance x-ray scattering spectra of aniline

    SciTech Connect

    Luo, Y.; Agren, H.; Guo, J.; Skytt, P.; Wassdahl, N.; Nordgren, J.

    1995-11-01

    By exploring the monosubstituted benzene compound aniline, we demonstrate that resonance inelastic x-ray spectroscopy of chemically shifted species is {ital site} {ital selective}. Core-excited levels with distinct, super-electron-volt shifts can be resonantly excited and their x-ray emission spectra analyzed separately. Core-excited levels referring to sites with small, sub-electron-volt, chemical shifts give resonant x-ray spectra that interfere strongly. It is demonstrated that this interference, which is manifested in the one-step model, can be used to monitor chemical shifts in the sub-electron-volt energy region. We show that in the limit when these chemical shifts go to zero some salient symmetry-selective features of the benzene resonant x-ray emission spectrum are restored in the aniline spectra.

  17. Electron-atom superelastic scattering in magnesium at millielectron volt energies.

    PubMed

    Baynard, T; Reber, A C; Niedziela, R F; Darveau, S A; Prutzman, B; Berry, R S

    2007-12-13

    The energy dependence of superelastic scattering is measured for electrons on Mg(3(1)P) from threshold to 270 meV with a novel technique. The method uses photoelectrons produced by a narrow bandwidth laser as an approximately monoenergetic incident electron source to collide with excited atoms. Measurements are made at energies as low as 1.5 meV with a resolution of 1 meV near threshold. An efficient magnetic-bottle time-of-flight electron spectrometer allows for the simultaneous measurement of multiple scattering channels. Above-threshold ionization is also observed. The measured energy dependence for transitions from the 3(1)P state to both the 3(3)P and 3(1)S are found to be inversely proportional to the energy from 10 to 270 meV. Below 10 meV, the dependencies are different, with the 3(3)P transition having an E(-1/2) dependence and the 3(1)S channel retaining an E(-1) dependence. PMID:17985853

  18. 9-Volt Battery Safety

    MedlinePlus

    ... and negative posts are close together. If a metal object touches the two posts of a 9- ... 9-volt batteries were thrown away with other metal items. Storing 9-volt batteries KKK Keep batteries ...

  19. Electron microscopy reveals unique microfossil preservation in 1 billion-year-old lakes

    NASA Astrophysics Data System (ADS)

    Saunders, M.; Kong, C.; Menon, S.; Wacey, D.

    2014-06-01

    Electron microscopy was applied to the study of 1 billion-year-old microfossils from northwest Scotland in order to investigate their 3D morphology and mode of fossilization. 3D-FIB-SEM revealed high quality preservation of organic cell walls with only minor amounts of post-mortem decomposition, followed by variable degrees of morphological alteration (folding and compression of cell walls) during sediment compaction. EFTEM mapping plus SAED revealed a diverse fossilizing mineral assemblage including K-rich clay, Fe-Mg-rich clay and calcium phosphate, with each mineral occupying specific microenvironments in proximity to carbonaceous microfossil cell walls.

  20. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector

    SciTech Connect

    Musumeci, P.; Moody, J. T.; Scoby, C. M.; Gutierrez, M. S.; Bender, H. A.; Wilcox, N. S.

    2010-01-15

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  1. High Quality Single Shot Diffraction Patterns Using Ultrashort Megaelectron Volt Electron Beams from a Radio Frequency Photoinjector

    SciTech Connect

    P. Musumeci, J. T. Moody, C. M. Scoby, M. S. Gutierrez, H. A. Bender, N. S. Wilcox

    2010-01-01

    Single shot diffraction patterns using a 250 fs long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the RF photoinjector off a 100 nm thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction

  2. Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator

    SciTech Connect

    Murakami, M.; Tanaka, M.

    2013-04-22

    An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

  3. Missing billions.

    PubMed

    Conly, S

    1997-01-01

    This article discusses funding of population programs that support the Cairo International Conference on Population and Development's Plan of Action. The Plan of Action calls for a quadrupling of annual financial commitments for population programs to $17 billion by the year 2000 and $22 billion by 2015. The increased expenditures would cover the increased demand for services from unmet need and population growth. Donor countries are expected to increase their share from the current 25% to about 33%, or $5.7 billion by the year 2000. The estimates are in 1993 constant dollars. $17 billion is less than the $40 billion that is spent worldwide on playing golf. During 1993-94, general donor support increased to $1.2 billion. Denmark, Germany, Japan, the Netherlands, the United Kingdom, and the United States increased their support. The United States doubled its support for population programs during 1992-95 to $583 million. During 1996-97 the US Congress cut funding back to the 1995 level. France, Italy, Spain, Belgium, and Austria have lagged in support for population programs in the present and the past. Equal burden sharing would require the US to increase funding to $1.9 billion. Developed country assistance declined to the lowest share of combined gross national product since 1970. This shifts the burden to multilateral sources. The European Union is committed to increasing its funding, and the World Bank increased funding for population and reproductive health to about $600 million in 1996 from $424 million in 1994. Bangladesh, China, India, Indonesia, Mexico, South Africa, and Turkey spent 85% of all government expenditures on family planning in developing countries. External donors in Africa are the main support of family planning. Private consumers in Latin America pay most of the costs of family planning. External assistance will be needed for some time. PMID:12321013

  4. Constraint on a varying proton-electron mass ratio 1.5 billion years after the big bang.

    PubMed

    Bagdonaite, J; Ubachs, W; Murphy, M T; Whitmore, J B

    2015-02-20

    A molecular hydrogen absorber at a lookback time of 12.4 billion years, corresponding to 10% of the age of the Universe today, is analyzed to put a constraint on a varying proton-electron mass ratio, μ. A high resolution spectrum of the J1443+2724 quasar, which was observed with the Very Large Telescope, is used to create an accurate model of 89 Lyman and Werner band transitions whose relative frequencies are sensitive to μ, yielding a limit on the relative deviation from the current laboratory value of Δμ/μ=(-9.5 ± 5.4(stat)± 5.3(syst))×10(-6). PMID:25763949

  5. Cross sections for charge-changing processes involving kilo-electron-volt H and H{sup +} with CO and CO{sub 2}

    SciTech Connect

    Lindsay, B.G.; Yu, W.S.; Stebbings, R.F.

    2005-03-01

    Absolute differential cross sections are reported for electron capture and loss by 1-5 keV H atoms incident on CO and CO{sub 2} for laboratory scattering angles up to 1.73 deg., and for charge transfer of 1-5 keV H{sup +} with CO and CO{sub 2} for scattering angles up to 2.51 deg. To our knowledge, the H-atom differential electron-capture and -loss cross sections presented here are the first of their kind for CO and CO{sub 2}. The differential electron-loss cross sections are very similar to one another, and to previous measurements with other molecular targets, suggesting that some aspects of these collisions may be amenable to a relatively basic theoretical model. The differential measurements reported here significantly advance our knowledge of these collision processes and very good agreement is observed between the corresponding integral cross sections and prior work.

  6. Braking formula for electrons of relativistic speed

    NASA Astrophysics Data System (ADS)

    Bethe, H.

    2014-11-01

    From the theory of Møller [Møller, Chr. 1931. Über den Stoß zweier Teilchen unter Berücksichtigung der Retardation der Kräfte. Zeitschrift f. Phys. 70: 786-795] the energy loss of electrons with relativistic speeds passing through matter is derived. The energy loss per centimeter of distance reaches a minimum at about 96% of the speed of light and increases again at higher speeds; for electrons of several billion Volt it is about 4 million Volt per centimeter of water. A table of the theoretical energy loss for electrons and protons of various speeds is given.

  7. Steady State Load Characterization Fact Sheet: 2012 Chevy Volt

    SciTech Connect

    Don Scoffield

    2015-01-01

    This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.

  8. Development of the VOLT-A shuttle experiment

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Bozek, J. M.; Ferguson, D. C.

    1985-01-01

    The NASA Lewis Research Center (LeRC) is investigating potential problems associated with the operation of high voltage solar cell arrays in the space plasma environment. At high voltages, interactions between the solar array and the space plasma could result in unacceptable levels of electrical discharge (arcing) and/or parasitic losses (current drains from the array to the plasma). The objective of the Voltage Operating Limit Tests (VOLT-A) Shuttle bay experiment is to characterize space plasma/solar cell panel interactions in low earth orbit. VOLT-A consists of an experiment plate subassembly which contains four solar panels, an electronics subassembly and a Langmuir probe subassembly mounted on an MPESS carrier. During a given 8.25 hour data taking period (5-1/2 continuous orbits), the solar panels, which represent state-of-the-art solar cell technologies, will be sequentially subjected to bias voltages in steps ranging from minus 626 V to plus 313 V. Appropriate measurements will be made at each voltage to characterize arcing and parasitic losses. Corresponding measurements of the plasma environment (plasma density, electron temperature and neutral density) will also be made. Data will be recorded on an on-board tape recorder for subsequent data reduction and analysis.

  9. 137. POWER PANEL A (208 VOLTS) AND POWER PANEL B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. POWER PANEL A (208 VOLTS) AND POWER PANEL B (480 VOLTS) ON EAST WALL OF TRANSFORMER ROOM (212), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. FRONTAL VIEW OF #3 GENERATOR, 6600 VOLT OIL CIRCUIT BREAKER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONTAL VIEW OF #3 GENERATOR, 6600 VOLT OIL CIRCUIT BREAKER, LOCATED BEHIND SLATE SWITCHBOARD. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  11. Nine billion or bust?

    NASA Astrophysics Data System (ADS)

    nerd, nerd; Pepperday, Mike; Szautner, a. a. z.

    2014-02-01

    In reply to a review of Tony Ryan and Steve McKevitt's book Project Sunshine, which explores ways in which the Earth could support a future population of nine billion people (Letting the sunshine in, November 2013 pp50-51, http://ow.ly/r0FTM).

  12. Chandra Examines a Quadrillion-Volt Pulsar

    NASA Astrophysics Data System (ADS)

    2001-09-01

    The high-voltage environment of one of the most energetic and strongly magnetized pulsars known has been surveyed by NASA's Chandra X-ray Observatory. A team of astronomers found a powerful jet of high-energy particles extending over a distance of 20 light years and bright arcs believed to be due to particles of matter and anti-matter generated by the pulsar. The team of US, Canadian, and Japanese scientists pointed Chandra at the rapidly spinning neutron star B1509-58, located 19,000 light years away in the constellation of Circinus, for over five hours. These results were announced at the "Two Years of Science with Chandra" symposium in Washington, DC. "Jets and arcs on this vast scale have never been seen in any other pulsar," said Bryan Gaensler of the Smithsonian Astrophysical Observatory. "The spectacular images we have obtained of this source are letting us test theories as to how pulsars unleash so much energy." The features seen with Chandra give the scientists insight into the process by which voltages of more than 7000 trillion volts are created around rotating neutron stars (the dense remnants of supernova explosions) and how these extreme voltages affect their environment. B1509-58 is of particular interest because it has a much stronger magnetic field than the Crab Nebula pulsar, which exhibits similar features on a much smaller scale. The general picture emerging from these results is that high-energy particles of matter and antimatter are streaming away from the neutron star along its poles and near its equator. The particles leaving the poles produce the jets; astronomers speculate that only one side of the jet is apparent in B1509-58, indicating that this one side is beamed in our direction, while the other is rushing away. "Until this observation, no one knew for sure whether such tremendous voltages and energy outputs were a trademark of all pulsars, or if the Crab was an oddball," said Vicky Kaspi of McGill University in Montreal. "Now thanks

  13. A Method for Evaluating Volt-VAR Optimization Field Demonstrations

    SciTech Connect

    Schneider, Kevin P.; Weaver, T. F.

    2014-08-31

    In a regulated business environment a utility must be able to validate that deployed technologies provide quantifiable benefits to the end-use customers. For traditional technologies there are well established procedures for determining what benefits will be derived from the deployment. But for many emerging technologies procedures for determining benefits are less clear and completely absent in some cases. Volt-VAR Optimization is a technology that is being deployed across the nation, but there are still numerous discussions about potential benefits and how they are achieved. This paper will present a method for the evaluation, and quantification of benefits, for field deployments of Volt-VAR Optimization technologies. In addition to the basic methodology, the paper will present a summary of results, and observations, from two separate Volt-VAR Optimization field evaluations using the proposed method.

  14. 50. PARTIAL FLOOR PLAN SHOWING INDOOR 750 VOLT SWITCHRACK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. PARTIAL FLOOR PLAN SHOWING INDOOR 750 VOLT SWITCHRACK AND MISC. EQUIPMENT, SANTA ANA RIVER NO. 2, DEC. 11, 1951; REVISIONS, DEC. 14, 1951. SCE drawing no. 534985-1. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  15. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. Zero Volt Paper Spray Ionization and Its Mechanism.

    PubMed

    Wleklinski, Michael; Li, Yafeng; Bag, Soumabha; Sarkar, Depanjan; Narayanan, Rahul; Pradeep, T; Cooks, R Graham

    2015-07-01

    The analytical performance and a suggested mechanism for zero volt paper spray using chromatography paper are presented. A spray is generated by the action of the pneumatic force of the mass spectrometer (MS) vacuum at the inlet. Positive and negative ion signals are observed, and comparisons are made with standard kV paper spray (PS) ionization and nanoelectrospray ionization (nESI). While the range of analytes to which zero volt PS is applicable is very similar to kV PS and nESI, differences in the mass spectra of mixtures are interpreted in terms of the more significant effects of analyte surface activity in the gentler zero volt experiment than in the other methods due to the significantly lower charge. The signal intensity of zero volt PS is also lower than in the other methods. A Monte Carlo simulation based on statistical fluctuation of positive and negative ions in solution has been implemented to explain the production of ions from initially uncharged droplets. Uncharged droplets first break up due to aerodynamics forces until they are in the 2-4 μm size range and then undergo Coulombic fission. A model involving statistical charge fluctuations in both phases predicts detection limits similar to those observed experimentally and explains the effects of binary mixture components on relative ionization efficiencies. The proposed mechanism may also play a role in ionization by other voltage-free methods. PMID:26024306

  17. Plant Generator driven by a small Delco 32 volt DC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plant Generator driven by a small Delco 32 volt DC steam engine with a maximum output of 17.6 kilowatts - East Broad Top Railroad & Coal Company, Machine Shop, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  18. Particle physicist's dreams about PetaelectronVolt laser plasma accelerators

    SciTech Connect

    Vesztergombi, G.

    2012-07-09

    Present day accelerators are working well in the multi TeV energy scale and one is expecting exciting results in the coming years. Conventional technologies, however, can offer only incremental (factor 2 or 3) increase in beam energies which does not follow the usual speed of progress in the frontiers of high energy physics. Laser plasma accelerators theoretically provide unique possibilities to achieve orders of magnitude increases entering the PetaelectronVolt (PeV) energy range. It will be discussed what kind of new perspectives could be opened for the physics at this new energy scale. What type of accelerators would be required?.

  19. Matter-antimatter gigaelectron volt gamma ray laser rocket propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2012-12-01

    It is shown that the idea of a photon rocket through the complete annihilation of matter with antimatter, first proposed by Sänger, is not a utopian scheme as it is widely believed. Its feasibility appears to be possible by the radiative collapse of a relativistic high current pinch discharge in a hydrogen-antihydrogen ambiplasma down to a radius determined by Heisenberg's uncertainty principle. Through this collapse to ultrahigh densities the proton-antiproton pairs in the center of the pinch can become the upper gigaelectron volt laser level for the transition into a coherent gamma ray beam by proton-antiproton annihilation, with the magnetic field of the collapsed pinch discharge absorbing the recoil momentum of the beam and transmitting it by the Moessbauer effect to the spacecraft. The gamma ray laser beam is launched as a photon avalanche from one end of the pinch discharge channel. Because of the enormous technical problems to produce and store large amounts of anti-matter, such a propulsion concept may find its first realization in small unmanned space probes to explore nearby solar systems. The laboratory demonstration of a gigaelectron volt gamma ray laser by comparison requiring small amounts of anti-matter may be much closer.

  20. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect

    John Smart

    2013-09-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  1. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators.

    PubMed

    O'Shea, B D; Andonian, G; Barber, S K; Fitzmorris, K L; Hakimi, S; Harrison, J; Hoang, P D; Hogan, M J; Naranjo, B; Williams, O B; Yakimenko, V; Rosenzweig, J B

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m(-1) using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m(-1). Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  2. Field emission electron source

    SciTech Connect

    Zettl, A.K.; Cohen, M.L.

    2000-05-02

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm{sup 2} at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  3. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  4. Life with Four Billion Atoms

    SciTech Connect

    Knight, Thomas

    2013-04-10

    Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposon gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts

  5. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  6. Countdown to Six Billion Teaching Kit.

    ERIC Educational Resources Information Center

    Zero Population Growth, Inc., Washington, DC.

    This teaching kit features six activities focused on helping students understand the significance of the world population reaching six billion for our society and our environment. Featured activities include: (1) History of the World: Part Six Billion; (2) A Woman's Place; (3) Baby-O-Matic; (4) Earth: The Apple of Our Eye; (5) Needs vs. Wants; and…

  7. Spend Billions and They Will Come

    ERIC Educational Resources Information Center

    Fox, Bette-Lee

    2004-01-01

    People look at one billion dollars in one of two ways: if it is the result of the long, hard effort of years of fundraising, they rejoice; if it signifies an astronomical budget deficit, they cringe. How, then, should people respond as a community to reaching the $1 billion mark ($1,242,436,438, to be exact) in this year's spending for public…

  8. Volt-VAR Optimization on American Electric Power Feeders in Northeast Columbus

    SciTech Connect

    Schneider, Kevin P.; Weaver, T. F.

    2012-05-10

    In 2007 American Electric Power launched the gridSMART® initiative with the goals of increasing efficiency of the electricity delivery system and improving service to the end-use customers. As part of the initiative, a coordinated Volt-VAR system was deployed on eleven distribution feeders at five substations in the Northeast Columbus Ohio Area. The goal of the coordinated Volt-VAR system was to decrease the amount of energy necessary to provide end-use customers with the same quality of service. The evaluation of the Volt-VAR system performance was conducted in two stages. The first stage was composed of simulation, analysis, and estimation, while the second stage was composed of analyzing collected field data. This panel paper will examine the analysis conducted in both stages and present the estimated improvements in system efficiency.

  9. Modelling pesticide volatilization after soil application using the mechanistic model Volt'Air

    NASA Astrophysics Data System (ADS)

    Bedos, Carole; Génermont, Sophie; Le Cadre, Edith; Garcia, Lucas; Barriuso, Enrique; Cellier, Pierre

    Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH 3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to K h. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make

  10. Experimental evaluation of a volts-per-hertz reference circuit for the isotope Brayton system

    NASA Technical Reports Server (NTRS)

    Wimmer, H. L.

    1972-01-01

    In Brayton-cycle power systems, the speed decreases rapidly with overload. If the voltage decreases linearly with speed (frequency), the power decreases as the square of the voltage. This makes the system more tolerant of overloads. A volts-per-hertz reference circuit, consisting of a volts-per-hertz sensor and a voltage limiter, was designed and fabricated. This reference circuit was incorporated in an existing voltage regulator to control a turbine-driven alternator. Test results show that the control does function to reduce voltage at speeds below the rated speed and that it performed successfully during transients.

  11. Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

    SciTech Connect

    John Smart; Thomas Bradley; Stephen Schey

    2014-04-01

    In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

  12. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    SciTech Connect

    Belt, Jeffrey R.

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  13. 5. Photocopy of photograph, c. 1904. VIEW OF 12,000 VOLT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of photograph, c. 1904. VIEW OF 12,000 VOLT TRANSMISSION LINE BETWEEN THE ORIGINAL POWER HOUSE AT DAM NO. 5 AND MARTINSBURG. (From the collection of Mr. Charles Morrison, Hagerstown, MD) - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  14. Distributed-parameter solar cells - Volt-ampere characteristics under uniform and nonuniform illumination

    NASA Astrophysics Data System (ADS)

    Aripov, Kh. K.; Rumiantsev, V. D.

    A theoretical investigation is presented of a multicomponent equivalent circuit of solar cells of circular configuration intended for operation with radiation concentrators. Working formulas are obtained for the discrete coordinates of the load volt-ampere characteristics as well as for effective values of distributed and lumped resistances characterizing solar cells of arbitrary configuration under uniform illumination.

  15. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    SciTech Connect

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  16. Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt

    SciTech Connect

    Smart, John

    2015-03-01

    This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.

  17. 42. Photocopy of photograph, c. 1930. DETAIL OF 33,000 VOLT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Photocopy of photograph, c. 1930. DETAIL OF 33,000 VOLT HIGH TENSION SUBSTATION AND STEP UP TRANSFORMERS. (From the collection of the files of Mr. Tony Robucci, Supervisor for Minor Stations, Potomac Edison Company, Hagerstown, MD) - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  18. How much are Chevrolet Volts in The EV Project driven in EV Mode?

    SciTech Connect

    John Smart

    2013-08-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

  19. View of 500,000 volt spreading yard that transfers power from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of 500,000 volt spreading yard that transfers power from underground cable, from Third Powerhouse, to overhead line; the towers are pipe-type transformer towers. Looking west. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  20. 39. NORTH WALL OF MST AT STATION 124. 480VOLT MASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. NORTH WALL OF MST AT STATION 124. 480-VOLT MASTER POWER SHUTOFF AND CIRCUIT BREAKERS FOR CRANE NORTH DOORS/CRANE SOUTH DOORS ON LEFT; FOR BRIDGE CRANE AND DUCT HEATER 122 ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. An optimization approach for online identification of harmonic resonance due to pending Volt/VAr operation

    NASA Astrophysics Data System (ADS)

    McBee, Kerry D.

    The emphasis on creating a more efficient distribution system has led many utility companies to employ dynamic voltage and VAr compensation (Volt/VAr) applications that reduce energy demand, generation, and losses associated with the transmission and distribution of energy. To achieve these benefits, Volt/VAr applications rely upon algorithms to control voltage support equipment, such as transformer load tap changers, voltage regulators, and capacitor banks. The majority of these algorithms utilize metaheuristic programming methods to determine the Volt/VAr scheme that produces the most energy efficient operating conditions. It has been well documented that the interaction between capacitor bank reactance and the inductive reactance of a distribution system can produce parallel harmonic resonance that can damage utility and customer equipment. The Volt/VAr controlling algorithms that account for harmonics do so in an indirect manner that can mask harmonic resonance conditions. Unlike previous research endeavors, the primary focus of the method described within this dissertation is to identify Volt/VAr schemes that prevent harmonic resonance due to capacitor bank operation. Instead of a metaheuristic approach, the harmonic resonance identification algorithm relies upon constrained mixed integer nonlinear programming (MINLP), which is more suited for analyzing impedance characteristics created by the energized states of a system of capacitor banks. Utilizing a numerical approach improves the accuracy of identifying harmonic resonance conditions, while also reducing the complexity of the process by exclusively relying upon the system's admittance characteristics. The novel harmonic resonance identification method is applicable to distribution systems that are dynamically reconfigured, which can result in a number of unknown harmonic resonance producing conditions, a feature unavailable with existing controlling algorithms. The ability to identify all harmonic

  2. Atmospheric oxygenation three billion years ago.

    PubMed

    Crowe, Sean A; Døssing, Lasse N; Beukes, Nicolas J; Bau, Michael; Kruger, Stephanus J; Frei, Robert; Canfield, Donald E

    2013-09-26

    It is widely assumed that atmospheric oxygen concentrations remained persistently low (less than 10(-5) times present levels) for about the first 2 billion years of Earth's history. The first long-term oxygenation of the atmosphere is thought to have taken place around 2.3 billion years ago, during the Great Oxidation Event. Geochemical indications of transient atmospheric oxygenation, however, date back to 2.6-2.7 billion years ago. Here we examine the distribution of chromium isotopes and redox-sensitive metals in the approximately 3-billion-year-old Nsuze palaeosol and in the near-contemporaneous Ijzermyn iron formation from the Pongola Supergroup, South Africa. We find extensive mobilization of redox-sensitive elements through oxidative weathering. Furthermore, using our data we compute a best minimum estimate for atmospheric oxygen concentrations at that time of 3 × 10(-4) times present levels. Overall, our findings suggest that there were appreciable levels of atmospheric oxygen about 3 billion years ago, more than 600 million years before the Great Oxidation Event and some 300-400 million years earlier than previous indications for Earth surface oxygenation. PMID:24067713

  3. Billion shot flashlamp for spaceborne lasers

    NASA Technical Reports Server (NTRS)

    Richter, Linda; Schuda, Felix; Degnan, John

    1990-01-01

    A billion-shot flashlamp developed under a NASA contract for spaceborne laser missions is presented. Lifetime-limiting mechanisms are identified and addressed. Two energy loadings of 15 and 44 Joules were selected for the initial accelerated life testing. A fluorescence-efficiency test station was used for measuring the useful-light output degradation of the lamps. The design characteristics meeting NASA specifications are outlined. Attention is focused on the physical properties of tungsten-matrix cathodes, the chemistry of dispenser cathodes, and anode degradation. It is reported that out of the total 83 lamps tested in the program, 4 lamps reached a billion shots and one lamp is beyond 1.7 billion shots, while at 44 Joules, 4 lamps went beyond 100 million shots and one lamp reached 500 million shots.

  4. Evaluation of Multiple Inverter Volt-VAR Control Interactions with Realistic Grid Impedances

    SciTech Connect

    Chakraborty, Sudipta; Hoke, Anderson; Lundstrom, Blake

    2015-07-03

    Integration of large numbers of distributed photovoltaic (PV) systems in electric distribution circuits often requires advanced functions (e.g. volt-VAR, frequency-Watt etc.). However, significant concerns have been raised about potential for PV inverters with such controls to interact with one another in a way that could cause grid instability. The lack of standardized inverter models makes it hard to simulate such transient interactions in software. Similarly it is very hard to test these dynamic inverter interactions in the laboratory. In this paper, unique Power Hardware-in-the-Loop (PHIL) techniques are presented to experimentally test for interactions of multiple PV inverters connected to multiple points-of-common-coupling (PCCs) with grid impedances between them. Sample test results are provided from simulation-only scenarios and PHIL testing. Though simulation results indicated possible harmful interactions between inverters' volt-VAR controllers; no such interactions were found in the limited hardware testing.

  5. Where Have All the Billions Gone?

    ERIC Educational Resources Information Center

    Leask, Linda; And Others

    1987-01-01

    Providing a basis to help Alaskans determine future spending levels and priorities, this report traces how the state spent more than $26 billion in general funds from fiscal years 1981 through 1986 before oil prices crashed and brought state revenues tumbling down with them. Figures indicate that cumulative general fund expenditures over the…

  6. Thirteen billion years in half an hour

    NASA Astrophysics Data System (ADS)

    Bassett, Bruce A.

    2005-10-01

    We take a high-speed tour of the approximately thirteen billion-year history of our universe focusing on unsolved mysteries and the key events that have sculpted and shaped it - from inflation in the first split second to the dark energy which is currently causing the expansion of the cosmos to accelerate.

  7. Billion particle linac simulations for future light sources

    SciTech Connect

    Ryne, R. D.; Venturini, M.; Zholents, A. A.; Qiang, J.

    2008-09-25

    In this paper we report on multi-physics, multi-billion macroparticle simulation of beam transport in a free electron laser (FEL) linac for future light source applications. The simulation includes a self-consistent calculation of 3D space-charge effects, short-range geometry wakefields, longitudinal coherent synchrotron radiation (CSR) wakefields, and detailed modeling of RF acceleration and focusing. We discuss the need for and the challenges associated with such large-scale simulation. Applications to the study of the microbunching instability in an FEL linac are also presented.

  8. Charge Transfer Between Ground-State Si(3+) and He at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge-transfer rate coefficient for the reaction Si(3+)(3s(sup 2)S) + He yields products is measured by means of a combined technique of laser ablation and ion storage. A cylindrical radio-frequency ion trap was used to store Si(3+) ions produced by laser ablation of solid silicon targets. The rate coefficient of the reaction was derived from the decay rate of the ion signal. The measured rate coefficient is 6.27(exp +0.68)(sub -0.52) x 10(exp -10)cu cm/s at T(sub equiv) = 3.9 x 10(exp 3)K. This value is about 30% higher than the Landau-Zener calculation of Butler and Dalgarno and is larger by about a factor of 3 than the recent full quantal calculation of Honvault et al.

  9. X-ray laser resonator for the kilo-electron-volt range

    SciTech Connect

    Chen, Jie; Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M.

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  10. Four billion people facing severe water scarcity.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-02-01

    Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue water scarcity globally at a high spatial resolution on a monthly basis. We find that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year. Nearly half of those people live in India and China. Half a billion people in the world face severe water scarcity all year round. Putting caps to water consumption by river basin, increasing water-use efficiencies, and better sharing of the limited freshwater resources will be key in reducing the threat posed by water scarcity on biodiversity and human welfare. PMID:26933676

  11. Four billion people facing severe water scarcity

    PubMed Central

    Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-01-01

    Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue water scarcity globally at a high spatial resolution on a monthly basis. We find that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year. Nearly half of those people live in India and China. Half a billion people in the world face severe water scarcity all year round. Putting caps to water consumption by river basin, increasing water-use efficiencies, and better sharing of the limited freshwater resources will be key in reducing the threat posed by water scarcity on biodiversity and human welfare. PMID:26933676

  12. Teledesic pushes $9-billion, 900-satellite system

    NASA Astrophysics Data System (ADS)

    1994-03-01

    Teledesic Corp. is seeking FCC approval to deploy a communication satellite system, costing $9 billion and using more than 900 satellites in low Earth orbit. This system would provide telephone and broadband data service to remote areas and developing countries. The two major stockholders in Teledesic are William Gates (of Microsoft Corp.) and Craig McCaw (of McCaw Cellular Communications). Each satellite would act as a node in a packet-switching network. The satellites would provide continuous global coverage.

  13. The nonprofit sector's $100 billion opportunity.

    PubMed

    Bradley, Bill; Jansen, Paul; Silverman, Les

    2003-05-01

    Imagine what an extra $100 billion a year could do for philanthropic and other nonprofit institutions. According to a new study, the nonprofit sector could free that amount--maybe even more--by making five changes in the way it operates. The study asked two central questions: Does the sector's money flow from its source to its ultimate use as efficiently and effectively as possible? If not, where are the big opportunities to increase social benefit? According to former senator Bill Bradley and McKinsey's Paul Jansen and Les Silverman, nonprofits could save roughly $25 billion a year by changing the way they raise funds. By distributing funds more quickly, they could put an extra $30 billion to work. Organizations could generate more than $60 billion a year by streamlining and restructuring the way in which they provide services and by reducing administrative costs. And they could free up even more money--an amount impossible to estimate--by better allocating funds among service providers. The authors admit that making those changes won't be easy. The nonprofit world, historically seen as a collection of locally focused charities, has become an enormous sector, but it lacks the managerial processes and incentives that help keep the for-profit world on track. And when the baby boomers start to retire in less than a decade, public budgets will be squeezed even more than they are today. If the nonprofit sector is to help the nation cope with the stresses ahead, it must become more efficient and challenge its traditional concepts of stewardship. PMID:12747166

  14. Connectivity-enhanced route selection and adaptive control for the Chevrolet Volt

    DOE PAGESBeta

    Gonder, Jeffrey; Wood, Eric; Rajagopalan, Sai

    2016-01-01

    The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3%, respectively. Furthermore, these represent substantial opportunities considering that they only require software adjustments to implement.

  15. Connectivity-Enhanced Route Selection and Adaptive Control for the Chevrolet Volt: Preprint

    SciTech Connect

    Gonder, J.; Wood, E.; Rajagopalan, S.

    2014-09-01

    The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3% respectively. These represent substantial opportunities considering that they only require software adjustments to implement.

  16. Medicare Spends Billions on Chronic Kidney Disease, Study Finds

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158020.html Medicare Spends Billions on Chronic Kidney Disease, Study Finds ... affects nearly 14 percent of Americans and costs Medicare billions of dollars a year, a new study ...

  17. Delivering on Obama's renewables promise will cost billions

    SciTech Connect

    2009-04-15

    For wind energy in the eastern half of the U.S., costs would be $50 billion to $80 billion for transmission lines, in addition to the $700 billion to $1.1 trillion to build the wind farms to generate power.

  18. Performance criteria guideline for three explosion protection methods of electrical equipment rated up to 15,000 volts AC

    NASA Technical Reports Server (NTRS)

    Linley, L. J.; Luper, A. B.; Dunn, J. H.

    1982-01-01

    The Bureau of Mines, U.S. Department of the Interior, is reviewing explosion protection methods for use in gassy coal mines. This performance criteria guideline is an evaluation of three explosion protection methods of machines electrically powered with voltages up to 15,000 volts ac. A sufficient amount of basic research has been accomplished to verify that the explosion proof and pressurized enclosure methods can provide adequate explosion protection with the present state of the art up to 15,000 volts ac. This routine application of the potted enclosure as a stand alone protection method requires further investigation or development in order to clarify performance criteria and verification certification requirements. An extensive literature search, a series of high voltage tests, and a design evaluation of the three explosion protection methods indicate that the explosion proof, pressurized, and potted enclosures can all be used to enclose up to 15,000 volts ac.

  19. Endemic Cardiovascular Diseases of the Poorest Billion.

    PubMed

    Kwan, Gene F; Mayosi, Bongani M; Mocumbi, Ana O; Miranda, J Jaime; Ezzati, Majid; Jain, Yogesh; Robles, Gisela; Benjamin, Emelia J; Subramanian, S V; Bukhman, Gene

    2016-06-14

    The poorest billion people are distributed throughout the world, though most are concentrated in rural sub-Saharan Africa and South Asia. Cardiovascular disease (CVD) data can be sparse in low- and middle-income countries beyond urban centers. Despite this urban bias, CVD registries from the poorest countries have long revealed a predominance of nonatherosclerotic stroke, hypertensive heart disease, nonischemic and Chagas cardiomyopathies, rheumatic heart disease, and congenital heart anomalies, among others. Ischemic heart disease has been relatively uncommon. Here, we summarize what is known about the epidemiology of CVDs among the world's poorest people and evaluate the relevance of global targets for CVD control in this population. We assessed both primary data sources, and the 2013 Global Burden of Disease Study modeled estimates in the world's 16 poorest countries where 62% of the population are among the poorest billion. We found that ischemic heart disease accounted for only 12% of the combined CVD and congenital heart anomaly disability-adjusted life years (DALYs) in the poorest countries, compared with 51% of DALYs in high-income countries. We found that as little as 53% of the combined CVD and congenital heart anomaly burden (1629/3049 DALYs per 100 000) was attributed to behavioral or metabolic risk factors in the poorest countries (eg, in Niger, 82% of the population among the poorest billion) compared with 85% of the combined CVD and congenital heart anomaly burden (4439/5199 DALYs) in high-income countries. Further, of the combined CVD and congenital heart anomaly burden, 34% was accrued in people under age 30 years in the poorest countries, while only 3% is accrued under age 30 years in high-income countries. We conclude although the current global targets for noncommunicable disease and CVD control will help diminish premature CVD death in the poorest populations, they are not sufficient. Specifically, the current framework (1) excludes deaths of

  20. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    PubMed

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization

  1. Simulating Billion-Task Parallel Programs

    SciTech Connect

    Perumalla, Kalyan S; Park, Alfred J

    2014-01-01

    In simulating large parallel systems, bottom-up approaches exercise detailed hardware models with effects from simplified software models or traces, whereas top-down approaches evaluate the timing and functionality of detailed software models over coarse hardware models. Here, we focus on the top-down approach and significantly advance the scale of the simulated parallel programs. Via the direct execution technique combined with parallel discrete event simulation, we stretch the limits of the top-down approach by simulating message passing interface (MPI) programs with millions of tasks. Using a timing-validated benchmark application, a proof-of-concept scaling level is achieved to over 0.22 billion virtual MPI processes on 216,000 cores of a Cray XT5 supercomputer, representing one of the largest direct execution simulations to date, combined with a multiplexing ratio of 1024 simulated tasks per real task.

  2. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  3. Laboratory testing of chloride 3ET205 6 volt traction battery

    NASA Astrophysics Data System (ADS)

    Hardin, Jasper E.

    1989-10-01

    The purpose of this report is to describe the testing performed on the Chloride 3ET205 6 volt traction battery by the INEL Battery Laboratory, to present the results and conclusions of this testing, and to make appropriate recommendations. The Chloride 3ET205 is a tubular plate lead-acid battery made in England by the Chloride Battery Company and imported into the U.S. The traction battery division of Chloride has been sold, although Chloride assured its customers that the 3ET205 would continue to be available for their consumption. The new owners of the factory are Tudor and Fulman of France. The joint venture company name is C. E. Ac. It is our understanding that all orders are to be sent to the factory at Salford Rd., Bolton, Lancashire, England BL5 1DD.

  4. Electric shock and the human body - or 'Is it amps or volts that kill you, sir?'

    NASA Astrophysics Data System (ADS)

    Brown, Colin

    1986-11-01

    One of the experiences that children seem to find most exciting in the school science laboratory is the hair raising one of being charged up using a van de Graaf generator and receiving small electric shocks. Children are quite rightly concerned about when electricity might hurt them and what its effects are. They are motivated by science directly concerned with the human body, with obvious impact on their lives. This is particularly important for girls, who often seem to find other aspects of electricity amongst the least interesting topics in science. Here is an opportunity for the teacher to build on immediate and genuine curiosity. Pupils are already well aware that mains electricity at 240 V can be lethal, yet the teacher seems strangely happy to expose them here to what he claims is tens of thousands of volts! They ask questions such as 'Is it amps of volts that kill you?' with a genuine desire to try and resolve the paradox. When young pupils see an oscilloscope for the first time, they often immediately associate it with the heart monitor seen on a TV hospital drama. ('He's dead sir!' they say, as you show them the timebase operating in the absence of an input signal). They use a microphone to try and detect an ECG signal without success. The real heart monitor works in a totally different way, and that it is in fact quite closely related to the action of electric shocks. The article is a summary of the reading the author undertook to try and cure his ignorance of the interaction between electricity and the human body, so that he could make something of this spontaneous interest on the part of the pupils. It also provides background material for A-level potential medical students, who often study physics without seeing its direct relevance to medicine.

  5. Electron-atom /molecule/ collision processes

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    Electron-atom (molecule) collision processes at low and intermediate energies, from near threshold to a few hundred electron volts, are discussed. Attention is given to experimental techniques and procedures, electron impact cross sections, impact excitation and electron-atom scattering in laser fields. Specific examples are presented that illustrate various experimental techniques and interpretations of observations.

  6. 75 FR 11920 - Agilent Technologies, Eesof Division, Including On-Site Leased Workers From Volt and Managed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Agilent Technologies, Eesof Division, Including On-Site Leased Workers From Volt and Managed Business Solutions (MBS), Westlake Village, CA, Santa Rosa, CA, Santa Clara, CA, Everett, WA; Amended Certification...

  7. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  8. 76 FR 39129 - Tensolite, LLC D/B/A Carlisle Interconnect Assemblies Including On-Site Leased Workers From Volt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... was published in the Federal Register on September 2, 2009 (74 FR 45476). At the request of the State... Employment and Training Administration Tensolite, LLC D/B/A Carlisle Interconnect Assemblies Including On..., d/b/a Carlisle Interconnect Assemblies, including on-site leased workers from Volt Services...

  9. 75 FR 21353 - Intel Corporation, Fab 20 Division, Including On-Site Leased Workers From Volt Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Intel Corporation, Fab 20 Division, Including On-Site Leased Workers From Volt Technical Resources, Staff Finders Technical, Kelly Services, Retronix International, Manpower-Oregon and Nikon Precision, Inc.,...

  10. 75 FR 77665 - Frank Russell Company, Administrative Service Center, Including On-Site Leased Workers From Volt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Frank Russell Company, Administrative Service Center, Including On-Site Leased Workers From Volt Services, Tacoma, WA; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In...

  11. Uranium in Canada: A billion dollar industry

    SciTech Connect

    Ruzicka, V. )

    1989-12-01

    In 1988, Canada maintained its position as the world's leading producer of uranium with an output of more than 12,400 MT of uranium in concentrates, worth $1.1 billion Canadian. As domestic requirements represent only 15% of current Canadian production, most of the output was exported. With current implementation of the Canada/US Free Trade Agreement, the US has become Canada's major uranium export customer. With a large share of the world's known uranium resources, Canada remains the focus of international uranium exploration activity. In 1988, the uranium exploration expenditures in Canada exceeded $58 million Canadian. The principal exploration targets were deposits associated with Proterozoic unconformities in Saskatchewan and Northwest Territories, particularly those in the Athabasca and Thelon basin regions of the Canadian Shield. Major attention was also paid to polymetallic deposits in which uranium is associated with precious metals, such as gold and platinum group elements. Conceptual genetic models for these deposit types represent useful tools to guide exploration.

  12. Agroecohydrology: Key to Feeding 9 Billion?

    NASA Astrophysics Data System (ADS)

    Herrick, J.

    2011-12-01

    Agricultural production necessary to feed 9 billion people in 2050 depends on increased production on existing croplands, and expanding onto 'marginal' lands. A high proportion of these lands are marginal because they are too steep or too dry to reliably support crop production. These same characteristics increase their susceptibility to accelerated erosion, leading (for most soil profiles) to further reductions in plant available water as infiltration and soil profile water holding capacity decline. Sustaining production on these marginal lands will require careful land use planning. In this paper, we present a land use planning framework that integrates 4 elements: (1) potential production (based on soil profile characteristics), (2) edaphic, topographic and climatic limitations to production, (3) soil resistance to degradation, and (4) resilience. This framework expands existing land capability classification systems through the integration of biophysical feedbacks and thresholds. State and transition models, similar to those currently applied to rangelands in the United States and other countries, are used to organize and communicate knowledge about the sustainability of different land use changes and management actions at field to regional scales. This framework emphasizes hydrologic characteristics of soil profiles and landscapes over fertility because fertility declines are more easily addressed through increased inputs. The presentation will conclude with a discussion of how research in ecohydrology can be more effectively focused to support sustainable food production in the context of increasingly rapid social and economic changes throughout the world.

  13. Eight billion asteroids in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Shannon, Andrew; Jackson, Alan P.; Veras, Dimitri; Wyatt, Mark

    2015-01-01

    The Oort cloud is usually thought of as a collection of icy comets inhabiting the outer reaches of the Solar system, but this picture is incomplete. We use simulations of the formation of the Oort cloud to show that ˜4 per cent of the small bodies in the Oort cloud should have formed within 2.5 au of the Sun, and hence be ice-free rock-iron bodies. If we assume that these Oort cloud asteroids have the same size distribution as their cometary counterparts, the Large Synoptic Survey Telescope should find roughly a dozen Oort cloud asteroids during 10 years of operations. Measurement of the asteroid fraction within the Oort cloud can serve as an excellent test of the Solar system's formation and dynamical history. Oort cloud asteroids could be of particular concern as impact hazards as their high mass density, high impact velocity, and low visibility make them both hard to detect and hard to divert or destroy. However, they should be a rare class of object, and we estimate globally catastrophic collisions should only occur about once per billion years.

  14. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-02-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 1017/m3 orders of magnitude, which is practicable for most discharging applications.

  15. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications. PMID:26880727

  16. Economic toll of AIDS put at $10 billion in Canada.

    PubMed

    1996-11-29

    John McCallum, Chief economist at the Royal Bank of Canada, announced that AIDS has cost the nation's economy $10 billion since 1981. These calculations included losses in both direct medical care and human capital. This monetary figure is expected to rise to $36 billion by 2010. An estimated 42,500 to 45,000 Canadians are infected with HIV. PMID:11364044

  17. Development of an Enhanced GenVARR™ (Generator Volt Ampere Reactive Reserve) System

    SciTech Connect

    Schatz, Joe E.

    2009-03-12

    Transmission system operators require near real time knowledge of reactive power capability to reliably operate large electric power transmission systems. Reactive power produced by, or capable of being produced by, a power generator is often estimated based on a series of mega volt amperes (MVA) capability curves for the generator. These curves indicate the ability of the generator to produce real and reactive power under a variety of conditions. In transmission planning and operating studies, it is often assumed, based on estimates for these capability curves, that the generator can provide its rated MVA capability output when needed for system stability However, generators may not always operate at levels depicted by the maximum MVA capability curve due to present constraints. Transmission system operators utilizing the generators’ capability curves for operation decisions regarding transmission system stability or for planning horizons may overestimate the capability of the generators to supply reactive power when required. Southern Company has enhanced GenVARR(TM), the system of plant data query, retrieval, and analysis and calculates the actual – not estimated -- remaining reactive power output capability. The remaining reactive output is considered spinning reserve and is displayed graphically to transmission control center and generating plant operators to identify real time VAR limits. GenVARR is capable of aggregating generators from a defined region, or other user selectable combinations, to represent the available reserves that the operators are specifically interested in. GenVARR(TM) has been put into live production operation and is expected to significantly improve the overall visibility of the reactive reserve capability of the system. This new version of GenVARR(TM) significantly enhances the products structure and performance, and enables links to other key transmission system operation tools.

  18. Gaia: how to map a billion stars with a billion pixels

    NASA Astrophysics Data System (ADS)

    de Bruijne, J. H. J.

    2008-07-01

    Gaia, ESA's ambitious star-mapper mission due for launch late-2011, will provide multi-epoch micro-arcsecond astrometric and milli-magnitude photometric data for the brightest one billion objects in the sky, down to at least magnitude 20. Spectroscopic data will simultaneously be collected for the subset of the brightest 100 million stars, down to about magnitude 17. This massive data volume will allow astronomers to reconstruct the structure, evolution and formation history of the Milky Way. It will also revolutionize studies of the solar system and stellar physics and will contribute to diverse research areas, ranging from extra-solar planets to general relativity. Underlying Gaia's scientific harvest will lie in a Catalogue, built on the fundamental space-based measurements. During the 5-year nominal operational lifetime, Gaia's payload, with its CCD mosaic containing 1 billion pixels, will autonomously detect all objects of interest and observe them throughout their passage of the focal plane. This paper discusses the workings of the Gaia instrument, details its payload, and discusses in depth how the scientific measurements will be collected. It addresses issues like maintenance of the scanning law, on-board data processing, the detection and confirmation of objects (single and multiple stars), the detection and rejection of cosmic rays and solar protons, the fundamental science measurements themselves composed of windows of CCD samples (pixels), and special strategies employed to maximize the science return for moving (i.e., solar-system) objects. The paper also explains how an on-board priority scheme will ensure catalogue completeness down to the faintest magnitudes possible, despite the limited ground-station availability and the enormous data volume that will be sent to the ground.

  19. NASA Now Minute: Earth and Space Science: 100 Billion Planets

    NASA Video Gallery

    Stephen Kane, co-author of the article, “Study Shows Our Galaxy has 100Billion Planets” reveals details about this incredible study explainsjust how common planets are in our Milky Way galaxy...

  20. Harnessing Energy from the Sun for Six Billion People

    ScienceCinema

    Daniel Nocera

    2013-07-19

    Daniel Nocera, a Massachusetts Institute of Technology professor whose recent research focuses on solar-powered fuels, presents a Brookhaven Science Associates Distinguished Lecture, titled "Harnessing Energy from the Sun for Six Billion People -- One at a Time."

  1. Circadian biology: a 2.5 billion year old clock.

    PubMed

    Loudon, Andrew S I

    2012-07-24

    A recent study suggests that circadian clocks may have evolved at the time of the Great Oxidation Event 2.5 billion years ago in order to drive detoxification of reactive oxygen species. PMID:22835791

  2. Academic Pork Barrel Tops $2-Billion for the First Time.

    ERIC Educational Resources Information Center

    Brainard, Jeffrey; Borrego, Anne Marie

    2003-01-01

    Describes how, despite the growing budget deficit, Congress directed a record $2 billion to college projects in 2003, many of them dealing with security and bioterrorism. Includes data tables on the earmarks. (EV)

  3. Harnessing Energy from the Sun for Six Billion People

    SciTech Connect

    Daniel Nocera

    2011-09-12

    Daniel Nocera, a Massachusetts Institute of Technology professor whose recent research focuses on solar-powered fuels, presents a Brookhaven Science Associates Distinguished Lecture, titled "Harnessing Energy from the Sun for Six Billion People -- One at a Time."

  4. Optimization of Solar Cell Design for Use with GreenVolts CPV System: Cooperative Research and Development Final Report, CRADA Number CRD-08-00281

    SciTech Connect

    Ward, S.

    2011-05-01

    GreenVolts, a Bay area start-up, was developing a CPV system that was based on a unique reflective optical design. They were interested in adapting the inverted GaInP/GaAs/GaInAs cell structure designed at NREL for use in their system. The purpose of this project was to optimize the inverted GaInP/GaAs/GaInAs cell for operation in the GreenVolts optical system.

  5. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  6. Winglets Save Billions of Dollars in Fuel Costs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The upturned ends now featured on many airplane wings are saving airlines billions of dollars in fuel costs. Called winglets, the drag-reducing technology was advanced through the research of Langley Research Center engineer Richard Whitcomb and through flight tests conducted at Dryden Flight Research Center. Seattle-based Aviation Partners Boeing -- a partnership between Aviation Partners Inc., of Seattle, and The Boeing Company, of Chicago -- manufactures Blended Winglets, a unique design featured on Boeing aircraft around the world. These winglets have saved more than 2 billion gallons of jet fuel to date, representing a cost savings of more than $4 billion and a reduction of almost 21.5 million tons in carbon dioxide emissions.

  7. Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions (invited)

    SciTech Connect

    Perez, R. V. Boeglin, W. U.; Angulo, A.; Avila, P.; Leon, O.; Lopez, C.; Darrow, D. S.; Cecconello, M.; Klimek, I.; Allan, S. Y.; Akers, R. J.; Keeling, D. L.; McClements, K. G.; Scannell, R.; Conway, N. J.; Turnyanskiy, M.; Jones, O. M.; Michael, C. A.

    2014-11-15

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD’s compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

  8. Charge Transfer Between Ground-State N(2+) and H2, N2, and CO at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge-transfer rate coefficients for reactions of N(2+)(2 S(sup 2)2p(sup 2)P(sup 0)) with H2, N2, and CO are measured using ion storage. A cylindrical rf ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The rate coefficients were derived from the decay rate of the ion signal. The rate coefficients for the above three reactions are 3.38(0.35) x 10(exp -11)sq sm/s at T(sub equiv.)=2.9 x 10(exp 3) K, 2.10(0.18) x 10(exp -9)sq sm/s at T(sub equiv.) = 1.3 x 10(exp 4) K, and 3.37(0.29) x 10(exp -9)sq cm/s at T(sub equiv.) = 1.3 x 10(exp 4) K, respectively. No theoretical or other experimental values are available at this energy range.

  9. Measurement of Charge Transfer Rate Coefficient Between Ground-State N(2+) Ion and He at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge transfer rate coefficient for the reaction N(2+)(2p(sup 2)P(sup 0)) + He yields products is measured by recording the time dependence of the N(2+) ions stored in an ion trap. A cylindrical radio-frequency ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The decay of the ion signals was analyzed by single exponential least-squares fits to the data. The measured rate coefficient is 8.67(0.76) x 10(exp -11)sq cm/s. The N(2+) ions were at a mean energy of 2.7 eV while He gas was at room temperature, corresponding to an equivalent temperature of 3.9 x 10(exp 3) K. The measured value is in good agreement with a recent calculation.

  10. Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions (invited).

    PubMed

    Perez, R V; Boeglin, W U; Darrow, D S; Cecconello, M; Klimek, I; Allan, S Y; Akers, R J; Keeling, D L; McClements, K G; Scannell, R; Turnyanskiy, M; Angulo, A; Avila, P; Leon, O; Lopez, C; Jones, O M; Conway, N J; Michael, C A

    2014-11-01

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD's compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system. PMID:25430211

  11. Bill and Melinda Gates Pledge $1-Billion for Minority Scholarships.

    ERIC Educational Resources Information Center

    Monaghan, Peter; Lederman, Douglas; van der Werf, Martin; Pulley, John

    1999-01-01

    Reports on a $1 billion dollar grant from Bill and Melinda Gates to send 20,000 low-income minority students to college. The Gates Millenium Scholars Program will require students to demonstrate financial need and maintain a 3.0 grade point average in college. A list of the largest private gifts to higher education since 1967 is also provided. (DB)

  12. The BIA As Banker: "Trust" Is Hard When Billions Disappear.

    ERIC Educational Resources Information Center

    Johansen, Bruce E.

    1997-01-01

    The federal government's trust responsibility toward Native Americans involves protection of their lands, resources, and right to self-government and provision of services (including education). However, the Bureau of Indian Affairs has misplaced billions of dollars owed Native American individuals and tribes and now faces class-action litigation.…

  13. Congress Gives Colleges a Billion-Dollar Bonanza.

    ERIC Educational Resources Information Center

    Brainard, Jeffrey; Southwick, Ron

    2000-01-01

    Reports that Congress has earmarked a record amount of money (more than $1 billion) for projects involving specific colleges in the 2000 fiscal year. Notes that such "pork-barrel" spending has tripled since 1996. Charts show trends in earmarks since 1989, year 2000 earmarks by agency, the top 20 recipients of earmarked grants, and ranking of…

  14. Colleges' Billion-Dollar Campaigns Feel the Economy's Sting

    ERIC Educational Resources Information Center

    Masterson, Kathryn

    2009-01-01

    The economy's collapse has caught up with the billion-dollar campaign. In the past 12 months, the amount of money raised by a dozen of the colleges engaged in higher education's biggest fund-raising campaigns fell 32 percent from the year before. The decline, which started before the worst of the recession, has forced colleges to postpone…

  15. Tokamak startup with electron cyclotron heating

    SciTech Connect

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  16. Conservation of protein structure over four billion years

    PubMed Central

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M.; Gaucher, Eric A.; Sanchez-Ruiz, Jose M.; Gavira, Jose A.

    2013-01-01

    SUMMARY Little is known with certainty about the evolution of protein structures in general and the degree of protein structure conservation over planetary time scales in particular. Here we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating back up to ~4 billion years before present. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold while only small structural changes have occurred over 4 billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods of time and is followed by long periods of structural stasis. PMID:23932589

  17. BLINK: Billion Lines INdexing in a clicK

    NASA Astrophysics Data System (ADS)

    Kamennoff, N.; Foucaud, S.; Reybier, S.; Tsai, M.-F.; Tang, C.-H.

    2012-09-01

    The coming generation of sky surveys are going to provide measurements for properties of a number of objects like never have been reached before. Astronomical databases will have to deal with requests on several billions of entries at once, and therefore a new computational framework is vital for the next generation of Data-Centers. As part of the efforts linked to the setting up of the Taiwan Extragalactic Astronomical Data Center (TWEA-DC), Billion Lines INdexing in a clicK (BLINK) is developed to satisfy this role. BLINK is a framework that aims to ease access to large amount of data and share analysis software amongst users. BLINK is also designed to be parallelized and distributed on large amount of heterogeneous resources. BLINK will propose at first a very fast indexing algorithm and cross-matching capability, enabling to gather multiwavelength information of large chunk of the sky in a very limited period of time.

  18. Conservation of protein structure over four billion years.

    PubMed

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M; Gaucher, Eric A; Sanchez-Ruiz, Jose M; Gavira, Jose A

    2013-09-01

    Little is known about the evolution of protein structures and the degree of protein structure conservation over planetary time scales. Here, we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating up to approximately four billion years ago. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold, whereas only small structural changes have occurred over four billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods and is followed by long periods of structural stasis. PMID:23932589

  19. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  20. Five-volt vertically-stacked, single-cell GaAs photonic power converter

    NASA Astrophysics Data System (ADS)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Bouzazi, Boussairi; Jaouad, Abdelatif; Aimez, Vincent; Arès, Richard; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2015-03-01

    The high-efficiency conversion of photonic power into electrical power is of broad-range applicability to many industries due to its electrical isolation from the surrounding environment and immunity to electromagnetic interference which affects the performance and reliability of sensitive electronics. A photonic power converter, or phototransducer, can absorb several watts of infrared laser power transmitted through a multimode fiber and convert this to electrical power for remote use. To convert this power into a useful voltage, we have designed, simulated, and fabricated a photovoltaic phototransducer that generates >5 V using a monolithic, lattice-matched, vertically-stacked, single-cell device that eliminates complex fabrication and assembly steps. Experimental measurements have demonstrated a conversion efficiency of up to 60.1% under illumination of ~11 W/cm2 at a wavelength of 835 nm, while simulations indicate that efficiencies reaching 70% should be realistically achievable using this novel design.

  1. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  2. Measurement of volt/meter vertical electric fields in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Croskey, C. L.; Mitchell, J. D.; Hale, L. C.

    1981-01-01

    A test flight for a series of middle atmosphere electrodynamics rockets was launched from Wallops Island, Virginia, at 7:18 EST on July 31, 1980. The mother-daughter configuration contained a three axis symmetric double probe electric field instrument and a blunt probe on the daughter payload, and a Gerdien condenser and a single axis (vertical) asymmetric double probe electric field instrument on the mother payload. The payloads reached an apogee of 111 km, and data were gathered from all instruments on the downleg. A downward vertical electric field with a maximum amplitude of about 4 V/m was observed in a layer between about 57 and 67 km. The integrated potential across this layer was approximately 20 kV. Conductivity measurements indicated that free electrons were absent from the region of large electric fields; however, the decrease in conductivity was insufficient to maintain vertical current continuity through the layer. These results establish the existence of large mesospheric electric fields, supporting previous results from single axis measurements.

  3. Monochromatic electron photoemission from diamondoid monolayers

    SciTech Connect

    Yang, Wanli; Yang, Wanli L.; Fabbri, J.D.; Willey, T.M.; Lee, J.R.I.; Dahl, J.E.; Carlson, R.M.K.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Meevasana, W.; Mannella, N.; Tanaka, K.; Zhou, X.J.; van Buuren, T.; Kelly, M.A.; Hussain, Z.; Melosh, N.A.; Shen, Z.-X.

    2007-02-27

    We found monochromatic electron photoemission from large-area self-assembled monolayers of a functionalized diamondoid, [121]tetramantane-6-thiol. Photoelectron spectra of the diamondoid monolayers exhibited a peak at the low-kinetic energy threshold; up to 68percent of all emitted electrons were emitted within this single energy peak. The intensity of the emission peak is indicative of diamondoids being negative electron affinity materials. With an energy distribution width of less than 0.5 electron volts, this source of monochromatic electrons may find application in technologies such as electron microscopy, electron beam lithography, and field-emission flatpanel displays.

  4. Impacts of Varying Penetration of Distributed Resources with & without Volt/Var Control: Case Study of Varying Load Types

    SciTech Connect

    Rizy, D Tom; Li, Huijuan; Li, Fangxing; Xu, Yan; Adhikari, Sarina; Irminger, Philip

    2011-01-01

    This paper provides a follow-up to an earlier one on impacts of distributed energy resources (DR) on distribution feeders. As DR penetration level on the feeder increases, there can be impacts to distribution system/feeder capacity, line losses, and voltage regulation. These can vary as the penetration level reaches the capacity of the distribution feeder/system or loading. The question is how high of a DR level can be accommodated without any major changes to system operation, system design and protection. Our objective for this work was to address the question of how the DR impacts vary in regards to both DR voltage regulation capability and load mix. A dynamic analysis was used to focus on the impacts of DR with and without volt/var control with different load composition on the distribution feeder. The study considered an example 10MVA distribution feeder in which two inverter-based DRs were used to provide voltage regulation. The results due to DR without voltage regulation capability are compared with DR capable of providing local (at its bus) voltage regulation. The analysis was repeated for four different feeder load compositions consisting of (1) constant power, (2) constant impedance, (3) constant current and (4) ZIP (equal combination of previous three).

  5. Scalable in-memory RDFS closure on billions of triples.

    SciTech Connect

    Goodman, Eric L.; Mizell, David

    2010-06-01

    We present an RDFS closure algorithm, specifically designed and implemented on the Cray XMT supercomputer, that obtains inference rates of 13 million inferences per second on the largest system configuration we used. The Cray XMT, with its large global memory (4TB for our experiments), permits the construction of a conceptually straightforward algorithm, fundamentally a series of operations on a shared hash table. Each thread is given a partition of triple data to process, a dedicated copy of the ontology to apply to the data, and a reference to the hash table into which it inserts inferred triples. The global nature of the hash table allows the algorithm to avoid a common obstacle for distributed memory machines: the creation of duplicate triples. On LUBM data sets ranging between 1.3 billion and 5.3 billion triples, we obtain nearly linear speedup except for two portions: file I/O, which can be ameliorated with the additional service nodes, and data structure initialization, which requires nearly constant time for runs involving 32 processors or more.

  6. Effects of anode temperature on the arc volt-ampere characteristics and ejected plume property of a low-power supersonic plasma

    NASA Astrophysics Data System (ADS)

    Pan, W. X.; Meng, X.; Huang, H. J.; Wu, C. K.

    2011-12-01

    Low-power plasma generators with two kinds of hot anode/nozzle structures, one with a natural radiation-cooled nozzle and the other with a regeneratively cooled nozzle, were designed to investigate the dependence of the volt-ampere characteristics on the anode temperature. Pure argon, nitrogen or hydrogen gas was used as the plasma working gas at input powers from 130 to 1200 W in a plenum chamber kept at a pressure of below 20 Pa. Variations of the arc voltage with changes in arc current, gas flow rate and firing time (anode temperature) were examined, and the effects of the arc volt-ampere characteristics on the properties of the ejected plasma flow from the nozzle exit are discussed with respect to the evaluation of the average plume temperature and flow velocity. Results show that there are definitely non-negligible effects of anode temperature on these characteristics.

  7. $75 Billion in Formula Grants Failed to Drive Reform. Can $5 Billion in Competitive Grants Do the Job? Education Stimulus Watch. Special Report 2

    ERIC Educational Resources Information Center

    Smarick, Andy

    2009-01-01

    In early 2009, Congress passed and President Barack Obama signed into law the American Recovery and Reinvestment Act (ARRA), the federal government's nearly $800 billion stimulus legislation. According to key members of Congress and the Obama administration, the education portions of the law, totaling about $100 billion, were designed both to…

  8. Galaxy Evolution over the Last Eight Billion Years

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Blanton, M. R.; Hogg, D. W.; Eisenstein, D. J.; Coil, A. L.; Cool, R. J.; Moustakas, J.; Wong, K. C.

    2011-01-01

    We study galaxy evolution over the last eight billion years with large, deep galaxy surveys, PRIMUS, SDSS and DEEP2. Galaxies have changed dramatically over this period of time. The global star formation rate has declined by roughly an order-of-magnitude. Red galaxies have grown substantially in number and mass. Blue galaxies have faded and grown redder as their star formation rate dropped. I demonstrate these evolutionary features with new results from these surveys. I also introduce PRIMUS, the largest faint galaxy survey to date. We have measured 140,000 robust redshifts to the depths of i (AB) 23 up to z 1, covering 9.1 square degrees of the sky. I show that with the existing deep multi-wavelength imaging in PRIMUS fields we are able to study the evolution in greater detail and investigate proposed physical mechanisms responsible for the evolution.

  9. Bigger, Better Catalog Unveils Half a Billion Celestial Objects

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These frames are samples from the photographic sky surveys, which have been digitized by a technical team at the Space Telescope Science Institute to support the Hubble Space Telescope operations. The team processed these images to create a new astronomical catalog, called the Guide Star Catalog II. This project was undertaken by the Space Telescope Science Institute as an upgrade to an earlier sky survey and catalog (DSS-I and GSC-I), initially done to provide guide stars for pointing the Hubble Space Telescope. By virtue of its sheer size, the DSS-II and GSC-II have many research applications for both professional and amateur astronomers. [Top] An example from the DSS-II shows the Rosette Nebula, (originally photographed by the Palomar Observatory) as digitized in the DSS-I (left) and DSS-II (right). The DSS-II includes views of the sky at both red and blue wavelengths, providing invaluable color information on about one billion deep-sky objects. [Bottom] This blow-up of the inset box in the raw DSS-I scan shows examples of the GSC-I and the improved GSC-II catalogs. Astronomers extracted the stars from the scanned plate of the Rosette and listed them in the catalogs. The new GSC-II catalog provides the colors, positions, and luminosities of nearly half a billion stars -- over 20 times as many as the original GSC-I. The GSC-II contains information on stars as dim as the 19th magnitude. Credit: NASA, the DSS-II and GSC-II Consortia (with images from the Palomar Observatory-STScI Digital Sky Survey of the northern sky, based on scans of the Second Palomar Sky Survey are copyright c 1993-1999 by the California Institute of Technology)

  10. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  11. Orbital forcing of climate 1.4 billion years ago.

    PubMed

    Zhang, Shuichang; Wang, Xiaomei; Hammarlund, Emma U; Wang, Huajian; Costa, M Mafalda; Bjerrum, Christian J; Connelly, James N; Zhang, Baomin; Bian, Lizeng; Canfield, Donald E

    2015-03-24

    Fluctuating climate is a hallmark of Earth. As one transcends deep into Earth time, however, both the evidence for and the causes of climate change become difficult to establish. We report geochemical and sedimentological evidence for repeated, short-term climate fluctuations from the exceptionally well-preserved ∼1.4-billion-year-old Xiamaling Formation of the North China Craton. We observe two patterns of climate fluctuations: On long time scales, over what amounts to tens of millions of years, sediments of the Xiamaling Formation record changes in geochemistry consistent with long-term changes in the location of the Xiamaling relative to the position of the Intertropical Convergence Zone. On shorter time scales, and within a precisely calibrated stratigraphic framework, cyclicity in sediment geochemical dynamics is consistent with orbital control. In particular, sediment geochemical fluctuations reflect what appear to be orbitally forced changes in wind patterns and ocean circulation as they influenced rates of organic carbon flux, trace metal accumulation, and the source of detrital particles to the sediment. PMID:25775605

  12. Fuel efficient stoves for the poorest two billion

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  13. Orbital forcing of climate 1.4 billion years ago

    PubMed Central

    Zhang, Shuichang; Wang, Xiaomei; Hammarlund, Emma U.; Wang, Huajian; Costa, M. Mafalda; Bjerrum, Christian J.; Connelly, James N.; Zhang, Baomin; Bian, Lizeng; Canfield, Donald E.

    2015-01-01

    Fluctuating climate is a hallmark of Earth. As one transcends deep into Earth time, however, both the evidence for and the causes of climate change become difficult to establish. We report geochemical and sedimentological evidence for repeated, short-term climate fluctuations from the exceptionally well-preserved ∼1.4-billion-year-old Xiamaling Formation of the North China Craton. We observe two patterns of climate fluctuations: On long time scales, over what amounts to tens of millions of years, sediments of the Xiamaling Formation record changes in geochemistry consistent with long-term changes in the location of the Xiamaling relative to the position of the Intertropical Convergence Zone. On shorter time scales, and within a precisely calibrated stratigraphic framework, cyclicity in sediment geochemical dynamics is consistent with orbital control. In particular, sediment geochemical fluctuations reflect what appear to be orbitally forced changes in wind patterns and ocean circulation as they influenced rates of organic carbon flux, trace metal accumulation, and the source of detrital particles to the sediment. PMID:25775605

  14. Semantic Sensor Observation Networks in a Billion-Sensor World

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Bogden, P.; Creager, G.; Graybeal, J.

    2008-12-01

    In 2010, there will be 10,000 telemetric devices for every human in the planet (prediction by Ernest and Young). Some of these devices will be collecting data from coastal phenomena. Some will be connected to adaptive sampling systems, which allow observing a phenomenon, forecasting its advance, and triggering of other numerical models, new missions or changes to the sampling frequency of other sensors. These highly sophisticated autonomous and adaptive sensors will help improve the understating of coastal phenomena; however, collaborative arrangements among communities need to happen to be able to interoperate in a world of billions of sensors. Arrangements will allow discovery and sharing of sensor descriptions and understanding and usage of observed data. OOSTethys is an open source collaborative project that helps implement ocean observing system components. Some of these components include sensor interfaces, catalogs of services, and semantic mediators. The OOSTethys team seeks to speed up collaborative arrangements by studying the best standards available, creating easy-to-adopt toolkits, and publishing guides that facilitate the implementation of these components. The interaction of some observing system components, and lessons learned about developing Semantic Sensor Networks using OGC Sensor Observation Services and ontologies, will be discussed.

  15. Searching for Organics Preserved in 4.5 Billion Year Old Salt

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Fries, M.; Steele, A.; Bodnar, R.

    2012-01-01

    Our understanding of early solar system fluids took a dramatic turn a decade ago with the discovery of fluid inclusion-bearing halite (NaCl) crystals in the matrix of two freshly fallen brecciated H chondrite falls, Monahans and Zag. Both meteorites are regolith breccias, and contain xenolithic halite (and minor admixed sylvite -- KCl, crystals in their regolith lithologies. The halites are purple to dark blue, due to the presence of color centers (electrons in anion vacancies) which slowly accumulated as 40K (in sylvite) decayed over billions of years. The halites were dated by K-Ar, Rb-Sr and I-Xe systematics to be 4.5 billion years old. The "blue" halites were a fantastic discovery for the following reasons: (1) Halite+sylvite can be dated (K is in sylvite and will substitute for Na in halite, Rb substitutes in halite for Na, and I substitutes for Cl). (2) The blue color is lost if the halite dissolves on Earth and reprecipitates (because the newly-formed halite has no color centers), so the color serves as a "freshness" or pristinity indicator. (3) Halite frequently contains aqueous fluid inclusions. (4) Halite contains no structural oxygen, carbon or hydrogen, making them ideal materials to measure these isotopic systems in any fluid inclusions. (5) It is possible to directly measure fluid inclusion formation temperatures, and thus directly measure the temperature of the mineralizing aqueous fluid. In addition to these two ordinary chondrites halite grains have been reliably reported in several ureilites, an additional ordinary chondrite (Jilin), and in the carbonaceous chondrite (Murchison), although these reports were unfortunately not taken seriously. We have lately found additional fluid inclusions in carbonates in several additional carbonaceous chondrites. Meteoritic aqueous fluid inclusions are apparently relatively widespread in meteorites, though very small and thus difficult to analyze.

  16. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by

  17. 3.5 billion years of reshaped Moho, southern Africa

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Jacek; de Wit, Maarten

    2013-12-01

    According to some previous studies, Archean continental crust is, on global average, apparently thinner than Proterozoic crust. Subsequently, the validity of this statement has been questioned. To provide an additional perspective on this issue, we present analyses of Moho signatures derived from recent seismic data along swaths 2000 km in length across southern Africa and its flanking ocean. The imaged crust has a near continuous age range between ca. 0.1 and 3.7 billion years, and the seismic data allow direct comparison of Moho depths between adjacent Archean, Proterozoic and Phanerozoic crust. We find no simple secular change in depth to Moho over this time period. In contrast, there is significant variation in depth to Moho beneath both Archean and Proterozoic crust; Archean crust of southern Africa displays as much crustal diversity in thickness as the adjacent Proterozoic crust. The Moho beneath all crustal provinces that we have analysed has been severely altered by tectono-metamorphic and igneous processes, in many cases more than once, and cannot provide unequivocal data for geodynamic models dealing with secular changes in continental crust formation. These results and conclusions are similar to those documented along ca. 2000 km swaths across the Canadian Shield recorded by Lithoprobe. Tying the age and character of the Precambrian crust of southern Africa to their depth diversities is clearly related to manifold processes of tectono-thermal ‘surgery’ subsequent to their origin, the details of which are still to be resolved, as they are in most Precambrian terranes. Reconstructing pristine Moho of the early Earth therefore remains a formidable challenge. In South Africa, better knowledge of ‘fossilised’ Archean crustal sections ‘turned-on-edge’, such as at the Vredefort impact crater (for the continental crust), and from the Barberton greenstone belt (for oceanic crust) is needed to characterize potential pristine Archean Moho transitions.

  18. A Multi-billion Parcel Atmospheric Trajectory Model

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Clune, T. L.; Lait, L. R.; Ranawake, U.; Burns, R. W.

    2009-12-01

    We present a new parallel implementation of an atmospheric trajectory modelling framework which provides improved numerical accuracy, greater flexibility for specifying experiments, and sufficient raw performance to simultaneously simulate billions of parcel trajectories on suitable computing platforms. The application is parallelized using the Message Passing Interface (MPI) library and can scale efficiently on a wide variety of modern computing platforms. The ability to treat such large numbers of parcels is expected to enable a new generation of experiments to explore questions related to global stratosphere-troposphere exchange, age-of-air spectra, and transport of trace gases and aerosols. The modelling framework is written in C++ for easy integration with other computing technologies. It also provides a great deal of flexibility by allowing users to select from (or add to) alternative subclasses for vertical coordinates (pressure, potential temperature), integration schemes (Runge-Kutta, Euler), meteorological data sources (NCEP/NCAR Reanalsyis, MERRA), data interpolation methods (linear, log-linear, splines), and output (parcel histories, summary statistics, min/max quantities encountered). Significantly improved numerical accuracy, especially near the poles, is provided by expressing integration in terms of purely geometric constructs which avoid various complications associated with spherical coordinates near the poles. The entire package has been rigorously developed using Test-Driven Development (TDD) which both provides confidence in the implementation and should also assist other developers that wish to extend the framework. Several tests are performed to demonstrate the fourth-order Runge-Kutta integration scheme with our spherical geometric constructs. Tilted solid body rotation provides a baseline synthetic wind field for assessing model performance, and a time-varying case is used to examine the errors introduced by interpolating linearly in time

  19. Auroral electrons of energy less than 1 keV observed at rocket altitudes.

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Choy, L. W.

    1973-01-01

    Measurements of electrons of energy less than 1 keV in the auroral precipitation with detectors aboard three rocket flights are discussed. Detectors simultaneously measured the flux of electrons moving up and down the magnetic field lines. Electrons of energy less than a few hundred electron volts show directional intensities ranging from isotropic over the upper hemisphere, to field aligned into the atmosphere, to a net streaming out of the atmosphere. Cases of reflection coefficients greater than 1 for the few hundred electron volts and lower-energy electrons occur when measurements were made north of auroral forms. These electrons might represent the high-energy tail of the return Birkeland currents. The origin of the low-energy electrons is itself in question.

  20. A SWIRE Picture is Worth Billions of Years

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: SWIRE View of Distant Galaxies [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3 Figure 4

    These spectacular images, taken by the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy project, encapsulate one of the primary objectives of the Spitzer mission: to connect the evolution of galaxies from the distant, or early, universe to the nearby, or present day, universe.

    The Tadpole galaxy (main image) is the result of a recent galactic interaction in the local universe. Although these galactic mergers are rare in the universe's recent history, astronomers believe that they were much more common in the early universe. Thus, SWIRE team members will use this detailed image of the Tadpole galaxy to help understand the nature of the 'faint red-orange specks' of the early universe.

    The larger picture (figure 2) depicts one-sixteenth of the SWIRE survey field called ELAIS-N1. In this image, the bright blue sources are hot stars in our own Milky Way, which range anywhere from 3 to 60 times the mass of our Sun. The fainter green spots are cooler stars and galaxies beyond the Milky Way whose light is dominated by older stellar populations. The red dots are dusty galaxies that are undergoing intense star formation. The faintest specks of red-orange are galaxies billions of light-years away in the distant universe.

    Figure 3 features an unusual ring-like galaxy called CGCG 275-022. The red spiral arms indicate that this galaxy is very dusty and perhaps undergoing intense star formation. The star-forming activity could have been initiated by a near head-on collision with another galaxy.

    The most distant galaxies that SWIRE is able to detect are revealed in a zoom of deep space (figure 4). The colors in this feature represent the same objects as those in the larger field image of ELAIS

  1. A large neutral fraction of cosmic hydrogen a billion years after the Big Bang.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-02-26

    The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe. PMID:14985754

  2. Braking formula for electrons of relativistic speed

    NASA Astrophysics Data System (ADS)

    Bethe, H.; Bartschat, Klaus

    2014-12-01

    The current translation is by Klaus Bartschat, Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA. An attempt has been made to preserve Bethe's writing style as much as possible, including his use of "Volt" instead of "electron volt". Even though the term "stopping power" is quite common in present scientific English, we generally use "braking [capability]" rather than "stopping [power]", in order to emphasize the act [and ability] of slowing down the particle rather than the ultimate result of bringing it to a complete halt. Also, a few typographical errors were kept in the English translation to ensure the translation replicates the original paper. Please, see Section 3 of the annotation to Bethe's article [Fontes, C.J., Bostock, C.J. and Bartschat, K. 2014. Eur. Phys. J. H, 39: 517-536] for a list. The references were converted to EPJH style, and the footnotes are numbered consecutively.

  3. Determining the electron energy distribution near the plasma potential in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Hays, P. B.; Cutler, J. R.; Dobbs, M. E.

    1981-01-01

    A determination of the plasma potential using an electrostatic analyzer is described in which the potential difference between the instrument slit system and surrounding plasma is minimized. Data obtained from rocket-borne instrumentation demonstrate the viability of this technique for electron fluxes between thermal energies (about 0.5 V) and suprathermal energies (many volts).

  4. The Future Is Coming: Electronic Health Records

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues The Future Is Coming: Electronic Health Records Past Issues / Spring ... Act's $19.5 billion investment in health information technology can best save money, improve patient care, and ...

  5. Rules Set for $4 Billion Race to Top Contest: Final Rules Give States Detailed Map in Quest for $4 Billion in Education Stimulus Aid

    ERIC Educational Resources Information Center

    McNeil, Michele

    2009-01-01

    For a good shot at $4 billion in grants from the federal Race to the Top Fund, states will need to make a persuasive case for their education reform agendas, demonstrate significant buy-in from local school districts, and devise plans to evaluate teachers and principals based on student performance, according to final regulations released last…

  6. Corporations Give Record $1.6 Billion to Colleges and Universities in 1984-85; Total Giving Reaches $6.3 Billion.

    ERIC Educational Resources Information Center

    CFAE Newsletter, 1986

    1986-01-01

    Findings from the publication, "Voluntary Support of Education 1984-85," are summarized. The survey report includes contributions to 1,114 colleges and universities. Highlights of findings show that: total estimated voluntary support was $6.32 billion in 1984-1985; for the first time, corporations contributed more than any other donor group ($1.57…

  7. If 1 in 10 U.S. Smokers Quits, $63 Billion Saved

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158758.html If 1 in 10 U.S. Smokers Quits, $63 Billion Saved ... money. That's because health care costs plummet just one year after stopping, new research shows. A 10 ...

  8. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.

    PubMed

    Carbone, Fabrizio; Kwon, Oh-Hoon; Zewail, Ahmed H

    2009-07-10

    Chemical bonding dynamics are fundamental to the understanding of properties and behavior of materials and molecules. Here, we demonstrate the potential of time-resolved, femtosecond electron energy loss spectroscopy (EELS) for mapping electronic structural changes in the course of nuclear motions. For graphite, it is found that changes of milli-electron volts in the energy range of up to 50 electron volts reveal the compression and expansion of layers on the subpicometer scale (for surface and bulk atoms). These nonequilibrium structural features are correlated with the direction of change from sp2 [two-dimensional (2D) graphene] to sp3 (3D-diamond) electronic hybridization, and the results are compared with theoretical charge-density calculations. The reported femtosecond time resolution of four-dimensional (4D) electron microscopy represents an advance of 10 orders of magnitude over that of conventional EELS methods. PMID:19589997

  9. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    SciTech Connect

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  10. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  11. Electron acceleration from contracting magnetic islands during reconnection.

    PubMed

    Drake, J F; Swisdak, M; Che, H; Shay, M A

    2006-10-01

    A long-standing problem in the study of space and astrophysical plasmas is to explain the production of energetic electrons as magnetic fields 'reconnect' and release energy. In the Earth's magnetosphere, electron energies reach hundreds of thousands of electron volts (refs 1-3), whereas the typical electron energies associated with large-scale reconnection-driven flows are just a few electron volts. Recent observations further suggest that these energetic particles are produced in the region where the magnetic field reconnects. In solar flares, upwards of 50 per cent of the energy released can appear as energetic electrons. Here we show that electrons gain kinetic energy by reflecting from the ends of the contracting 'magnetic islands' that form as reconnection proceeds. The mechanism is analogous to the increase of energy of a ball reflecting between two converging walls--the ball gains energy with each bounce. The repetitive interaction of electrons with many islands allows large numbers to be efficiently accelerated to high energy. The back pressure of the energetic electrons throttles reconnection so that the electron energy gain is a large fraction of the released magnetic energy. The resultant energy spectra of electrons take the form of power laws with spectral indices that match the magnetospheric observations. PMID:17024088

  12. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence

    NASA Technical Reports Server (NTRS)

    Ohmoto, H.; Kakegawa, T.; Lowe, D. R.

    1993-01-01

    Laser ablation mass spectroscopy analyses of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (>>10(-13) of the present atmospheric level) of free oxygen.

  13. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.

    PubMed

    Ohmoto, H; Kakegawa, T; Lowe, D R

    1993-10-22

    Laser ablation mass spectroscopy analyses of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (>10(-13) of the present atmospheric level) of free oxygen. PMID:11539502

  14. NOAA Budget Increases to $4.1 Billion, But Some Key Items Are Reduced

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-02-01

    The Bush administration has proposed a US$4.1 billion budget for fiscal year (FY) 2009 for the U.S. National Oceanic and Atmospheric Administration (NOAA). The proposed budget, which would be the agency's largest ever, is $202.6 million, or 5.2%, above the FY 2008 enacted budget. By topping $4 billion and the amount Congress passed for FY 2008, the budget proposal crosses into ``a new threshold,'' according Navy Vice Admiral Conrad Lautenbacher, undersecretary of commerce for oceans and atmosphere and NOAA administrator.

  15. Billions for biodefense: federal agency biodefense funding, FY2001-FY2005.

    PubMed

    Schuler, Ari

    2004-01-01

    Over the past several years, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. This article analyzes the civilian biodefense funding by the federal government from fiscal years 2001 through 2005, specifically analyzing the budgets and allocations for biodefense at the Department of Health and Human Services, the Department of Homeland Security, the Department of Defense, the Department of Agriculture, the Environmental Protection Agency, the National Science Foundation, and the Department of State. In total, approximately $14.5 billion has been funded for civilian biodefense through FY2004, with an additional $7.6 billion in the President's budget request for FY2005. PMID:15225402

  16. 3. 4-billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence

    SciTech Connect

    Ohmoto, H.; Kakegawa, T. ); Lowe, D.R. )

    1993-10-22

    Laser ablation mass spectroscopy analysis of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (> > 10[sup [minus]13] of the present atmospheric level) of free oxygen.

  17. Fatal Accident Circumstances and Epidemiology (FACE) report: Lineman electrocuted when he contacts a 7200-volt powerline while installing a guy wire in North Carolina, March 5, 1990

    SciTech Connect

    Not Available

    1990-07-19

    The report concerned the death of a 30 year old male journeyman lineman who was electrocuted while installing a guy wire. His employer was an electrical contractor that had been contracted to install a new single phase 7200 volt powerline by the local electrical cooperative. The lineman had previously insulated the existing powerline by placing a protective line hose over the line on each side of the utility pole. On the day of the accident, the victim was told to place more line hoses on the existing line, and attach a guy wire to an anchor on the new utility pole. The victim intended to further insulate the existing line after he installed the guy wire. He was not wearing linemen's gloves or sleeves. The victim pulled the guy wire into the aerial bucket and stood on it as he raised the bucket. When he reached the guy wire anchor, he began to loosen the anchor nut closest to the existing line. The victim's right arm contacted the line 3 inches beyond the insulated line hose, and the current passed through the guy wire to ground. His clothes caught fire, and the powerline burned in two. It is recommended that all energized components of an electrical system that might be contacted directly or indirectly by a worker be insulated before any work is performed; and that employers should ensure that established company safety procedures are followed at all times.

  18. Two Billion Cars: What it Means for Climate and Energy Policy

    SciTech Connect

    Daniel Sperling

    2009-04-15

    April 13, 2009: Daniel Sperling, director of the Institute of Transportation Studies at UC Davis, presents the next installment of Berkeley Lab's Environmental Energy Technologies Divisions Distinguished Lecture series. He discusses Two Billion Cars and What it Means for Climate and Energy Policy.

  19. Two Billion Cars: What it Means for Climate and Energy Policy

    ScienceCinema

    Daniel Sperling

    2010-01-08

    April 13, 2009: Daniel Sperling, director of the Institute of Transportation Studies at UC Davis, presents the next installment of Berkeley Lab's Environmental Energy Technologies Divisions Distinguished Lecture series. He discusses Two Billion Cars and What it Means for Climate and Energy Policy.

  20. Nitrogen, phosphorus, and potassium requirements to support a multi-billion gallon biofuel industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To accomplish the goals for biofuel and bioenergy production, 1 billion tons of biomass will need to be produced annually by the year 2030. Crop production data from a joint study by the U.S. Department of Energy (US DOE) and the U.S. Department of Agriculture (USDA) demonstrated how this goal could...

  1. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  2. High-Stakes Hustle: Public Schools and the New Billion Dollar Accountability

    ERIC Educational Resources Information Center

    Baines, Lawrence A.; Stanley, Gregory Kent

    2004-01-01

    High-stakes testing costs up to $50 billion per annum, has no impact on student achievement, and has changed the focus of American public schools. This article analyzes the benefits and costs of the accountability movement, as well as discusses its roots in the eugenics movements of the early 20th century.

  3. Conservation in a World of Six Billion: A Grassroots Action Guide.

    ERIC Educational Resources Information Center

    Hren, Benedict J.

    This grassroots action guide features a conservation initiative working to bring the impacts of human population growth, economic development, and natural resource consumption into balance with the limits of nature for the benefit of current and future generations. Contents include information sheets entitled "Six Billion People and Growing,""The…

  4. US Physician Practices Spend More Than $15.4 Billion Annually To Report Quality Measures.

    PubMed

    Casalino, Lawrence P; Gans, David; Weber, Rachel; Cea, Meagan; Tuchovsky, Amber; Bishop, Tara F; Miranda, Yesenia; Frankel, Brittany A; Ziehler, Kristina B; Wong, Meghan M; Evenson, Todd B

    2016-03-01

    Each year US physician practices in four common specialties spend, on average, 785 hours per physician and more than $15.4 billion dealing with the reporting of quality measures. While much is to be gained from quality measurement, the current system is unnecessarily costly, and greater effort is needed to standardize measures and make them easier to report. PMID:26953292

  5. Universities Report $1.8-Billion in Earnings on Inventions in 2011

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2012-01-01

    Universities and their inventors earned more than $1.8-billion from commercializing their academic research in the 2011 fiscal year, collecting royalties from new breeds of wheat, from a new drug for the treatment of HIV, and from longstanding arrangements over enduring products like Gatorade. Northwestern University earned the most of any…

  6. Cancer costs projected to reach at least $158 billion in 2020

    Cancer.gov

    Based on growth and aging of the U.S. population, medical expenditures for cancer in the year 2020 are projected to reach at least $158 billion (in 2010 dollars) – an increase of 27 percent over 2010. If newly developed tools for cancer diagnosis, treatme

  7. Electronic structure of spatially aligned graphene nanoribbons on Au(788).

    PubMed

    Linden, S; Zhong, D; Timmer, A; Aghdassi, N; Franke, J H; Zhang, H; Feng, X; Müllen, K; Fuchs, H; Chi, L; Zacharias, H

    2012-05-25

    We report on a bottom-up approach of the selective and precise growth of subnanometer wide straight and chevron-type armchair nanoribbons (GNRs) on a stepped Au(788) surface using different specific molecular precursors. This process creates spatially well-aligned GNRs, as characterized by STM. High-resolution direct and inverse photoemission spectroscopy of occupied and unoccupied states allows the determination of the energetic position and momentum dispersion of electronic states revealing the existence of band gaps of several electron volts for straight 7-armchair, 13-armchair, and chevron-type GNRs in the electronic structure. PMID:23003288

  8. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  9. Space processing of electronic materials

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1982-01-01

    The bulk growth of solid solution alloys of mercury telluride and cadmium telluride is discussed. These alloys are usually described by the formula Hg1-xCdxTe, and are useful for the construction of infrared detectors. The electronic energy band gap can be controlled between zero and 1.6 electron volts by adjusting the composition x. The most useful materials are at x approximately 20%, suitable for detection wavelengths of about 10 micrometers. The problems of growing large crystals are rooted in the wide phase diagram of the HgTe-CdTe pseudobinary system which leads to exaggerate segregation in freezing, constitutional supercooling, and other difficulties, and in the high vapor pressure of mercury at the growth temperatures, which leads to loss of stoichiometry and to the necessity of working in strong, pressure resistant sealed containers.

  10. Program Calculates Power Demands Of Electronic Designs

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    CURRENT computer program calculates power requirements of electronic designs. For given design, CURRENT reads in applicable parts-list file and file containing current required for each part. Program also calculates power required for circuit at supply potentials of 5.5, 5.0, and 4.5 volts. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19590). PC version of program (NPO-19111).

  11. Survey of electron cyclotron waves in the magnetosphere and the diffuse auroral electron precipitation

    SciTech Connect

    Roeder, J.L.; Koons, H.C.

    1990-03-09

    Narrowband electrostatic wave emissions at frequencies above the local electron cyclotron frequency are known variously as electron cyclotron harmonic (ECH) waves or n+1/2 waves since they tend to occur at odd half-multiples of the electron cyclotron frequency. Natural ECH emissions in the outer magnetosphere are often cited as the electron scattering mechanism which results in the diffuse auroral precipitation. A survey is presented of the characteristics of these waves using data from both the SCATHA and AMPTE-IRM plasma wave instruments. The emissions were observed most often in the 0300-0600 LT sector at L = approx. 4-8 and magnetic latitudes in the range + or - 10 deg. In this region, emissions exceeding 35 microVolt/m were detected only 25% of the time and those exceeding 12 microVolt/m were detected 60% of the time. In agreement with Belmont et al., we consider these amounts grossly insufficient to account for the diffuse auroral electron precipitation by quasilinear pitch angle diffusion.

  12. Selective generation and extraction of low emittance electrons from plasmas: A new concept for E-beam cathodes

    SciTech Connect

    Hershcovitch, A.

    1991-09-19

    It is shown that hollow cathode discharges can operate in a mode characterized by a two-component electron energy distribution: bulk electrons with a thermal distribution with a temperature of a few electron volts, and a component of fast electrons with an energy of about 30 eV and a thermal spread of about 0.1 eV. Measurements of both parallel and perpendicular energy spreads confirm the existence of fast, low energy spread electrons. Selective extraction of these electrons can form the basis of a high current, high brightness electron gun which could be well suited for EBIS applications. 8 refs., 4 figs., 1 tab.

  13. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  14. LLNL's Big Science Capabilities Help Spur Over $796 Billion in U.S. Economic Activity Sequencing the Human Genome

    SciTech Connect

    Stewart, Jeffrey S.

    2015-07-28

    LLNL’s successful history of taking on big science projects spans beyond national security and has helped create billions of dollars per year in new economic activity. One example is LLNL’s role in helping sequence the human genome. Over $796 billion in new economic activity in over half a dozen fields has been documented since LLNL successfully completed this Grand Challenge.

  15. How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)

    ScienceCinema

    Wadia, Cyrus

    2011-04-28

    By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

  16. Aid to families with dependent children: who receives more than $22 billion and why?

    PubMed

    Waldman, H B

    1996-01-01

    A general outline of the Aid to Families with Dependent Children program is provided. The $22 billion program provides financial support to 14 million persons (including more than 9 million children). The changing character of the family structure is considered in terms of efforts to control AFDC spending. Additional programs to assist children (Social Security, Supplemental Security Insurance and Food Stamps) are reviewed. PMID:8708125

  17. Severe Obesity In Adults Cost State Medicaid Programs Nearly $8 Billion In 2013.

    PubMed

    Wang, Y Claire; Pamplin, John; Long, Michael W; Ward, Zachary J; Gortmaker, Steven L; Andreyeva, Tatiana

    2015-11-01

    Efforts to expand Medicaid while controlling spending must be informed by a deeper understanding of the extent to which the high medical costs associated with severe obesity (having a body mass index of [Formula: see text] or higher) determine spending at the state level. Our analysis of population-representative data indicates that in 2013, severe obesity cost the nation approximately $69 billion, which accounted for 60 percent of total obesity-related costs. Approximately 11 percent of the cost of severe obesity was paid for by Medicaid, 30 percent by Medicare and other federal health programs, 27 percent by private health plans, and 30 percent out of pocket. Overall, severe obesity cost state Medicaid programs almost $8 billion a year, ranging from $5 million in Wyoming to $1.3 billion in California. These costs are likely to increase following Medicaid expansion and enhanced coverage of weight loss therapies in the form of nutrition consultation, drug therapy, and bariatric surgery. Ensuring and expanding Medicaid-eligible populations' access to cost-effective treatment for severe obesity should be part of each state's strategy to mitigate rising obesity-related health care costs. PMID:26526251

  18. Spatial variability in oceanic redox structure 1.8billion years ago

    NASA Astrophysics Data System (ADS)

    Poulton, Simon W.; Fralick, Philip W.; Canfield, Donald E.

    2010-07-01

    The evolution of ocean chemistry during the Proterozoic eon (2.5-0.542 billion years ago) is thought to have played a central role in both the timing and rate of eukaryote evolution. The timing of the deposition of iron formations implies that, early in the Earth's history, oceans were predominantly anoxic and rich in dissolved iron. However, global deposition of iron formations ceased about 1.84 billion years ago. This termination indicates a major upheaval in ocean chemistry, but the precise nature of this change remains debated. Here we use iron and sulphur systematics to reconstruct oceanic redox conditions from the 1.88- to 1.83-billion-year-old Animikie group from the Superior region, North America. We find that surface waters were oxygenated, whereas at mid-depths, anoxic and sulphidic (euxinic) conditions extended over 100km from the palaeoshoreline. The spatial extent of euxinia varied through time, but deep ocean waters remained rich in dissolved iron. Widespread euxinia along continental margins would have removed dissolved iron from the water column through the precipitation of pyrite, which would have reduced the supply of dissolved iron and resulted in the global cessation of the deposition of `Superior-type' iron formations. We suggest that incursions of sulphide from the mid-depths into overlying oxygenated surface waters may have placed severe constraints on eukaryotic evolution.

  19. MMap: Fast Billion-Scale Graph Computation on a PC via Memory Mapping

    PubMed Central

    Lin, Zhiyuan; Kahng, Minsuk; Sabrin, Kaeser Md.; Chau, Duen Horng (Polo); Lee, Ho; Kang, U

    2015-01-01

    Graph computation approaches such as GraphChi and TurboGraph recently demonstrated that a single PC can perform efficient computation on billion-node graphs. To achieve high speed and scalability, they often need sophisticated data structures and memory management strategies. We propose a minimalist approach that forgoes such requirements, by leveraging the fundamental memory mapping (MMap) capability found on operating systems. We contribute: (1) a new insight that MMap is a viable technique for creating fast and scalable graph algorithms that surpasses some of the best techniques; (2) the design and implementation of popular graph algorithms for billion-scale graphs with little code, thanks to memory mapping; (3) extensive experiments on real graphs, including the 6.6 billion edge YahooWeb graph, and show that this new approach is significantly faster or comparable to the highly-optimized methods (e.g., 9.5× faster than GraphChi for computing PageRank on 1.47B edge Twitter graph). We believe our work provides a new direction in the design and development of scalable algorithms. Our packaged code is available at http://poloclub.gatech.edu/mmap/. PMID:25866846

  20. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes. PMID:27049949

  1. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-01

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes. PMID:22158244

  2. Protons and Electrons in Jupiter's Magnetic Field: Results from the University of Chicago Experiment on Pioneer 10.

    PubMed

    Simpson, J A; Hamilton, D; Lentz, G; McKibben, R B; Mogro-Campero, A; Perkins, M; Pyle, K R; Tuzzolino, A J; O'gallagher, J J

    1974-01-25

    Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere. PMID:17821089

  3. Evidence for Oxygenic Photosynthesis Half a Billion Years Before the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Planavsky, Noah; Reinhard, Chris; Asael, Dan; Lyons, Tim; Hofmann, Axel; Rouxel, Olivier

    2014-05-01

    Despite detailed investigations over the past 50 years, there is still intense debate about when oxygenic photosynthesis evolved. Current estimates span over a billion years of Earth history, ranging from prior to 3.7 Ga, the age of the oldest sedimentary rocks, to 2.4-2.3 Ga, coincident with the rise of atmospheric oxygen ("The Great Oxidation Event" or GOE). As such, a new, independent perspective is needed. We will provide such a perspective herein by using molybdenum (Mo) isotopes in a novel way to track the onset of manganese(II)oxidation and thus biological oxygen production. The oxidation of Mn(II) in modern marine setting requires free dissolved oxygen. Mn is relatively unique in its environmental specificity for oxygen as an electron acceptor among the redox-sensitive transition metals, many of which, like Fe, can be oxidized under anoxic conditions either through a microbial pathway and/or with alternative oxidants such as nitrate. There are large Mo isotope fractionations associated with the sorption of Mo (as a polymolybdate complex) onto Mn-oxyhydroxides, with an approximately -2.7‰ fractionation in d98Mo associated with Mo sorption onto Mn-oxyhydroxides (e.g., birnessite, vernadite). In contrast, sorption of Mo onto the Fe-oxyhydroxide (e.g., ferrihydrite) results in a fractionation of only -1.1‰ or less. Because of this difference in Mo isotope fractionation, Mo isotope values should become lighter with increasing Mn content, if Mn oxidation occurred during deposition and is an important vector of Mo transfer to the sediment. We find a strong positive correlation between d98Mo values and Fe/Mn ratios in iron formations deposited before and after the Great Oxidation Event. Most strikingly, Mo isotope data and Fe/Mn ratios correlate over a 2.5‰ range in d98Mo values in the Mn-rich (0.1 - 6%) iron formation of the 2.95 Ga Sinqeni Formation, South Africa. The large isotopic shifts occur over a relatively thin (3 meter thick) horizon, reflecting

  4. Mobile hydrocarbon microspheres from >2-billion-year-old carbon-bearing seams in the South African deep subsurface.

    PubMed

    Wanger, G; Moser, D; Hay, M; Myneni, S; Onstott, T C; Southam, G

    2012-11-01

    By ~2.9 Ga, the time of the deposition of the Witwatersrand Supergroup, life is believed to have been well established on Earth. Carbon remnants of the microbial biosphere from this time period are evident in sediments from around the world. In the Witwatersrand Supergroup, the carbonaceous material is often concentrated in seams, closely associated with the gold deposits and may have been a mobile phase 2 billion years ago. Whereas today the carbon in the Witwatersrand Supergroup is presumed to be immobile, hollow hydrocarbon spheres ranging in size from <1 μm to >50 μm were discovered emanating from a borehole drilled through the carbon-bearing seams suggesting that a portion of the carbon may still be mobile in the deep subsurface. ToF-SIMS and STXM analyses revealed that these spheres contain a suite of alkane, alkenes, and aromatic compounds consistent with the described organic-rich carbon seams within the Witwatersrand Supergroup's auriferous reef horizons. Analysis by electron microscopy and ToF-SIMS, however, revealed that these spheres, although most likely composed of biogenic carbon and resembling biological organisms, do not retain any true structural, that is, fossil, information and were formed by an abiogenic process. PMID:22901282

  5. Secondary Electron Emission and the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2006-01-01

    The emission of secondary electrons from surfaces exposed to the space plasma and radiation environment is a process of great importance to space system engineering design and operations. A spacecraft will collect charge until it reaches an equilibrium potential gov,erned by the balance of incoming electron and ion currents from the space environment with outgoing secondary, backscattered, and photoelectron currents. Laboratory measurements of secondary electron yields are an important parameter for use in spacecraft charging analyses because the magnitude and sign of the equilibrium potential depends on both the energy spectrum of electrons and ions in the space environment and the electrical properties of the surface materials (including the energy dependent secondary electron yields). Typical benign equilibrium potentials range &om a few tens of volts positive in interplanetary space to a few volts negative in low Earth orbit. However, spacecraft are known to charge to negative potentials exceeding one to ten kilovolts in some environments and anomalies or system failures due to electrostatic discharges originating from highly charged surfaces becomes a serious concern. This presentation will provide a review of the spacecraft charging process with special emphasis on the role of secondary electrons in controlling the current balance process. Charging examples will include spacecraft in Earth orbit and interplanetary space as well as dust charging on the lunar surface, a phenomenon of importance to future lunar surface operations.

  6. Monte Carlo approach to the spatial deposition of energy by electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Green, A. E. S.

    1974-01-01

    The Monte Carlo (MC) and continuous slowdown approximation (CSDA) approaches to the spatial deposition of energy by electrons are compared using the same detailed atomic cross section (DACS). It is found that the CSDA method overestimates the amount of energy that is deposited near the end of the path for electrons above a few hundred electron volts. The MC results are in approximate agreement with experimental data in such a way as to be relatively independent of the actual gas used. Our MC results are extended to obtain the three-dimensional deposition of energy by sub-keV electrons in molecular hydrogen.

  7. Low-energy electron intensities at large distances over the earth's polar cap

    NASA Technical Reports Server (NTRS)

    Yeager, D. M.; Frank, L. A.

    1975-01-01

    The results of the character and temporal fluctuations study of electron intensities in the energy range of hundreds of electron volts, are reported which were measured at high latitudes and altitudes on geomagnetic field lines corresponding to those of the polar cap and magnetotail lobes. It is concluded that such electron intensities are diminutive relative to those found in other regions of the magnetosphere. Severe variations of intensities were found and the magnitudes of electron intensities appear to be strongly coupled to the directions of the interplanetary magnetic fields.

  8. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core

    NASA Astrophysics Data System (ADS)

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J.; Greene, Jenny E.; Blakeslee, John P.; Janish, Ryan

    2016-04-01

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day ‘dormant’ descendants of this population of ‘active’ black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall—the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600—a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  9. Triploblastic animals more than 1 billion years ago: trace fossil evidence from india

    PubMed

    Seilacher; Bose; Pfluger

    1998-10-01

    Some intriguing bedding plane features that were observed in the Mesoproterozoic Chorhat Sandstone are biological and can be interpreted as the burrows of wormlike undermat miners (that is, infaunal animals that excavated tunnels underneath microbial mats). These burrows suggest that triploblastic animals existed more than a billion years ago. They also suggest that the diversification of animal designs proceeded very slowly before the appearance of organisms with hard skeletons, which was probably the key event in the Cambrian evolutionary explosion, and before the ecological changes that accompanied that event. PMID:9756480

  10. Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations.

    PubMed

    Shekhar, Adarsh; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2013-11-01

    Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated. PMID:24237524

  11. The First Billion Years: The Growth of Galaxies in the Reionization Epoch

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth

    2015-08-01

    Detection and measurement of the earliest galaxies in the first billion years only became possible after the Hubble Space Telescope was updated in 2009 with the infrared WFC3/IR camera during Shuttle servicing mission SM4. The first billion years is a fascinating epoch, not just because of the earliest galaxies known from about 450 Myr after the Big Bang, but also because it encompasses the reionization epoch that peaked around z~9, as Planck has recently shown, and ended around redshift z~6 at 900 Myr. Before 2009 just a handful of galaxies were known in the reionization epoch at z>6. But within the last 5 years, with the first HUDF09 survey, the HUDF12, CANDELS and numerous other surveys on the GOODS and CANDELS fields, as well as detections from the cluster lensing programs like CLASH and the Frontier Fields, the number of galaxies at redshifts 7-10 has exploded, with some 700 galaxies being found and characterized. The first billion years was a period of extraordinary growth in the galaxy population with rapid growth in the star formation rate density and global mass density in galaxies. Spitzer observations in the infrared of these Hubble fields are establishing masses as well as giving insights into the nature and timescales of star formation from the very powerful emission lines being revealed by the Spitzer IRAC data. I will discuss what we understand about the growth of galaxies in this epoch from the insights gained from remarkable deep fields like the XDF, as well as the wide-area GOODS/CANDELS fields, the detection of unexpectedly luminous galaxies at redshifts 8-10, the impact of early galaxies on reionization, confirmation of a number of galaxies at z~7-8 from ground-based spectroscopic measurements, and the indications of a change in the growth of the star formation rate around 500 Myr. The first billion years was a time of dramatic growth and change in the early galaxy population.

  12. Nanobubble Collapse on a Silica Surface in Water: Billion-Atom Reactive Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2013-11-01

    Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163 840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated.

  13. The $1. 5 billion question: Can the US Global Change Research Program deliver on its promises

    SciTech Connect

    Monastersky, R.

    1993-09-04

    President Clinton has continued the funding for scientific investigations of global climatic change, increasing funds to a total of $1.5 billion spread amoung 11 different agencies. However, a growing number of critics warn that the program appears heading toward failure. The main issue is relevancy. Almost every agrees that the research effort will support important scientific work over the next decade, but it will not necessarily provide the information policymakers need to address the threat of climatic change, ozone depletion, deforestation, desertification, and similiar issues. This article summarizes the concerns and comments of critics, and the gap between the climate scientists and governmental policymakers.

  14. States' Spending on Colleges Rises 19 Pct. in 2 Years, Nears $31-Billion for'85-86.

    ERIC Educational Resources Information Center

    Evangelauf, Jean

    1985-01-01

    The U.S. states' expenditures to nearly $31 billion in tax money mark a continuing recovery in support for higher education. Shaping this year's appropriations levels were concerns about tuition and efforts to promote economic development. (MLW)

  15. 77 FR 15052 - Dataset Workshop-U.S. Billion Dollar Disasters Dataset (1980-2011): Assessing Dataset Strengths...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Disasters (1980-2011) dataset and associated methods used to develop the data set. An important goal of the... data set addresses; What steps should be taken to enhance the robustness of the billion-dollar...

  16. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys. PMID:25162527

  17. On the constancy of the lunar cratering flux over the past 3.3 billion yr

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Arvidson, R. E.

    1977-01-01

    Utilizing a method that minimizes random fluctuations in sampling crater populations, it can be shown that the ejecta deposit of Tycho, the floor of Copernicus, and the region surrounding the Apollo 12 landing site have incremental crater size-frequency distributions that can be expressed as log-log linear functions over the diameter range from 0.1 to 1 km. Slopes are indistinguishable for the three populations, probably indicating that the surfaces are dominated by primary craters. Treating the crater populations of Tycho, the floor of Copernicus, and Apollo 12 as primary crater populations contaminated, but not overwhelmed, with secondaries, allows an attempt at calibration of the post-heavy bombardment cratering flux. Using the age of Tycho as 109 m.y., Copernicus as 800 m.y., and Apollo 12 as 3.26 billion yr, there is no basis for assuming that the flux has changed over the past 3.3 billion yr. This result can be used for dating intermediate aged surfaces by crater density.

  18. A solar origin for the large lunar magnetic field at 4.0 billion yr ago

    NASA Technical Reports Server (NTRS)

    Banerjee, S. K.; Mellema, J. P.

    1976-01-01

    A new method (Shaw, 1974) for paleointensity determination has been applied to three subsamples of one polymict breccia, 72215 (of age 4.0 billion yr) to yield an average paleointensity of 0.41 Oe at the Taurus-Littrow region of the moon around the time of breccia formation. Of the present models for lunar magnetism, only the Sonett and Runcorn (1974) model of a central iron core dynamo can explain the presence of such a large field in early lunar history. However, because of the similarity in size of this field and that for the early solar system deduced from carbonaceous chondrites, we draw attention to an apparently little-considered possibility: that the large magnetic field in early lunar history was external and solar in origin, and emanated from a pre-main sequence T-Tauri stage sun. Therefore, there should be no record of such a large magnetic field in lunar rocks younger than approximately 4.0 billion yr.

  19. The evolution in the stellar mass of brightest cluster galaxies over the past 10 billion years

    NASA Astrophysics Data System (ADS)

    Bellstedt, Sabine; Lidman, Chris; Muzzin, Adam; Franx, Marijn; Guatelli, Susanna; Hill, Allison R.; Hoekstra, Henk; Kurinsky, Noah; Labbe, Ivo; Marchesini, Danilo; Marsan, Z. Cemile; Safavi-Naeini, Mitra; Sifón, Cristóbal; Stefanon, Mauro; van de Sande, Jesse; van Dokkum, Pieter; Weigel, Catherine

    2016-08-01

    Using a sample of 98 galaxy clusters recently imaged in the near-infrared with the European Southern Observatory (ESO) New Technology Telescope, WIYN telescope and William Herschel Telescope, supplemented with 33 clusters from the ESO archive, we measure how the stellar mass of the most massive galaxies in the universe, namely brightest cluster galaxies (BCGs), increases with time. Most of the BCGs in this new sample lie in the redshift range 0.2 < z < 0.6, which has been noted in recent works to mark an epoch over which the growth in the stellar mass of BCGs stalls. From this sample of 132 clusters, we create a subsample of 102 systems that includes only those clusters that have estimates of the cluster mass. We combine the BCGs in this subsample with BCGs from the literature, and find that the growth in stellar mass of BCGs from 10 billion years ago to the present epoch is broadly consistent with recent semi-analytic and semi-empirical models. As in other recent studies, tentative evidence indicates that the stellar mass growth rate of BCGs may be slowing in the past 3.5 billion years. Further work in collecting larger samples, and in better comparing observations with theory using mock images, is required if a more detailed comparison between the models and the data is to be made.

  20. The evolution in the stellar mass of brightest cluster galaxies over the past 10 billion years

    NASA Astrophysics Data System (ADS)

    Bellstedt, Sabine; Lidman, Chris; Muzzin, Adam; Franx, Marijn; Guatelli, Susanna; Hill, Allison R.; Hoekstra, Henk; Kurinsky, Noah; Labbe, Ivo; Marchesini, Danilo; Marsan, Z. Cemile; Safavi-Naeini, Mitra; Sifón, Cristóbal; Stefanon, Mauro; van de Sande, Jesse; van Dokkum, Pieter; Weigel, Catherine

    2016-08-01

    Using a sample of 98 galaxy clusters recently imaged in the near infra-red with the ESO NTT, WIYN and WHT telescopes, supplemented with 33 clusters from the ESO archive, we measure how the stellar mass of the most massive galaxies in the universe, namely Brightest Cluster Galaxies (BCG), increases with time. Most of the BCGs in this new sample lie in the redshift range $0.2billion years ago to the present epoch is broadly consistent with recent semi-analytic and semi-empirical models. As in other recent studies, tentative evidence indicates that the stellar mass growth rate of BCGs may be slowing in the past 3.5 billion years. Further work in collecting larger samples, and in better comparing observations with theory using mock images is required if a more detailed comparison between the models and the data is to be made.

  1. Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS

    SciTech Connect

    Ivezic, Z.; Axelrod, T.; Becker, A.C.; Becla, J.; Borne, K.; Burke, David L.; Claver, C.F.; Cook, K.H.; Connolly, A.; Gilmore, D.K.; Jones, R.L.; Juric, M.; Kahn, Steven M.; Lim, K-T.; Lupton, R.H.; Monet, D.G.; Pinto, P.A.; Sesar, B.; Stubbs, Christopher W.; Tyson, J.Anthony; /UC, Davis

    2011-11-10

    The Large Synoptic Survey Telescope (LSST) will be a large, wide-field ground-based system designed to obtain, starting in 2015, multiple images of the sky that is visible from Cerro Pachon in Northern Chile. About 90% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg{sup 2} region about 1000 times during the anticipated 10 years of operations (distributed over six bands, ugrizy). Each 30-second long visit will deliver 5{sigma} depth for point sources of r {approx} 24.5 on average. The co-added map will be about 3 magnitudes deeper, and will include 10 billion galaxies and a similar number of stars. We discuss various measurements that will be automatically performed for these 20 billion sources, and how they can be used for classification and determination of source physical and other properties. We provide a few classification examples based on SDSS data, such as color classification of stars, color-spatial proximity search for wide-angle binary stars, orbital-color classification of asteroid families, and the recognition of main Galaxy components based on the distribution of stars in the position-metallicity-kinematics space. Guided by these examples, we anticipate that two grand classification challenges for LSST will be (1) rapid and robust classification of sources detected in difference images, and (2) simultaneous treatment of diverse astrometric and photometric time series measurements for an unprecedentedly large number of objects.

  2. The evolution in the stellar mass of Brightest Cluster Galaxies over the past 10 billion years

    NASA Astrophysics Data System (ADS)

    Bellstedt, Sabine; Lidman, Chris; Muzzin, Adam; Franx, Marijn; Guatelli, Susanna; Hill, Allison R.; Hoekstra, Henk; Kurinsky, Noah; Labbe, Ivo; Marchesini, Danilo; Marsan, Z. Cemile; Safavi-Naeini, Mitra; Sifón, Cristóbal; Stefanon, Mauro; van de Sande, Jesse; van Dokkum, Pieter; Weigel, Catherine

    2016-05-01

    Using a sample of 98 galaxy clusters recently imaged in the near infra-red with the ESO NTT, WIYN and WHT telescopes, supplemented with 33 clusters from the ESO archive, we measure how the stellar mass of the most massive galaxies in the universe, namely Brightest Cluster Galaxies (BCG), increases with time. Most of the BCGs in this new sample lie in the redshift range 0.2 < z < 0.6, which has been noted in recent works to mark an epoch over which the growth in the stellar mass of BCGs stalls. From this sample of 132 clusters, we create a subsample of 102 systems that includes only those clusters that have estimates of the cluster mass. We combine the BCGs in this subsample with BCGs from the literature, and find that the growth in stellar mass of BCGs from 10 billion years ago to the present epoch is broadly consistent with recent semi-analytic and semi-empirical models. As in other recent studies, tentative evidence indicates that the stellar mass growth rate of BCGs may be slowing in the past 3.5 billion years. Further work in collecting larger samples, and in better comparing observations with theory using mock images is required if a more detailed comparison between the models and the data is to be made.

  3. Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.

    2015-12-01

    Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.

  4. The Value Of The Nonprofit Hospital Tax Exemption Was $24.6 Billion In 2011.

    PubMed

    Rosenbaum, Sara; Kindig, David A; Bao, Jie; Byrnes, Maureen K; O'Laughlin, Colin

    2015-07-01

    The federal government encourages public support for charitable activities by allowing people to deduct donations to tax-exempt organizations on their income tax returns. Tax-exempt hospitals are major beneficiaries of this policy because it encourages donations to the hospitals while shielding them from federal and state tax liability. In exchange, these hospitals must engage in community benefit activities, such as providing care to indigent patients and participating in Medicaid. The congressional Joint Committee on Taxation estimated the value of the nonprofit hospital tax exemption at $12.6 billion in 2002--a number that included forgone taxes, public contributions, and the value of tax-exempt bond financing. In this article we estimate that the size of the exemption reached $24.6 billion in 2011. The Affordable Care Act (ACA) brings a new focus on community benefit activities by requiring tax-exempt hospitals to engage in communitywide planning efforts to improve community health. The magnitude of the tax exemption, coupled with ACA reforms, underscores the public's interest not only in community benefit spending generally but also in the extent to which nonprofit hospitals allocate funds for community benefit expenditures that improve the overall health of their communities. PMID:26085486

  5. As its R D budget nears $2 billion Bayer rethinks priorities

    SciTech Connect

    Rotman, D.

    1993-03-17

    With a planned 1993 research and development budget of roughly DM3.2 billion ($1.95 billion), Bayer (Leverkusen) is the industry's biggest R D spender. But while the German giant lays out a healthy 7% of sales on R D, caution is clearly replacing the heady spending spurts of several years ago. And faced with an increasingly rigorous corporate business restructuring, Bayer - like others in the chemical industry - is rethinking its R D strategies. While Bayer's R D stress is clearly on life sciences, the company remains bullish on certain new materials, particularly inorganics. It has developed several engineering ceramics for use in automotive engines, with the most advanced - a silicon nitride - being road tested in Mercedes models. [open quotes]We have the materials and know their properties,[close quotes] says Hauke Fuerstenwerth, Bayer's head of R D coordination. The challenge now, he says, is to demonstrate a commercially attractive process for large-scale production. Bayer is also pursuing new silicon wafer technology. Already in small-scale production, the firm is testing an amorphous silicon that is intended to be far cheaper than existing crystalline silicon wafers, while maintaining suitable properties for applications such as solar collectors.

  6. Star Formation in Galaxy Clusters Over the Past 10 Billion Years

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy

    2012-01-01

    Galaxy clusters are the largest gravitationally bound systems in the universe and include the most massive galaxies in the universe; this makes galaxy clusters ideal laboratories for disentangling the nature versus nurture aspect of how galaxies evolve. Understanding how galaxies form and evolve in clusters continues to be a fundamental question in astronomy. The ages and assembly histories of galaxies in rich clusters test both stellar population models and hierarchical formation scenarios. Is star formation in cluster galaxies simply accelerated relative to their counterparts in the lower density field, or do cluster galaxies assemble their stars in a fundamentally different manner? To answer this question, I review multi-wavelength results on star formation in galaxy clusters from Coma to the most distant clusters yet discovered at look-back times of 10 billion years (z 2).

  7. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    SciTech Connect

    Martinez, E.; Monasterio, P.R.; Marian, J.

    2011-02-20

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  8. A change in the geodynamics of continental growth 3 billion years ago.

    PubMed

    Dhuime, Bruno; Hawkesworth, Chris J; Cawood, Peter A; Storey, Craig D

    2012-03-16

    Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics. PMID:22422979

  9. Collision-free spatial hash functions for structural analysis of billion-vertex chemical bond networks

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Bansal, Bhupesh; Branicio, Paulo S.; Kalia, Rajiv K.; Nakano, Aiichiro; Sharma, Ashish; Vashishta, Priya

    2006-09-01

    State-of-the-art molecular dynamics (MD) simulations generate massive datasets involving billion-vertex chemical bond networks, which makes data mining based on graph algorithms such as K-ring analysis a challenge. This paper proposes an algorithm to improve the efficiency of ring analysis of large graphs, exploiting properties of K-rings and spatial correlations of vertices in the graph. The algorithm uses dual-tree expansion (DTE) and spatial hash-function tagging (SHAFT) to optimize computation and memory access. Numerical tests show nearly perfect linear scaling of the algorithm. Also a parallel implementation of the DTE + SHAFT algorithm achieves high scalability. The algorithm has been successfully employed to analyze large MD simulations involving up to 500 million atoms.

  10. Extraterrestrial demise of banded iron formations 1.85 billion years ago

    USGS Publications Warehouse

    Slack, J.F.; Cannon, W.F.

    2009-01-01

    In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.

  11. Investigation of Radar Propagation in Buildings: A 10 Billion Element Cartesian-Mesh FETD Simulation

    SciTech Connect

    Stowell, M L; Fasenfest, B J; White, D A

    2008-01-14

    In this paper large scale full-wave simulations are performed to investigate radar wave propagation inside buildings. In principle, a radar system combined with sophisticated numerical methods for inverse problems can be used to determine the internal structure of a building. The composition of the walls (cinder block, re-bar) may effect the propagation of the radar waves in a complicated manner. In order to provide a benchmark solution of radar propagation in buildings, including the effects of typical cinder block and re-bar, we performed large scale full wave simulations using a Finite Element Time Domain (FETD) method. This particular FETD implementation is tuned for the special case of an orthogonal Cartesian mesh and hence resembles FDTD in accuracy and efficiency. The method was implemented on a general-purpose massively parallel computer. In this paper we briefly describe the radar propagation problem, the FETD implementation, and we present results of simulations that used over 10 billion elements.

  12. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Hofmann, Axel; Doubrovine, Pavel V; Mamajek, Eric E; Liu, Dunji; Sibeck, David G; Neukirch, Levi P; Usui, Yoichi

    2010-03-01

    Stellar wind standoff by a planetary magnetic field prevents atmospheric erosion and water loss. Although the early Earth retained its water and atmosphere, and thus evolved as a habitable planet, little is known about Earth's magnetic field strength during that time. We report paleointensity results from single silicate crystals bearing magnetic inclusions that record a geodynamo 3.4 to 3.45 billion years ago. The measured field strength is approximately 50 to 70% that of the present-day field. When combined with a greater Paleoarchean solar wind pressure, the paleofield strength data suggest steady-state magnetopause standoff distances of < or = 5 Earth radii, similar to values observed during recent coronal mass ejection events. The data also suggest lower-latitude aurora and increases in polar cap area, as well as heating, expansion, and volatile loss from the exosphere that would have affected long-term atmospheric composition. PMID:20203044

  13. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years?

    PubMed Central

    Beerling, David J.

    2012-01-01

    Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO2) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO2 increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO2 in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system. PMID:22232760

  14. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    NASA Astrophysics Data System (ADS)

    Martínez, E.; Monasterio, P. R.; Marian, J.

    2011-02-01

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  15. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor.

    PubMed

    Lin, Guoping; Diallo, Souleymane; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2014-10-15

    We demonstrate a monolithic optical whispering-gallery-mode resonator fabricated with barium fluoride (BaF₂) with an ultra-high quality (Q) factor above 10⁹ at 1550 nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of 2 nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion Q-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of 3. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high-energy particle scintillation detection utilizing monolithic BaF₂ resonators potentially becomes feasible. PMID:25361142

  16. IRON AND {alpha}-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG

    SciTech Connect

    Becker, George D.; Carswell, Robert F.; Sargent, Wallace L. W.; Rauch, Michael E-mail: acalver@ast.cam.ac.uk E-mail: mr@obs.carnegiescience.edu

    2012-01-10

    We present measurements of carbon, oxygen, silicon, and iron in quasar absorption systems existing when the universe was roughly one billion years old. We measure column densities in nine low-ionization systems at 4.7 < z < 6.3 using Keck, Magellan, and Very Large Telescope optical and near-infrared spectra with moderate to high resolution. The column density ratios among C II, O I, Si II, and Fe II are nearly identical to sub-damped Ly{alpha} systems (sub-DLAs) and metal-poor ([M/H] {<=} -1) DLAs at lower redshifts, with no significant evolution over 2 {approx}< z {approx}< 6. The estimated intrinsic scatter in the ratio of any two elements is also small, with a typical rms deviation of {approx}< 0.1 dex. These facts suggest that dust depletion and ionization effects are minimal in our z > 4.7 systems, as in the lower-redshift DLAs, and that the column density ratios are close to the intrinsic relative element abundances. The abundances in our z > 4.7 systems are therefore likely to represent the typical integrated yields from stellar populations within the first gigayear of cosmic history. Due to the time limit imposed by the age of the universe at these redshifts, our measurements thus place direct constraints on the metal production of massive stars, including iron yields of prompt supernovae. The lack of redshift evolution further suggests that the metal inventories of most metal-poor absorption systems at z {approx}> 2 are also dominated by massive stars, with minimal contributions from delayed Type Ia supernovae or winds from asymptotic giant branch stars. The relative abundances in our systems broadly agree with those in very metal-poor, non-carbon-enhanced Galactic halo stars. This is consistent with the picture in which present-day metal-poor stars were potentially formed as early as one billion years after the big bang.

  17. An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Czaja, Andrew D.; Van Kranendonk, Martin J.; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.

    2013-11-01

    The oxidation state of the atmosphere and oceans on the early Earth remains controversial. Although it is accepted by many workers that the Archean atmosphere and ocean were anoxic, hematite in the 3.46 billion-year-old (Ga) Marble Bar Chert (MBC) from Pilbara Craton, NW Australia has figured prominently in arguments that the Paleoarchean atmosphere and ocean was fully oxygenated. In this study, we report the Fe isotope compositions and U concentrations of the MBC, and show that the samples have extreme heavy Fe isotope enrichment, where δ56Fe values range between +1.5‰ and +2.6‰, the highest δ56Fe values for bulk samples yet reported. The high δ56Fe values of the MBC require very low levels of oxidation and, in addition, point to a Paleoarchean ocean that had high aqueous Fe(II) contents. A dispersion/reaction model indicates that O2 contents in the photic zone of the ocean were less than 10-3 μM, which suggests that the ocean was essentially anoxic. An independent test of anoxic conditions is provided by U-Th-Pb isotope systematics, which show that U contents in the Paleoarchean ocean were likely below 0.02 ppb, two orders-of-magnitude lower than the modern ocean. Collectively, the Fe and U data indicate a reduced, Fe(II)-rich, U-poor environment in the Archean oceans at 3.46 billion years ago. Given the evidence for photosynthetic communities provided by broadly coeval stromatolites, these results suggests that an important photosynthetic pathway in the Paleoarchean oceans may have been anoxygenic photosynthetic Fe(II) oxidation.

  18. Evidence for global electron transportation into the jovian inner magnetosphere.

    PubMed

    Yoshioka, K; Murakami, G; Yamazaki, A; Tsuchiya, F; Kimura, T; Kagitani, M; Sakanoi, T; Uemizu, K; Kasaba, Y; Yoshikawa, I; Fujimoto, M

    2014-09-26

    Jupiter's magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves. PMID:25258073

  19. Study on nanosecond pulsed electron beam generation

    NASA Astrophysics Data System (ADS)

    Ponomarev, D.; Kholodnaya, G.; Remnev, G.; Kaikanov, M.; Sazonov, R.

    2014-11-01

    The paper presents the findings of an investigation on volt-ampere characteristics of the diode with explosive emission cathodes of different constructions (blade metal-dielectric (MD-cathode) and solid graphite cathodes) under the change of the anode-cathode gap in wide ranges. The investigations were carried out using the TEA-500 pulsed electron accelerator. The total current of the electron beam was measured using the Faraday cup (FC). A 0.5-mm foiled glass fiber laminate was used as an emitting edge of the cathode in the experimental study with the explosive emission blade MD-cathode. Based on the obtained results, the conclusion was made that the graphite cathode has the most effective efficiency factor.

  20. 405th Brookhaven Lecture

    ScienceCinema

    Vadim Ptitsyn

    2010-09-01

    "E-RHIC - Future Electron-Ion Collider at BNL. While RHIC scientists continue their quest to look deep into nuclear phenomena resulting from collisions of ion beams and beams of polarized protons, new design work is under way for a possible extension of RHIC to include e-RHIC, a 10-billion electron volt, high-intensity polarized proton beam.

  1. 405th Brookhaven Lecture

    SciTech Connect

    Vadim Ptitsyn

    2005-06-22

    "E-RHIC - Future Electron-Ion Collider at BNL. While RHIC scientists continue their quest to look deep into nuclear phenomena resulting from collisions of ion beams and beams of polarized protons, new design work is under way for a possible extension of RHIC to include e-RHIC, a 10-billion electron volt, high-intensity polarized proton beam.

  2. How Measuring the Planck Constant gets to an Electronic Kilogram Standard

    SciTech Connect

    Steiner, Richard

    2007-08-01

    The best measurement of the Planck constant is now derived from the watt balance method. This method measures mechanical power, in reference units of the kilogram (artifact mass standard), second (atomic clocks), and meter (lasers), in ratio to electrical power, in reference units of the volt (Josephson effect) and ohm (quantum Hall effect). Of these reference standards, only the kilogram is still an artifact standard. Thus a high precision measurement of the Planck constant is equivalent to monitoring the SI kilogram artifact, and may be used to redefine the kilogram. This talk will summarize the complexity of making a Planck constant measurement, where there are interesting aspects of basic physics that appear when the ultimate precision of the standards laboratory is applied to obtain an uncertainty of 20 parts in a billion.

  3. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang.

    PubMed

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G

    2015-04-17

    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. PMID:25883353

  4. Switching To Less-Expensive Blindness Drug Could Save Medicare Part B $18 Billion Over A Ten-Year Period

    PubMed Central

    Hutton, DW; Newman-Casey, PA; Tavag, M; Zacks, DN; Stein, JD

    2014-01-01

    The biologic drugs bevacizumab and ranibizumab have revolutionized treatment of diabetic macular edema and macular degeneration, leading causes of blindness. Ophthalmologic use of these drugs has increased, now accounting for roughly one-sixth of the Medicare Part B drug budget. Ranibizumab and bevacizumab have similar efficacy and potentially minor differences in adverse event rates, but at $2,023 per dose, ranibizumab costs forty times more than bevacizumab. Using modeling methods, we predict ten-year (2010–2020) population-level costs and health benefits of using bevacizumab and ranibizumab. Our results show that if all patients were treated with the less-expensive bevacizumab instead of current usage patterns, Medicare Part B, patients, and the health care system would save $18 billion, $4.6 billion, and $29 billion, respectively. Altering patterns of use with these therapies by encouraging bevacizumab use and hastening approval of biosimilar therapies would dramatically reduce spending without substantially affecting patient outcomes. PMID:24889941

  5. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    SciTech Connect

    Winter, T.G.; Alston, S.G.

    1995-08-01

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during the collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.

  6. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were

  7. Cooling and exhumation of continents at billion-year time scales

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Perron, T.; Mahan, K. H.; Dudas, F. O.

    2011-12-01

    The oldest rocks on Earth are preserved within the continental lithosphere, where assembled fragments of ancient orogenic belts have survived erosion and destruction by plate tectonic and surface processes for billions of years. Though the rate of orogenic exhumation and erosion has been measured for segments of an orogenic history, it remains unclear how these exhumation rates have changed over the lifetime of any terrane. Because the exhumation of the lithospheric surface has a direct effect on the rate of heat loss within the lithosphere, a continuous record of lithosphere exhumation can be reconstructed through the use of thermochronology. Thermochronologic studies have typically employed systems sensitive to cooling at temperatures <300 °C, such as the (U-Th)/He and 40Ar/39Ar systems. This largely restricts their application to measuring cooling in rocks from the outer 10 km of the Earth's crust, resulting in a thermal history that is controlled by either upper crustal flexure and faulting and/or isotherm inflections related to surface topography. Combining these biases with the uplift, erosion and recycling of these shallow rocks results in a poor preservation potential of any long-term record. Here, an ancient and long-term record of lithosphere exhumation is constructed using U-Pb thermochronology, a geochronologic system sensitive to cooling at temperatures found at 20-50 km depth (400-650 °C). Lower crustal xenoliths provide material that resided at these depths for billions of years or more, recording a thermal history that is buried deep enough to remain insensitive to upper crustal deformation and instead is dominated by the vertical motions of the continents. We show how this temperature-sensitive system can produce a long-term integrated measure of continental exhumation and erosion. Preserved beneath Phanerozoic sedimentary rocks within Montana, USA, the Great Falls Tectonic Zone formed when two Archean cratons, the Wyoming Province and Medicine

  8. The Star Formation History of the Universe over the Past Eight Billion Years

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun

    How galaxies such as our own Milky Way formed and evolved remains a mystery. There are two general approaches in galaxy formation and evolution studies. One is to infer formation histories via archaeological investigations of galaxies at low redshift, in the local Universe. The other is to study galaxy formation and evolution in action by observing faint distant galaxies, the ancestors of local galaxies, in the more distant and younger Universe, at higher redshift. I employ the first approach to study the formation of elliptical galaxies, the most massive galaxies in the Universe. I investigate the stellar content of 1923 elliptical galaxies, the largest high-fidelity sample in the local Universe, as a function of stellar mass and environment. I infer their star formation histories, finding that isolated low-mass elliptical galaxies formed their stars slightly later than their counterparts in galaxy clusters. I measure the cosmic star formation rate (SFR) density at redshift z ˜ 1, when the Universe was eight billion years younger. The cosmic SFR density measures how many stars are being formed per unit volume of the Universe. I show that galaxies were more actively forming stars eight billion years ago than they are at present, by roughly an order of magnitude. The reason why galaxies are so much less active at present remains unknown, partly due to the small sample size of distant galaxies observed previously. To improve the sample size, we have completed a new galaxy survey, the Prism Multi-object Survey (PRIMUS). We have observed ˜ 120, 000 galaxies spanning distances from the local Universe to redshift z ˜ 1. We specifically targeted fields with existing multi-wavelength data in the X-ray, ultraviolet, optical, and infrared. The large sample and multi-wavelength data allow precise statistical studies of galaxy evolution since z ˜1. As a preliminary result from PRIMUS, I show that 15% of galaxies that appear to lack star formation in the optical actually

  9. A redox-stratified ocean 3.2 billion years ago

    NASA Astrophysics Data System (ADS)

    Satkoski, Aaron M.; Beukes, Nicolas J.; Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.

    2015-11-01

    Before the Great Oxidation Event (GOE) 2.4-2.2 billion years ago it has been traditionally thought that oceanic water columns were uniformly anoxic due to a lack of oxygen-producing microorganisms. Recently, however, it has been proposed that transient oxygenation of shallow seawater occurred between 2.8 and 3.0 billion years ago. Here, we present a novel combination of stable Fe and radiogenic U-Th-Pb isotope data that demonstrate significant oxygen contents in the shallow oceans at 3.2 Ga, based on analysis of the Manzimnyama Banded Iron Formation (BIF), Fig Tree Group, South Africa. This unit is exceptional in that proximal, shallow-water and distal, deep-water facies are preserved. When compared to the distal, deep-water facies, the proximal samples show elevated U concentrations and moderately positive δ56Fe values, indicating vertical stratification in dissolved oxygen contents. Confirmation of oxidizing conditions using U abundances is robustly constrained using samples that have been closed to U and Pb mobility using U-Th-Pb geochronology. Although redox-sensitive elements have been commonly used in ancient rocks to infer redox conditions, post-depositional element mobility has been rarely tested, and U-Th-Pb geochronology can constrain open- or closed-system behavior. The U abundances and δ56Fe values of the Manzimnyama BIF suggest the proximal, shallow-water samples record precipitation under stronger oxidizing conditions compared to the distal deeper-water facies, which in turn indicates the existence of a discrete redox boundary between deep and shallow ocean waters at this time; this work, therefore, documents the oldest known preserved marine redox gradient in the rock record. The relative enrichment of O2 in the upper water column is likely due to the existence of oxygen-producing microorganisms such as cyanobacteria. These results provide a new approach for identifying free oxygen in Earth's ancient oceans, including confirming the age of redox

  10. The First Billion Years project: dark matter haloes going from contraction to expansion and back again

    NASA Astrophysics Data System (ADS)

    Davis, Andrew J.; Khochfar, Sadegh; Dalla Vecchia, Claudio

    2014-09-01

    We study the effect of baryons on the inner dark matter profile of the first galaxies using the First Billion Years simulation between z = 16 and 6 before secular evolution sets in. Using a large statistical sample from two simulations of the same volume and cosmological initial conditions, one with and one without baryons, we are able to directly compare haloes with their baryon-free counterparts, allowing a detailed study of the modifications to the dark matter density profile due to the presence of baryons during the first billion years of galaxy formation. For each of the ≈5000 haloes in our sample (3 × 107 M⊙ ≤ Mtot ≤ 5 × 109 M⊙), we quantify the impact of the baryons using η, defined as the ratio of dark matter mass enclosed in 100 pc in the baryonic run to its counterpart without baryons. During this epoch of rapid growth of galaxies, we find that many haloes of these first galaxies show an enhancement of dark matter in the halo centre compared to the baryon-free simulation, while many others show a deficit. We find that the mean value of η is close to unity, but there is a large dispersion, with a standard deviation of 0.677. The enhancement is cyclical in time and tracks the star formation cycle of the galaxy; as gas falls to the centre and forms stars, the dark matter moves in as well. Supernova (SN) feedback then removes the gas, and the dark matter again responds to the changing potential. We study three physical models relating the motion of baryons to that of the dark matter: adiabatic contraction, dynamical friction, and rapid outflows. We find that dynamical friction plays only a very minor role, while adiabatic contraction and the rapid outflows due to feedback describe well the enhancement (or decrement) of dark matter. For haloes which show significant decrements of dark matter in the core, we find that to remove the dark matter requires an energy input between 1051 and 1053 erg. For our SN feedback proscription, this requires as a

  11. Search by mariner 10 for electrons and protons accelerated in association with venus.

    PubMed

    Simpson, J A; Eraker, J H; Lamport, J E; Walpole, P H

    1974-03-29

    The University of Chicago instrumnents on board the Mariner 10 spacecraft bound for Mercury have measured energy spectra and fluxes of electrons from 0.18 to 30 million electron volts and protons from 0.5 to 68 million electron volts along the plasma wake and in the bow shock regions associated with Venus. Unusually quiet solar conditions and improved instrumentation made it possible to search for much lower fluxes of protons and electrons in similar energy regions as compared to earlier Mariner missions to Venus-that is, lower by a factor of 10(2) for protons and 10(3) for electrons. We found no evidence for electrons or protons either in the form of increases of intensity or energy spectral changes in the vicinity of the planet, nor any evidence of bursts of radiation in or near the observed bow shock where bursts of electrons might have been expected in analogy with the bow shock at the earth. The importance of these null results for determining the necessary and sufficient conditions for particle acceleration is discussed with respect to magnetometer evidence that Venus does not have a magnetosphere. PMID:17791375

  12. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  13. Sharing global CO2 emission reductions among one billion high emitters

    PubMed Central

    Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo

    2009-01-01

    We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586

  14. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  15. Half a billion years of good weather: Gaia or good luck?

    NASA Astrophysics Data System (ADS)

    Waltham, Dave

    2007-06-01

    For the past 550 million years, Earth has had a relatively stable climate, with average global temperatures generally fluctuating by less than 10°C from the present value of around 15°C. In the preceding 4 billion years, temperature fluctuations were almost an order of magnitude greater. One explanation for climate stability is that the biosphere evolves to maintain optimum conditions for life (the Gaia hypothesis). But this stability could also result from luck and, without such good fortune, conditions on Earth would have been unsuitable for the evolution of complex life: anthropic selection, in other words. One element of such good luck concerns the climatic impact of the Moon; the properties of the Earth-Moon system only just allow a stable rotation axis for the Earth (considered a prerequisite for climate stability and the evolution of complex life). Axial stability also requires Jupiter and Saturn to be widely spaced, offering a test of the rarity or otherwise of the solar system arrangement among exoplanet systems. Gravitational microlensing surveys should allow this to be tested within a decade.

  16. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone.

    PubMed

    Lowenstern, J B; Evans, W C; Bergfeld, D; Hunt, A G

    2014-02-20

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions. PMID:24553240

  17. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon

    PubMed Central

    Bell, Elizabeth A.; Harrison, T. Mark; Mao, Wendy L.

    2015-01-01

    Evidence of life on Earth is manifestly preserved in the rock record. However, the microfossil record only extends to ∼3.5 billion years (Ga), the chemofossil record arguably to ∼3.8 Ga, and the rock record to 4.0 Ga. Detrital zircons from Jack Hills, Western Australia range in age up to nearly 4.4 Ga. From a population of over 10,000 Jack Hills zircons, we identified one >3.8-Ga zircon that contains primary graphite inclusions. Here, we report carbon isotopic measurements on these inclusions in a concordant, 4.10 ± 0.01-Ga zircon. We interpret these inclusions as primary due to their enclosure in a crack-free host as shown by transmission X-ray microscopy and their crystal habit. Their δ13CPDB of −24 ± 5‰ is consistent with a biogenic origin and may be evidence that a terrestrial biosphere had emerged by 4.1 Ga, or ∼300 My earlier than has been previously proposed. PMID:26483481

  18. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon

    DOE PAGESBeta

    Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L.

    2015-10-19

    Here, evidence of life on Earth is manifestly preserved in the rock record. However, the microfossil record only extends to ~3.5 billion years (Ga), the chemofossil record arguably to ~3.8 Ga, and the rock record to 4.0 Ga. Detrital zircons from Jack Hills, Western Australia range in age up to nearly 4.4 Ga. From a population of over 10,000 Jack Hills zircons, we identified one >3.8-Ga zircon that contains primary graphite inclusions. Here, we report carbon isotopic measurements on these inclusions in a concordant, 4.10 ± 0.01-Ga zircon. We interpret these inclusions as primary due to their enclosure in amore » crack-free host as shown by transmission X-ray microscopy and their crystal habit. Their δ13CPDB of –24 ± 5‰ is consistent with a biogenic origin and may be evidence that a terrestrial biosphere had emerged by 4.1 Ga, or ~300 My earlier than has been previously proposed.« less

  19. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon

    SciTech Connect

    Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L.

    2015-10-19

    Here, evidence of life on Earth is manifestly preserved in the rock record. However, the microfossil record only extends to ~3.5 billion years (Ga), the chemofossil record arguably to ~3.8 Ga, and the rock record to 4.0 Ga. Detrital zircons from Jack Hills, Western Australia range in age up to nearly 4.4 Ga. From a population of over 10,000 Jack Hills zircons, we identified one >3.8-Ga zircon that contains primary graphite inclusions. Here, we report carbon isotopic measurements on these inclusions in a concordant, 4.10 ± 0.01-Ga zircon. We interpret these inclusions as primary due to their enclosure in a crack-free host as shown by transmission X-ray microscopy and their crystal habit. Their δ13CPDB of –24 ± 5‰ is consistent with a biogenic origin and may be evidence that a terrestrial biosphere had emerged by 4.1 Ga, or ~300 My earlier than has been previously proposed.

  20. If slow rate of health care spending growth persists, projections may be off by $770 billion.

    PubMed

    Cutler, David M; Sahni, Nikhil R

    2013-05-01

    Despite earlier forecasts to the contrary, US health care spending growth has slowed in the past four years, continuing a trend that began in the early 2000s. In this article we attempt to identify why US health care spending growth has slowed, and we explore the spending implications if the trend continues for the next decade. We find that the 2007-09 recession, a one-time event, accounted for 37 percent of the slowdown between 2003 and 2012. A decline in private insurance coverage and cuts to some Medicare payment rates accounted for another 8 percent of the slowdown, leaving 55 percent of the spending slowdown unexplained. We conclude that a host of fundamental changes--including less rapid development of imaging technology and new pharmaceuticals, increased patient cost sharing, and greater provider efficiency--were responsible for the majority of the slowdown in spending growth. If these trends continue during 2013-22, public-sector health care spending will be as much as $770 billion less than predicted. Such lower levels of spending would have an enormous impact on the US economy and on government and household finances. PMID:23650316

  1. How to make a billion-barrel oil field in offshore California commercial

    SciTech Connect

    Patterson, J.C.; Ballard, J.H.

    1988-02-01

    The major obstacles and challenges involved in exploration and development of a giant deep-water low-gravity oil field are exemplified in the undeveloped Sword field of offshore southern California. In 1979, Conoco Exploration identified a northeast-southwest-trending basement high in the 800 to 2000-ft deep federal waters 12 mi southwest of Pt. Conception at the western end of the Santa Barbara Channel. The intended reservoir was fractured Miocene Monterey chert, silicic shales/siltstones, and dolomites that are draped over the axially faulted structure. Drilling of the initial well in OCS P-0322 in 1982 resulted in discovering the giant Sword field. A confirmation well drilled in OCS P-0320 indicates in-place reserves of well over 1 billion bbl. While the discovered potential is significant, the low gravity (8.5/degree/-10.5/degree/ API) of the oils discovered to date, along with water depths in excess of 1500 ft, currently pose economic challenges to successful field development. Conoco and its partners are addressing the current economic barriers on a number of fronts. Three-dimensional seismic surveys are being conducted to better delineate reservoir geometry and to define probable variations in lithology, fracturing, and oil gravity. A market feasibility study will be undertaken to assess the demand for low-gravity crude from offshore California.

  2. How to make a billion-barrel oil field in offshore California commercial

    SciTech Connect

    Patterson, J.C.; Ballard, J.H.

    1988-01-01

    The major obstacles and challenges involved in exploration and development of a giant deep-water low-gravity oil field are exemplified in the undeveloped Sword field of offshore southern California. In 1979, Conoco Exploration identified a northeast-southwest-trending basement high in the 800 to 2,000-ft deep federal waters 12 mi southwest of Pt. Conception at the western end of the Santa Barbara Channel. The intended reservoir was fractured Miocene Monterey chert, silicic shales/siltstones,m and dolomites that are draped over the axially faulted structure. Drilling of the initial well in OCS P-0322 in 1982 resulted in discovering the giant Sword field. A confirmation well drilled in OCS P-0320 indicates in-place reserves of well over 1 billion bbl. while the discovered potential is significant, the low gravity (8.5/sup 0/-10.5/sup 0/ API) of the oils discovered to data, along with water depths in excess of 1,500 ft, currently pose economic challenges to successful field development.

  3. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago

    PubMed Central

    Luo, Genming; Ono, Shuhei; Beukes, Nicolas J.; Wang, David T.; Xie, Shucheng; Summons, Roger E.

    2016-01-01

    Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth’s biogeochemical cycles. Although “whiffs” of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly—within 1 to 10 million years—and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, “Snowball Earth” glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions. PMID:27386544

  4. Constraints on the first billion years of the geodynamo from paleointensity studies of zircons

    NASA Astrophysics Data System (ADS)

    Tarduno, John; Cottrell, Rory; Davis, William

    2014-05-01

    Several lines of reasoning, including new ideas on core thermal conductivity, suggest that onset of a strong geomagnetic field might have been delayed by one billion years (or more) after the lunar forming event. Here we extend the Proterozoic/Archean to Paleoarchean record of the geomagnetic field constrained by single crystal paleointensity (SCP) analyses (Tarduno et al., Science, 2010) to older times using zircons containing minute magnetic inclusions. Specifically, we focus on samples from the Jack Hills (Yilgarn Craton, Western Australia). We employ a CO2 laser demagnetization system and a small bore (6.3 mm) 3-component DC SQUID magnetometer; the latter offers the highest currently available moment resolution. Sample age is analyzed using SHRIMP U-Pb geochronology. Preliminary data support the presence of a relatively strong Paleoarchean field produced by a core dynamo, extending the known record by at least 100 million years, to approximately 3.55 Ga. These data only serve to exacerbate the apparent problem posed by the presence of a Paleoarchean dynamo. Alternative dynamo driving mechanisms, or efficient core/lowermost mantle heat loss processes unique to the Paleoarchean (and older times) might have been at work. We will discuss these processes, and our efforts to study even older Eoarchean-Hadean zircons.

  5. Ballography: A Billion Nanosecond History of the Bee Bluff Impact Crater of South Texas

    NASA Astrophysics Data System (ADS)

    Graham, R. A.

    2006-07-01

    The Bee Bluff Structure of South Texas in Zavala County near Uvalde has been found to exhibit unusual features permitting study of impactites and meteorite impact processes from the standpoint of grain-level, nanosecond shock-compression science. The site is characterized by a thin cap of Carrizo Sandstone covering a thin hard Indio fm calcareous siltstone. A soft calcareous silt lies below the hard cap. Calculations based on the Earth Impact Effects web-based program indicate that the site is best described by a 60 m diameter iron meteorite striking the ground at 11 km/sec. Such an impact into sandstone is expected to produce a shock pressure of 250 GPa. A large release wave originates from the bottom of the hard target with upward moving melt-vaporization waves of solid, liquid and vapor products that become trapped at the impact interface. Numerous distinctive types of impactites result from this `bottom-up' release behavior. Evidence for hydrodynamic instabilities and resulting density gradients are abundant at the impact interface. An unusually valuable breccia sample called `The Uvalde Crater Rosetta Stone' contains at least seven types of impactites in a well defined arrangement that can be used to read the billion nanosecond history of the impact and identify scattered impactites relative to their place in that history.

  6. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  7. Providing safe drinking water to 1.2 billion unserved people

    SciTech Connect

    Gadgil, Ashok J.; Derby, Elisabeth A.

    2003-06-01

    Despite substantial advances in the past 100 years in public health, technology and medicine, 20% of the world population, mostly comprised of the poor population segments in developing countries (DCs), still does not have access to safe drinking water. To reach the United Nations (UN) Millennium Goal of halving the number of people without access to safe water by 2015, the global community will need to provide an additional one billion urban residents and 600 million rural residents with safe water within the next twelve years. This paper examines current water treatment measures and implementation methods for delivery of safe drinking water, and offers suggestions for making progress towards the goal of providing a timely and equitable solution for safe water provision. For water treatment, based on the serious limitations of boiling water and chlorination, we suggest an approach based on filtration coupled with ultraviolet (UV) disinfection, combined with public education. Additionally, owing to the capacity limitations for non-governmental organizations (NGOs) to take on this task primarily on their own, we suggest a strategy based on financially sustainable models that include the private sector as well as NGOs.

  8. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon.

    PubMed

    Bell, Elizabeth A; Boehnke, Patrick; Harrison, T Mark; Mao, Wendy L

    2015-11-24

    Evidence of life on Earth is manifestly preserved in the rock record. However, the microfossil record only extends to ∼ 3.5 billion years (Ga), the chemofossil record arguably to ∼ 3.8 Ga, and the rock record to 4.0 Ga. Detrital zircons from Jack Hills, Western Australia range in age up to nearly 4.4 Ga. From a population of over 10,000 Jack Hills zircons, we identified one >3.8-Ga zircon that contains primary graphite inclusions. Here, we report carbon isotopic measurements on these inclusions in a concordant, 4.10 ± 0.01-Ga zircon. We interpret these inclusions as primary due to their enclosure in a crack-free host as shown by transmission X-ray microscopy and their crystal habit. Their δ(13)CPDB of -24 ± 5‰ is consistent with a biogenic origin and may be evidence that a terrestrial biosphere had emerged by 4.1 Ga, or ∼ 300 My earlier than has been previously proposed. PMID:26483481

  9. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Evans, W. C.; Bergfeld, D.; Hunt, A. G.

    2014-02-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  10. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    NASA Astrophysics Data System (ADS)

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-07-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  11. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.

    PubMed

    Luo, Genming; Ono, Shuhei; Beukes, Nicolas J; Wang, David T; Xie, Shucheng; Summons, Roger E

    2016-05-01

    Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions. PMID:27386544

  12. Analysis of precious metals at parts-per-billion levels in industrial applications

    NASA Astrophysics Data System (ADS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Smith, Michael; Van Haarlem, Yves

    2015-11-01

    Precious metals, including gold and the platinum group metals (notable Pt, Pd and Rh), are mined commercially at concentrations of a few parts-per-million and below. Mining and processing operations demand sensitive and rapid analysis at concentrations down to about 100 parts-per-billion (ppb). In this paper, we discuss two technologies being developed to meet this challenge: X-ray fluorescence (XRF) and gamma-activation analysis (GAA). We have designed on-stream XRF analysers capable of measuring targeted elements in slurries with precisions in the 35-70 ppb range. For the past two years, two on-stream analysers have been in continuous operation at a precious metals concentrator plant. The simultaneous measurement of feed and waste stream grades provides real-time information on metal recovery, allowing changes in operating conditions and plant upsets to be detected and corrected more rapidly. Separately, we have been developing GAA for the measurement of gold as a replacement for the traditional laboratory fire-assay process. High-energy Bremsstrahlung X-rays are used to excite gold via the 197Au(γ,γ‧)197Au-M reaction, and the gamma-rays released in the decay of the meta-state are then counted. We report on work to significantly improve accuracy and detection limits.

  13. Full-sky weak-lensing simulation with 70 billion particles

    NASA Astrophysics Data System (ADS)

    Teyssier, R.; Pires, S.; Prunet, S.; Aubert, D.; Pichon, C.; Amara, A.; Benabed, K.; Colombi, S.; Refregier, A.; Starck, J.-L.

    2009-04-01

    We have performed a 70 billion dark-matter particles N-body simulation in a 2 h-1 Gpc periodic box, using the concordance, cosmological model as favored by the latest WMAP3 results. We have computed a full-sky convergence map with a resolution of Δ θ ≃ 0.74 arcmin2, spanning 4 orders of magnitude in angular dynamical range. Using various high-order statistics on a realistic cut sky, we have characterized the transition from the linear to the nonlinear regime at ℓ ≃ 1000 and shown that realistic galactic masking affects high-order moments only below ℓ < 200. Each domain (Gaussian and non-Gaussian) spans 2 decades in angular scale. This map is therefore an ideal tool for testing map-making algorithms on the sphere. As a first step in addressing the full map reconstruction problem, we have benchmarked in this paper two denoising methods: 1) Wiener filtering applied to the Spherical Harmonics decomposition of the map and 2) a new method, called MRLens, based on the modification of the Maximum Entropy Method on a Wavelet decomposition. While the latter is optimal on large spatial scales, where the signal is Gaussian, MRLens outperforms the Wiener method on small spatial scales, where the signal is highly non-Gaussian. The simulated full-sky convergence map is freely available to the community to help the development of new map-making algorithms dedicated to the next generation of weak-lensing surveys.

  14. Large data analysis: automatic visual personal identification in a demography of 1.2 billion persons

    NASA Astrophysics Data System (ADS)

    Daugman, John

    2014-05-01

    The largest biometric deployment in history is now underway in India, where the Government is enrolling the iris patterns (among other data) of all 1.2 billion citizens. The purpose of the Unique Identification Authority of India (UIDAI) is to ensure fair access to welfare benefits and entitlements, to reduce fraud, and enhance social inclusion. Only a minority of Indian citizens have bank accounts; only 4 percent possess passports; and less than half of all aid money reaches its intended recipients. A person who lacks any means of establishing their identity is excluded from entitlements and does not officially exist; thus the slogan of UIDAI is: To give the poor an identity." This ambitious program enrolls a million people every day, across 36,000 stations run by 83 agencies, with a 3-year completion target for the entire national population. The halfway point was recently passed with more than 600 million persons now enrolled. In order to detect and prevent duplicate identities, every iris pattern that is enrolled is first compared against all others enrolled so far; thus the daily workflow now requires 600 trillion (or 600 million-million) iris cross-comparisons. Avoiding identity collisions (False Matches) requires high biometric entropy, and achieving the tremendous match speed requires phase bit coding. Both of these requirements are being delivered operationally by wavelet methods developed by the author for encoding and comparing iris patterns, which will be the focus of this Large Data Award" presentation.

  15. A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia.

    PubMed

    Brasier, M D; Lindsay, J F

    1998-06-01

    Carbon isotopes through 6km of fully cored drill holes in 1.7 to 1.5 Ga carbonates of the Mount Isa and McArthur basins, Australia (which host the earliest known eukaryote biomarkers) provide the most comprehensive and best-dated delta 13C stratigraphy yet obtained from such ancient rocks. Both basins reveal remarkably stable temporal delta 13C trends (mean of -0.6% +/- 2% PDB [Peedee belemnite]) and confirm the impression of delta 13C stasis between 2.0 and 1.0 Ga, which, together with other evidence, suggest a prolonged period of stability in crustal dynamics, redox state of surface environments, and planetary climate. This delta 13C stasis is consistent with great stability in the carbon cycle controlled, we suggest, by P limitation of primary productivity. Recent evidence shows that P depletion is a major factor in obligate associations between photosymbionts and host cells. We argue that a billion years of stability in the carbon and nutrient cycles may have been the driving force that propelled prokaryotes toward photosymbiosis and the emergence of the autotrophic eukaryote cell. PMID:11541449

  16. Electron-photon transport using the EGS4 (Electron Gamma Shower) Monte Carlo Code

    SciTech Connect

    Nelson, W.R.; Hirayama, H.; Rogers, D.W.O.

    1986-01-01

    The EGS (Electron Gamma Shower) code system was formally introduced in 1978 as a package, most commonly referred to as ESG3. It was designed to simulate electromagnetic cascades in various geometries and at energies up to a few thousand gigaelectron volts and down to cutoff kinetic energies of 0.1 MeV (photons) and 1 MeV (electrons). There have been many requests to extend EGS3 down to lower energies and this is a major, but not the only, reason for creating EGS4, which is now available for general distribution and is the subject of this presentation. A summary is given of the main features of the ESG4 code system, including statements about the physics that has been put into it and what can be realistically simulated. 6 refs.

  17. Industrial R&D Spending Reached $26.6 Billion in 1976. Science Resources Studies Highlights, May 5, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report presents data compiled as part of a comprehensive program to measure and analyze the nation's resources expended for research and development (R&D). Industry, which carries out 69% of the R&D in the United States, spent $26.6 billion on these activities in 1976, 10% above the 1975 level. In constant dollars, this presents an increase…

  18. Industrial R&D Expenditures Rise to $22 Billion in 1974. Science Resources Studies Highlights, January 14, 1976.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported in this newsletter in narrative, graphical, and tabular form are data related to industrial research and development expenditures in 1974, showing a seven percent increase over 1973. It is noted that more than 80 percent of a total of $22.3 billion was spent by five industries; these included electrical equipment and communication,…

  19. $100 Billion: For Reform...or to Subsidize the Status Quo? Education Stimulus Watch. Special Report 1

    ERIC Educational Resources Information Center

    Smarick, Andy

    2009-01-01

    This is the first in a quarterly series of special reports on the K-12 education implications of the federal government's economic stimulus package, the American Recovery and Reinvestment Act (ARRA). That the ARRA, which was signed into law in February, will pump nearly $100 billion--an unprecedented sum of federal money--into K-12 education is…

  20. 77 FR 29458 - Supervisory Guidance on Stress Testing for Banking Organizations With More Than $10 Billion in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ...The Board, FDIC and OCC, (collectively, the ``agencies'') are issuing this guidance, which outlines high-level principles for stress testing practices, applicable to all Federal Reserve-supervised, FDIC- supervised, and OCC-supervised banking organizations with more than $10 billion in total consolidated assets. The guidance highlights the importance of stress testing as an ongoing risk......

  1. 76 FR 35072 - Proposed Guidance on Stress Testing for Banking Organizations With More Than $10 Billion in Total...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Stress Testing Guidance. The agency form number for the collection is FR 4202. The agency control number... Proposed Guidance on Stress Testing for Banking Organizations With More Than $10 Billion in Total..., Board, and the FDIC (collectively, the ``agencies'') request comment on proposed guidance on...

  2. Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Walko, L. C.

    1974-01-01

    Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.

  3. The First Billion Years project: the escape fraction of ionizing photons in the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Paardekooper, Jan-Pieter; Khochfar, Sadegh; Dalla Vecchia, Claudio

    2015-08-01

    Protogalaxies forming in low-mass dark matter haloes are thought to provide the majority of ionizing photons needed to reionize the Universe, due to their high escape fractions of ionizing photons. We study how the escape fraction in high-redshift galaxies relates to the physical properties of the halo in which the galaxies form, by computing escape fractions in more than 75 000 haloes between redshifts 27 and 6 that were extracted from the First Billion Years project, high-resolution cosmological hydrodynamical simulations of galaxy formation. We find that the main constraint on the escape fraction is the gas column density in a radius of 10 pc around the stellar populations, causing a strong mass dependence of the escape fraction. The lower potential well in haloes with M200 ≲ 108 M⊙ results in low column densities that can be penetrated by radiation from young stars (age <5 Myr). In haloes with M200 ≳ 108 M⊙ supernova feedback is important, but only ˜30 per cent of the haloes in this mass range have an escape fraction higher than 1 per cent. We find a large range of escape fractions in haloes with similar properties, caused by different distributions of the dense gas in the halo. This makes it very hard to predict the escape fraction on the basis of halo properties and results in a highly anisotropic escape fraction. The strong mass dependence, the large spread and the large anisotropy of the escape fraction may strongly affect the topology of reionization and is something current models of cosmic reionization should strive to take into account.

  4. A sawtooth-like timeline for the first billion years of lunar bombardment

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Marchi, S.; Bottke, W. F.; Kring, D. A.

    2012-11-01

    We revisit the early evolution of the Moon's bombardment. Our work combines modeling (based on plausible projectile sources and their dynamical decay rates) with constraints from the lunar crater record, radiometric ages of the youngest lunar basins, and the abundance of highly siderophile elements in the lunar crust and mantle. We deduce that the evolution of the impact flux did not decline exponentially over the first billion years of lunar history, but also there was no prominent and narrow impact spike ˜3.9Gy ago, unlike that typically envisioned in the lunar cataclysm scenario. Instead, we show the timeline of the lunar bombardment has a sawtooth-like profile, with an uptick in the impact flux near ˜4.1Gy ago. The impact flux at the beginning of this weaker cataclysm was 5-10 times higher than the immediately preceding period. The Nectaris basin should have been one of the first basins formed at the sawtooth. We predict the bombardment rate since ˜4.1Gy ago declined slowly and adhered relatively close to classic crater chronology models (Neukum and Ivanov, 1994). Overall we expect that the sawtooth event accounted for about one-fourth of the total bombardment suffered by the Moon since its formation. Consequently, considering that ˜12-14 basins formed during the sawtooth event, we expect that the net number of basins formed on the Moon was ˜45-50. From our expected bombardment timeline, we derived a new and improved lunar chronology suitable for use on pre-Nectarian surface units. According to this chronology, a significant portion of the oldest lunar cratered terrains has an age of 4.38-4.42 Gyr. Moreover, the largest lunar basin, South Pole Aitken, is older than 4.3 Gy, and therefore was not produced during the lunar cataclysm.

  5. Searching for the birthplaces of open clusters with ages of several billion years

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Shevtsova, E. S.

    2016-01-01

    We discuss the possibility of finding the birthplaces of open clusters (OC) with ages of several billion years. The proposed method is based on the comparison of the results of the chemical evolution modeling of the Galactic disk with the parameters of the cluster. Five OCs older than 7 Gyr are known: NGC6791, BH176, Collinder 261, Berkeley 17, and Berkeley 39. The oxygen and iron abundances in NGC6791 and the oxygen abundance in BH176 are twice the solar level, the heavy-element abundances in other clusters are close to the corresponding solar values. According to chemical evolution models, at the time of the formation of the objects considered the regions where the oxygen and iron abundances reached the corresponding levels extended out to 5 kpc from the Galactic center.At present time theOCs considered are located several kpc from the Galactic center. Some of these clusters are located extremely high, about 1 kpc above the disk midplane, i.e., they have been subject to some mechanism that has carried them into orbits uncharacteristic of this type of objects. It follows from a comparison with the results of chemical evolution that younger clusters with ages of 4-5 Gyr, e.g., NGC1193,M67, and others, may have formed in a broad range of Galactocentric distances. Their large heights above the disk midplane is sufficient to suggest that these clusters have moved away from their likely birthplaces. Clusters are carried far away from the Galactic disk until the present time: about 40 clusters with ages from 0 to 2 Gyr are observed at heights ranging from 300 to 750 pc.

  6. No Photon Left Behind: How Billions of Spectral Lines are Transforming Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Villanueva, Geronimo L.

    2014-06-01

    With the advent of realistic potential energy surface (PES) and dipole moment surface (DMS) descriptions, theoretically computed linelists can now synthesize accurate spectral parameters for billions of spectral lines sampling the untamed high-energy molecular domain. Being the initial driver for these databases the characterization of stellar spectra, these theoretical databases, in combination with decades of precise experimental studies (nicely compiled in community databases such as HITRAN and GEISA), are leading to unprecedented precisions in the characterization of planetary atmospheres. Cometary sciences are among the most affected by this spectroscopic revolution. Even though comets are relatively cold bodies (T˜100 K), their infrared molecular emission is mainly defined by non-LTE solar fluorescence induced by a high-energy source (Sun, T˜5600 K). In order to interpret high-resolution spectra of comets acquired with extremely powerful telescopes (e.g., Keck, VLT, NASA-IRTF), we have developed advanced non-LTE fluorescence models that integrate the high-energy dynamic range of ab-initio databases (e.g., BT2, VTT, HPT2, BYTe, TROVE) and the precision of laboratory and semi-empirical compilations (e.g., HITRAN, GEISA, CDMS, WKMC, SELP, IUPAC). These new models allow us to calculate realistic non-LTE pumps, cascades, branching-ratios, and emission rates for a broad range of excitation regimes for H2O, HDO, HCN, HNC and NH3. We have implemented elements of these compilations to the study of Mars spectra, and we are now exploring its application to modeling non-LTE emission in exoplanets. In this presentation, we present application of these advanced models to interpret highresolution spectra of comets, Mars and exoplanets.

  7. The formation of submillimetre-bright galaxies from gas infall over a billion years.

    PubMed

    Narayanan, Desika; Turk, Matthew; Feldmann, Robert; Robitaille, Thomas; Hopkins, Philip; Thompson, Robert; Hayward, Christopher; Ball, David; Faucher-Giguère, Claude-André; Kereš, Dušan

    2015-09-24

    Submillimetre-bright galaxies at high redshift are the most luminous, heavily star-forming galaxies in the Universe and are characterized by prodigious emission in the far-infrared, with a flux of at least five millijanskys at a wavelength of 850 micrometres. They reside in haloes with masses about 10(13) times that of the Sun, have low gas fractions compared to main-sequence disks at a comparable redshift, trace complex environments and are not easily observable at optical wavelengths. Their physical origin remains unclear. Simulations have been able to form galaxies with the requisite luminosities, but have otherwise been unable to simultaneously match the stellar masses, star formation rates, gas fractions and environments. Here we report a cosmological hydrodynamic galaxy formation simulation that is able to form a submillimetre galaxy that simultaneously satisfies the broad range of observed physical constraints. We find that groups of galaxies residing in massive dark matter haloes have increasing rates of star formation that peak at collective rates of about 500-1,000 solar masses per year at redshifts of two to three, by which time the interstellar medium is sufficiently enriched with metals that the region may be observed as a submillimetre-selected system. The intense star formation rates are fuelled in part by the infall of a reservoir gas supply enabled by stellar feedback at earlier times, not through major mergers. With a lifetime of nearly a billion years, our simulations show that the submillimetre-bright phase of high-redshift galaxies is prolonged and associated with significant mass buildup in early-Universe proto-clusters, and that many submillimetre-bright galaxies are composed of numerous unresolved components (for which there is some observational evidence). PMID:26399829

  8. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  9. CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

    SciTech Connect

    Rubin, David L.; Palmer, Mark A.

    2011-08-02

    In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In

  10. Propulsion using the electron spiral toroid

    SciTech Connect

    Seward, Clint

    1998-01-15

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed.

  11. Fragmentation of nitrogen-14 nuclei at 2.1 Gev per nucleon.

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.; Greiner, D. E.; Lindstrom, P. J.; Bieser, F. S.

    1971-01-01

    An experiment has been carried out at the bevatron on the nuclear fragmentation of nitrogen-14 ions at an energy of 2.1 billion electron volts (Gev) per nucleon. Because of the near equality of the velocities of the nitrogen-14 beam and the fragmentation products at an angle of 0 deg, we find it possible to identify the nuclear fragments isotopically.

  12. Research Frontier

    ERIC Educational Resources Information Center

    Physics Teacher, 1971

    1971-01-01

    New research topics have been brought about by the acceleration of nitrogen nuclei to the energy of 36 billion electron volts. Describes experiments on tumor cells, cosmic rays, and nuclear fission performed with the Bevatron at the Lawrence Berkeley Laboratory. (TS)

  13. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.

    PubMed

    Rideout, Jai Ram; He, Yan; Navas-Molina, Jose A; Walters, William A; Ursell, Luke K; Gibbons, Sean M; Chase, John; McDonald, Daniel; Gonzalez, Antonio; Robbins-Pianka, Adam; Clemente, Jose C; Gilbert, Jack A; Huse, Susan M; Zhou, Hong-Wei; Knight, Rob; Caporaso, J Gregory

    2014-01-01

    We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to "classic" open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, "classic" open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of "classic" open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by "classic" open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME's uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME's OTU picking workflows and

  14. The Other Inconvenient Truth: Feeding 9 Billion While Sustaining the Earth System

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2010-12-01

    As the international community focuses on climate change as the great challenge of our era, we have been largely ignoring another looming problem — the global crisis in agriculture, food security and the environment. Our use of land, particularly for agriculture, is absolutely essential to the success of the human race: we depend on agriculture to supply us with food, feed, fiber, and, increasingly, biofuels. Without a highly efficient, productive, and resilient agricultural system, our society would collapse almost overnight. But we are demanding more and more from our global agricultural systems, pushing them to their very limits. Continued population growth (adding more than 70 million people to the world every year), changing dietary preferences (including more meat and dairy consumption), rising energy prices, and increasing needs for bioenergy sources are putting tremendous pressure on the world’s resources. And, if we want any hope of keeping up with these demands, we’ll need to double the agricultural production of the planet in the next 30 to 40 years. Meeting these huge new agricultural demands will be one of the greatest challenges of the 21st century. At present, it is completely unclear how (and if) we can do it. If this wasn’t enough, we must also address the massive environmental impacts of our current agricultural practices, which new evidence indicates rival the impacts of climate change. Simply put, providing for the basic needs of 9 billion-plus people, without ruining the biosphere in the process, will be one of the greatest challenges our species has ever faced. In this presentation, I will present a new framework for evaluating and assessing global patterns of agriculture, food / fiber / fuel production, and their relationship to the earth system, particularly in terms of changing stocks and flows of water, nutrients and carbon in our planetary environment. This framework aims to help us manage the challenges of increasing global food

  15. The continuing cost of privatization: extra payments to Medicare Advantage plans jump to $11.4 billion in 2009.

    PubMed

    Biles, Brian; Pozen, Jonah; Guterman, Stuart

    2009-05-01

    The Medicare Modernization Act of 2003 explicitly increased Medicare payments to private Medicare Advantage (MA) plans. As a result, MA plans have, for the past six years, been paid more for their enrollees than they would be expected to cost in traditional fee-for-service Medicare. Payments to MA plans in 2009 are projected to be 13 percent greater than the corresponding costs in traditional Medicare--an average of $1,138 per MA plan enrollee, for a total of $11.4 billion. Although the extra payments are used to provide enrollees additional benefits, those benefits are not available to all beneficiaries-- but they are financed by general program funds. If payments to MA plans were instead equal to the spending level under traditional Medicare, the more than $150 billion in savings over 10 years could be used to finance improved benefits for the low-income elderly and disabled, or for expanding health-insurance coverage. PMID:19449498

  16. Set-up and demonstration of a Low Energy Electron Magnetometer (LEEM)

    NASA Technical Reports Server (NTRS)

    Rayborn, G. H.

    1986-01-01

    Described are the design, construction and test results of a Low Energy Electron Magnetometer (LEEM). The electron source is a commercial electron gun capable of providing several microamperes of electron beam. These electrons, after acceleration through a selected potential difference of 100-300 volts, are sent through two 30 degree second-order focussing parallel plate electrostatic analyzers. The first analyzer acts as a monochromator located in the field-free space. It is capable of providing energy resolution of better than 10 to the -3 power. The second analyzer, located in the test field region, acts as the detector for electrons deflected by the test field. The entire magnetometer system is expected to have a resolution of 1 part in 1000 or better.

  17. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-15

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  18. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    NASA Astrophysics Data System (ADS)

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-01

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  19. $17 billion needed for population programme to year 2000: Dr. Nafis Sadik launches State of World Population Report.

    PubMed

    1995-01-01

    Dr. Nafis Sadik, Executive Director of the United Nations Population Fund (UNFPA), in her address on July 11 to the Foreign Press Association in London on the occasion of the release of the "1995 State of the World Population Report," stated that governments needed to invest in people, and that the estimated amount needed to reduce population numbers in developing countries was $17 billion for the year 2000. Two-thirds of the cost would be supplied by the developing countries. She said that coordinating population policies globally through such documents as the Programme of Action from the Cairo Conference would aid in slowing population growth. World population, currently 5.7 billion, is projected to reach 7.1-7.83 billion in 2015 and 7.9-11.9 billion in 2050. She also noted that certain conditions faced by women bear upon unsustainable population growth. The cycle of poverty continues in developing countries because very young mothers, who face higher risks in pregnancy and childbirth than those who delay childbearing until after the age of 20, are less likely to continue their education, more likely to have lower-paying jobs, and have a higher rate of separation and divorce. The isolation of women from widespread political participation and the marginalization of women's concerns from mainstream topics has resulted in ineffective family planning programs, including prevention of illness or impairment related to pregnancy or childbirth. Women, in most societies, cannot fully participate in economic and public life, have limited access to positions of influence and power, have narrower occupational choices and lower earnings than men, and must struggle to reconcile activities outside the home with their traditional roles. Sustainable development can only be achieved when social development expands opportunities for individuals (men and women), and their families, empowering them in the attainment of their social, economic, political, and cultural aspirations. PMID

  20. National R&D Spending to Exceed $50 Billion in 1979. Science Resources Studies Highlights, May 1, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report presents data compiled as part of a comprehensive program to measure and analyze the nation's resources expended for research and development (R&D). R&D spending in the United States is expected to reach $51 billion in 1979, 9% over the 1978 level. The R&D expenditures are expected to account for 2.2% of the gross national product…

  1. Radiative charge transfer in He{sup +}+ H{sub 2} collisions in the milli- to nano-electron-volt range: A theoretical study within state-to-state and optical potential approaches

    SciTech Connect

    Mrugala, Felicja; Kraemer, Wolfgang P.

    2013-03-14

    The paper presents a theoretical study of the low-energy dynamics of the radiative charge transfer (RCT) reaction He{sup +}({sup 2}S)+H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}){yields}He({sup 1}S)+H{sub 2}{sup +}(X{sup 2}{Sigma}{sub g}{sup +})+h{nu} extending our previous studies on radiative association of HeH{sub 2}{sup +} [F. Mrugala, V. Spirko, and W. P. Kraemer, J. Chem. Phys. 118, 10547 (2003); F. Mrugala and W. P. Kraemer, ibid. 122, 224321 (2005)]. The calculations account for the vibrational and rotational motions of the H{sub 2}/H{sub 2}{sup +} diatomics and for the atom-diatom complex formation in the reactant and the product channels of the RCT reaction. Continuum states of He{sup +}+ H{sub 2}(v= 0, j= 0) in the collision energy range {approx}10{sup -7}-18.6 meV and all quasi-bound states of the He{sup +}- H{sub 2}(para;v= 0) complex formed in this range are taken into account. Close-coupling calculations are performed to determine rates of radiative transitions from these states to the continuum and quasi-bound states of the He +H{sub 2}{sup +} system in the energy range extending up to {approx}0.16 eV above the opening of the HeH{sup +}+ H arrangement channel. From the detailed state-to-state calculated characteristics global functions of the RCT reaction, such as cross-section {sigma}(E), emission intensity I({nu}, T), and rate constant k(T) are derived, and are presented together with their counterparts for the radiative association (RA) reaction He{sup +}({sup 2}S) +H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}){yields} HeH{sub 2}{sup +}(X{sup 2}A{sup Prime })+h{nu}. The rate constant k{sup RCT} is approximately 20 times larger than k{sup RA} at the considered temperatures, 0.1 {mu}K-50 K. Formation of rotational Feshbach resonances in the reactant channel plays an important role in both reactions. Transitions mediated by these resonances contribute more than 70% to the respective rates. An extension of the one-dimensional optical potential model is developed to allow inclusion of all three vibrational modes in the atom-diatom system. This three-dimensional optical potential model is used to check to which extent the state-to-state RCT rate constant is influenced by the possibility to access ground state continuum levels well above the opening of the HeH{sup +}+ H arrangement channel. The results indicate that these transitions contribute about 30% to the 'true' rate constant k{sup RCT} whereas their impact on the populations of the vibration-rotational states of the product H{sub 2}{sup +} ion is only minor. Present theoretical rate constant functions k{sup RCT}(T) obtained at different approximation levels are compared to experimental data: 1-1.1 Multiplication-Sign 10{sup -14} s{sup -1} cm{sup 3} at T= 15-35 K and {approx}7.5 Multiplication-Sign 10{sup -15} s{sup -1} cm{sup 3} at 40 K [M. M. Schauer, S. R. Jefferts, S. E. Barlow, and G. H. Dunn, J. Chem. Phys. 91, 4593 (1989)]. The most reliable theoretical values of k{sup RCT}, obtained by combining results from the state-to-state and the optical potential calculations, are between 2.5 and 3.5 times larger than these experimental numbers. Possible sources for discrepancies are discussed.

  2. A search for a neutral D meson - anti-D meson mixing in the semileptonic decay of a neutral D meson decaying to a resonant Kaon in electron volts

    NASA Astrophysics Data System (ADS)

    McGee, Sean

    2002-04-01

    Using the CLEOII.V dataset, we search for evidence of D 0 - D¯0 mixing through the decay of D0 → K* e n with the K*+/- decaying to K*+/-→K0Sp +/-→p+/-p∓ p+/- . A fit for wrong-sign events, D0→K*+e-n ¯ , gives an upper limit on Rmix=ND0→ D¯0→K*+e -n¯ ND0→K*-e +n at a 95% C.L. of <0.86%.

  3. The use of electron beams for pasteurization of meats

    SciTech Connect

    Prestwich, K.R.; Kaye, R.J.; Turman, B.N.; Neau, E.L.

    1994-12-01

    Electron beam accelerators can be used for electronic pasteurization of meat products by: (1) using the electrons directly impacting the products, or (2) optimizing the conversion of electron energy to x-rays and treating the product with these x-rays. The choice of process depends on the configuration of the product when it is treated. For electron treatment, ten million electron volt (MeV) kinetic energy is the maximum allowed by international agreement. The depth of penetration of electrons with that energy into a product with density of meat is about five centimeters (cm). Two-sided treatment can be done on products up to 10 cm thick with a two-to-one ratio between minimum and maximum dose. Ground beef patties are about 1.25 cm (0.5 inch thick). Beams with 2.5 MeV electron energy could be used to treat these products. Our calculations show that maximum to minimum dose ratios less than 1.2 can be achieved with this energy if the transverse beam energy is small. If the product thickness is greater than 10 cm, x-rays can provide the needed dose uniformity. Uniform doses can be supplied for pallets with dimensions greater than 1.2 m on each side using x-rays from a 5 MeV electron beam. The efficiency of converting the electron beam to x-rays and configurations to achieve dose uniformity are discussed.

  4. Spin noise spectroscopy in semiconductors: from a billion down to single spins

    NASA Astrophysics Data System (ADS)

    Hübner, J.; Dahbashi, R.; Berski, F.; Wiegand, J.; Kuhn, H.; Lonnemann, J.; Oestreich, M.

    2014-08-01

    Spin noise spectroscopy in semiconductors has matured during the past nine years into a versatile and well developed technique being capable to unveil the intrinsic and unaltered spin dynamics in a wide range of semiconductor systems. Originating from atom and quantum optics as a potential true quantum non-demolition measurement technique, SNS is capable of unearthing the intricate dynamics of free or localized electron and hole spins in semiconductors being eventually coupled to the nuclear spin bath as well. In this contribution, we review shortly the major steps which inspired the success of spin noise spectroscopy in semiconductors and present the most recent extensions into the low-invasive detection regime of the spin dynamics for the two extreme limits of very high and extremely low rates of spin decoherence, respectively. On the one hand, merging ultrafast laser spectroscopy with spin noise spectroscopy enables the detection of spin noise with picosecond resolution, i.e., with THz bandwidths yielding access to otherwise concealed microscopic electronic processes. On the other hand, we present very high sensitivity SNS being capable to measure the extremely long spin coherence of single holes enclosed in individual quantum dots venturing a step forward towards true optical quantum non-demolition experiments in semiconductors. In addition, higher-order spin noise statistics of, e.g., single charges can give information beyond the linear response regime governed by the fundamental fluctuationdissipation theorem and thereby possibly shed some light on the nested coupling between electronic and nuclear spins.

  5. Electron paramagnetic resonance of individual atoms on a surface.

    PubMed

    Baumann, Susanne; Paul, William; Choi, Taeyoung; Lutz, Christopher P; Ardavan, Arzhang; Heinrich, Andreas J

    2015-10-23

    We combined the high-energy resolution of conventional spin resonance (here ~10 nano-electron volts) with scanning tunneling microscopy to measure electron paramagnetic resonance of individual iron (Fe) atoms placed on a magnesium oxide film. We drove the spin resonance with an oscillating electric field (20 to 30 gigahertz) between tip and sample. The readout of the Fe atom's quantum state was performed by spin-polarized detection of the atomic-scale tunneling magnetoresistance. We determine an energy relaxation time of T1 ≈ 100 microseconds and a phase-coherence time of T2 ≈ 210 nanoseconds. The spin resonance signals of different Fe atoms differ by much more than their resonance linewidth; in a traditional ensemble measurement, this difference would appear as inhomogeneous broadening. PMID:26494753

  6. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  7. Exploiting the colloidal nanocrystal library to construct electronic devices.

    PubMed

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second. PMID:27124455

  8. Proportional Drivewheel Power And Steering Electronics For A 3-Wheel Robot

    NASA Astrophysics Data System (ADS)

    Bolie, Victor W.

    1987-02-01

    A power electronics system for a mobile robot with ±12 volt batteries was developed, starting with a basic 3-wheel chassis with on-off drive motors, pneumatic tires, and manu-ally steered nosewheel. Power steering was provided by installing a suitable motor, gearbox, roller-chain, and sprockets. A steering servo was realized by adding a differential power amplifier and feedback potentiometer. Using an input pulse train of variable duty cycle, an independently controllable power module for each of the two drivewheel motors was designed for proportional no-load speed response. Circuit details and test results are presented.

  9. Mathematical model and software complex for computer simulation of field emission electron sources

    SciTech Connect

    Nikiforov, Konstantin

    2015-03-10

    The software complex developed in MATLAB allows modelling of function of diode and triode structures based on field emission electron sources with complex sub-micron geometry, their volt-ampere characteristics, calculating distribution of electric field for educational and research needs. The goal of this paper is describing the physical-mathematical model, calculation methods and algorithms the software complex is based on, demonstrating the principles of its function and showing results of its work. For getting to know the complex, a demo version with graphical user interface is presented.

  10. NREL Helps Clean Cities Displace Billions of Gallons of Petroleum, One Vehicle at a Time (Fact Sheet)

    SciTech Connect

    Not Available

    2010-10-01

    With more than 15 years and nearly 3 billion gallons of displaced petroleum under its belt, the Clean Cities program relies on the support and expertise of the National Renewable Energy Laboratory (NREL). An initiative of the U.S. Department of Energy (DOE), Clean Cities creates public-private partnerships with a common mission: to reduce petroleum consumption in the transportation sector. Since the inception of Clean Cities in 1993, NREL has played a central role in supporting the program, an effort that stems from the laboratory's strategy to put scientific innovation into action in the marketplace.

  11. Single-shot compressed ultrafast photography at one hundred billion frames per second.

    PubMed

    Gao, Liang; Liang, Jinyang; Li, Chiye; Wang, Lihong V

    2014-12-01

    The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 10(5) frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 10(7) frames per second. Despite these sensors' widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 10(11) frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x-y-t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent--such as fluorescent or bioluminescent--objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP's capability, we expect it to find widespread applications in both fundamental and applied sciences, including

  12. Single-shot compressed ultrafast photography at one hundred billion frames per second

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2014-12-01

    The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 105 frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 107 frames per second. Despite these sensors' widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 1011 frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x-y-t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent--such as fluorescent or bioluminescent--objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP's capability, we expect it to find widespread applications in both fundamental and applied sciences, including biomedical

  13. The Breakthrough Behind the Chevy Volt Battery

    DOE R&D Accomplishments Database

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  14. A sub-1-volt nanoelectromechanical switching device

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Oen; Song, Yong-Ha; Kim, Min-Wu; Kang, Min-Ho; Oh, Jae-Sub; Yang, Hyun-Ho; Yoon, Jun-Bo

    2013-01-01

    Nanoelectromechanical (NEM) switches have received widespread attention as promising candidates in the drive to surmount the physical limitations currently faced by complementary metal oxide semiconductor technology. The NEM switch has demonstrated superior characteristics including quasi-zero leakage behaviour, excellent density capability and operation in harsh environments. However, an unacceptably high operating voltage (4-20 V) has posed a major obstacle in the practical use of the NEM switch in low-power integrated circuits. To utilize the NEM switch widely as a core device component in ultralow power applications, the operation voltage needs to be reduced to 1 V or below. However, sub-1 V actuation has not yet been demonstrated because of fabrication difficulties and irreversible switching failure caused by surface adhesion. Here, we report the sub-1 V operation of a NEM switch through the introduction of a novel pipe clip device structure and an effective air gap fabrication technique. This achievement is primarily attributed to the incorporation of a 4-nm-thick air gap, which is the smallest reported so far for a NEM switch generated using a `top-down' approach. Our structure and process can potentially be utilized in various nanogap-related applications, including NEM switch-based ultralow-power integrated circuits, NEM resonators, nanogap electrodes for scientific research and sensors.

  15. On the possible source of the ionization in the nighttime Martian ionosphere. I - Phobos 2 HARP electron spectrometer measurements

    NASA Technical Reports Server (NTRS)

    Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Haider, S. A.; Szego, K.; Kiraly, P.; Nagy, A. F.; Gombosi, T. I.

    1991-01-01

    The measurements of electron spectra in the Martian magnetosphere by the HARP instrument on board the Phobos 2 orbiter are presented. The energy of the electrons (a few tens of electron volts) is sufficient for the impact ionization of the planetary neutral gas, and the characteristic flux of electrons (about 10 exp 8/sq cm per sec) could produce the nightside ionospheric layer with a peak density of a few thousands of electrons per cubic centimeter, which corresponds to densities observed earlier during radio occultations of the Mars 4 and 5 and Viking 1 and 2 spacecraft. The possibility of magnetospheric electron precipitation into the nightside atmosphere of Mars is in agreement with the mainly induced nature of the magnetic field in the planetary magnetotail (as at Venus), while the variability of the Martian nightside ionosphere may be explained by the partial screening of the atmosphere by a weak intrinsic magnetic field of the planet.

  16. Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV.

    PubMed

    O'gallagher, J J; Simpson, J A

    1965-09-10

    The Mariner IV spacecraft on 14-15 July 1965 passed within 9850 kilometers of Mars, carrying a solid-state charged-particle telescope which could detect electrons greater than 40 kiloelectron volts and protons greater than 1 million electron volts. The trajectory could have passed through a bow shock, a transition region, and a magnetospheric boundary where particles could be stably trapped for a wide range of Martian magnetic moments. No evidence of charged-particle radiation was found in any of these regions. In view of these results, an upper limit is established for the Martian magnetic moment provided it is assumed that the same physical processes leading to acceleration and trapping of electrons in Earth's magnetic field would be found in a Martian magnetic field. On this basis, the upper limit for the Martian magnetic moment is 0.1 percent that of Earth for a wide range of postulated orientations with respect to the rotational axis of Mars. The implications of these results for the physical and biological environment of Mars are briefly discussed. PMID:17747452

  17. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397. PMID:23903747

  18. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate. PMID:25719667

  19. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars. PMID:25539085

  20. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster

    NASA Astrophysics Data System (ADS)

    Meibom, Søren; Barnes, Sydney A.; Platais, Imants; Gilliland, Ronald L.; Latham, David W.; Mathieu, Robert D.

    2015-01-01

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  1. Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Buick, Roger; Hagadorn, James W.; Blake, Tim S.; Perreault, John M.; Harnmeijer, Jelte P.; Catling, David C.

    2016-06-01

    How the Earth stayed warm several billion years ago when the Sun was considerably fainter is the long-standing problem of the `faint young Sun paradox'. Because of negligible O2 and only moderate CO2 levels in the Archaean atmosphere, methane has been invoked as an auxiliary greenhouse gas. Alternatively, pressure broadening in a thicker atmosphere with a N2 partial pressure around 1.6-2.4 bar could have enhanced the greenhouse effect. But fossilized raindrop imprints indicate that air pressure 2.7 billion years ago (Gyr) was below twice modern levels and probably below 1.1 bar, precluding such pressure enhancement. This result is supported by nitrogen and argon isotope studies of fluid inclusions in 3.0-3.5 Gyr rocks. Here, we calculate absolute Archaean barometric pressure using the size distribution of gas bubbles in basaltic lava flows that solidified at sea level ~2.7 Gyr in the Pilbara Craton, Australia. Our data indicate a surprisingly low surface atmospheric pressure of Patm = 0.23 +/- 0.23 (2σ) bar, and combined with previous studies suggests ~0.5 bar as an upper limit to late Archaean Patm. The result implies that the thin atmosphere was rich in auxiliary greenhouse gases and that Patm fluctuated over geologic time to a previously unrecognized extent.

  2. White Light Demonstration of One Hundred Parts per Billion Irradiance Suppression in Air by New Starshade Occulters

    NASA Technical Reports Server (NTRS)

    Levinton, Douglas B.; Cash, Webster C.; Gleason, Brian; Kaiser, Michael J.; Levine, Sara A.; Lo, Amy S.; Schindhelm, Eric; Shipley, Ann F.

    2007-01-01

    A new mission concept for the direct imaging of exo-solar planets called the New Worlds Observer (NWO) has been proposed. The concept involves flying a meter-class space telescope in formation with a newly-conceived, specially-shaped, deployable star-occulting shade several meters across at a separation of some tens of thousands of kilometers. The telescope would make its observations from behind the starshade in a volume of high suppression of incident irradiance from the star around which planets orbit. The required level of irradiance suppression created by the starshade for an efficacious mission is of order 0.1 to 10 parts per billion in broadband light. This paper discusses the experimental setup developed to accurately measure the suppression ratio of irradiance produced at the null position behind candidate starshade forms to these levels. It also presents results of broadband measurements which demonstrated suppression levels of just under 100 parts per billion in air using the Sun as a light source. Analytical modeling of spatial irradiance distributions surrounding the null are presented and compared with photographs of irradiance captured in situ behind candidate starshades.

  3. Compound-specific carbon and hydrogen isotope analysis of sub-parts per billion level waterborne petroleum hydrocarbons

    USGS Publications Warehouse

    Wang, Y.; Huang, Y.; Huckins, J.N.; Petty, J.D.

    2004-01-01

    Compound-specific carbon and hydrogen isotope analysis (CSCIA and CSHIA) has been increasingly used to study the source, transport, and bioremediation of organic contaminants such as petroleum hydrocarbons. In natural aquatic systems, dissolved contaminants represent the bioavailable fraction that generally is of the greatest toxicological significance. However, determining the isotopic ratios of waterborne hydrophobic contaminants in natural waters is very challenging because of their extremely low concentrations (often at sub-parts ber billion, or even lower). To acquire sufficient quantities of polycyclic aromatic hydrocarbons with 10 ng/L concentration for CSHIA, more than 1000 L of water must be extracted. Conventional liquid/liquid or solid-phase extraction is not suitable for such large volume extractions. We have developed a new approach that is capable of efficiently sampling sub-parts per billion level waterborne petroleum hydrocarbons for CSIA. We use semipermeable membrane devices (SPMDs) to accumulate hydrophobic contaminants from polluted waters and then recover the compounds in the laboratory for CSIA. In this study, we demonstrate, under a variety of experimental conditions (different concentrations, temperatures, and turbulence levels), that SPMD-associated processes do not induce C and H isotopic fractionations. The applicability of SPMD-CSIA technology to natural systems is further demonstrated by determining the ??13C and ??D values of petroleum hydrocarbons present in the Pawtuxet River, RI. Our results show that the combined SPMD-CSIA is an effective tool to investigate the source and fate of hydrophobic contaminants in the aquatic environments.

  4. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. PMID:24476361

  5. Observations of low-energy electrons upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1974-01-01

    Observations of electron fluxes with a lunar-based electron spectrometer when the moon was upstream of the earth have shown that a subset of observed fluxes are strongly controlled by the interplanetary magnetic field direction. The fluxes occur only when the IMF lines connect back to the earth's bow shock. Observed densities and temperatures were in the ranges 2-4 x 0,001/cu cm and 1.7-2.8 x 1,000,000 K. It is shown that these electrons can account for increases in effective solar wind electron temperatures on bow-shock connected field lines which have been observed previously by other investigators. It is further shown that if a model of the bow shock with an electrostatic potential barrier is assumed, the potential can be estimated to be 500 volts.

  6. MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.

    PubMed

    Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C

    2011-09-30

    The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields. PMID:21960629

  7. Spin-modulated spacecraft floating potential: Observations and effects on electron moments

    NASA Astrophysics Data System (ADS)

    Pulupa, M. P.; Bale, S. D.; Salem, C.; Horaites, K.

    2014-02-01

    Using the Three-Dimensional Plasma electron analyzers on the Wind spacecraft, we have analyzed several years of solar wind electron data. We find an anomalous core electron drift of roughly 40 km/s in the sunward xGSEdirection, regardless of the direction of the magnetic field. We interpret this drift as an effect of a spin modulation in the spacecraft floating potential, which can be effectively modeled with the addition of a dipole term to the potential. For typical solar wind conditions, the amplitude of potential modulation is a fraction of a volt. The modulation has negligible effects on the even electron moments (density and temperature) but noticeable effects on the odd moments (bulk velocity and heat flux).

  8. Ion viscous heating in a magnetohydrodynamically unstable Z-pinch at over two billion Kelvin.

    SciTech Connect

    Jones, Brent Manley; Coverdale, Christine Anne; LePell, Paul David; Haines, Malcolm G.; Deeney, Christopher

    2005-02-01

    Pulsed power driven metallic wire-array Z pinches are the most powerful and efficient laboratory x-ray sources. Furthermore, under certain conditions the soft x-ray energy radiated in a 5 ns pulse at stagnation can exceed the estimated kinetic energy of the radial implosion phase by a factor of 3 to 4. A theoretical model is developed here to explain this, allowing the rapid conversion of magnetic energy to a very high ion temperature plasma through the generation of fine scale, fast-growing m=0 interchange MHD instabilities at stagnation. These saturate nonlinearly and provide associated ion viscous heating. Next the ion energy is transferred by equipartition to the electrons and thus to soft x-ray radiation. Recent time-resolved iron spectra at Sandia confirm an ion temperature T{sub i} of over 200 keV (2 x 10{sup 9} degrees), as predicted by theory. These are believed to be record temperatures for a magnetically confined plasma.

  9. Gas-liquid chromatographic determination of nifursol in frozen turkey tissues to ten parts per billion.

    PubMed

    Frahm, L J; George, G M; McDonnell, J P

    1975-07-01

    Nifursol (3,5-dinitrosalicylic acid (5-nitrofurfurylidene) hydrazide) is extracted into ethyl acetate from 10 g tissue in the presence of sodium sulfate. Tissue interferences are removed from the tissue extract by washing with petroleum ether after the extract has been transferred into an aqueous solution by evaporation of ethyl acetate. The drug is hydrolyzed under acid conditions to form 5-nitro-2-furaldehyde (5NF). After partition of 5NF from the aqueous phase into benzene the extract is further cleaned up on a Florisil column. The 5NF is eluted from the Florisil column with benzeneethyl acetate. Electron capture gas-liquid chromatography of a 10 mul injection of the concentrated column eluate is the determinative step. Quantitation is accomplished by comparison of the peak height of the sample to the peak height of the standard which is carried through the method simultaneously. Studies of method performance on turkey muscle, liver, kidney, and skin tissues fortified to contain 10 ppb nifursol show a recovery range of 87.4-95.0% and a coefficent of variation range of 5.7-11.2%. PMID:1150608

  10. Reasons (Not) to Spend a Few Billions More on EHRs: How Human Factors Research Can Help

    PubMed Central

    Aimé, X.

    2014-01-01

    Summary Objectives To select best medical informatics research works published in 2013 on electronic health record (EHR) adoption, design, and impact, from the perspective of human factors and organizational issues (HFOI). Methods We selected 2,764 papers by querying PubMed (Mesh and TIAB) as well as using a manual search. Papers were evaluated based on pre-defined exclusion and inclusion criteria from their title, keywords, and abstract to select 15 candidate best papers, finally reviewed by 4 external reviewers using a standard evaluation grid. Results Five papers were selected as best papers to illustrate how human factors approaches can improve EHR adoption and design. Among other contributions, these works: (i) make use of the observational and analysis methodologies of social and cognitive sciences to understand clinicians’ attitudes towards EHRs, EHR use patterns, and impact on care processes, workflows, information exchange, and coordination of care; (ii) take into account macro- (environmental) and meso- (organizational) level factors to analyze EHR adoption or lack thereof; (iii) highlight the need for qualitative studies to analyze the unexpected side effects of EHRs on cognitive and work processes as well as the persistent use of paper. Conclusion Selected papers tend to demonstrate that HFOI approaches and methodologies are essential to bridge the gap between EHR systems and end users, and to reduce regularly reported adoption failures and unexpected consequences. PMID:25123727

  11. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2009-09-01

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  12. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    SciTech Connect

    Leemans, Wim

    2008-07-08

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  13. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2011-04-28

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  14. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    SciTech Connect

    Leemans, Wim

    2008-07-08

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  15. 1.8 Billion Years of Detrital Zircon Recycling Calibrates a Refractory Part of Earth’s Sedimentary Cycle

    PubMed Central

    Hadlari, Thomas; Swindles, Graeme T.; Galloway, Jennifer M.; Bell, Kimberley M.; Sulphur, Kyle C.; Heaman, Larry M.; Beranek, Luke P.; Fallas, Karen M.

    2015-01-01

    Detrital zircon studies are providing new insights on the evolution of sedimentary basins but the role of sedimentary recycling remains largely undefined. In a broad region of northwestern North America, this contribution traces the pathway of detrital zircon sand grains from Proterozoic sandstones through Phanerozoic strata and argues for multi-stage sedimentary recycling over more than a billion years. As a test of our hypothesis, integrated palynology and detrital zircon provenance provides clear evidence for erosion of Carboniferous strata in the northern Cordillera as a sediment source for Upper Cretaceous strata. Our results help to calibrate Earth's sedimentary cycle by showing that recycling dominates sedimentary provenance for the refractory mineral zircon. PMID:26658165

  16. Taking out one billion tones of carbon: the magic of China's 11thFive-Year Plan

    SciTech Connect

    Lin, Jiang; Zhou, Nan; Levine, Mark D.; Fridley, David

    2007-05-01

    China's 11th Five-Year Plan (FYP) sets an ambitious targetfor energy-efficiency improvement: energy intensity of the country sgross domestic product (GDP) should be reduced by 20 percent from 2005 to2010 (NDRC, 2006). This is the first time that a quantitative and bindingtarget has been set for energy efficiency, and signals a major shift inChina's strategic thinking about its long-term economic and energydevelopment. The 20 percent energy intensity target also translates intoan annual reduction of over one billion tons of CO2 by 2010, making theChinese effort one of most significant carbon mitigation effort in theworld today. While it is still too early to tell whether China willachieve this target, this paper attempts to understand the trend inenergy intensity in China and to explore a variety of options towardmeeting the 20 percent target using a detailed endues energymodel.

  17. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  18. The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle.

    PubMed

    Kusky, T M; Li, J H; Tucker, R D

    2001-05-11

    We report a thick, laterally extensive 2505 +/- 2.2-million-year-old (uranium-lead ratio in zircon) Archean ophiolite complex in the North China craton. Basal harzburgite tectonite is overlain by cumulate ultramafic rocks, a mafic-ultramafic transition zone of interlayered gabbro and ultramafic cumulates, compositionally layered olivine-gabbro and pyroxenite, and isotropic gabbro. A sheeted dike complex is rooted in the gabbro and overlain by a mixed dike-pillow lava section, chert, and banded iron formation. The documentation of a complete Archean ophiolite implies that mechanisms of oceanic crustal accretion similar to those of today were in operation by 2.5 billion years ago at divergent plate margins and that the temperature of the early mantle was not extremely elevated, as compared to the present-day temperature. Plate tectonic processes similar to those of the present must also have emplaced the ophiolite in a convergent margin setting. PMID:11349144

  19. 1.8 Billion Years of Detrital Zircon Recycling Calibrates a Refractory Part of Earth's Sedimentary Cycle.

    PubMed

    Hadlari, Thomas; Swindles, Graeme T; Galloway, Jennifer M; Bell, Kimberley M; Sulphur, Kyle C; Heaman, Larry M; Beranek, Luke P; Fallas, Karen M

    2015-01-01

    Detrital zircon studies are providing new insights on the evolution of sedimentary basins but the role of sedimentary recycling remains largely undefined. In a broad region of northwestern North America, this contribution traces the pathway of detrital zircon sand grains from Proterozoic sandstones through Phanerozoic strata and argues for multi-stage sedimentary recycling over more than a billion years. As a test of our hypothesis, integrated palynology and detrital zircon provenance provides clear evidence for erosion of Carboniferous strata in the northern Cordillera as a sediment source for Upper Cretaceous strata. Our results help to calibrate Earth's sedimentary cycle by showing that recycling dominates sedimentary provenance for the refractory mineral zircon. PMID:26658165

  20. Vaccine Assistance To Low- And Middle-Income Countries Increased To $3.6 Billion In 2014.

    PubMed

    Haakenstad, Annie; Birger, Maxwell; Singh, Lavanya; Liu, Patrick; Lim, Stephen; Ng, Marie; Dieleman, Joseph L

    2016-02-01

    In the 2012 Global Vaccine Action Plan, development assistance partners committed to providing sustainable financing for vaccines and expanding vaccination coverage to all children in low- and middle-income countries by 2020. To assess progress toward these goals, the Institute for Health Metrics and Evaluation produced estimates of development assistance for vaccinations. These estimates reveal major increases in the assistance provided since 2000. In 2014, $3.6 billion in development assistance for vaccinations was provided for low- and middle-income countries, up from $822 million in 2000. The funding increase was driven predominantly by the establishment of Gavi, the Vaccine Alliance, supported by the Bill & Melinda Gates Foundation and the governments of the United States and United Kingdom. Despite stagnation in total development assistance for health from donors from 2010 onward, development assistance for vaccination has continued to grow. PMID:26858376

  1. Electron radiography

    SciTech Connect

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  2. Lamellar magnetism and exchange bias in billion-year-old titanohematite with nanoscale ilmenite exsolution lamellae: I. Mineral and magnetic characterization

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Robinson, Peter; Miyajima, Nobuyoshi; Fabian, Karl; Dyar, Darby; Sklute, Elizabeth

    2016-07-01

    Recent high-resolution aeromagnetic surveys in South Norway have revealed numerous remanent anomalies over Mesoproterozoic metamorphic rocks. Studies on the nature of the minerals that are the remanent carriers has led to discoveries of titanohematite samples with unusual magnetic properties caused by nanoscale exsolution lamellae with their related lamellar magnetism. Here we focus on a rock unit dominated by quartz-plagioclase-biotite granulite containing titanohematite grains with a strong lattice-preferred orientation parallel to regional foliation. When samples with their natural remanent magnetization (NRM), acquired nearly 1 billion years ago, are cooled to 10 K and hysteresis loops measured, these loops show bi-modal exchange bias caused by the magnetism induced within the ilmenite by antiferromagnetic coupling with the adjacent lamellar NRM. By contrast when the samples are cooled in a strong magnetic field (1.5 Tesla), this results in unimodal lamellar magnetism, and, below the TN of ilmenite it adopts a consistent negative orientation, giving rise to unimodal negative exchange bias of >500 mT. The results presented here cover the chemical and magnetic properties, Mossbauer results and transmission electron microscopy of the titanohematite and ilmenite lamellae. Initial magnetic experiments indicated the shifts found in the exchange-bias experiments were directly related to the orientation of the sample to the applied field and the initial state of the NRM. In most samples with these unusual magnetic properties, ilmenite lamellae could not be seen in an optical or a scanning electron microscope. However magnetic experiments gave proof of the presence of ilmenite, later confirmed by Mössbauer spectroscopy. Several attempts were made to identify ilmenite in TEM studies, finally successful in showing ilmenite lamellae parallel to (001) of hematite with thicknesses ˜1.2 to 1.7 nm and aspect ratios 7-13. Here we compare new TEM images and the magnetic

  3. Lamellar magnetism and exchange bias in billion-year-old titanohematite with nanoscale ilmenite exsolution lamellae: I. mineral and magnetic characterization

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, Peter; Miyajima, Nobuyoshi; Fabian, Karl; Dyar, Darby; Sklute, Elizabeth

    2016-04-01

    Recent high-resolution aeromagnetic surveys in South Norway have revealed numerous remanent anomalies over Mesoproterozoic metamorphic rocks. Studies on the nature of the minerals that are the remanent carriers has led to discoveries of titanohematite samples with unusual magnetic properties caused by nanoscale exsolution lamellae with their related lamellar magnetism. Here we focus on a rock unit dominated by quartz-plagioclase-biotite granulite containing titanohematite grains with a strong lattice-preferred orientation parallel to regional foliation. When samples with their natural remanent magnetization (NRM), acquired nearly 1 billion years ago, are cooled to 10 K and hysteresis loops measured, these loops show bi-modal exchange bias caused by the magnetism induced within the ilmenite by antiferromagnetic coupling with the adjacent lamellar NRM. By contrast when the samples are cooled in a strong magnetic field (1.5 Tesla), this results in unimodal lamellar magnetism, and, below the TN of ilmenite it adopts a consistent negative orientation, giving rise to unimodal negative exchange bias of >500 mT. The results presented here cover the chemical and magnetic properties, Mossbauer results and transmission electron microscopy of the titanohematite and ilmenite lamellae. Initial magnetic experiments indicated the shifts found in the exchange-bias experiments were directly related to the orientation of the sample to the applied field and the initial state of the NRM. In most samples with these unusual magnetic properties, ilmenite lamellae could not be seen in an optical or a scanning electron microscope. However magnetic experiments gave proof of the presence of ilmenite, later confirmed by Mössbauer spectroscopy. Several attempts were made to identify ilmenite in TEM studies, finally successful in showing ilmenite lamellae parallel to (001) of hematite with thicknesses ˜1.2 to 1.7 nm and aspect ratios 7-13. Here we compare new TEM images and the magnetic

  4. An empirical method for deriving RBE values associated with electrons, photons and radionuclides.

    PubMed

    Bellamy, M; Puskin, J; Hertel, N; Eckerman, K

    2015-12-01

    There is substantial evidence to justify using relative biological effectiveness (RBE) values of >1 for low-energy electrons and photons. But, in the field of radiation protection, radiation associated with low linear energy transfer has been assigned a radiation weighting factor wR of 1. This value may be suitable for radiation protection but, for risk considerations, it is important to evaluate the potential elevated biological effectiveness of radiation to improve the quality of risk estimates. RBE values between 2 and 3 for tritium are implied by several experimental measurements. Additionally, elevated RBE values have been found for other similar low-energy radiation sources. In this work, RBE values are derived for electrons based upon the fractional deposition of absorbed dose of energies less than a few kiloelectron volts. Using this empirical method, RBE values were also derived for monoenergetic photons and 1070 radionuclides from ICRP Publication 107 for which photons and electrons are the primary emissions. PMID:25636403

  5. Experimental demonstration of high quality MeV ultrafast electron diffraction.

    PubMed

    Li, Renkai; Tang, Chuanxiang; Du, Yingchao; Huang, Wenhui; Du, Qiang; Shi, Jiaru; Yan, Lixin; Wang, Xijie

    2009-08-01

    The simulation optimization and an experimental demonstration of improved performances of mega-electron-volt ultrafast electron diffraction (MeV UED) are reported in this paper. Using ultrashort high quality electron pulses from an S-band photocathode rf gun and a polycrystalline aluminum foil as the sample, we experimentally demonstrated an improved spatial resolution of MeV UED, in which the Debye-Scherrer rings of the (111) and (200) planes were clearly resolved. This result showed that MeV UED is capable to achieve an atomic level spatial resolution and a approximately 100 fs temporal resolution simultaneously, and will be a unique tool for ultrafast structural dynamics studies. PMID:19725647

  6. Ambient Electronics

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Someya, Takao

    2012-10-01

    We report the recent research progress and future prospects of flexible and printed electronics, focusing on molecular electronic material-based thin-film transistors, which are expected to usher in a new era of electronics.

  7. A One Billion Year Martian Climate Model: The Importance of Seasonally Resolved Polar Caps and the Role of Wind

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Leovy, C. B.; Quinn, T. R.; Haberle, R. M.; Schaeffer, J.

    2003-01-01

    Wind deflation and deposition are powerful agents of surface change in the present Mars climate regime. Recent studies indicate that, while the distribution of regions of potential deflation (or erosion) and deposition is remarkably insensitive to changes in orbital parameters (obliquity, timing of perihelion passage, etc.), rates of aeolian surface modification may be highly sensitive to these parameters even if the atmospheric mass remains constant. But previous work suggested the atmospheric mass is likely to be sensitive to obliquity, especially if a significant mass of carbon dioxide can be stored in the regolith or deposited in the form of massive polar caps. Deflation and erosion are highly sensitive to surface pressure, so feedback between orbit variations and surface pressure can greatly enhance the sensitivity of aeolian modification rates to orbital parameters. We used statistics derived from a 1 Gyr orbital integration of the spin axis of Mars, coupled with 3D general circulation models (GCMs) at a variety of orbital conditions and pressures, to explore this feedback. We also employed a seasonally resolved 1D energy balance model to illuminate the gross characteristics of the longterm atmospheric evolution, wind erosion and deposition over one billion years. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, A(sub frost), and frost emissivity, E(sub frost). Using our 1D model with values of A(sub frost) = 0.67 and E(sub frost) = 0.55, matched to the NASA Ames GCM results, we find that permanent caps only form at low obliquities (< 10 degrees). Thus, contrary to expectations, the Martian atmospheric pressure

  8. Exploring the Relationships between the Electronic Health Record System Components and Patient Outcomes in an Acute Hospital Setting

    ERIC Educational Resources Information Center

    Wiggley, Shirley L.

    2011-01-01

    Purpose: The purpose of this study was to examine the relationship between the electronic health record system components and patient outcomes in an acute hospital setting, given that the current presidential administration has earmarked nearly $50 billion to the implementation of the electronic health record. The relationship between the…

  9. Electrons, Electronic Publishing, and Electronic Display.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; Lynch, Clifford A.

    1985-01-01

    Provides a perspective on electronic publishing by distinguishing between "Newtonian" publishing and "quantum-mechanical" publishing. Highlights include media and publishing, works delivered through electronic media, electronic publishing and the printed word, management of intellectual property, and recent copyright-law issues and their…

  10. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    SciTech Connect

    Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi; Mizuta, Yoshio; Uesaka, Mitsuru; Kodama, Ryosuke

    2010-03-22

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

  11. Developing a Billion Leaders

    ERIC Educational Resources Information Center

    Gergen, Christopher; Rego, Lyndon; Wright, Joel

    2014-01-01

    Intentionally developing the leadership capacity of all students is a necessary requirement for schools around the world. The Center for Creative Leadership in Greensboro, N.C., has been at the center of this work and presents three schools as examples: Ravenscroft School in Raleigh, N.C., the African Leadership Academy in Johannesburg, South…

  12. CETA's $11 Billion

    ERIC Educational Resources Information Center

    Hersher, Judy

    1978-01-01

    The Comprehensive Employment and Training Act (CETA) is now before Congress for review and reenactment. This article examines previous CETA program efforts and the new provisions intended to target jobs and training to the most disadvantaged in terms of income and length of unemployment. (Author/AM)

  13. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism

    PubMed Central

    Bontognali, Tomaso R. R.; Sessions, Alex L.; Allwood, Abigail C.; Fischer, Woodward W.; Grotzinger, John P.; Summons, Roger E.; Eiler, John M.

    2012-01-01

    The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ33S and . This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ33S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H2S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ33S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities. PMID:22949693

  14. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older

    PubMed Central

    Bengtson, Stefan; Belivanova, Veneta; Rasmussen, Birger; Whitehouse, Martin

    2009-01-01

    The age of the Vindhyan sedimentary basin in central India is controversial, because geochronology indicating early Proterozoic ages clashes with reports of Cambrian fossils. We present here an integrated paleontologic–geochronologic investigation to resolve this conundrum. New sampling of Lower Vindhyan phosphoritic stromatolitic dolomites from the northern flank of the Vindhyans confirms the presence of fossils most closely resembling those found elsewhere in Cambrian deposits: annulated tubes, embryo-like globules with polygonal surface pattern, and filamentous and coccoidal microbial fabrics similar to Girvanella and Renalcis. None of the fossils, however, can be ascribed to uniquely Cambrian or Ediacaran taxa. Indeed, the embryo-like globules are not interpreted as fossils at all but as former gas bubbles trapped in mucus-rich cyanobacterial mats. Direct dating of the same fossiliferous phosphorite yielded a Pb–Pb isochron of 1,650 ± 89 (2σ) million years ago, confirming the Paleoproterozoic age of the fossils. New U–Pb geochronology of zircons from tuffaceous mudrocks in the Lower Vindhyan Porcellanite Formation on the southern flank of the Vindhyans give comparable ages. The Vindhyan phosphorites provide a window of 3-dimensionally preserved Paleoproterozoic fossils resembling filamentous and coccoidal cyanobacteria and filamentous eukaryotic algae, as well as problematic forms. Like Neoproterozoic phosphorites a billion years later, the Vindhyan deposits offer important new insights into the nature and diversity of life, and in particular, the early evolution of multicellular eukaryotes. PMID:19416859

  15. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China

    PubMed Central

    Zhu, Shixing; Zhu, Maoyan; Knoll, Andrew H.; Yin, Zongjun; Zhao, Fangchen; Sun, Shufen; Qu, Yuangao; Shi, Min; Liu, Huan

    2016-01-01

    Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635–541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion. PMID:27186667

  16. A large population of galaxies 9 to 12 billion years back in the history of the Universe.

    PubMed

    Le Fèvre, O; Paltani, S; Arnouts, S; Charlot, S; Foucaud, S; Ilbert, O; McCracken, H J; Zamorani, G; Bottini, D; Garilli, B; Le Brun, V; Maccagni, D; Picat, J P; Scaramella, R; Scodeggio, M; Tresse, L; Vettolani, G; Zanichelli, A; Adami, C; Bardelli, S; Bolzonella, M; Cappi, A; Ciliegi, P; Contini, T; Franzetti, P; Gavignaud, I; Guzzo, L; Iovino, A; Marano, B; Marinoni, C; Mazure, A; Meneux, B; Merighi, R; Pellò, R; Pollo, A; Pozzetti, L; Radovich, M; Zucca, E; Arnaboldi, M; Bondi, M; Bongiorno, A; Busarello, G; Gregorini, L; Lamareille, F; Mathez, G; Mellier, Y; Merluzzi, P; Ripepi, V; Rizzo, D

    2005-09-22

    To understand the evolution of galaxies, we need to know as accurately as possible how many galaxies were present in the Universe at different epochs. Galaxies in the young Universe have hitherto mainly been identified using their expected optical colours, but this leaves open the possibility that a significant population remains undetected because their colours are the result of a complex mix of stars, gas, dust or active galactic nuclei. Here we report the results of a flux-limited I-band survey of galaxies at look-back times of 9 to 12 billion years. We find 970 galaxies with spectroscopic redshifts between 1.4 and 5. This population is 1.6 to 6.2 times larger than previous estimates, with the difference increasing towards brighter magnitudes. Strong ultraviolet continua (in the rest frame of the galaxies) indicate vigorous star formation rates of more than 10-100 solar masses per year. As a consequence, the cosmic star formation rate representing the volume-averaged production of stars is higher than previously measured at redshifts of 3 to 4. PMID:16177783

  17. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US

    NASA Astrophysics Data System (ADS)

    Hudiburg, Tara W.; Wang, Weiwei; Khanna, Madhu; Long, Stephen P.; Dwivedi, Puneet; Parton, William J.; Hartman, Melannie; Delucia, Evan H.

    2016-01-01

    Sustainable transportation biofuels may require considerable changes in land use to meet mandated targets. Understanding the possible impact of different policies on land use and greenhouse gas emissions has typically proceeded by exploring either ecosystem or economic modelling. Here we integrate such models to assess the potential for the US Renewable Fuel Standard to reduce greenhouse gas emissions from the transportation sector through the use of cellulosic biofuels. We find that 2022 US emissions are decreased by 7.0 ± 2.5% largely through gasoline displacement and soil carbon storage by perennial grasses. If the Renewable Fuel Standard is accompanied by a cellulosic biofuel tax credit, these emissions could be reduced by 12.3 ± 3.4%. Our integrated approach indicates that transitioning to cellulosic biofuels can meet a 32-billion-gallon Renewable Fuel Standard target with negligible effects on food crop production, while reducing fossil fuel use and greenhouse gas emissions. However, emissions savings are lower than previous estimates that did not account for economic constraints.

  18. Evidence from massive siderite beds for a CO2-rich atmosphere before approximately 1.8 billion years ago

    NASA Technical Reports Server (NTRS)

    Ohmoto, Hiroshi; Watanabe, Yumiko; Kumazawa, Kazumasa

    2004-01-01

    It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.

  19. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism.

    PubMed

    Bontognali, Tomaso R R; Sessions, Alex L; Allwood, Abigail C; Fischer, Woodward W; Grotzinger, John P; Summons, Roger E; Eiler, John M

    2012-09-18

    The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ(33)S and . This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ(33)S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H(2)S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ(33)S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities. PMID:22949693

  20. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China.

    PubMed

    Zhu, Shixing; Zhu, Maoyan; Knoll, Andrew H; Yin, Zongjun; Zhao, Fangchen; Sun, Shufen; Qu, Yuangao; Shi, Min; Liu, Huan

    2016-01-01

    Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635-541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion. PMID:27186667

  1. Multi million-to-Billion Atom Molecular Dynamics Simulations of Cavitation-Induced Damage on a Silica Slab

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    2012-02-01

    Cavitation bubble collapse causes severe damage to materials. For example, cavitation erosion is a major threat to the safety of nuclear power plants. The cavitation bubbles may also be utilized for preventing stress corrosion cracking with water jet peening technology. We have performed multi million-to-billion atoms molecular dynamics simulations to investigate the shock-induced cavitation damage mechanism on an amorphous silica slab in water. The system consists of a 60nm thick silica slab immersed in water in an MD box of dimension 285 x 200 x 200 nm3. A nanobubble is created by removing water molecules within a sphere of radius 100 nm. To apply a planar shock, we assign a uniform particle velocity vp on the entire system towards a planar momentum mirror. We have performed the simulation with two kinds of bubbles, an empty bubble and a bubble filled with inert gas. The simulation results reveal nanojet formation during bubble collapse causing damage on the silica surface; however, the damage was significantly reduced in the case of the filled bubble. We will discuss the effect of the presence of inter gas inside the nanobubble on the pressure distribution, the extent of damage, and collapse behavior corresponding the shock front.

  2. The economic downturn and its lingering effects reduced medicare spending growth by $4 billion in 2009-12.

    PubMed

    Dranove, David; Garthwaite, Craig; Ody, Christopher

    2015-08-01

    Previous work has found a strong connection between the most recent economic recession and reductions in private health spending. However, the effect of economic downturns on Medicare spending is less clear. In contrast to studies involving earlier time periods, our study found that when the macroeconomy slowed during the Great Recession of 2007-09, so did Medicare spending growth. A small (14 percent) but significant share of the decline in Medicare spending growth from 2009 to 2012 relative to growth from 2004 to 2009 can be attributed to lingering effects of the recession. Absent the economic downturn, Medicare spending would have been $4 billion higher in 2009-12. A major reason for the relatively small impact of the macroeconomy is the relative lack of labor-force participation among people ages sixty-five and older. We estimate that if they had been working at the same rate as the nonelderly before the recession, the effect of the downturn on Medicare spending growth would have been twice as large. PMID:26240251

  3. STABILITY OF PARTS-PER-BILLION HAZARDOUS ORGANIC CYLINDER GASES AND PERFORMANCE AUDIT RESULTS OF SOURCE TEST AND AMBIENT AIR MEASUREMENT SYSTEMS. STATUS REPORT 2

    EPA Science Inventory

    A repository of 22 gaseous organic compounds at parts-per-billion (ppb) levels in compressed gas cylinders has been established by the U.S. Environmental Protection Agency (EPA). The primary objectives of this ongoing project are: (1) to provide accurate gas mixtures to EPA, stat...

  4. Debt Collection. Improved Reporting Needed on Billions of Dollars in Delinquent Debt and Agency Collection Performance. Report to the Chairman, Committee on the Budget, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Accounting and Information Management Div.

    This report examines the four program activities that account for two-thirds of delinquent debt owed to the Federal government: the Department of Education's Federal Family Education Loan Program (FFELP) with $20 billion and the housing programs of the Departments of Housing and Urban Development (HUD), Veterans Affairs (VA), and Agriculture that…

  5. New Schools, Overcrowding Relief, and Achievement Gains in Los Angeles--Strong Returns from a $19.5 Billion Investment. Policy Brief 12-2

    ERIC Educational Resources Information Center

    Welsh, William; Coghlan, Erin; Fuller, Bruce; Dauter, Luke

    2012-01-01

    Aiming to relieve overcrowded schools operating on multiple tracks, the Los Angeles Unified School District (LAUSD) has invested more than $19 billion to build 130 new facilities over the past decade. District leaders asked researchers at Berkeley to estimate the achievement effects of this massive initiative--benefits that may stem from entering…

  6. Enrolling people with prediabetes ages 60-64 in a proven weight loss program could save Medicare $7 billion or more.

    PubMed

    Thorpe, Kenneth E; Yang, Zhou

    2011-09-01

    Rising chronic disease prevalence among Medicare beneficiaries, including new enrollees, is a key driver of health care spending. Randomized trials have shown that lifestyle modification interventions such as those in the National Diabetes Prevention Program clinical trial reduce the incidence of chronic disease and that community-based programs applying the same principles can produce net health care savings. We propose expanding a proven, community-based weight loss program nationwide and enrolling overweight and obese prediabetic adults ages 60-64. We estimate that making the program available to a single cohort of eligible people could save Medicare $1.8-$2.3 billion over the following ten years. Estimated savings would be even higher ($3.0-$3.7 billion) if equally overweight people at risk for cardiovascular disease were also enrolled. We estimate that lifetime Medicare savings could range from approximately $7 billion to $15 billion, depending on how broadly program eligibility was defined and actual levels of program participation, for a single "wave" of eligible people. In this context we propose that Medicare expand its new wellness benefit to include reimbursement for this and other qualifying behavior change programs. PMID:21900657

  7. Convoy electrons

    SciTech Connect

    Burgdoerfer, J. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    Recent developments in the theory of the production and of the transport of convoy electrons through solids are reviewed. Similarities and differences to cusp electron emission in binary ion-atom collisions and to transport of free'' electrons through solids are highlighted. We also discuss recent observations of convoy electron emission in ion-surface collisions at small glancing angles. 36 refs., 13 figs.

  8. Improvement of depth resolution and detection efficiency by control of secondary-electrons in single-event three-dimensional time-of-flight Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Abo, Satoshi; Hamada, Yasuhisa; Seidl, Albert; Wakaya, Fujio; Takai, Mikio

    2015-04-01

    An improvement of a depth resolution and a detection efficiency in single-event three-dimensional time-of-flight (TOF) Rutherford backscattering spectrometry (RBS) is discussed on both simulation and experiment by control of secondary electron trajectories using sample bias voltage. The secondary electron, used for a start signal in single-event TOF-RBS, flies more directly to a secondary electron detector with the positive sample bias voltage of several tens of volt than that without sample bias voltage in the simulation. The simulated collection efficiency of the secondary electrons also increases with the positive sample bias voltage of several tens of volt. These simulation results indicate the possibility of a smaller depth resolution and a shorter measurement time in single-event TOF-RBS with positive sample bias voltage. The measurement time for the Pt-stripe sample using single-event three-dimensional TOF-RBS with the sample bias voltage of +100 V is 65% shorter than that without sample bias voltage, resulting in a less sample damage by a probe beam. The depth resolution for the Pt stripes under the 50-nm-thick SiO2 cover-layer with the sample bias voltage of +100 V is 4 nm smaller than that without sample bias voltage. Positive sample bias voltage improves the depth resolution and the detection efficiency in single-event three-dimensional TOF-RBS without an influence on the beam focusing.

  9. A Portable Electronic Nose For Hydrazine and Monomethyl Hydrazine Detection

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Linnell, Bruce R.; Peterson, Barbara V.; Brooks, Kathy B.; Griffin, Tim P.

    2004-01-01

    The Space Program and military use large quantities Hydrazine (Hz) and monomethyl hydrazine (MMI-I) as rocket propellant. These substances are very toxic and are suspected human carcinogens. The American Conference of Governmental Industrial Hygienist set the threshold limit value to be 10 parts per billion (ppb). Current off-the-shelf portable instruments require 10 to 20 minutes of exposure to detect 10 ppb concentration. This shortcofriing is not acceptable for many operations. A new prototype instrument using a gas sensor array and pattern recognition software technology (i.e., an electronic nose) has demonstrated the ability to identify either Hz or MM}{ and quantify their concentrations at 10 parts per billion in 90 seconds. This paper describes the design of the portable electronic nose (e-nose) instrument, test equipment setup, test protocol, pattern recognition algorithm, concentration estimation method, and laboratory test results.

  10. Fundamentals of high energy electron beam generation

    NASA Astrophysics Data System (ADS)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  11. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development

    PubMed Central

    2014-01-01

    Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent

  12. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints.

    PubMed

    Som, Sanjoy M; Catling, David C; Harnmeijer, Jelte P; Polivka, Peter M; Buick, Roger

    2012-04-19

    According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3 kg m(-3), compared to today's 1.2 kg m(-3), but because such drops rarely occur, air density was more probably below 1.3 kg m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates. PMID:22456703

  13. Validation of an evacuated canister method for measuring part-per-billion levels of chemical warfare agent simulants.

    PubMed

    Coffey, Christopher C; LeBouf, Ryan F; Calvert, Catherine A; Slaven, James E

    2011-08-01

    The National Institute for Occupational Safety and Health (NIOSH) research on direct-reading instruments (DRIs) needed an instantaneous sampling method to provide independent confirmation of the concentrations of chemical warfare agent (CWA) simulants. It was determined that evacuated canisters would be the method of choice. There is no method specifically validated for volatile organic compounds (VOCs) in the NIOSH Manual of Analytical Methods. The purpose of this study was to validate an evacuated canister method for sampling seven specific VOCs that can be used as a simulant for CWA agents (cyclohexane) or influence the DRI measurement of CWA agents (acetone, chloroform, methylene chloride, methyl ethyl ketone, hexane, and carbon tetrachloride [CCl4]). The method used 6-L evacuated stainless-steel fused silica-lined canisters to sample the atmosphere containing VOCs. The contents of the canisters were then introduced into an autosampler/preconcentrator using a microscale purge and trap (MPT) method. The MPT method trapped and concentrated the VOCs in the air sample and removed most of the carbon dioxide and water vapor. After preconcentration, the samples were analyzed using a gas chromatograph with a mass selective detector. The method was tested, evaluated, and validated using the NIOSH recommended guidelines. The evaluation consisted of determining the optimum concentration range for the method; the sample stability over 30 days; and the accuracy, precision, and bias of the method. This method meets the NIOSH guidelines for six of the seven compounds (excluding acetone) tested in the range of 2.3-50 parts per billion (ppb), making it suitable for sampling of these VOCs at the ppb level. PMID:21874953

  14. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin.

    PubMed

    Anderson, Janet S; Hernández, Griselda; Lemaster, David M

    2008-06-10

    The exchange rates of the static solvent-accessible amide hydrogens of Pyrococcus furiosus rubredoxin range from near the diffusion-limited rate to a billion-fold slower for the non-hydrogen-bonded Val 38 (eubacterial numbering). Hydrogen exchange directly monitors the kinetic acidity of the peptide nitrogen. Electrostatic solvation free energies were calculated by Poisson-Boltzmann methods for the individual peptide anions that form during the hydroxide-catalyzed exchange reaction to examine how well the predicted thermodynamic acidities match the experimentally determined kinetic acidities. With the exception of the Ile 12 amide, the differential exchange rate constant for each solvent-exposed amide proton that is not hydrogen bonded to a backbone carbonyl can be predicted within a factor of 6 (10 (0.78)) root-mean-square deviation (rmsd) using the CHARMM22 electrostatic parameter set and an internal dielectric value of 3. Under equivalent conditions, the PARSE parameter set yields a larger rmsd value of 1.28 pH units, while the AMBER parm99 parameter set resulted in a considerably poorer correlation. Either increasing the internal dielectric value to 4 or reducing it to a value of 2 significantly degrades the quality of the prediction. Assigning the excess charge of the peptide anion equally between the peptide nitrogen and the carbonyl oxygen also reduces the correlation to the experimental data. These continuum electrostatic calculations were further analyzed to characterize the specific structural elements that appear to be responsible for the wide range of peptide acidities observed for these solvent-exposed amides. The striking heterogeneity in the potential at sites along the protein-solvent interface should prove germane to the ongoing challenge of quantifying the contribution that electrostatic interactions make to the catalytic acceleration achieved by enzymes. PMID:18479148

  15. Evaluation testing of a portable vapor detector for Part-Per-Billion (PPB) level UDMH and N2H4

    NASA Technical Reports Server (NTRS)

    Curran, Dan; Lueck, Dale E.

    1995-01-01

    Trace level detection of hydrazine (N2H4), monomethyl hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH) has been receiving increased attention over the past several years. In May 1995 the American Conference of Government Industrial Hygienists (ACGIH) lowered their acceptable threshold limit value (TLV) from 100 parts-per-billion (ppb) to 10 ppb. Several types of ppb-level detectors are being developed by the United States Air Force (USAF) Space and Missile Systems Center (SMSC). A breadboard version of a portable, lightweight hydrazine detection sensor was developed and produced by Giner Corp. for the USAF. This sensor was designed for ppb level UDMH and N2H4 vapor detection in near real-time. This instrument employs electrochemical sensing, utilizing a three electrode cell with an anion-exchange polymer electrolyte membrane as the only electrolyte in the system. The sensing, counter and reference electrodes are bonded to the membrane forming a single component. The only liquid required to maintain the sensor is deionized water which hydrates the membrane. At the request of the USAF SMSC, independent testing and evaluation of the breadboard instrument was performed at NASA's Toxic Vapor Detection Laboratory (TVDL) for response to ppb-level N2H4 and UDMH and MMH. The TVDL, located at Kennedy Space Center (KSC) has the unique ability to generate calibrated sample vapor streams of N2H4, UDMH, and MMH over a range from less than 10 ppb to thousands of parts per million (ppm) with full environmental control of relative humidity (0-90%) and temperature (0-50 C). The TVDL routinely performs these types of tests. Referenced sensors were subjected to extensive testing, including precision, linearity, response/recovery times, zero and span drift, humidity and temperature effects as well as ammonia interference. Results of these tests and general operation characteristics are reported.

  16. Photographer : JPL Range : 4 billion miles from Earth, at 32 degrees to the ecliptic. P-36057C This

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Photographer : JPL Range : 4 billion miles from Earth, at 32 degrees to the ecliptic. P-36057C This color image of the Sun, Earth, and Venus is one of the first, and maybe, only images that show are solar system from such a vantage point. The image is a portion of a wide angle image containing the sun and the region of space where the Earth and Venus were at the time, with narrow angle cameras centered on each planet. The wide angle was taken with the cameras darkest filter, a methane absorption band, and the shortest possible exposure, one two-hundredth of a second, to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky, as seen from Voyager's perpective at the edge of the solar system. Yet, it is still 8xs brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics of the camera. The rays around th sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. the 2 narrow angle frames containing the images of the Earth and Venus have been digitally mosaicked into the wide angle image at the appropriate scale. These images were taken through three color filters and recombined to produce the color image. The violet, green, and blue filters used , as well as exposure times of .72,.48, and .72 for Earth, and .36, .24, and .36 for Venus.The images also show long linear streaks resulting from scatering of sulight off parts of the camera and its shade.

  17. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  18. Electronics Curriculum.

    ERIC Educational Resources Information Center

    Prickett, Charlotte

    This document presents results of research conducted by industry representatives regarding tasks performed by electronic technicians and line manufacturing electro-mechanical technicians in Arizona electronics industries. Based on this research, a competency-based curriculum was developed for training entry-level electronics technicians. Twelve…

  19. Electronic Mail.

    ERIC Educational Resources Information Center

    Pollard, Jim; Holznagel, Don

    1984-01-01

    Decision makers must address the issues of (1) just what are electronic communications? (2) how will they help me teach, administer, or survive? and (3) what will it cost in time and money? Electronic mail allows the sending of letters, memos, and messages to anyone who uses the same electronic mail system, and provides most of the options that…

  20. Electronic Conduction and the Electronic Properties of Prussian Blue and Some Related Hexacyanoferrates.

    NASA Astrophysics Data System (ADS)

    Xidis, Anthony Louis

    Electron conductivities are reported for dry thin films of Prussian Blue (PB) and its partially oxidized (Berlin Green (BG)), completely oxidized (Prussian Yellow (PY)) as well as completely reduced (Everitt's salt (ES)) forms. Conductivities are also reported for bulk samples of PB (both the soluble and insoluble). BG and ruthenium purple (RP). It has been discovered that desiccated PB films are non-ohmic in the sense that significant electron conduction does not occur below a threshold of +/ -0.5 V. BG, PY and ES are ohmic and do not have a conduction threshold. Bulk samples of soluble PB show electrochemical activity below the 0.5 V. threshold, but the small currents involved indicate that this is only occurring at the surface. Insoluble bulk samples display no electrochemical activity, while both the soluble and insoluble display the 0.5 V volt threshold. Conductivities of the PB, PY, BG and ES films, as determined by the slopes of their i-V curves, are essentially the same with values of ca. 2times10^{-7} (ohm-cm)^{-1}. The solid state voltammogram of a wet PB film is also considered in terms of the persistence of the threshold and the onset of electrochemistry. We propose a qualitative explanation for the threshold voltage based on the assumption that the "valence band" (ferric ferrocyanide) is completely occupied heterogeneous electron transfer. An electrochemical equation of continuity is introduced in order to consider charge transport within the film. It is shown that no charge carrier concentration gradients occur within the film under constant current (steady state) conditions. Conduction in mixed valent films is discussed and it is shown that in electroactive, consisting of mobile ions and electrons, the applied field produces an unmixing current which is opposed by a mixing current produced by gradients in film composition.

  1. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth.

    PubMed

    Rasmussen, Birger; Fletcher, Ian R; Bekker, Andrey; Muhling, Janet R; Gregory, Courtney J; Thorne, Alan M

    2012-04-26

    Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric oxygen by 2.32 billion years (Gyr) ago has been attributed to the removal of dissolved iron through progressive oxidation or sulphidation of the deep ocean. Therefore, a sudden return of voluminous iron formations nearly 500 million years later poses an apparent conundrum. Most late Palaeoproterozoic iron formations are about 1.88 Gyr old and occur in the Superior region of North America. Major iron formations are also preserved in Australia, but these were apparently deposited after the transition to a sulphidic ocean at 1.84 Gyr ago that should have terminated iron formation deposition, implying that they reflect local marine conditions. Here we date zircons in tuff layers to show that iron formations in the Frere Formation of Western Australia are about 1.88 Gyr old, indicating that the deposition of iron formations from two disparate cratons was coeval and probably reflects global ocean chemistry. The sudden reappearance of major iron formations at 1.88 Gyr ago--contemporaneous with peaks in global mafic-ultramafic magmatism, juvenile continental and oceanic crust formation, mantle depletion and volcanogenic massive sulphide formation--suggests deposition of iron formations as a consequence of major mantle activity and rapid crustal growth. Our findings support the idea that enhanced submarine volcanism and hydrothermal activity linked to a peak in mantle melting released large volumes of ferrous iron and other reductants that overwhelmed the sulphate and oxygen reservoirs of the ocean, decoupling atmospheric and seawater redox states, and causing the return of widespread ferruginous conditions. Iron formations formed on clastic-starved coastal shelves where dissolved iron upwelled and mixed with oxygenated surface water. The

  2. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect

    Perlack, R.D.

    2005-12-15

    land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  3. Dipolar geomagnetic field and low orbital obliquity during the last two billion years: Evidence from paleomagnetism of evaporite basins

    NASA Astrophysics Data System (ADS)

    Evans, D. A.

    2006-05-01

    Paleomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and paleoclimatic zones. Precambrian glacial deposits laid down in near-equatorial paleomagnetic latitudes indicate a paleoclimatic paradox that can be explained either by Snowball Earth episodes, or high orbital obliquity, or dramatically non-uniformitarian geomagnetic fields. Here I present the first global paleomagnetic compilation of the Earth's entire basin-scale evaporite record. Evaporation exceeds precipitation in today's subtropical desert belts, generally within a zone of 15-35° from the equator. Assuming a geocentric axial dipole (GAD) magnetic field for Cenozoic- Mesozoic time, evaporite basins of the past 250 Myr have a volume-weighted mean paleolatitude of 23±4°, also squarely within the subtropics. Carboniferous-Permian evaporites have an indistinguishable weighted-mean paleolatitude of 22±4°, which does not change significantly when recently hypothesized octupolar field components are included in the calculations. Early Paleozoic (including late Ediacaran) evaporites are lower-latitude (weighted mean 10±5°), but detailed analyses of individual examples show this cannot be attributed solely to nondipolar field components or sedimentary inclination biases; the cause may be due to particular paleogeographic effects on regional tropical climates, or incomplete sampling by the paleomagnetic data. Proterozoic (pre-Ediacaran) evaporite basins have a volume- weighted mean inclination of 33±4°, which would correspond to a mean paleolatitude of 18±3° for a pure GAD field. This latter mean is indistinguishable, within error, from the Cenozoic-Mesozoic mean and demonstrates the success of the GAD model as a first-order description of the geomagnetic field for the last two billion years. Also, general circulation climate models of a high-obliquity Earth predict either no strong zonal

  4. Multimillion-to-billion atom molecular dynamics simulations of deformation, damage, nanoindentation, and fracture in silica glass and energetic materials

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun

    Multimillion-to-billion molecular dynamics (MD) simulations are carried out to study atomistic mechanisms of deformation, damage and failure in silica glass and energetic materials. The simulations are based on experimentally validated interatomic potentials and employ highly efficiently algorithms for parallel architectures. The onset of void-void interaction is investigated by performing MD simulations of amorphous silica under hydrostatic tension. The simulations reveal that nanocavities in amorphous silica (a-SiO2), which are linked to Si-O rings, play an important role in void-void coalescence and inter-void ligament failure. Nanocracks nucleated by the migration of three-fold coordinated Si and nonbridging O on ---Si-O-Si-O--- rings are observed in the multimillion MD simulations of a single void in amorphous silica subjected to a high shear rate. With the increase in shear strain, nanocracks appear on void surfaces and the voids deform into a threadlike structure. At a strain of 40%, the voids break into fragments. The results are similar to experimental and theoretical studies of bubble deformation and breakup under shear. Defects such as voids are known to be important in the detonation of energetic materials. To investigate deformation of a void in an RDX crystal under high shear rate, we have performed million-atom reactive force field (ReaxFF) MD simulations. Simulations reveal that without breaking a bond, the excess strain energy leads to translational and rotational motion of RDX molecules. At a strain of 13%, molecules with high kinetic energy collapse inward without affecting the rest of the system. MD simulations of nanoindentation in amorphous silica reveal migration of defects and their recombination in the densified plastic region under and the material pileup region around the indenter. The plastic flow of silica glass is related to the defect transport mechanism where a defect migrates a considerable distance via a chain of bond

  5. 3-D Spherical Mantle Convection Simulations with Billions of Unknowns on the Yin-Yang Grid Using StagYY: Parallelization and Scaling (Invited)

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.

    2013-12-01

    StagYY is a well-established code for modelling mantle convection in 3D spherical geometry (Tackley, PEPI 2008), incorporating several physical complexities such as compressibility, phase transitions, compositional variations, strongly temperature-dependent, non-linear rheology, tracers to track composition, continents, partial melting and melt migration. It uses a finite volume discretization (primitive variables on a staggered grid) on the yin-yang spherical grid (minimum overlap version). Geometric multigrid is used for simultaneous solution of the Stokes and mass conservation equations. Here, parallelization using MPI is discussed, and performance and scaling of the current StagYY version on up to 4096 cores on grids of up to 768x2304x512x2 cells (1.8 billion, corresponding to 7.2 billion unknowns) is demonstrated. Complexities related to scaling further to 100,000s to millions of cores are discussed together with possible solutions and performance projections.

  6. Too little or just right? Bush lays his healthcare budget on the table, but Democrats--and some Republicans--say $190 billion falls short.

    PubMed

    Lovern, Ed; Gardner, Jonathan

    2002-02-01

    In his State of the Union address last week, President Bush barely mentioned healthcare. But he tried to make up for it when he released his healthcare budget for 2003, which calls for $190 billion over 10 years to reform Medicare. The plan got a lukewarm reception from those in the industry, along with most Democrats and even some Republicans, who were hoping for a stronger stand. PMID:11859822

  7. The Kepler Cluster Study: rotation period measurements for cool stars in the 2.5 billion year open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Meibom, Soren; Barnes, Sydney A.; Platais, Imants; Gilliland, Ronald L.; Latham, David W.; Mathieu, Robert D.; Kepler Science Team, Kepler Science Operations Center

    2015-01-01

    The Kepler Cluster Study (KeCS) is a program to measure stellar rotation periods and search for planets around members of open star clusters within the field of view of NASA's Kepler mission. We present here the latest results from KeCS - measurements of stellar rotation periods in the 2.5 billion year open cluster NGC 6819 - and discuss their implications for a technique (gyrochronology) to determine stellar ages from stellar rotation.

  8. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  9. 30-Year-Old Foundation Center Keeps Track of Where the Money--$4.3 Billion of It--Goes.

    ERIC Educational Resources Information Center

    Desruisseaux, Paul

    1986-01-01

    The Foundation Center is a non-profit, independent organization formed and funded by grant-makers to keep track of how foundations use their money and to make the information available to the public. It will soon expand to publishing books to increase public understanding of philanthropy, develop electronic communication and computer-based…

  10. Superthermal electrons at Mars: Photoelectrons, solar wind electrons, and dust storm influences

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui

    Mars is unique in the solar system in terms of its interaction with solar wind because it lacks of a significant intrinsic global magnetic field but possesses localized strong crustal fields. This interaction results in a very complex magnetic topology at Mars so that superthermal electrons, mainly including photoelectrons and solar wind electrons, can be distinctively important for such a complicated planetary space environment. These energetic electrons (1-1000 electron volts) can carry and rapidly redistribute energy along the magnetic field lines. They are also a reliable tool to deduce the Martian magnetic topology, which is critical to understand the electromagnetic dynamics of the Martian space environment. The investigation methodology involves both data analysis and modeling. This dissertation mainly investigates three topics of superthermal electrons at Mars. (1) This dissertation confirms that the long-lived influence of Martian low-altitude dust storms on high-altitude photoelectron fluxes is common for a wide range of energy and pitch angles and determines that this effect originates from the thermosphere-ionosphere source region of the photoelectrons, rather than at exospheric altitudes at or above MGS. Through simulations, the results suggest that the global dust storm altered the photoelectron fluxes by causing CO2 to be the dominant species at a much larger altitude range than usual. (2) Because the integral of the production rate above the superthermal electron exobase is about the same for all solar zenith angles, quite counterintuitively, it is found, observationally and numerically/theoretically, that the high-altitude photoelectron fluxes are quite independent of solar zenith angle. (3) Based on the energy spectral (flux against energy) difference between photoelectrons and solar wind electrons, a statistical approach is taken to distinguish the two populations and also allows us to quantify the occurrence rate of solar wind electron

  11. Recrystallized Granite Surface Fissures Of Wasatch Range, Produced Not Later Than 1/4 Billion Years Ago.

    NASA Astrophysics Data System (ADS)

    McDonald, K. L.

    2002-04-01

    Our studies of numerous recrystallized fissures in 4 granite plutons of Wasatch Range, i.e., Mount T-W-M^1,6,7 Bonanza Pk.-Midway,^2 Little Cottonwood and Ferguson Canyon plutons, all of which formed magma chambers reaching Earth-atm. interface, estab. that they resulted from high thermal gradients and not passages of earthquake waves.^4 Magma chambers formed, solidified during Permo-Carboniferous Ice Age (roughly 1/3...1/4 billion yr ago), a time interval preceding extrusion of Rocky Mts., 10^8 yr ago, and while fluid, some belched lava flows^5 extending over its reservoir walls to run hundreds of m. We have shown how the magma melts, dilutes and replaces overlying metamorphic rock^7 to reach Earth's surface, so that a pluton containing large amounts of dross (Fe-ores, etc.) had a short fluid lifetime. We also described how offshoots from a long-running main fissure form acute angles with that fissure^3. Recryst. fissures, reaching depths of perhaps 100 m, had initial fractures near time of solidification of top portion of magma chamber, while still hot (<= 1600^oF), a time when max. stresses occur near granite surface due to high thermal gradients, owing to snow coverage, rain water, stream flow over granite surface, partial coverage by ocean, etc., during P-C ice age - when region of Wasatch Range existed at sea level, S. L. Valley being covered entirely by ocean water and region east of Wasatch Boul. rising gently above Pac. Ocean to elev. of possibly 500-1000 ft, say, at a distance of 10-15 mi to e, as implied by Chinese wall of limestone on Grandeur Pk, another in Neff's Canyon running e from n ridge of her 9200 ft saddle-summit, as well as a dozen other ancient calcified stream beds emptying into ocean to w, in S.L. Valley. This existed prior to regional uplift (of similar topog.) of over 4000 ft. Details of how earthquake waves form an epicenter from which propagate 2 stress fields in diam. opp. directions to open up, by a few m, surface granite to form a

  12. Recrystallized Granite Surface Fissures of Wasatch Range Produced Not Later Than 1/4Billion Years Ago

    NASA Astrophysics Data System (ADS)

    McDonald, Keith

    2000-11-01

    Our studies of numerous recrystallized fissures in 4 granite plutons of Wasatch Range, i.e., Mount T-W-M, (K.L. McDonald, Bul. A.P.S., 32 (4), 1124),(37 (5), 1256-7),(38 (1), 740) Bonanza Pk.-Midway,(35 (9), 2132) Little Cottonwood and Ferguson Canyon plutons, all of which formed magma chambers reaching Earth-atm. interface, estab that they resulted from high thermal gradients and not passages of earthquake waves.(33 (9), 1982-2) Magma chambers formed, solidified during Permo- Carboniferous Ice Age (roughly 1/3...1/4 billion yr ago), a time interval preceding extrusion, pf Rocky Mts., 10^8 yr ago, and while fluid, some belched lava flows(36 (9), 2466) extending over its reservoir walls to run hundreds of m. We have shown how the magma melts, dilutes and replaces overlying metamorphic rock(38 (1), 740) to reach Earth's surface, so that a pluton containing large amounts of dross (Fe ores, etc.) had a short fluid lifetime. We also described how offshoots from a long-running main fissure form acute angles with that fissure.(33 (3), 485) Recryst. fissures, reaching depths of perhaps 100 m, had initial fractures near time of solidification of top portion of magma chamber, while still hot (<< 1600 ^oF), a time when max. stresses occur near granite surface due to high thermal gradients, owing to snow coverage, rain water, stream flow over granite surface, partial coverage by ocean, etc., during P-C ice age -- when region of Wasatch Range existed at sea level, S.L. Valley being covered entrely by ocean water and region of Wasatch Boul. rising gently above Pac. Ocean to elev. of possibly 500-1000 ft, say, at a dist. of 10-15 mi to e, as implied by Chinese Wall of limestone on Grandeur Pk, another in Neff's Canyon running e from n ridge of her 9200 ft saddle-summit, as well as a dozen other ancient calcified stream beds emptying into ocean to w., in S.L. Valley. This existed prior to regional uplift (of similar topog.) of over 4000 ft. Details of how earthquake waves form an

  13. Recrystallized Granite Surface Fissures Of The Wasatch Range, Produced Not Later Than 1/4 Billion Years Ago

    NASA Astrophysics Data System (ADS)

    McDonald, Keith L.

    2000-05-01

    Our studies of numerous recrystallized fissures in 4 granite plutons of Wasatch Range, namely, Mount Tuscarora-Wolverine-Millicent,^1,6,7 Bonanza Peak-Midway,^2 Little Cottonwood Canyon and Ferguson Canyon plutons, all of which formed magma chambers reaching Earth-atmosphere interface, establish that they resulted from high thermal gradients rather than passages of earthquake waves. Magma chambers formed, solidified during Permo-Caroniferous Ice Age(roughly, 1/3...1/4 billion yr ago, a time interval preceding period of extrusion of Rocky Mountains, 10^8 yr ago), and while fluid, belched lava flows^5 extending over its reservoir walls to run hundred of meters. We have shown how the magma melts, dilutes and replaces overlying metamorphic rock^7 to reach Earth's surface so that a pluton containing large amounts of dross(Fe-ores, etc.) had a short fluid lifetime. We also described how offshoots from a long-running main fissure form acute angles with that fissure.^3 Such recrystallized fissures, reaching depths of perhaps 100 m, have initial fractures near time of solidification of their uppermost portion of magma chamber while still hot(<= 1600^oF), a time when max. stresses occur near granite surface due to high thermal gradients, owing to snow coverage, cold water contacts due to rain, stream flow over granite surface, partial coverage by ocean, etc., wherever heat sinks might occur, during P-C ice age--when region of Wasatch Range existed at sea level, Salt Lake Valley being covered entirely by ocean water and region east of Wasatch Bouleuard rising gently above Pacific Ocean to elevations of possibly 500-1000 ft, say, at a distance of 10-15 mi to east. This fact is implied by Chinese Wall of white limestone on Grandeur Peak, unequivocally, and similarly another in Neff's Canyon running e. from n. ridge of 9200 ft. saddle-summit, as well as a dozen other ancient calcified stream beds emptying into ocean to w., in Salt Lake Valley. This existed prior to regional

  14. Electronic Photography

    NASA Technical Reports Server (NTRS)

    Payne, Meredith Lindsay

    1995-01-01

    The main objective was to assist in the production of electronic images in the Electronic Photography Lab (EPL). The EPL is a new facility serving the electronic photographic needs of the Langley community. The purpose of the Electronic Photography lab is to provide Langley with access to digital imaging technology. Although the EPL has been in operation for less than one year, almost 1,000 images have been produced. The decision to establish the lab was made after careful determination of the centers needs for electronic photography. The LaRC community requires electronic photography for the production of electronic printing, Web sites, desktop publications, and its increased enhancement capabilities. In addition to general use, other considerations went into the planning of the EPL. For example, electronic photography is much less of a burden on the environment compared to conventional photography. Also, the possibilities of an on-line database and retrieval system could make locating past work more efficient. Finally, information in an electronic image is quantified, making measurements and calculations easier for the researcher.

  15. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field. PMID:22711057

  16. Paper electronics.

    PubMed

    Tobjörk, Daniel; Österbacka, Ronald

    2011-05-01

    Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed. PMID:21433116

  17. Electron bifurcation.

    PubMed

    Peters, John W; Miller, Anne-Frances; Jones, Anne K; King, Paul W; Adams, Michael Ww

    2016-04-01

    Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths. PMID:27016613

  18. Gain degradation and efficiencies of spiral electron multipliers

    NASA Technical Reports Server (NTRS)

    Judge, R. J. R.; Palmer, D. A.

    1973-01-01

    The characteristics of spiral electron multipliers as functions of accumulated counts were investigated. The mean gain of the multipliers showed a steady decline from about 100 million when new, to about one million after 100 billion events when biased in a saturation mode. For prolonged use in a space environment, improved life expectancy might be obtained with a varying bias voltage adjusted to maintain the gain comfortably above a given discrimination level. Pulse-height distributions at various stages of the lifetime and variations of efficiency with energy of detected electrons are presented.

  19. Inelastic electron interaction (attachment/ionization) with deoxyribose

    NASA Astrophysics Data System (ADS)

    Ptasińska, S.; Denifl, S.; Scheier, P.; Märk, T. D.

    2004-05-01

    We have investigated experimentally the formation of anions and cations of deoxyribose sugar (C5H10O4) via inelastic electron interaction (attachment/ionization) using a monochromatic electron beam in combination with a quadrupole mass spectrometer. The ion yields were measured as a function of the incident electron energy between about 0 and 20 eV. As in the case of other biomolecules (nucleobases and amino acids), low energy electron attachment leads to destruction of the molecule via dissociative electron attachment reactions. In contrast to the previously investigated biomolecules dehydrogenation is not the predominant reaction channel for deoxyribose; the anion with the highest dissociative electron attachment (DEA) cross section of deoxyribose is formed by the release of neutral particles equal to two water molecules. Moreover, several of the DEA reactions proceed already with "zero energy" incident electrons. In addition, the fragmentation pattern of positively charged ions of deoxyribose also indicates strong decomposition of the molecule by incident electrons. For sugar the relative amount of fragment ions compared to that of the parent cation is about an order of magnitude larger than in the case of nucleobases. We determined an ionization energy value for C5H10O4+ of 10.51±0.11 eV, which is in good agreement with ab initio calculations. For the fragment ion C5H6O2+ we obtained a threshold energy lower than the ionization energy of the parent molecular ion. All of these results have important bearing for the question of what happens in exposure of living tissue to ionizing radiation. Energy deposition into irradiated cells produces electrons as the dominant secondary species. At an early time after irradiation these electrons exist as ballistic electrons with an initial energy distribution up to several tens of electron volts. It is just this energy regime for which we find in the present study rather characteristic differences in the outcome of electron

  20. Electronic Cereal.

    ERIC Educational Resources Information Center

    Frentrup, Julie R.; Phillips, Donald B.

    1996-01-01

    Describes activities that use Froot Loops breakfast cereal to help students master the concepts of valence electrons and chemical bonding and the implications of the duet and octet rules. Involves students working in groups to create electron dot structures for various compounds. (JRH)

  1. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2015-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  2. Printed electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  3. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2014-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  4. Communications Electronics.

    ERIC Educational Resources Information Center

    Vorderstrasse, Ron; Siebert, Leo

    This module is the third in a series of electronics publications and serves as a supplement to "General Electronics Technician." It is designed to provide students with an overview of the broad field of communications. Included are those tasks above the basic skills level that allow students to progress to a higher level of competency in the…

  5. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs. PMID:27620188

  6. Visual test of subparts per billion-level copper(ii) by Fe3O4 magnetic nanoparticle-based solid phase extraction coupled with a functionalized gold nanoparticle probe

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Qiang; Liu, Jing-Fu; Jiang, Gui-Bin

    2012-10-01

    By combining Fe3O4 magnetic nanoparticle-based solid phase extraction with a gold nanoparticle-based visual test, a novel method was developed for the field assay of Cu(ii) in environmental water at subparts per billion-levels within 30 min. When a 200 mL water sample was treated with 12.5 mg L-1 Fe3O4 nanoparticles by the proposed procedure, the detection limit with the naked eye was 0.2 μg L-1 Cu(ii). The proposed method is very specific to Cu(ii), with tolerance against at least 100-fold amounts of other environmentally relevant metal ions except for Hg(ii) (25-fold), and was successfully applied to the detection of trace Cu(ii) in tap water, river water, and treated wastewater, and results agreed well with that determined by inductively coupled plasma-mass spectrometry (ICP-MS).By combining Fe3O4 magnetic nanoparticle-based solid phase extraction with a gold nanoparticle-based visual test, a novel method was developed for the field assay of Cu(ii) in environmental water at subparts per billion-levels within 30 min. When a 200 mL water sample was treated with 12.5 mg L-1 Fe3O4 nanoparticles by the proposed procedure, the detection limit with the naked eye was 0.2 μg L-1 Cu(ii). The proposed method is very specific to Cu(ii), with tolerance against at least 100-fold amounts of other environmentally relevant metal ions except for Hg(ii) (25-fold), and was successfully applied to the detection of trace Cu(ii) in tap water, river water, and treated wastewater, and results agreed well with that determined by inductively coupled plasma-mass spectrometry (ICP-MS). Electronic supplementary information (ESI) available: Experimental details, synthesis, and characterization of Cys-AuNPs and Fe3O4 NPs, magnetic-solid phase extraction and colorimetric test procedures, and effects of parameters on the extraction efficiency. See DOI: 10.1039/c2nr31753b

  7. Electron-emission yield of Al, Cu, and Au for the impact of swift bare light ions

    SciTech Connect

    Benka, O.; Schinner, A.; Fink, T.; Pfaffenlehner, M.

    1995-11-01

    The electron emission yield induced by mega-electron-volt H{sup +}, He{sup 2+}, Li{sup 3+}, B{sup 5+}, and C{sup 6+} impact on aluminum, copper, and gold targets was measured. We found a significant deviation of the results from a simple proportionality to the stopping power, especially for heavier ions and low projectile velocities. Using a slightly modified model by J. E. Borovsky and D. M. Suszcynsky [Phys. Rev. A {bold 43}, 1433 (1991)] our experiments could be well represented. In this model the collective electric field generated along the projectile`s path was taken into account. Consequently, the positive ion channel appears to be the dominant mechanism that leads beyond a projectile-independent yield--to--stopping power ratio.

  8. Microwave measurements of energy lost to longitudinal modes by single electron bunches traversing periodic structures

    SciTech Connect

    Wang, J.W.; Loew, G.A.; Weaver, J.N.; Wilson, P.B.

    1981-10-01

    In the design of future linear colliders, it will be important to minimize the loss of beam energy due to the excitation of higher-order modes in the accelerator structure by single bunches of electrons or positrons. This loss is not only detrimental in itself but also gives rise to energy spectrum widening and transverse emittance growth. Microwave measurements made on disk-loaded and alternating-spoke structures to determine the loss to the longitudinal modes are described. In these measurements the Gaussian bunch is simulated by a current pulse of the same shape transmitted through the structure on an axial center conductor. Results to date are presented for the total longitudinal loss parameter per period K in volts per picocoulomb.

  9. Design of power electronics for TVC EMA systems

    NASA Astrophysics Data System (ADS)

    Nelms, R. Mark

    1993-08-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  10. Design of power electronics for TVC EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark

    1993-01-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  11. Electronic prototyping

    NASA Technical Reports Server (NTRS)

    Hopcroft, J.

    1987-01-01

    The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made.

  12. Electronic neuroprocessors

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1991-01-01

    The JPL Center for Space Microelectronics Technology (CSMT) is actively pursuing research in the neural network theory, algorithms, and electronics as well as optoelectronic neural net hardware implementations, to explore the strengths and application potential for a variety of NASA, DoD, as well as commercial application problems, where conventional computing techniques are extremely time-consuming, cumbersome, or simply non-existent. An overview of the JPL electronic neural network hardware development activities and some of the striking applications of the JPL electronic neuroprocessors are presented.

  13. Exceptional preservation of aragonite in a circa 3.3 billion year old microbial mat from the Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Westall, Frances; Cavalazzi, Barbara; Lemelle, Laurence; Marrochhi, Yves; Rouzaud, Jean-Noel; Simionovici, Alexandre; Andreazza, Caroline; Foucher, Frédéric; Thiel, Volker; Hofmann, Axel

    2010-05-01

    Exceptional preservation of aragonite in a circa 3.3 billion year old microbial mat from the Barberton greenstone belt, South Africa Frances Westall, Barbara Cavalazzi, Laurence Lemelle, Yves Marrocchi, Jean-Noël Rouzaud, Alexandre Simionovici, Murielle Salomé, Smail Mostefaoui, Caroline Andreazza, Frédéric Foucher, Jan Toporski, Andrea Jauss, Volker Thiel, Axel Hofmann, Anders Meibom, François Robert Aragonite occurs as a biologically-formed mineral precipitate within modern calcifying microbial mats. It is, however, rarely preserved in the geological record because, as one of the least stable polymorphs of calcium carbonate, it readily converts to calcite in present environmental conditions at the Earth's surface. In an in situ investigation at the micro- to nanometer-scale, we show that 5-10 nm sized nanocrystals of aragonite are preserved within the organic framework of a partially calcified microbial mat from the ~ 3.3 billion year-old Josefsdal Chert in the Barberton greenstone belt, South Africa. Transformation of the aragonite to calcite was blocked by a combination of chemical inhibitors within the crystal lattice, organic molecules coating the nanocrystals and, in particular, to the precocious permeation of the mat by hydrothermal silica. Apart from its exceptional preservation for 3.3 billion years, the identification of aragonite in the Josefsdal microbial mat is the earliest evidence for in situ calcification of a microbial mat. Furthermore, the indications of associated sulphur-reducing bacteria (SRB) activity with calcification strongly support a photosynthetic origin for the mat. This is the most direct evidence for photosynthesis in early Archaean rocks.

  14. Potential magnetofossils in ~3.4 billion-year-old cherts from the Barberton Greenstone Belt of South Africa

    NASA Astrophysics Data System (ADS)

    Voronov, Julia; Tarduno, John; Watkeys, Michael; Hofmann, Axel

    2013-04-01

    Previous reported paleointensity data from ~3.45 Ga dacites of the Barberton Greenstone Belt indicate the presence of a relatively strong geomagnetic field requiring the presence of a dynamo (Tarduno et al., Science, 2010). The ~3.40 Ga Buck Reef Chert from the same belt includes shallow water environments that may have been conducive for magnetotactic bacteria, if such forms were present in the Paleoarchean, as might be expected given the presence of the field. Here we use rock magnetism, electron microscopy, and ferromagnetic resonance to test for the presence of bacterial magnetite particles. Magnetic hysteresis properties of bulk samples show a variety of rock magnetic behaviors, including multi-domain, pseudo-single domain, single domain, and wasp-waisted curves; the latter indicate grain and/or compositional mixtures. Electron microscopy of magnetic separates and in-situ particles from the Buck Reef Chert show cubo-octahedral to quasi-rectangular and hexagonally shaped grains that fall within a stable single domain range typical of biogenic magnetite. Ferromagnetic resonance (FMR) spectra from bulk samples appear asymmetrical and skew towards low fields, suggesting a magnetic anisotropy that is similar to the spectra seen from some strains of modern magnetotactic bacteria. Thus, while there is clearly a mixture of magnetic particles within the Buck Reef Chert, these data suggest one component could be ancient bacterial magnetite.

  15. Collisional electron detachment and decomposition cross sections for SF - 6, SF - 5, and F - on SF6 and rare gas targets

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; Champion, R. L.; Doverspike, L. D.; Olthoff, J. K.; Van Brunt, R. J.

    1989-08-01

    Absolute total cross sections for collisional electron detachment and collision-induced dissociation (CID) have been measured for binary collisions of SF-6 and SF-5 with rare gas and SF6 targets for laboratory collision energies ranging from about 10 up to 500 eV. The cross sections for electron detachment of SF-6 are found to be surprisingly small, especially for the SF6 target, for relative collision energies below several tens of electron volts. Specifically, detachment onsets are found to occur at around 30 and 90 eV for the rare gas and SF6 targets, respectively. The CID channel which leads to F- as a product is observed to dominate detachment for relative collision energies below 100 eV. The results for the SF-5 projectile are remarkably similar to those exhibited for SF-6. The role of long-lived excited states in the reactant SF6 ion beam is discussed.

  16. Electronic Prescribing

    MedlinePlus

    ... 1-877-486-2048 . I went to the pharmacy, and my prescription was ready. Electronic eRx Prescribing ... write and send your prescriptions directly to your pharmacy. This means no more prescriptions on paper and ...

  17. Electronic plants.

    PubMed

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T; Berggren, Magnus

    2015-11-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants' "circuitry" has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  18. Electronic Cigarettes

    MedlinePlus

    ... and Figures Tobacco and Nicotine Smoked Tobacco Products Smokeless Tobacco Products Electronic Cigarettes New FDA Regulations HEALTH EFFECTS ... Secondhand Smoke Effects of Smoking on Your Health Smokeless Tobacco and Your Health Tobacco Use and Fertility Tobacco ...

  19. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  20. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia

    PubMed Central

    Christian, Daniel; Wacey, David; Hazen, Robert M.

    2013-01-01

    Abstract Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. Key Words: Archean—Biofilms—Microbial mats—Early Earth—Evolution. Astrobiology 13, 1103–1124. PMID:24205812

  1. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia.

    PubMed

    Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M

    2013-12-01

    Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. PMID:24205812

  2. An efficient and comprehensive method for drainage network extraction from DEM with billions of pixels using a size-balanced binary search tree

    NASA Astrophysics Data System (ADS)

    Bai, Rui; Li, Tiejian; Huang, Yuefei; Li, Jiaye; Wang, Guangqian

    2015-06-01

    With the increasing resolution of digital elevation models (DEMs), computational efficiency problems have been encountered when extracting the drainage network of a large river basin at billion-pixel scales. The efficiency of the most time-consuming depression-filling pretreatment has been improved by using the O(NlogN) complexity least-cost path search method, but the complete extraction steps following this method have not been proposed and tested. In this paper, an improved O(NlogN) algorithm was proposed by introducing a size-balanced binary search tree (BST) to improve the efficiency of the depression-filling pretreatment further. The following extraction steps, including the flow direction determination and the upslope area accumulation, were also redesigned to benefit from this improvement. Therefore, an efficient and comprehensive method was developed. The method was tested to extract drainage networks of 31 river basins with areas greater than 500,000 km2 from the 30-m-resolution ASTER GDEM and two sub-basins with areas of approximately 1000 km2 from the 1-m-resolution airborne LiDAR DEM. Complete drainage networks with both vector features and topographic parameters were obtained with time consumptions in O(NlogN) complexity. The results indicate that the developed method can be used to extract entire drainage networks from DEMs with billions of pixels with high efficiency.

  3. Nanodosimetry of Auger electrons: A case study from the decay of 125I and 0–18-eV electron stopping cross sections of cytosine

    PubMed Central

    Michaud, M.; Bazin, M.; Sanche, L.

    2013-01-01

    Radiopharmaceuticals emitting Auger electrons are often injected into patients undergoing cancer treatment with targeted radionuclide therapy (TRT). In this type of radiotherapy, the radiation source is radial and most of the emitted primary particles are low-energy electrons (LEEs) having kinetic energies distributed mostly from zero to a few hundred electron volts with very short ranges in biological media. These LEEs generate a high density of energy deposits and clustered damage, thus offering a relative biological effectiveness comparable to that of alpha particles. In this paper, we present a simple model and corresponding measurements to assess the energy deposited near the site of the radiopharmaceuticals in TRT. As an example, a calculation is performed for the decay of a single 125I radionuclide surrounded by a 1-nm-radius spherical shell of cytosine molecules using the energy spectrum of LEEs emitted by 125I along with their stopping cross sections between 0 and 18 eV. The dose absorbed by the cytosine shell, which occupies a volume of 4 nm3, is extremely high. It amounts to 79 kGy per decay of which 3%, 39%, and 58% is attributed to vibrational excitations, electronic excitations, and ionization processes, respectively. PMID:24976798

  4. Nanodosimetry of Auger electrons: A case study from the decay of (125)I and 0-18-eV electron stopping cross sections of cytosine.

    PubMed

    Michaud, M; Bazin, M; Sanche, L

    2013-03-01

    Radiopharmaceuticals emitting Auger electrons are often injected into patients undergoing cancer treatment with targeted radionuclide therapy (TRT). In this type of radiotherapy, the radiation source is radial and most of the emitted primary particles are low-energy electrons (LEEs) having kinetic energies distributed mostly from zero to a few hundred electron volts with very short ranges in biological media. These LEEs generate a high density of energy deposits and clustered damage, thus offering a relative biological effectiveness comparable to that of alpha particles. In this paper, we present a simple model and corresponding measurements to assess the energy deposited near the site of the radiopharmaceuticals in TRT. As an example, a calculation is performed for the decay of a single (125)I radionuclide surrounded by a 1-nm-radius spherical shell of cytosine molecules using the energy spectrum of LEEs emitted by (125)I along with their stopping cross sections between 0 and 18 eV. The dose absorbed by the cytosine shell, which occupies a volume of 4 nm(3), is extremely high. It amounts to 79 kGy per decay of which 3%, 39%, and 58% is attributed to vibrational excitations, electronic excitations, and ionization processes, respectively. PMID:24976798

  5. Nanodosimetry of Auger electrons: A case study from the decay of 125I and 0-18-eV electron stopping cross sections of cytosine

    NASA Astrophysics Data System (ADS)

    Michaud, M.; Bazin, M.; Sanche, L.

    2013-03-01

    Radiopharmaceuticals emitting Auger electrons are often injected into patients undergoing cancer treatment with targeted radionuclide therapy (TRT). In this type of radiotherapy, the radiation source is radial and most of the emitted primary particles are low-energy electrons (LEEs) having kinetic energies distributed mostly from zero to a few hundred electron volts with very short ranges in biological media. These LEEs generate a high density of energy deposits and clustered damage, thus offering a relative biological effectiveness comparable to that of alpha particles. In this paper, we present a simple model and corresponding measurements to assess the energy deposited near the site of the radiopharmaceuticals in TRT. As an example, a calculation is performed for the decay of a single 125I radionuclide surrounded by a 1-nm-radius spherical shell of cytosine molecules using the energy spectrum of LEEs emitted by 125I along with their stopping cross sections between 0 and 18 eV. The dose absorbed by the cytosine shell, which occupies a volume of 4 nm3, is extremely high. It amounts to 79 kGy per decay of which 3%, 39%, and 58% is attributed to vibrational excitations, electronic excitations, and ionization processes, respectively.

  6. Electron tube

    DOEpatents

    Suyama, Motohiro; Fukasawa, Atsuhito; Arisaka, Katsushi; Wang, Hanguo

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  7. Molecular Electronics

    NASA Astrophysics Data System (ADS)

    Petty, Michael

    The prospects of using organic materials in electronics and optoelectronics applications have attracted scientists and technologists since the 1970s. This field has become known as molecular electronics. Some successes have already been achieved, for example the liquid-crystal display. Other products such as organic light-emitting displays, chemical sensors and plastic transistors are developing fast. There is also a keen interest in exploiting technologies at the molecular scale that might eventually replace silicon devices. This chapter provides some of the background physics and chemistry to the interdisciplinary subject of molecular electronics. A review of some of the possible application areas for organic materials is presented and some speculation is provided regarding future directions.

  8. Electronic system

    DOEpatents

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  9. ELECTRONIC SYSTEM

    DOEpatents

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  10. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  11. Electronic mail.

    PubMed Central

    Pallen, M.

    1995-01-01

    Electronic mail (email) has many advantages over other forms of communication: it is easy to use, free of charge, fast, and delivers information in a digital format. As a text only medium, email is usually less formal in style than conventional correspondence and may contain acronyms and other features, such as smileys, that are peculiar to the Internet. Email client programs that run on your own microcomputer render email powerful and easy to use. With suitable encoding methods, email can be used to send any kind of computer file, including pictures, sounds, programs, and movies. Numerous biomedical electronic mailing lists and other Internet services are accessible by email. PMID:8520343

  12. Electronic tongue.

    PubMed

    Toko, K

    1998-09-15

    A taste sensor with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into an electric signal. The output of this electronic tongue shows different patterns for chemical substances which have different taste qualities, such as saltiness and sourness. Amino acids can be classified into several groups according to their own tastes from sensor outputs. The taste of foodstuffs such as beer, sake, coffee, mineral water, milk and vegetables can be discussed quantitatively using the electronic tongue, which provides the objective scale for the human sensory expression. PMID:9828364

  13. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons

    NASA Astrophysics Data System (ADS)

    Girolami, B.; Larsson, B.; Preger, M.; Schaerf, C.; Stepanek, J.

    1996-09-01

    The frontal collisions of a laser beam with relativistic electrons result in Compton-backscattered photons. The energy of these photons is dependent on the laser and electron energy in the range from kilo-electron-volts to tens of mega-electron-volts. In a sufficiently narrow backscattering angle the photons are nearly monochromatic. Over the past 30 years there have been several attempts to produce photon beams by laser backscattering from relativistic electrons stored in magnetic ring structures. One aim is to produce photons in the high mega-electron-volt energy range with fluxes useful for nuclear physics research; another is to produce photons in the high kilo-electron-volt energy range, which would be useful for medical applications, such as coronary angiography or treatment of tumour. Our present interest is to investigate the possibility of using 34 keV to 10 MeV photon beams for applications in stereotactic functional radiosurgery. We foresee the possibility of neurosurgical operations through the intact skull with precise and effective destruction of deeply lying millimetre-sized targets with minimal effects on intervening structures, high reproducibility and good prediction of the results. Our paper presents: a Monte Carlo study of radiosurgery based on cross firing with 34 keV to 100 MeV photon beams and 200 and 580 MeV proton beams, a theoretical description of the kinematics of Compton backscattering and estimates of the backscattered photon flux from several combinations of laser cavities at Nd:YAG (1.17 eV) and (0.117 eV) laser energies and electron storage rings energies in the range 0.1 - 1.3 GeV. As examples, existing magnetic structures, such as the Accumulator in the lower energy range and the Trieste Synchrotron Light Source ELETTRA in the higher energy range have been utilized in the

  14. Precipitating and trapped ions and electrons observed at 840 km during the great magnetic storm of February 1986

    SciTech Connect

    Swider, W.

    1990-07-01

    A detailed picture is presented of the equatorward boundaries of the auroral ovals at dawn, morning, dusk, and evening for the three most disturbed days of February 1986. North-south symmetry for the boundaries of keV particles was good, and the differences between the ion and electron boundaries agreed with statistics which show the ion edge slightly equatorward of the electron edge at dusk, with the reverse for dawn. The electron boundary was most equatorward of the ion boundary for morning. Best symmetry and least difference were for evening, the sector nearest the central plasma sheet. Ions with energies from thermal to several hundred electron volts penetrated inward to L = 1.2. Initial penetration was confined mainly, if not exclusively, to the dawn sector. The sudden appearance of low-energy ions deep in the plasmasphere at dusk and evening after storm maximum suggests corotation from a plasmapause as low as L = 1.7 at dawn. Low-energy electrons rarely advanced equatorward of the deV electrons. On the other hand, keV electrons occasionally were detected about the equator, apparently in relation to the inward convection of the radiation belt. Very energetic, MeV, particles occurred near 52 deg MLAT, mainly after storm maximum and often unsymmetrically, which may reflect a characteristic akin to the South Atlantic Anomaly.

  15. Electronic Homework.

    ERIC Educational Resources Information Center

    Lee, Fong-lok; Heyworth, Rex M.

    The Electronic Homework assistant system is composed of two components: the Computer Tutor and the Homework Administrator. The Computer Tutor is an intelligent tutoring system that can provide personal assistance like supplying hints, checking errors, providing remediation and prioritizing problems. The Homework Administrator is a teacher's…

  16. Optical electronics

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1976-01-01

    The development of an optical diode consisting of a metal-dielectric-metal junction in which the high-speed electric conduction process occurs due to quantum mechanical electron tunneling across the dielectric barrier is briefly reviewed. Potential applications of the diode are discussed.

  17. Electronic School.

    ERIC Educational Resources Information Center

    Executive Educator, 1994

    1994-01-01

    This issue of "The Electronic School" features a special forum on computer networking. Articles specifically focus on network operating systems, cabling requirements, and network architecture. Tom Wall argues that virtual reality is not yet ready for classroom use. B.J. Novitsky profiles two high schools experimenting with CD-ROM yearbooks. Bill…

  18. Electronic Portfolios.

    ERIC Educational Resources Information Center

    Purves, Alan C.

    1996-01-01

    Outlines three forms of electronic portfolio based on a student's work, a class project about a specific topic, and a class seminar on a broad topic. Discusses logistical problems of management, access, and cross-referencing; technical problems of input, access, and copying; and theoretical issues of the lack of realia, of ownership and copyright,…

  19. Electron Swarms

    NASA Astrophysics Data System (ADS)

    Crompton, Robert W.

    1998-10-01

    Swarm experiments provide an invaluable link between gaseous electronics and atomic physics, that is, between the collective behavior of electrons in gases in electric and magnetic fields and the collision processes that determine that behavior. Early swarm experiments were made to gain an understanding of the basic physics of electrical conduction in gases and electrical breakdown. Subsequent peaks of activity have been associated with attempts to explain quantitatively electromagnetic wave propagation in the ionosphere and in high temperature air, and with applied research in such diverse areas as gas lasers, health physics, gas insulation for high voltage transmission lines, plasma processing, and particle detectors . Through improved experimental techniques and the application of numerical techniques to unravel the complex connection between the individual electron-neutral collisions and the transport coefficients that characterize the properties of the swarm, swarm experiments now contribute accurate, and sometimes unique, cross section data for low-energy electron-atom/molecule collisions. Alternatively they can provide self-consistent sets of cross sections that enable reliable forecasts of the collective behaviour to be made. In the talk I shall aim to provide an understanding of the basic principles underlying swarm experiments, and the interpratation of the results from them, through a description of their development and application up to the present day.

  20. Electronic Money.

    ERIC Educational Resources Information Center

    Schilling, Tim

    Thirty years ago a cashless society was predicted for the near future; paper currency and checks would be an antiquated symbol of the past. Consumers would embrace a new alternative for making payments: electronic money. But currency is still used for 87% of payments, mainly for "nickel and dime" purchases. And checks are the payment choice for…

  1. Basic Electronics.

    ERIC Educational Resources Information Center

    Hartman, Lonnie; Huston, Jane, Ed.

    The skills taught in these materials for a seven-unit course were those identified as necessary not only for entry-level electronic technicians but for those in other occupations as well, including appliance repair, heating and air conditioning, and auto mechanics. The seven units are on shop orientation and safety principles, introduction to…

  2. Electronic tongue

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kimberly (Inventor); Buehler, Martin G. (Inventor)

    2004-01-01

    An ion selective electrode (ISE) array is described, as well as methods for producing the same. The array can contain multiple ISE which are individually electronically addressed. The addressing allows simplified preparation of the array. The array can be used for water quality monitoring, for example.

  3. Electronics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 27 units to consider for use in a tech prep competency profile for the occupation of electronics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  4. Vanadyls ions in the 3.5 billion-year-old Apex Basalt chert: relics of a primitive metabolism?

    NASA Astrophysics Data System (ADS)

    Binet, Laurent; Delpoux, Olivier; Gourier, Didier; Skrzypczak-Bonduelle, Audrey; Vezin, Herve; Derenne, Sylvie

    The identification of physico-chemical signatures of primitive life on Earth is a challenging issue, as it is extremely difficult to determine whether the carbonaceous matter preserved in the most ancient rocks is biogenic or abiotic. Indeed, organic matter of both origins always give the same type of macromolecular, acid resistant and insoluble carbonaceous matter during geologic evolution, with similar structures and spectroscopic signatures. There is still a lack of consensus in the scientific community on which observables could be considered as reliable biosignatures, and at present there is no physico-chemical marker, which could help to determine the origin of an ancient mineralized carbonaceous matter. Therefore, the determination of stable and reliable biosignatures is a fundamental issue in the search of primitive life on Earth and on Mars. Metalloporphyrins are important biomarkers as all living organisms, including the most primitive bacteria, use porphyrin derivatives in their metabolism. Complexes of vanadyl (VO++) porphyrins (VO-P) are particularly interesting as they are universally found within biogenic terrestrial carbonaceous materials. Therefore these complexes should constitute ideal biomarkers for the search of traces of primitive life in the most ancient (Lower Archean) geological materials and possibly in some Martian rocks. Vanadium in +4 oxidation state [V(IV)] in the Apex Basalt chert of the Warrawoona group in Western Australia is studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The biogenic origin of the carbonaceous microstructures fossilized in these cherts has been recently opened to question. More than 95% of V(IV) detected in the chert are in the form of VO++ with oxygenated ligands. To test the possibility that these oxygenated vanadyl species originate from the degradation of vanadyl porphyrin complex, we studied by EPR the thermal stability and the degradation mechanism of vanadyl porphyrins encapsulated in SiO2

  5. (abstract) A Miniature, High-Sensitivity, Electron-Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Gabrielson, Thomas B.; Rockstad, Howard K.; Tang, Tony K.

    1994-01-01

    A prototype low-noise accelerometer has been fabricated with an electron-tunneling transducer. By measuring the tunneling current between an electrode on the proof mass and a feedback-controlled monitor electrode, very small accelerations can be detected with high responsivity. This particular prototype (10x10x1.5 mm) was designed for underwater acoustic measurement from a few hertz to 1 kHz. The measured responsivity below the fundamental device resonance at 100 Hz is roughly 1500 volts per m/s(sup 2) with a measured noise spectral density of 10(sup -6) m/s(sup 2) per root hertz or less between 30 and 300 Hz. The noise floor is controlled primarily by 1/f noise in the tunneling current although the noise floor reaches the theoretical molecular-agitation limit at 100 hertz. The responsivity and directivity of the device were measured in a standard gradient-hydrophone calibrator; the noise floor was determined in a vacuum-ionization chamber assembled from commercial off-the-shelf components; and the detailed dynamics of the proof-mass motion were examined using a heterodyne laser interferometer that was scanned across the surface and synchronously detected with respect to the excitation.

  6. Six climate change-related events in the United States accounted for about $14 billion in lost lives and health costs.

    PubMed

    Knowlton, Kim; Rotkin-Ellman, Miriam; Geballe, Linda; Max, Wendy; Solomon, Gina M

    2011-11-01

    The future health costs associated with predicted climate change-related events such as hurricanes, heat waves, and floods are projected to be enormous. This article estimates the health costs associated with six climate change-related events that struck the United States between 2000 and 2009. The six case studies came from categories of climate change-related events projected to worsen with continued global warming-ozone pollution, heat waves, hurricanes, infectious disease outbreaks, river flooding, and wildfires. We estimate that the health costs exceeded $14 billion, with 95 percent due to the value of lives lost prematurely. Actual health care costs were an estimated $740 million. This reflects more than 760,000 encounters with the health care system. Our analysis provides scientists and policy makers with a methodology to use in estimating future health costs related to climate change and highlights the growing need for public health preparedness. PMID:22068410

  7. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    DOE PAGESBeta

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; et al

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less

  8. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  9. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    SciTech Connect

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; Reeves, G. D.; Thorne, R. M.; Kletzing, C. A.; Claudepierre, S. G.

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

  10. Understanding enhancements in outer radiation belt electrons through measurements and modeling

    NASA Astrophysics Data System (ADS)

    Schiller, Quintin George

    Electrons in Earth's magnetosphere typically originate with energies below ten kiloelectron volts (keV). Electrons trapped in the radiation belts can have energies that exceed 10 MeV and must be naturally accelerated within Earth's magnetosphere. Still, the processes that govern this highly dynamic region are not fully understood. The outer radiation belt is not only a scientific puzzle but understanding it is an operational necessity, as these high energy electrons are capable of damaging spacecraft and can even result in spacecraft failure. In this work, we investigate our ability to observe these particles and understand the natural acceleration processes that generate them. We approach the problem on three fronts: (i) from an instrumentation perspective we develop a first-of-its- kind miniaturized particle telescope flown on a CubeSat platform, (ii) from an observational perspective we investigate in detail an outer belt enhancement case-study, and (iii) from a modeling perspective we develop a data assimilation model to better understand the mechanisms causing the acceleration. Finally, we construct an event-specific method to estimate electron lifetimes for diffusion models using CubeSat data, and use it to fully investigate the case study using the assimilative model, ultimately combining the three approaches. The ensuing results substantiate CubeSats as scientific observatories, demonstrate new data assimilation applications to the radiation belts, and strengthen our understanding of magnetospheric dynamics and the role of acceleration mechanisms.

  11. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, William L.

    1982-01-01

    A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  12. Electronic Nose

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Grace Industries, Inc.'s Electronic Nose is a vapor and gas detector, deriving from NASA's electronic circuitry, capable for sensing the presence of accelerants several days after a fire. The device is powered by rechargeable battery and no special training needed to operate. If an accelerant is present, device will emit a beeping sound and trigger a flashing light; the faster the beep rate, the more volatile the accelerant. Its sensitivity can also detect minute traces of accelerants. Unit saves investigators of fire causes time and expense by providing speedy detection of physical evidence for use in court. Device is also useful for detecting hazardous fumes, locating and detecting gas leaks in refineries and on oil drilling rigs.

  13. Assessment of the Projected One Billion Ton Biomass for Cellulosic Biofuel Production and Its Potential Implications on Regional Water Quality and Availability

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Yan, E.; Wu, M.

    2011-12-01

    The DOE and USDA joint study, also commonly referred as the "Billion-Ton" study, assessed the cellulosic feedstock resources potential in the U.S. for producing second generation biofuel to replace 30 percent of the country's transportation fuels by year 2030. The available resource is expected to come from changing cropping pattern, increasing crop yield, harvesting agricultural and forest wood residues, and developing energy crops. Such large-scale changes in land use and crop managements are likely to affect the associated water quality and resources at both regional and local scales. To address the water sustainability associated with the projected biomass production in the Upper Mississippi River Basin (UMRB), we have developed a SWAT watershed model that simulate the changes in water quality (nitrogen, phosphorus, and soil erosion) and resources (soil water content, evapotranspiration, and runoff) of the region due to future biomass production scenario estimated by the Billion-Ton study. The scenario is implemented by changing the model inputs and parameters at subbasin and hydrologic response unit levels, as well as by improving the SWAT model to represent spatially varying crop properties. The potential impacts on water quality and water availability were compared with the results obtained from a baseline simulation which represents current watershed conditions and existing level of feedstock production. The basin level results suggested mixed effects on the water quality. The projected large-scale biomass production scenario is expected to decrease loadings of total nitrogen and nitrate in the streams while increase total phosphorus and suspended sediment. Results indicate an increase in the rate of evapotranspiration and a decrease in the soil water content and in surface runoff. discharge to the streams. The impacts at the subbasin or local scale varies spatially and temporally depending on the types of land use change, their locations, and crop

  14. Electronic Nose and Electronic Tongue

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Nabarun; Bandhopadhyay, Rajib

    Human beings have five senses, namely, vision, hearing, touch, smell and taste. The sensors for vision, hearing and touch have been developed for several years. The need for sensors capable of mimicking the senses of smell and taste have been felt only recently in food industry, environmental monitoring and several industrial applications. In the ever-widening horizon of frontier research in the field of electronics and advanced computing, emergence of electronic nose (E-Nose) and electronic tongue (E-Tongue) have been drawing attention of scientists and technologists for more than a decade. By intelligent integration of multitudes of technologies like chemometrics, microelectronics and advanced soft computing, human olfaction has been successfully mimicked by such new techniques called machine olfaction (Pearce et al. 2002). But the very essence of such research and development efforts has centered on development of customized electronic nose and electronic tongue solutions specific to individual applications. In fact, research trends as of date clearly points to the fact that a machine olfaction system as versatile, universal and broadband as human nose and human tongue may not be feasible in the decades to come. But application specific solutions may definitely be demonstrated and commercialized by modulation in sensor design and fine-tuning the soft computing solutions. This chapter deals with theory, developments of E-Nose and E-Tongue technology and their applications. Also a succinct account of future trends of R&D efforts in this field with an objective of establishing co-relation between machine olfaction and human perception has been included.

  15. ELECTRONIC MULTIPLIER

    DOEpatents

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1961-01-31

    S>An electronic multiplier is described for use in analog computers. Two electrical input signals are received; one controls the slope of a saw-tooth voltage wave while the other controls the time duration of the wave. A condenser and diode clamps are provided to sustain the crest voltage reached by the wave, and for storing that voltage to provide an output signal which is a steady d-c voltage.

  16. ELECTRON GUN

    DOEpatents

    Christofilos, N.C.; Ehlers, K.W.

    1960-04-01

    A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.

  17. POLAR 5 - An electron accelerator experiment within an aurora. III - Evidence for significant spacecraft charging by an electron accelerator at ionospheric altitudes

    NASA Technical Reports Server (NTRS)

    Jacobsen, T. A.; Maynard, N. C.

    1980-01-01

    The POLAR 5 rocket experiment carried an electron accelerator on a 'daughter' payload which injected a 0.1 A beam of 10 keV electrons in a pulsed mode every 410 ms. With spin and precession, injections were made over a wide range of pitch angles. Measurements from a double probe electric field instrument and from particle detectors on the 'mother' payload and from a crude RPA on the 'daughter' payload are interpreted to indicate that the 'daughter' charges to a potential between several hundred volts and 1 kV. The neutralizing return current to the 'daughter' is shown to be asymmetrically distributed with the majority being collected from the direction of the beam. The additional electrons necessary to neutralize the daughter are thought to be produced and heated through beam-plasma interactions postulated by Maehlum et al. (1980) and Grandal et al. (1980) to explain the particle and optical measurements. Significant electric fields emanating from the charged 'daughter' and the beam are seen at distances exceeding 100 m at the 'mother' payload.

  18. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  19. Glow discharge with electrostatic confinement of electrons in a chamber bombarded by fast electrons

    NASA Astrophysics Data System (ADS)

    Metel, A. S.; Grigoriev, S. N.; Melnik, Yu. A.; Prudnikov, V. V.

    2011-07-01

    A metal substrate is immersed in plasma of glow discharge with electrostatic confinement of electrons inside the vacuum chamber volume V ≈ 0.12 m3 filled with argon or nitrogen at pressures 0.005-5 Pa, and dependence of discharge characteristics on negative substrate potential is studied. Emitted by the substrate secondary electrons bombard the chamber walls and it results in electron emission growth of the chamber walls and rise of gas ionization intensity inside the chamber. Increase of voltage U between the chamber and the substrate up to 10 kV at a constant discharge current I d in the anode circuit results in a manifold rise of current I in the substrate circuit and decrease of discharge voltage U d between the anode and the chamber from hundreds to tens of volts. At pressure p < 0.05 Pa nonuniformity of plasma density does not exceed ˜10%. Using the Child-Langmuir law, as well as measurement results of sheath width d between homogeneous plasma and a lengthy flat substrate dependent on voltage U ion current density j i on the substrate surface and ion-electron emission coefficient γ i are calculated. After the current in circuit of a substrate made of the same material is measured, the γ i values may be used to evaluate the average dose of ion implantation. The rate of dose rise at a constant high voltage U is by an order of magnitude higher than in known systems equipped with generators of square-wave high-voltage pulses. Application to the substrate of 10-ms-wide sinusoidal high-voltage pulses, which follow each other with 100-Hz frequency, results in synchronous oscillations of voltage U and ion current I i in the substrate circuit. In this case variation of the sheath width d due to oscillations of U and Ii is insignificant and d does not exceed several centimeters thus enabling substrate treatment in a comparatively small vacuum chamber.

  20. Benzonitrile: Electron affinity, excited states, and anion solvation

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  1. Rebalance electronics

    NASA Technical Reports Server (NTRS)

    Blalock, T. V.; Kennedy, E. J.

    1972-01-01

    Two basic types of strapdown gyroscope rebalance-electronics were analyzed and compared. These two types were a discrete-pulse ternary system and a width-modulated binary system. In the analyses, major emphasis was placed on the logic sections, the H-switches, the precision voltage reference loops, the noise performance, common-mode rejection, and loop compensation. Results of the analyses were used in identifying specific advantages and disadvantages of system details and in making accuracy and resolution comparisons. Sound engineering principles were applied in the development of both systems; however, it was concluded that each system has some disadvantages that are amenable to improvement.

  2. Electronic Router

    NASA Technical Reports Server (NTRS)

    Crusan, Jason

    2005-01-01

    Electronic Router (E-Router) is an application program for routing documents among the cognizant individuals in a government agency or other organization. E-Router supplants a prior 14 NASA Tech Briefs, May 2005 system in which paper documents were routed physically in packages by use of paper slips, packages could be lost, routing times were unacceptably long, tracking of packages was difficult, and there was a need for much photocopying. E-Router enables a user to create a digital package to be routed. Input accepted by E-Router includes the title of the package, the person(s) to whom the package is to be routed, attached files, and comments to reviewers. Electronic mail is used to notify reviewers of needed actions. The creator of the package can, at any time, see the status of the package in the routing structure. At the end of the routing process, E-Router keeps a record of the package and of approvals and/or concurrences of the reviewers. There are commercial programs that perform the general functions of E-Router, but they are more complicated. E-Router is Web-based, easy to use, and does not require the installation or use of client software.

  3. Guide for preparing annual reports on radiation-safety testing of electronic products (general)

    SciTech Connect

    Not Available

    1987-10-01

    For manufacturers of electronic products other than those for which a specific guide has been issued, the guide replaces the Guide for the Filing of Annual Reports (21 CFR Subchapter J, Section 1002.11), HHS Publication FDA 82-8127. The electronic product (general) annual reporting guide is applicable to the following products: products intended to produce x radiation (accelerators, analytical devices, therapy x-ray machines); microwave diathermy machines; cold-cathode discharge tubes; and vacuum switches and tubes operating at or above 15,000 volts. To carry out its responsibilities under Public Law 90-602, the Food and Drug Administration's Center for Devices and Radiological Health (CDRH) has issued a series of regulations contained in Title 21 of the Code of Federal Regulations (CFR). Part 1002 of 21 CFR deals with records and reports. Section 1002.61 categorizes electronic products into Groups A through C. Section 1002.30 requires manufacturers of products in Groups B and C to establish and maintain certain records, while Section 1002.11 requires such manufacturers to submit an Annual Report summarizing the contents of the required records. Section 1002.7 requires that reports conform to reporting guides issued by CDRH unless an acceptable justification for an alternate format is provided.

  4. System Miniaturization Via Heterogeneous Integration of Electronic Devices for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    DelCastillo, L.; Schatzel, D. V.; Graber, R. W.; Mottiwala, A.

    2001-01-01

    The scientific devices designed for each of the Outer Planets Program Focuses will likely be groundbreaking not only with respect to their scientific role but also regarding the electronics required to perform such investigations. In the past, the performance of packaged electronics was limited by the components themselves, with minimal influence of the packaging technology. The rapid development of integrated circuit technology, however, has drastically increased the importance of packaging technology in the ultimate performance of devices. If not carefully considered in the overall design, the packaging may become the limiting factor in the operation of the system. Although industry is responsible for several significant accomplishments in the field of electronics packaging, deep space/outer planet missions must take into account additional requirements such as extremely low temperatures, high radiation levels, hermetic sealing, and severe size and weight limitations. Therefore, the present investigation has been designed to meet the needs of NASA's sensor intensive outer planets program by combining (using flip chip technology) an array of devices (including analog, digital, power volt-age, passives, and MEMS) into a miniaturized heterogeneous system and utilizing optical buses to enable autonomy. Additional information is contained in the original extended abstract.

  5. Characteristics of warm dense matter produced by a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Schmitt, Mark; Berninger, Michael

    2009-11-01

    Accurate equation-of-state theory on warm dense matter is a big challenge to model and good experimental data is difficult to obtain. One of the difficulties is the creation of a warm dense matter (WDM) suitable for experiments to examine its equation of state. We have performed calculations using MCNP and LASNEX to examine the warm dense matter created by a highly energetic electron beam such as the DARHT beam at LANL in a cylindrical sample confined by a collar. Energy deposition by the electron beam in the target and collar of different materials were calculated with different beam profiles. The energy deposition was sourced into LASNEX calculations to examine the dynamic evolution of the target and the generation of radially outward propagating shock waves. Our calculations indicated warm dense matter with a temperature of a few electron volts is achievable and the speed of the shock wave can be determined using photonic Doppler velocimetry technique. We will present results from our calculations for various materials of the target and collar and in different geometries.

  6. A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt.

    PubMed

    Baker, D N; Kanekal, S G; Hoxie, V C; Henderson, M G; Li, X; Spence, H E; Elkington, S R; Friedel, R H W; Goldstein, J; Hudson, M K; Reeves, G D; Thorne, R M; Kletzing, C A; Claudepierre, S G

    2013-04-12

    Since their discovery more than 50 years ago, Earth's Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage. PMID:23450000

  7. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, W.L.

    1980-07-01

    A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  8. Gated photocathode design for the P510 electron tube used in the National Ignition Facility (NIF) optical streak cameras

    NASA Astrophysics Data System (ADS)

    Datte, P.; James, G.; Celliers, P.; Kalantar, D.; Vergel de Dios, G.

    2015-08-01

    The optical streak cameras currently used at the National Ignition Facility (NIF) implement the P510 electron tube from Photonis1. The existing high voltage electronics provide DC bias voltages to the cathode, slot, and focusing electrodes. The sweep deflection plates are driven by a ramp voltage. This configuration has been very successful for the majority of measurements required at NIF. New experiments require that the photocathode be gated or blanked to reduce the effects of undesirable scattered light competing with low light level experimental data. The required ~2500V gate voltage is applied between the photocathode and the slot electrode in response to an external trigger to allow the electrons to flow. Otherwise the slot electrode is held approximately 100 Volts more negative than the potential of the photocathode, preventing electron flow. This article reviews the implementation and performance of the gating circuit that applies an electronic gate to the photocathode with a nominal 50ns rise and fall time, and a pulse width between 50ns and 2000ns.

  9. A Billion Is How Big?

    ERIC Educational Resources Information Center

    Gough, John

    2008-01-01

    Place-value is a central, powerful mathematical concept. From the earliest years of school, students focus on developing strong understanding of the ideas, notation and computational use. Many times, however, they get as far as thousands and then resort to waving their hands--at least until they start a far more advanced and abstract treatment of…

  10. Millions and Billions of Channels

    NASA Astrophysics Data System (ADS)

    Leigh, Darren; Horowitz, Paul

    The history of the Harvard SETI group is inextricably linked with the history of Paul Horowitz. Horowitz became enamored with SETI as a student at Harvard, reading Ed Purcell's paper "Radio Astronomy and Communication Through Space" (Purcell, 1960), discussing with his roommates a class that Carl Sagan was teaching there using a draft of Shklovskii and Sagan's "Intelligent Life in the Universe" (Shklovskii and Sagan, 1966) as a text, and finally attending a Loeb Lecture series at Harvard by Frank Drake (Drake, 1969). The series was officially about pulsars but Drake did manage to slip in one inspiring talk about SETI. Horowitz says that "It was this lecture that launched me into this field; it was a revelation that you could go beyond idle speculation - you could actually calculate stuff."

  11. For the detection of subkiloelectron-volt X-rays

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H.-M.; Vartanian, M. H.

    1982-01-01

    A large-area, imaging gas scintillation proportional counter (IGSPC) has been constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counter (GSPC) with a 1-micron polypropylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. The MWPC, filled with a mixture of argon, methane, and tetrakis (dimethylamino) ethylene, detects the UV photons emitted by the xenon gas in the GSPC. Over a sensitive area of 21 sq cm, the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV.

  12. Logic-controlled solid state switchgear for 270 volts dc

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Waddington, D.; Buchanan, E. E., Jr.

    1973-01-01

    A feasibility study to design and demonstrate solid state switchgear in the form of circuit breakers and a power transfer switch is described. The switchgear operates on a nominal 270 V dc circuit and controls power to a load of up to 15 amperes. One circuit breaker may be interconnected to a second breaker to form a power transfer switch. On-off and transfer functions of the breakers or the transfer switch are remotely controlled. A number of reclosures with variable time delay between tripout and reclosure are programmed and controlled by integrated analog and COSMOS logic circuits. A unique commutation circuit, that generates only minimal transient disturbance to either source or load, was developed to interrupt current flow through the main SCR switching element. Laboratory tests demonstrated performance of the solid state circuit breakers over specified voltage and temperature ranges.

  13. ReVOLT: radiation-enhanced viral oncolytic therapy

    SciTech Connect

    Advani, Sunil J.; Mezhir, James J.; Roizman, Bernard; Weichselbaum, Ralph R. . E-mail: rrw@rover.uchicago.edu

    2006-11-01

    Viral oncolytic therapy has been pursued with renewed interest as the molecular basis of carcinogenesis and viral replication has been elucidated. Genetically engineered, attenuated viruses have been rationally constructed to achieve a therapeutic index in tumor cells compared with surrounding normal tissue. Many of these attenuated mutant viruses have entered clinical trials. Here we review the preclinical literature demonstrating the interaction of oncolytic viruses with ionizing radiation and provides a basis for future clinical trials.

  14. Few-Volt Operation of Printed Organic Ferroelectric Capacitor.

    PubMed

    Noda, Yuki; Yamada, Toshikazu; Kobayashi, Kensuke; Kumai, Reiji; Horiuchi, Sachio; Kagawa, Fumitaka; Hasegawa, Tatsuo

    2015-11-01

    The fabrication of single-crystalline thin-film arrays for an organic ferroelectric small molecule is achieved by a simple solution process without additional thermal annealing. Based on a cooperative proton tautomerism through a hydrogen-bonding network, films show the polarity switching with an operating voltage of less than 5 V at room temperature. This approach provides a low-cost and eco-friendly fabrication of ferroelectric devices. PMID:26419689

  15. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers

    PubMed Central

    Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.

    2016-01-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676

  16. Detection of gamma rays from a starburst galaxy.

    PubMed

    Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martineau-Huynh, O; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2009-11-20

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy. PMID:19779150

  17. Performance as Promised: How the Chandra X-ray Observatory Accomplished One of Nasa's Most Challenging Missions for Billions of Dollars Less than Originally Planned

    NASA Technical Reports Server (NTRS)

    Davidson, Greg; Hefner, Keith

    2004-01-01

    As the nation looks toward bold new ventures in space, the Chandra X-ray Observatory program offers an example of how billion-dollar missions can be successfully developed within tightening fiscal constraints. Chandra experienced many of challenges facing bold space programs (state-of-the-art technical requirements and budget-induced slips and restructurings), and yet the Chandra team achieved nearly all the originally envisioned performance for dramatically lower cost. This was accomplished by a combination of team- work, systems engineering, advanced technology insertion, and effective approaches for program implementation. A thorough tradeoff of science utility vs. cost led to the selection of a highly elliptical orbit with uncrewed robotic delivery, deployment, and maintenance. Progressive, focused technology demonstrations were accomplished prior to commitment of major resources to critical elements of the system design, such as the high resolution mirror assembly (HRMA). Pathfinder hardware was developed to reduce risks. A variety of schedule risk reduction measures were implemented and resulted in the X-ray calibration taking place exactly within five days of its originally planned date after after five years of development. The team worked together in an effective manner to contain requirements creep. reductions such as the ACIS-2 chip device. It is estimated that the above combination of measures achieved the avoidance of over $4B in costs, while enabling a highly successful mission.

  18. From the Cover: Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism

    NASA Astrophysics Data System (ADS)

    Bontognali, Tomaso R. R.; Sessions, Alex L.; Allwood, Abigail C.; Fischer, Woodward W.; Grotzinger, John P.; Summons, Roger E.; Eiler, John M.

    2012-09-01

    The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ33S and . This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ33S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H2S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ33S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities.

  19. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity

    PubMed Central

    Payne, Jonathan L.; Boyer, Alison G.; Brown, James H.; Finnegan, Seth; Kowalewski, Michał; Krause, Richard A.; Lyons, S. Kathleen; McClain, Craig R.; McShea, Daniel W.; Novack-Gottshall, Philip M.; Smith, Felisa A.; Stempien, Jennifer A.; Wang, Steve C.

    2009-01-01

    The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era (≈1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6–0.45 Gya). Each size step required a major innovation in organismal complexity—first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed. PMID:19106296

  20. Environmental TEM study of electron beam induced electro-chemistry of Pr₀̣₆₄Ca₀̣₃₆MnO₃ catalysts for oxygen evolution

    SciTech Connect

    Mildner, Stephanie; Beleggia, Marco; Mierwaldt, Daniel; Hansen, Thoma Willum; Wagner, Jakob Birkedal; Yazdi, Sadegh; Kasama, Takeshi; Ciston, Jim; Zhu, Yimei; Jooss, Christian

    2015-03-12

    Environmental Transmission Electron Microscopy (ETEM) studies offer great potential for gathering atomic scale information on the electronic state of electrodes in contact with reactants but also pose big challenges due to the impact of the high energy electron beam. In this article, we present an ETEM study of a Pr₀̣₆₄Ca₀̣₃₆MnO₃ (PCMO) thin film electro-catalyst for water splitting and oxygen evolution in contact with water vapor. We show by means of off-axis electron holography and electrostatic modeling that the electron beam gives rise to a positive electric sample potential due to secondary electron emission. The value of the electric potential depends on the primary electron flux, the sample -conductivity and grounding, and gas properties. We present evidence that two observed electro-chemical reactions are driven by a beam induced electrostatic potential of the order of a volt. The first reaction is an anodic electrochemical oxidation reaction of oxygen depleted amorphous PCMO which results in recrystallization of the perovskite structure. The second reaction is oxygen evolution which can be detected by the oxidation of a silane additive and formation of SiO2–x at catalytically active surfaces. Recently published in-situ XANES observation of subsurface oxygen vacancy formation during oxygen evolution at a positive potential [³²] is confirmed in this work. The quantification of beam induced potentials is an important step for future controlled electro-chemical experiments in an ETEM.

  1. The status of the Electron Beam Ion Sources

    SciTech Connect

    Stockli, M.P.

    1990-12-31

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes` efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  2. The status of the Electron Beam Ion Sources

    SciTech Connect

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  3. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  4. Discovery of a 12 billion solar mass black hole at redshift 6.3 and its challenge to the black hole/galaxy co-evolution at cosmic dawn

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-08-01

    To date about 40 quasars with redshifts z>6 have been discovered. Each quasar harbors a black hole with a mass of about one billion solar masses. The existence of such black holes when the Universe was less than one billion years after the Big Bang presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution. I will report a recent discovery of an ultra-luminous quasar at redshift z=6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z>6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with a 12 billion solar mass black hole at z>6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes in the early Universe. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.

  5. Follow the money: How the billions of dollars that flow from smokers in poor nations to companies in rich nations greatly exceed funding for global tobacco control and what might be done about it

    PubMed Central

    2010-01-01

    The business of selling cigarettes is increasingly concentrated in the hands of five tobacco companies that collectively control almost 90% of the world's cigarette market, four of which are publicly traded corporations. The economic activities of these cigarette manufacturers can be monitored through their reports to shareholders and other public documents. Reports for 2008 show that the revenues of these five companies exceeded $300 billion, of which more than $160 billion was provided to governments as taxes, and that corporate earnings of the four publicly traded companies were over $25 billion, of which $14 billion was retained after corporate income taxes were paid. By contrast, funding for domestic and international tobacco control is not reliably reported. Estimated funding for global tobacco control in 2008, at $240 million, is significantly lower than resources provided to address other high-mortality global health challenges. Tobacco control has not yet benefited from the innovative finance mechanisms that are in place for HIV/AIDS, tuberculosis and malaria. The Framework Convention On Tobacco Control (FCTC) process could be used to redirect some of the earnings from transnational tobacco sales to fund FCTC implementation or other global health efforts. PMID:20610436

  6. Educational Assistance Overpayments, A Billion Dollar Problem--A Look at the Causes, Solutions, and Collection Efforts. Veterans Administration. Report to the Congress by the Comptroller General of the United States.

    ERIC Educational Resources Information Center

    Comptroller General of the U.S., Washington, DC.

    Overpayments to veterans and veterans' dependents under the VA's educational assistance programs have increased dramatically in recent years; as of the end of 1975, cumulative overpayments totaled almost $1.4 billion. In fiscal year 1967, overpayments represented 0.7 percent of VA's total educational benefits paid, whereas in the first six months…

  7. Follow the money: how the billions of dollars that flow from smokers in poor nations to companies in rich nations greatly exceed funding for global tobacco control and what might be done about it.

    PubMed

    Callard, Cynthia

    2010-08-01

    The business of selling cigarettes is increasingly concentrated in the hands of five tobacco companies that collectively control almost 90% of the world's cigarette market, four of which are publicly traded corporations. The economic activities of these cigarette manufacturers can be monitored through their reports to shareholders and other public documents. Reports for 2008 show that the revenues of these five companies exceeded $300 billion, of which more than $160 billion was provided to governments as taxes, and that corporate earnings of the four publicly traded companies were over $25 billion, of which $14 billion was retained after corporate income taxes were paid. By contrast, funding for domestic and international tobacco control is not reliably reported. Estimated funding for global tobacco control in 2008, at $240 million, is significantly lower than resources provided to address other highmortality global health challenges. Tobacco control has not yet benefited from the innovative finance mechanisms that are in place for HIV/AIDS, tuberculosis and malaria. The Framework Convention On Tobacco Control (FCTC) process could be used to redirect some of the earnings from transnational tobacco sales to fund FCTC implementation or other global health efforts. PMID:20610436

  8. A novel low energy electron microscope for DNA sequencing and surface analysis

    SciTech Connect

    Mankos, M.; Shadman, K.; Persson, H. H. J.; N’Diaye, A. T.; Schmid, A. K.; Davis, R. W.

    2014-01-31

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the

  9. Trapped electron plasma formation and equilibrium with a low-power radio-frequency drive

    SciTech Connect

    Romé, M.; Maero, G.; Paroli, B.; Pozzoli, R.; Chen, S.

    2015-06-29

    Penning-Malmberg traps confining electron plasmas usually rely on external sources like thermo- and photocathodes. It has been already demonstrated that electron plasmas of comparable densities can be produced by applying a radio-frequency (RF) power to any inner electrode of the trap. Such excitation may result in significant electron heating and ionization of the residual gas with the formation of a plasma column when the RF frequency is of the order or larger than the typical axial bounce frequencies of few-eV electrons, even at RF amplitude of few volts. While discharges are common in plasma generation at higher pressures and RF power, this mechanism is not yet well explored in our working conditions, namely ultra-high vacuum and very low RF power. This plasma production mechanism is very sensitive to the experimental conditions. Interesting phenomena can be observed: transition from a diffuse to a narrow-section, denser plasma column; presence of low-order diocotron modes in transient and steady-state plasmas; modulation of the m=1 diocotron mode and suppression of its instability despite the presence of positive ions and resistive loads. These observations are reported here, and possible explanations are discussed. In addition, a possible electron heating mechanism is investigated with a single-particle, one-dimensional model described by an area-preserving map where an electron bounces within a square potential well and the RF excitation is modelled by a time-oscillating square barrier. The low-energy part of the Poincaré plot includes both quasi-periodic and chaotic regions, where heating up to ionization energies is achievable. Results of a systematic analysis of the map extracting its chaotic properties and scaling laws as a function of the control parameters are reported.

  10. A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis

    PubMed Central

    Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.

    2014-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  11. A novel low energy electron microscope for DNA sequencing and surface analysis

    DOE PAGESBeta

    Mankos, M.; Shadman, K.; Persson, H. H. J.; N’Diaye, A. T.; Schmid, A. K.; Davis, R. W.

    2014-01-31

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts.more » The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the

  12. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  13. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  14. Neuromorphic adaptive plastic scalable electronics: analog learning systems.

    PubMed

    Srinivasa, Narayan; Cruz-Albrecht, Jose

    2012-01-01

    Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far. PMID:22344953

  15. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  16. Tall earthfill dam key to flood plan: California`s most hazardous basin scene of $1.3-billion Corps program

    SciTech Connect

    Soast, A.

    1994-11-07

    In semiarid Southern California, {open_quotes}The Big One{close_quotes} generally connotes a seismic even. For those near the usually docile Santa Ana River, however, the major destructive event could be a flood. The Corps of Engineers says it could cover 170 sq miles with about 3 ft of water, jeopardizing more than 3 million persons and 255,000 structures. To avert that, the agency launched a $1.3-billion program. Half of the total cost is for major construction. About $500 million will go for land acquisition and relocations, while some $170 million is for planning, engineering and project management. Seven Oaks will be a rock and earthfill embankment standing 550 ft above the streambed with a crest length of 3,000 ft. An excavated and grouted foundation trench will extend as far as 80 ft below the dam. The structure will contain 43 million cu yd. {open_quotes}It`s between two branches of the San Andreas Fault,{close_quotes} says Robert L. Hall, chief of the design branch in the Corps` Los Angeles district office. {open_quotes}We ended up with a criterion of 4 ft of displacement in any direction that the dam must withstand.{close_quotes} That could be produced by a quake of magnitude 8-plus resulting in maximum horizontal acceleration of 0.7 g. But Hall adds that the dam is in a geological compression zone. In the event of a quake there would be {open_quotes} just slippage. The dam would heal itself.{close_quotes}

  17. Stability of parts-per-billion hazardous organic cylinder gases and performance audit results of source test and ambient-air measurement systems. Status report 2

    SciTech Connect

    Jayanty, R.K.M.; Cooper, S.W.; Sokash, J.A.; Decker, C.E.

    1985-12-01

    A repository of 22 gaseous organic compounds at parts-per-billion (ppb) levels in compressed gas cylinders has been established by the U.S. Environmental Protection Agency (EPA). The primary objectives of this ongoing project are: (1) to provide accurate gas mixtures to EPA, state/local agencies, or their contractors for performance audits to assess the relative accuracy of source measurement systems during hazardous-waste trial burn tests and ambient air-monitoring programs; (2) to verify the manufacturer's certified analysis of the multicomponent gas mixtures; (3) to determine the stability of gas mixtures with time; and (4) to develop new audit materials as requested by EPA. The repository consists of 3 mixtures of 5, 8, and 9 organic compounds each. These mixtures were blended by a commercial gas supplier in aluminum cylinders in a balance gas of nitrogen. The 5-component mixture (Group I) contains carbon tetrachloride, chloroform, perchloroethylene, vinyl chloride and benzene. The 9-component mixture (Group II) includes trichloroethylene, 1,2-dichloroethane, 1,2-dibromoethane, acetonitrile, trichlorofluoromethane (F-11), dichlorodifluoromethane (F-12), bromomethane, methyl ethyl ketone and 1,1,1-trichloroethane. The 8-component mixture (Group III) includes pyridine, vinylidene chloride, 1,1,2-trichloro 1,2,2-trifluoroethane (F-113), 1,2-dichloro 1,1,2,2-tetrafluoroethane (F-114), acetone, 1,4-dioxane, toluene, and chlorobenzene. To date 41 performance audits have been initiated and 35 are complete. The results of these audits and description of the experimental procedures used for analyses and available stability data are presented in this Status Report 2.

  18. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  19. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  20. Whistler Wave generation by an electron beam in a LAPTAG Plasma Physics experiment

    NASA Astrophysics Data System (ADS)

    Bridges, Gabriel; Pribyl, Patrick; Gekelman, Walter; Thomas, Sam; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Baker, Bob; Marmie, Ken; Wolman, Ben; Buckley-Bonnano, Samuel

    2015-11-01

    A multi-grid pulsed electron beam (Ebeam = 1-4.8 KV, area =1.32 cm2, τ >5 μs) is inserted into a background plasma (He, n = 5X1010 cm3, B0z = 80 G, L = 1.5 m, dia = 40 cm). The pulsed electron beam power supply, can generate up to 4800 Volts at 10 Amps and was constructed by the LAPTAG high school students. The beam can be oriented at any angle with respect to the background magnetic field. The pulsed beam generates whistler waves by Cherenkov radiation. The waves are detected with 3 axis magnetic pickup probes which can be moved in planes transverse or parallel to the background magnetic field under computer control. The whistler wave pattern is used to determine the wavenumber k and Fourier analysis of the signal determines ω. The wave dispersion relation is compared to theory. Work done at BaPSF at UCLA and supported by NSF and DOE.

  1. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  2. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  3. Backstreaming Electrons Associated With Solar Electron Bursts

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Steinberg, J. T.; de Koning, C. A.; Gosling, J. T.; McComas, D. J.

    2007-12-01

    Solar electron bursts are frequently observed in the ACE/SWEPAM suprathermal electron measurements at energies below 1.4 keV. A significant fraction of such events show backscattered electrons, beginning after the burst onset and traveling back towards the Sun along the magnetic field direction. Such backscattered particles imply a scattering mechanism beyond the spacecraft location. Some bursts also show backstreaming conic distributions, implying mirroring at magnetic field enhancements beyond the spacecraft. Here we present a study of these backstreaming particles during solar electron events. We examine the occurrence of backstreaming electrons and their relationship to other burst characteristics such as pitch angle width, duration, and energy range. We also investigate the time delay between burst onset and the appearance of backscattered electrons, including energy and pitch-angle dispersion. We examine the pitch angle distribution and energy dependence of backstreaming electrons, and consider possible origins of these electron distributions and their relationship to solar wind structure beyond the spacecraft.

  4. Electron cyclotron wave generation by relativistic electrons

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1994-01-01

    We show that an energetic electron distribution which has a temperature anisotropy (T perpendicular to b is greater than T parallel to b), or which is gyrating about a DC magnetic field, can generate electron cyclotron waves with frequencies below the electron cyclotron frequency. Relativistic effects are included in solving the dispersion equation and are shown to be quantitatively important. The basic idea of the mechanism is the coupling of the beam mode to slow waves. The unstable electron cyclotron waves are predominantly electromagnetic and right-hand polarized. For a low-density plasma in which the electron plasma frequency is less than the electron cyclotron frequency, the excited waves can have frequencies above or below the electron plasma frequency, depending upon the parameters of the energetic electron distribution. This instability may account for observed Z mode waves in the polar magnetosphere of the Earth and other planets.

  5. Nano-Electronics and Bio-Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Viewgraph presentation on Nano-Electronics and Bio-Electronics is discussed. Topics discussed include: NASA Ames nanotechnology program, Potential Carbon Nanotube (CNT) application, CNT synthesis,Computational Nanotechnology, and protein nanotubes.

  6. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas, Thomas; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  7. Interface Electronic Circuitry for an Electronic Tongue

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  8. Stable Isotope Geochemistry of Extremely Well-Preserved 2.45-Billion-Year-Old Hydrothermal Systems in the Vetreny Belt, Baltic Shield: Insights into Paleohydrosphere

    NASA Astrophysics Data System (ADS)

    Zakharov, D. O.; Bindeman, I. N.

    2015-12-01

    The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater hydrothermal systems to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial hydrothermal systems of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close hydrothermal systems from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and hydrothermal alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that hydrothermal fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2

  9. Design of power electronics for TVC and EMA systems

    NASA Astrophysics Data System (ADS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-11-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  10. Design of power electronics for TVC and EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-01-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  11. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy.

  12. Design of electronic composites

    SciTech Connect

    Taya, M.

    1995-12-31

    This report describes the requirements of selected electronic composites with application to electronic packaging, then focuses on the modeling for the microstructure-macrobehavior relation of electronic composites. The modeling depends on the microstructure, percolative and non-percolative.

  13. A distributed axis electron beam system for high-speed lithography and defect inspection

    NASA Astrophysics Data System (ADS)

    Pickard, Daniel S.

    Electron beam lithography can delineate features 10 nm and smaller. However the throughput is slow, limited by space charge blurring when writing with large currents. One way to overcome this limit is to employ multiple beamlets distributed over a large area. The approach described here employs a uniform axial magnetic field to focus thousands of electron beams simultaneously. The source must be at least as small as the beam at the wafer. Fabrication and operation of an aperture source with a diameter of 50nm or less was demonstrated. To prevent contamination, the beam heats the aperture to 200°C. Successful operation was demonstrated by building a test-bed featuring a region of uniform magnetic field and building, inside this region, a miniature scanning electron microscope. We observed resolution between 30nm and 50nm at 10kV and better than 75nm at 1kV. This SEM can image at landing energies as low as 260 Volts. The detection and separation of the secondary electrons generated by adjacent beamlets is achieved by spacing the beamlets by more than the cyclotron diameter of the secondary electrons (250 microns is sufficient). Detection was demonstrated with a custom-designed and built, monolithic, PIN detector with 40 detector elements. The system requires a sparse array of matched electron sources with current densities exceeding 10A/cm2, and electron energy spread less than 0.5 eV. Two new configurations were investigated to meet this requirement. The first, the electron bombardment source features a thin semiconductor membrane with a negative electron affinity emission surface. Free carriers are generated by high-energy electrons impinging on the back surface. We demonstrated the first scanning electron microscope images employing this cathode. The other configuration, the plasmon enhanced photocathode, couples the incident light to surface plasmons on a metallic film. This yields quantum efficiencies 100 times larger than conventional photoemission from a

  14. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  15. Attraction by Repulsion: Pairing Electrons using Electrons

    NASA Astrophysics Data System (ADS)

    Ilani, Shahal

    One of the fundamental properties of electrons is their mutual Columbic repulsion. If electrons are placed in a solid, however, this basic property may change. A famous example is that of superconductors, where coupling to lattice vibrations makes electrons attractive and leads to the formation of bound pairs. But what if all the degrees of freedom in the solid are electronic? Is it possible to make electrons attract each other only by their repulsion to other electrons? Such an `excitonic' mechanism for attraction was proposed fifty years ago by W. A. Little, with the hope that it could lead to better and more exotic superconductivity. Yet, despite many efforts to synthesize materials that possess this unique property, to date there is still no evidence for electronic-based attraction. In this talk I will present our recent experiments that observe this unusual electronic attraction using a different, bottom-up approach. Our experiments are based on a new generation of quantum devices made from pristine carbon nanotubes, combined with precision cryogenic manipulation. Using this setup we can now assemble the fundamental building block of the excitonic attraction and demonstrate that two electrons that naturally repel each other can be made attractive using an independent electronic system as the binding glue. I will discuss the lessons learned from these experiments on what is achievable with plain electrostatics, and on the possibility to use the observed mechanism for creating exotic states of matter.

  16. Fabrication and characterization of nanopatterned epitaxial graphene films for carbon based electronics

    NASA Astrophysics Data System (ADS)

    Song, Zhimin

    In this thesis, we show that planar graphene ribbons have properties similar to those of nanotubes. Both exhibit semiconducting or metallic properties depending on crystal orientation. The band gap varies approximately as the inverse of the ribbon width. Both can be doped and gated. Due to these similarities, the patterned graphene also has nanotube like transport properties, which include coherent transport, ballistic transport, and high current capabilities. In essential contrast to nanotubes, graphene ribbons can be rationally patterned using standard electron beam lithography methods, functional graphene devices could be fabricated eliminating the need for metal interconnects on the wafer. This would remove many obstacles faced by carbon nanotubes, while retaining the benefits of high carrier mobility and quasi-1D transport. We have produced ultrathin epitaxial graphite films on single-crystal silicon carbide by vacuum graphitization, which show remarkable 2D electron gas (2DEG) behavior. The most highly ordered samples exhibit Shubnikov-de Haas oscillations that correspond to nonlinearities observed in the Hall resistance, indicating a potential new quantum Hall system. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. We show that the high-mobility films can be patterned via conventional lithographic techniques, and we demonstrate modulation of the film conductance using a top-gate electrode. These key elements suggest electronic device applications based on nanopatterned epitaxial graphene (NPEG) with the potential for large-scale integration. The research created a foundation for graphene science and technology

  17. Atomic electron correlation in nuclear electron capture

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.

    1978-01-01

    The effect of electron-electron Coulomb correlation on orbital electron capture by the nucleus was treated by the multiconfigurational Hartree-Fock approach. The theoretical Be-7 L/K capture ratio was found to be 0.086, and the Ar-37 M/L ratio, 0.102. Both ratios were smaller than the independent particle predictions. Measurements exist for the Ar M/L ratio, and agreement between theory and experiment was excellent.

  18. Electronic Networking. ERIC Digest.

    ERIC Educational Resources Information Center

    Tucker, Susan

    This digest discusses several aspects of electronic networking, including network functions, implementation, and applications in education. Electronic networking is defined as including the four basic services of electronic mail (E-mail), electronic "bulletin boards," teleconferencing, and online databases, and an overview of these four functions…

  19. Introduction to Electronic Marketing.

    ERIC Educational Resources Information Center

    Dilbeck, Lettie

    These materials for a five-unit course were developed to introduce secondary and postsecondary students to the use of electronic equipment in marketing. The units cover the following topics: electronic marketing as a valid marketing approach; telemarketing; radio electronic media marketing; television electronic media marketing; and cable TV…

  20. Electron thermalization in gases. III. Epithermal electron scavenging in rare gases

    NASA Astrophysics Data System (ADS)

    Mozumder, A.

    1981-06-01

    Earlier work on electron thermalization in rare gases by the author [J. Chem. Phys. 72, 1657 (1980); 72, 6289 (1980)] has been extended to include electron scavenging by an attaching compound present as a minor component. While the cooling rate for the surviving fraction proceeds as in the pure gas, the scavenging rate is calculated using a time-dependent velocity distribution function and a velocity-dependent attachment cross section. For the last mentioned item, functions decreasing with a certain power of velocity specific to a given scavenger have been experimentally found by Christophorou and co-workers; the same are used with analytical extension. In general, epithermal scavenging has been found to be ubiquitous and time dependent. It depends mainly on the thermalization time, relative scavenger concentration, temperature, and thermal attachment cross section. Relative scavenger effectiveness has been found to be temperature dependent. In a simple case autodetachment has been included in the calculation using SF6 as an example. Both attachment and detachment compete with thermalization, the equilibrium being established only in the postthermal regime. To ensure purely thermal reactions in a rare gas such as Ar, which has the longest thermalization time of all the rare gases, purification from reactive scavengers must be carried to the level of 1 ppb (part per billion) or better. For other rare gases the requirement may be less stringent.