Science.gov

Sample records for binary acetonitrile-water mixtures

  1. Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures.

    PubMed

    Valente, Inês Maria; Gonçalves, Luís Moreira; Rodrigues, José António

    2013-09-20

    The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted. PMID:23958692

  2. 1-(2-Methoxybenzylidene)-4-phenylthiosemicarbazide as OFF-ON fluorescent chemodosimeter for detection of Cu 2+ in acetonitrile-water binary solvents

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Lin, Li-Rong; Huang, Rong-Bin; Zheng, Lan-Sun

    2008-12-01

    A novel fluorescent chemodosimeter, 1-(2-methoxybenzylidene)-4-phenylthiolsemicarbazide, was studied. In 90:10 (v/v) mixture of CH 3CN and water binary solution, it exhibits high selectivity toward Cu 2+ but very low response toward other competitive cations. The Cu 2+ promoting cyclization of the thiosemicarbazide to 1,2,4-triazole-3(4 H)-thione ring results in observation of the turn-on fluorescence.

  3. Spinodal decomposition in binary mixtures

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto; Shinnar, Reuel; Triantafyllou, George

    1996-03-01

    We study the early stage of the phase separation of a binary mixture far from its critical point of demixing. Whenever the mixture of two mutually repulsive species is quenched to a temperature below its critical point of miscibility, the effect of the enthalpic repulsive force prevails upon the entropic tendency to mix, so that the system eventually separates itno two coexisting phases. We have developed a highly nonlinear model, in close analogy with the linear theory of Cahn and Hilliard, where a generalized free energy is defined in terms of two parameters ψ and a, the first describing the equilibrium composition of the two phases, ad the second denoting a characteristic length scale that is inversely proportional to the equilibrium surface tension. The linear stability analysis predicts that any perturbation of the initial mixture composition with wave number k smaller than √2ψ /a will grow exponentially in time, with a maximum growth corresponding to kmax= √ψ /a. A numerical solution of the equation shows that nonlinear effects saturate the exponential growth, and that the concentraiton distribution tends to a steady state, peroidic profile with wavelength λ=2πa/ √ψ corresponding to the fastest growing mode of the linear regime. The main result of our theoretical model is that this steady state does not depend on the form of the initial perturbation to the homogeneous composition profile.

  4. Solidification phenomena of binary organic mixtures

    NASA Technical Reports Server (NTRS)

    Chang, K.

    1982-01-01

    The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.

  5. Spinodal decomposition of chemically reactive binary mixtures.

    PubMed

    Lamorgese, A; Mauri, R

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration. PMID:27627358

  6. Spinodal decomposition of chemically reactive binary mixtures

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  7. Instability of a solidifying binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1982-01-01

    An analysis is performed on the stability of a solidifying binary mixture due to surface tension variation of the free liquid surface. The basic state solution is obtained numerically as a nonstationary function of time. Due to the time dependence of the basic state, the stability analysis is of the global type which utilizes a variational technique. Also due to the fact that the basic state is a complex function of both space and time, the stability analysis is performed through numerical means.

  8. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  9. Excess compressibility in binary liquid mixtures.

    PubMed

    Aliotta, F; Gapiński, J; Pochylski, M; Ponterio, R C; Saija, F; Salvato, G

    2007-06-14

    Brillouin scattering experiments have been carried out on some mixtures of molecular liquids. From the measurement of the hypersonic velocities we have evaluated the adiabatic compressibility as a function of the volume fraction. We show how the quadratic form of the excess compressibility dependence on the solute volume fraction can be derived by simple statistical effects and does not imply any interaction among the components of the system other than excluded volume effects. This idea is supported by the comparison of the experimental results with a well-established prototype model, consisting of a binary mixture of hard spheres with a nonadditive interaction potential. This naive model turns out to be able to produce a very wide spectrum of structural and thermodynamic features depending on values of its parameters. An attempt has made to understand what kind of structural information can be gained through the analysis of the volume fraction dependence of the compressibility. PMID:17581064

  10. Dynamic thermodiffusion model for binary liquid mixtures.

    PubMed

    Eslamian, Morteza; Saghir, M Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models. PMID:19658691

  11. Dynamic thermodiffusion model for binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring’s reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.

  12. ThermoData Engine Database - Pure Compounds and Binary Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase)   This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.

  13. Permeation of chemical protective clothing by three binary solvent mixtures

    SciTech Connect

    Mickelsen, R.L.; Roder, M.M.; Berardinelli, S.P.

    1986-04-01

    An evaluation of glove materials against three different binary chemical mixtures selected from common industrial solvents was conducted. Changes in breakthrough time and permeation rate of the mixture components were evaluated as a function of the mixture composition. An increase in employee risk resulting from early mixture breakthrough time and enhanced mixture permeation rate over that of the pure chemicals was demonstrated. The permeation of a binary mixture through chemical protective clothing could not be predicted by the permeation results of the pure components. It is recommended that chemical protective clothing be tested for its permeation characteristics with the use of the chemical mixtures and conditions that reflect the work site exposure.

  14. Mutual diffusion in a binary isotopic mixture.

    PubMed

    Sharma, Raman; Tankeshwar, K

    2010-11-17

    The mass dependence of the mutual diffusion coefficient, in a binary equimolar mixture of Lennard-Jones fluids, is studied within Mori's memory function formalism. A phenomenological form of the memory function is used to study the time evolution of the self- and relative velocity correlation functions. The diffusion coefficients are calculated from the relevant velocity correlation functions using the Green-Kubo integral formula. Like the self-diffusion coefficient, the mutual diffusion coefficient is also found to be weakly dependent on the mass ratio. The present study shows that the minimum value that the mutual diffusion coefficient in an equimolar mixture of isotopic fluids can have is √(1/2) times the self-diffusion coefficient of any of the species when in isolation. Further, the contribution of the dynamic/distinct cross correlations to the mutual diffusion coefficient is found to be small and positive for the whole range of the mass ratio which is consistent with earlier molecular dynamics results. PMID:21339621

  15. Hydrodynamic 'memory' of binary fluid mixtures

    SciTech Connect

    Kalashnik, M. V.; Ingel, L. Kh.

    2006-07-15

    A theoretical analysis is presented of hydrostatic adjustment in a two-component fluid system, such as seawater stratified with respect to temperature and salinity. Both linear approximation and nonlinear problem are investigated. It is shown that scenarios of relaxation to a hydrostatically balanced state in binary fluid mixtures may substantially differ from hydrostatic adjustment in fluids that can be stratified only with respect to temperature. In particular, inviscid two-component fluids have 'memory': a horizontally nonuniform disturbance in the initial temperature or salinity distribution does not vanish even at the final stage, transforming into a persistent thermohaline 'trace.' Despite stability of density stratification and convective stability of the fluid system by all known criteria, an initial temperature disturbance may not decay and may even increase in amplitude. Moreover, its sign may change (depending on the relative contributions of temperature and salinity to stable background density stratification). Hydrostatic adjustment may involve development of discontinuous distributions from smooth initial temperature or concentration distributions. These properties of two-component fluids explain, in particular, the occurrence of persistent horizontally or vertically nonuniform temperature and salinity distributions in the ocean, including discontinuous ones.

  16. Thermodiffusion in binary and ternary nonpolar hydrocarbon + alcohol mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2012-12-01

    Thermodiffusion in complex mixtures, such as associating, molten metal, and polymer mixtures is difficult to model usually owing to the occurrence of a sign change in the thermodiffusion coefficient when the mixture concentration and temperature change. A mixture comprised of a nonpolar hydrocarbon and an alcohol is a complex and highly non-ideal mixture. In this paper an existing binary non-equilibrium thermodynamics model (Eslamian and Saghir, Physical Review E 80, 061201, 2009) developed for aqueous mixtures of alcohols is examined against the experimental data of binary nonpolar hydrocarbon and alcohol mixtures. For ternary mixtures, non-equilibrium thermodynamic expressions developed by the authors for aqueous mixtures of alcohols (Eslamian and Saghir, Canadian Journal of Chemical Engineering, DOI 10.1002/cjce.20581) is used to predict thermodiffusion coefficients of ternary nonpolar hydrocarbon and alcohol mixtures. The rationale behind the sign change is elucidated and attributed to an anomalous change in the molecular structure and therefore viscosity of such mixtures. Model predictions of thermodiffusion coefficients of binary mixtures predict a sign change consistent with the experimental data although the model is still too primitive to capture all structural complexities. For instance, in the methanol-benzene mixture where the model predictions are poorest, the viscosity data show that when concentration varies, the mixture's molecular structure experiences a severe change twice, the first major change leading to a maximum in the thermodiffusion coefficient, whereas the second change causes a sign change.

  17. Nucleation in a Sheared Liquid Binary Mixture.

    NASA Astrophysics Data System (ADS)

    Min, Kyung-Yang

    When a binary liquid mixture of lutidine plus water (LW) is quenched to a temperature T and is exposed to a continuous shear rate S, the result is a steady-state droplet distribution. This steady state can be probed by measuring the unscattered intensity I_{f}, or the scattered intensity I_{s}, as a function of delta T and S. In the experiments described here, S is fixed and delta T is varied in a step-wise fashion. The absence of hysteresis was probed in two separate experiments: First, I_{f} was measured as a function of S for a given delta T. Next, I_{f} was measured as a function of delta T for a given S. In either case, the hysteresis associated with the shear-free nucleation is absent. In addition, a flow-history dependent hysteresis was studied. In the 2-dimensional parameter space consisting of S and delta T, the onset of nucleation uniquely determines a cloud point line. A plot of the cloud point line exhibits two segments of different slopes with a cross-over near the temperature corresponding to the Becker-Doring limit. The classical picture of a free energy barrier was reformulated to explain this cross-over behavior. Next, photon correlation spectroscopy was used to study the dependence of the transient nucleation behavior on the initial states. A unique feature of this study is that this initial state can be conveniently adjusted by varying the shear rate S to which the mixture is initially exposed. The shear is then turned off, and the number density N(t), as well as the mean radius of the growing droplets, is monitored as a function of time. It was possible to measure the droplet density at a very early stage of phase separation where the nucleation rate J was close to zero. The measurement reveals that N(t) depends critically on the initial state of the metastable system. When the shear is large enough to rupture the droplets as small as the critical size, N(t) increases very slowly. Measurements of the nucleation rates vs. the square of the

  18. Evolution of weak disturbances in inert binary mixtures

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.

    1977-01-01

    The evolution of weak disturbances in inert binary mixtures is determined for the one-dimensional piston problem. The interaction of the dissipative and nonlinear mechanisms is described by Burgers' equation. The binary mixture diffusion mechanisms enter as an additive term in an effective diffusivity. Results for the impulsive motion of a piston moving into an ambient medium and the sinusoidally oscillating piston are used to illustrate the results and elucidate the incorrect behavior pertaining to the associated linear theory.

  19. Nonergodic correction to a binary mixture phase diagram

    NASA Astrophysics Data System (ADS)

    Son, L.

    2016-05-01

    For a binary mixture with limited miscibility of the components, the correction to the equation of state that arises from the finite diffusion velocity is discussed. It is shown that this correction corresponds to a nonergodic microheterogeneity of the mixture. We suggest that the above microheterogeneity may be accounted as corresponding fluctuations of the chemical potential. The mean square of these fluctuations C is an additional thermodynamic variable, and the nonergodic microheterogeneity is an equilibrium property of every binary mixture with limited miscibility. The experimental status of this statement is discussed for eutectic and monotectic systems.

  20. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2011-02-14

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  1. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  2. Solvatochromic Study on Binary Solvent Mixtures with Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Koel, Mihkel

    2008-08-01

    Solvent effects on 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate [ET (33) dye] and 7- diethylamino-3,4-benzophenoxazine-2-one (Nile Red) in binary mixtures of organic solvents (acetone, acetonitrile, propylene carbonate, methanol and ethane-1,2-diol) with 1,3-dialkyl imidazoliumbased ionic liquids were studied by UV-visible spectroscopy. Highly nonlinear behaviour of mixtures of alcohols and ionic liquids was found. A preferential solvation model was applied to the data obtained on solvatochromic shifts over the entire mixing range. It is fitting the data well for alcohol mixtures and for other solvent mixtures with different ionic liquids.

  3. Intermolecular forces in acetonitrile + ethanol binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.

    2015-10-01

    FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.

  4. Binary Mixtures of Particles with Different Diffusivities Demix.

    PubMed

    Weber, Simon N; Weber, Christoph A; Frey, Erwin

    2016-02-01

    The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined. PMID:26894737

  5. Evaporation of binary mixtures in microgravity

    NASA Technical Reports Server (NTRS)

    Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin

    1995-01-01

    The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.

  6. Isomorphic Viscosity Equation of State for Binary Fluid Mixtures.

    PubMed

    Behnejad, Hassan; Cheshmpak, Hashem; Jamali, Asma

    2015-01-01

    The thermodynamic behavior of the simple binary mixtures in the vicinity of critical line has a universal character and can be mapped from pure components using the isomorphism hypothesis. Consequently, based upon the principle of isomorphism, critical phenomena and similarity between P-ρ-T and T-η-(viscosity)-P relationships, the viscosity model has been developed adopting two cubic, Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), equations of state (EsoS) for predicting the viscosity of the binary mixtures. This procedure has been applied to the methane-butane mixture and predicted its viscosity data. Reasonable agreement with the experimental data has been observed. In conclusion, we have shown that the isomorphism principle in conjunction with the mapped viscosity EoS suggests a reliable model for calculating the viscosity of mixture of hydrocarbons over a wide pressure range up to 35 MPa within the stated experimental errors. PMID:26680701

  7. Binary hard chain mixtures. I. Generalized Flory equations of state

    SciTech Connect

    Wichert, J.M.; Gulati, H.S.; Hall, C.K.

    1996-11-01

    In this series of two papers we study the thermodynamics of binary hard chain mixtures. Here, a generalized Flory-dimer (GF-D) equation of state is derived for binary hard chain mixtures composed of chains of variable length and segment diameter. Compressibility factors predicted by the GF-D equation of state developed here and by the previously derived generalized Flory equation of state are compared to previous Monte Carlo results for hard monomer/hard chain mixtures, and to new molecular dynamics (MD) hard monomer/hard chain and hard chain/hard chain mixture simulation results. Compared to the MD simulations, the GF-D theory is found to be quite accurate, with an average error of about 3{percent} at liquid-like densities. {copyright} {ital 1996 American Institute of Physics.}

  8. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, Robert N.

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  9. Microscopic study and modeling of thermodiffusion in binary associating mixtures.

    PubMed

    Eslamian, Morteza; Saghir, M Ziad

    2009-12-01

    Thermodiffusion in associating mixtures is a complex phenomenon, owing to the strong dependence of the molecular structure of such mixtures on concentration. In this paper, we attempt to elucidate this phenomenon and propose a qualitative mechanism for the separation of species in binary associating mixtures. A correlation between the sign change in the thermal diffusion factor and a change in the molecular structure, mixture viscosity, and the excess entropy of mixing in such mixtures is established. To quantify this correlation, we modify our recently developed dynamic model based on the Drickamer nonequilibrium thermodynamic approach [M. Eslamian and M. Z. Saghir, Phys. Rev. E 80, 011201 (2009)] and propose expressions for the estimation of thermal diffusion factor in binary associating mixtures. The prediction power of the proposed expressions, as well as other widely used models, are examined against the experimental data. The proposed theoretical expressions are self-contained and only rely on the viscosity data as input and predict a sign change in the thermal diffusion factor in associating mixtures. PMID:20365155

  10. Composition measurements of binary mixture droplets by rainbow refractometry

    SciTech Connect

    Wilms, J.; Weigand, B

    2007-04-10

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.

  11. Coarsening in binary solid-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Voorhees, P. W.

    1990-01-01

    A theory of Ostwald ripening has been developed for a solid-liquid mixture cosisting of a low volume fraction array of spherical solid particles in a liquid wherein the coarsening process proceeds via the transport of both heat and mass. It is found that the simultaneous transport of heat and mass during ripening does not alter the exponents of the temporal power laws governing the ripening process from their classical values but does alter the amplitudes of these power laws. The growth rate of the cube of the average particle radius, the rate constant, is found to depend both on the alloy solute concentration and the ratio of the thermal to solutal diffusivities. In most metallic systems, a large decrease in the rate constant can be expected with small additions of solute to a pure metal. Possible extensions of this theory to the analogous problem of ripening in isothermal ternary alloys are also discussed.

  12. Shear viscosity of binary mixtures: The Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  13. Bose-Einstein condensation in binary mixture of Bose gases

    SciTech Connect

    Tran Huu Phat; Le Viet Hoa; Nguyen Tuan Anh Nguyen Van Long

    2009-10-15

    The Bose-Einstein condensation (BEC) in a binary mixture of Bose gases is studied by means of the Cornwall-Jackiw-Tomboulis (CJT) effective action approach. The equations of state (EoS) and various scenarios of phase transitions of the system are considered in detail, in particular, the numerical computations are carried out for symmetry restoration (SR), symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) for getting an insight into their physical nature. It is shown that due to the cross interaction between distinct components of mixture there occur two interesting phenomena: the high temperature BEC and the inverse BEC, which could be tested in experiments.

  14. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  15. Effects of lubricants on binary direct compression mixtures.

    PubMed

    Uğurlu, T; Halaçoğlu, M D; Türkoğlu, M

    2010-04-01

    The objective of this study was to investigate the effects of conventional lubricants including a new candidate lubricant on binary direct compression mixtures. Magnesium stearate (MGST), stearic acid (STAC), glyceryl behenate (COMP) and hexagonal boron nitride (HBN) were tested. The binary mixtures were 1:1 combinations of spray dried lactose (FlowLac 100), dicalcium phosphate dihydrate (Emcompress), and modified starch (Starch 1500) with microcrystalline cellulose (Avicel PH 102). Tablets were manufactured on a single-station instrumented tablet press with and without lubricants. In the case of unlubricated granules, the modified starch-microcrystalline cellulose mixture provided the highest percent compressibility value at 8.25%, spray dried lactose-microcrystalline cellulose mixture was 7.33%, and the dialcium phosphate dihydrate-microcrystalline cellulose mixture was 5.79%. Their corresponding tablet crushing strength values were: 104 N, 117 N, and 61 N, respectively. The lubricant concentrations studied were 0.5, 1, 2, and 4%. Effects of lubricant type and lubricant concentration on crushing strength were analyzed using a factorial ANOVA model. It was found that the Avicel PH 102-Starch 1500 mixture showed the highest lubricant sensitivity (110 N vs. 9 N), the least affected formulation was FlowLac-Avicel PH 102 mixture (118 N vs. 62 N). The crushing strength vs. concentration curve for MGST showed a typical biphasic profile, a fast drop up to 1% and a slower decline between 1 and 4%. The STAC, COMP, and HBN for all formulations showed a shallow linear decline of tablet crushing strength with increasing lubricant concentration. The HBN was as effective as MGST as a lubricant, and did not show a significant negative effect on the crushing strength of the tablets. The COMP and STAC also did not interfere with the crushing strength, however, they were not as effective lubricants as MGST or HBN. PMID:22491169

  16. Binary mixtures of simple fluids in structured slit micropores

    NASA Astrophysics Data System (ADS)

    Curry, J. E.; Cushman, John H.

    The grand canonical Monte Carlo method is used to study a binary mixture of Lennard-Jones atoms confined to an atomically structured slit micropore which is in thermodynamic equilibrium with its bulk phase counterpart. In one example, the mixture consists of atoms of two distinct sizes, but with the same minimum depth in potential energy. In another example a binary mixture of different size atoms is again considered, but in the latter case the larger atom has a deeper potential energy minimum. Three mechanisms are found which influence selective adsorption of a mixture species: (i) liquid-like fluid layering, (ii) inplane solid-like ordering and (iii) molecular sieving. The large atoms are completely eliminated from the pore when the wall separation is physically too small for the large atoms to fit, or when both species physically fit in the pore and the small component epitaxially aligns with the surface or freezes. Complete elimination of the small species is not observed. A significant excess of large atoms in the pore relative to the composition in the bulk phase is found only when the large atoms attain transverse order within the fluid layers. The adsorption of the large component is either enhanced or reduced depending on the relative magnitude of the potential energy well depth of the fluid and wall species.

  17. Viscosity minima in binary mixtures of ionic liquids + molecular solvents.

    PubMed

    Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N

    2015-05-28

    The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding. PMID:25933136

  18. Photophysical study of Zn phthalocyanine in binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Staicu, A.; Pascu, A.; Boni, M.; Pascu, M. L.; Enescu, M.

    2013-07-01

    Photophysical properties of phthalocyanines are important in photodynamic therapy, where these compounds are proposed as photosensitizing agents. We report here some significant solvent effects on the photophysical properties of Zn phthalocyanine (ZnPc) observed in binary solvent mixture dimethyl sulfoxide/water at several ratios of cosolvents. The absorbance of ZnPc at the maximum of Q band has a sharp drop in intensity for a water mass percent in the solvent mixture larger than 40%. The same characteristic shows also the quantum yield of fluorescence. A particular result is the increase of singlet oxygen lifetime for water percentage raise up to 20% in the solvent mixture. The effects are discussed in connection with the particular solvent microenvironment, involving DMSO/water clusters formation and the strong interaction between the solute and the solvent.

  19. Simple binary mixtures of hydrogen and ammonia under extreme pressures

    NASA Astrophysics Data System (ADS)

    Borstad, Gustav; Yoo, Choong-Shik

    2013-03-01

    Binary mixtures under pressure are of interest as fundamental systems in physics and chemistry as they allow the effects of the environment on the behavior of different chemical compounds to be examined. Furthermore, mixtures of simple molecular systems are of interest for applications in fuel cells and also to planetary science due to their presence in the interiors of the giant gas planets. In this presentation, Raman data on the ammonia and hydrogen system under pressure will be presented, and the extent and nature of the interactions in this mixture will be discussed. The work has been supported by NSF (DMR-0854618 and DMR-1203834); GB was also supported by the ISP scholarship at WSU.

  20. Carbon-hydrogen vs. carbon-carbon bond cleavage of 1,2-diarylethane radical cations in acetonitrile-water

    SciTech Connect

    Camaioni, D.M.; Franz, J.A.

    1984-05-04

    Radical cations of 1,2-diarylethanes and 1-phenyl-2-arylethanes (Ar = phenyl, p-tolyl, p-anisyl) were generated in acidic 70% acetonitrile-water by Cu/sup 2 +/-catalyzed peroxydisulfate oxidation. The radical cations fragment mainly by loss of benzylic protons (C-H cleavage) rather than by alkyl C-C bond cleavage. The 1,2-diarylethanol products undergo further selective oxidation to aryl aldehydes and arylmethanols via rapid equilibration of diarylethane and diarylethanol radical cations. The radical cation of 2,3-dimethyl-2,3-diphenylbutane fragments efficiently by C-C cleavage, forming cumyl radical and cumyl cation. Oxidations of bibenzyl-bicumyl mixtures show selective oxidation of bicumyl dependent on total substrate concentration, providing evidence of equilibrating radical cations and showing that bicumyl fragments faster than bibenzyl loses protons. The effects of reaction conditions and substrate structure on reactivity are discussed.

  1. Segregation of a binary mixture of granular particles

    NASA Astrophysics Data System (ADS)

    Yoon, Kook-Young

    Kinetic theory for a binary mixture of slightly inelastic particles, based on Maxwellian velocity distribution with corrections due to high density, is used to predict segregation of a binary mixture with species differing in sizes and material densities. The relative mean species velocities indicates segregation for a mixture uniformly agitated under gravity. Molecular dynamics simulations of elastic hard spheres and physical experiments with inelastic spheres in a cylindrical container vibrated at high normalized acceleration support this prediction. An analysis for a non-uniformly agitated mixture under gravity provides a general criterion for segregation. We establish the validity of equipartition assumption in this problem. Then, we introduce kinetic theory for mono-disperse disks with a friction model differentiating sticking and sliding collisions and derive a simple way of incorporating friction into theory with effective normal restitution coefficient. We linearize Revised Enskog Theory for a binary mixture of disks with small differences in sizes and masses. By solving a boundary value problem of the mixture sheared between two bumpy circular cells, we provide experimenters a concrete way of testing the theory. We then compare dense Maxwellian theory, from the first problem, with Revised Enskog Theory to see differences and their consequences on the prediction of segregation. In the absence of temperature gradient, with gravity present, they yield similar predictions. However, in the presence of temperature gradient, with gravity absent, they only agree at high volume fractions. Then, we describe a steady fully-developed flow on a bumpy incline, with a kinetic theory for mono-disperse spheres. We test the theory by attempting to reproduce three features of inclined flows from physical experiments and numerical simulations. On failing this, we describe modifications that may salvage the core of the theory with a few assumptions. A chain theory is

  2. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  3. Solubility of pyrene in binary alkane + 1-octanol solvent mixtures

    SciTech Connect

    Zvaigzne, A.I.; Acree, W.E. Jr.

    1995-09-01

    Solid-liquid equilibrium data of organic nonelectrolyte systems are becoming increasingly important in the petroleum industry, particularly in light of present trends toward heavier feedstocks and known carcinogenicity/mutagenicity of many of the larger polycyclic aromatic compounds. Experimental solubilities are reported for pyrene dissolved in seven binary mixtures containing 1-octanol with hexane, heptane, octane, cyclohexane, methylcyclohexane, 2,2,4-trimethylpentane, and (1,1-dimethylethyl)cyclohexane at 26 C. Results of these measurements are used to test two mathematical representations based upon the combined nearly ideal binary solvent (NIBS)/Redlich-Kister equation and modified Wilson model. For the system studied, the three-parameter combined NIBS/Redlich-Kister equation was found to provide the better mathematical representation, with deviations between experimental and back-calculated values being on the order of {+-}1.5% or lees. Slightly larger deviations were noted in the case of the two-parameter modified Wilson equation.

  4. Small Scale Evaporation Kinetics of a Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Basdeo, Carl; Ye, Dezhuang; Kalonia, Devendra; Fan, Tai-Hsi; Mechanical Engineering Team; Pharmaceutical Sciences Collaboration

    2013-03-01

    Evaporation induces a concentrating effect in liquid mixtures. The transient process has significant influence on the dynamic behaviors of a complex fluid. To simultaneously investigate the fluid properties and small-scale evaporation kinetics during the transient process, the quartz crystal microbalance is applied to a binary mixture droplet of light alcohols including both a single volatile component (a fast evaporation followed by a slow evaporation) and a mixture of two volatile components with comparable evaporation rates. The density and viscosity stratification are evaluated by the shear wave, and the evaporation kinetics is measured by the resonant signature of the acoustic p-wave. The evaporation flux can be precisely determined by the resonant frequency spikes and the complex impedance. To predict the concentration field, the moving interface, and the precision evaporation kinetics of the mixture, a multiphase model is developed to interpret the complex impedance signals based on the underlying mass and momentum transport phenomena. The experimental method and theoretical model are developed for better characterizing and understanding of the drying process involving liquid mixtures of protein pharmaceuticals.

  5. Critical adsorption and colloidal interaction in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Alam, Sharmine; Omari, Rami; Grabowski, Christopher; Mukhopadhyay, Ashis

    2015-03-01

    We studied critical adsorption on colloidal nanoparticles in binary liquid mixture of 2,6 lutidine + water by using fluorescence correlation spectroscopy (FCS). Our results indicated that the adsorbed film thickness is of the order of correlation length associated with concentration fluctuations. The excess adsorption per unit area increases following a power law in reduced temperature with an exponent of -1, which is the mean-field value for the bulk susceptibility exponent. The measurements at higher particle volume fractions, where particle-particle interaction becomes important, will be presented. Acknowledgements are made to the Donors of the American Chemical Society Petroleum Research fund (PRF # 51694-ND10) for support of this research.

  6. Microscopic theory for anisotropic pair correlations in driven binary mixtures

    NASA Astrophysics Data System (ADS)

    Kohl, Matthias; Ivlev, Alexei V.; Brandt, Philip; Morfill, Gregor E.; Löwen, Hartmut

    2012-11-01

    A self-consistent microscopic approach to calculate non-equilibrium pair correlations in strongly interacting driven binary mixtures is presented. The theory is derived from the many-body Smoluchowski equation for interacting Brownian particles by employing Kirkwood’s superposition approximation as a closure relation. It is shown that the pair correlations can exhibit notable anisotropy and a strong tendency to laning in the driving direction. Furthermore, there are strong indications that pair correlations are characterized by a long-range decay along the drive. The theoretical results are in good quantitative agreement with the complementary Brownian dynamics computer simulations.

  7. Asymptotic-preserving Boltzmann model equations for binary gas mixture

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.

  8. Asymptotic-preserving Boltzmann model equations for binary gas mixture.

    PubMed

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations. PMID:26986408

  9. Rayleigh-Brillouin Scattering in Binary-Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Ubachs, W.; Marques, W.; van de Water, W.

    2015-06-01

    Precise measurements are performed on spectral line shapes of spontaneous Rayleigh-Brillouin scattering in mixtures of the noble gases Ar and Kr, with He. Admixture of a light He atomic fraction results in marked changes of the spectra, although in all experiments He is merely a spectator atom: it affects the relaxation of density fluctuations of the heavy constituent, but its contribution to the scattered light intensity is negligibly small. The results are compared to a theory for the spectral line shape without adjustable parameters, yielding excellent agreement for the case of binary monatomic gases, signifying a step towards modeling and understanding of light scattering in more complex molecular media.

  10. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect

    Tashev, Bekbolat; Baimbetov, Fazylkhan; Deutsch, Claude; Fromy, Patrice

    2008-10-15

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  11. Bosonic binary mixtures with Josephson-type interactions

    NASA Astrophysics Data System (ADS)

    Souza, Valéria de C.; Arenas, Zochil González; Barci, Daniel G.; Linhares, Cesar A.

    2016-05-01

    Motivated by experiments in bosonic mixtures composed of a single element in two different hyperfine states, we study bosonic binary mixtures in the presence of Josephson interactions between species. We focus on a particular model with O(2) isospin symmetry, lifted by an imbalanced population parametrized by a Rabi frequency, ΩR, and a detuning, ν, which couples the phases of both species. We have studied the model at mean-field approximation plus Gaussian fluctuations. We have found that both species simultaneously condensate below a critical temperature Tc and the relative phases are locked by the applied laser phase, α. Moreover, the condensate fractions are strongly dependent on the ratio ΩR / ∣ ν ∣ that is not affected by thermal fluctuations.

  12. Mechanisms in size segregation of binary granular mixtures

    NASA Astrophysics Data System (ADS)

    Ulrich, Stephan; Kreft, Jennifer; Schröter, Matthias; Swift, Jack; Swinney, Harry

    2006-03-01

    Shaking of a mixture of large and small particles can lead to segregation. One distinguishes between the Brazil-nut effect (large particles go to the top) and its opposite, the reverse Brazil-nut effect. In this talk, experiments of vertically shaken binary mixtures are presented. Using image analysis, the number of large particles visible at the top and bottom of the granulate are counted to determine the state of segregation. By complementing these results with molecular dynamics simulations, we are able to identify different segregation mechanisms discussed in recent theoretical approaches: a geometrical mechanism called void filling, transport of particles in sidewall-driven convection rolls, and thermal diffusion, a mechanism predicted by kinetic theory.

  13. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  14. Energy landscape view of nonideality in binary mixtures.

    PubMed

    Abraham, Sneha Elizabeth; Chakrabarti, Dwaipayan; Bagchi, Biman

    2007-02-21

    Positive and negative deviations from the prediction of Raoult's Law on the composition dependence of a property of binary mixtures are often explained in terms of structure formation and structure breakage, respectively, upon mixing. However, a detailed theoretical description of these ideas seems to be lacking in the literature. Here we present the energy landscape view of nonideality of the viscosity of the binary mixture using two different models, one for structure former and the other for structure breaker. For both the models, the average inherent structure energy shows an inverse correlation with the viscosity. The inherent structures of the structure former indicate that there is a considerable enhancement of short range order due to stronger attractive interaction between the two constituent species. On the other hand, for the structure breaker, there is no such enhancement of short range order due to weaker interaction between the two constituent species. We find the inherent structures of the structure breaker to be phase separated in many cases where the parent phase is homogeneous. When the configurational entropy of the parent liquid is computed for the two model systems, we find that the configurational entropy also shows an inverse correlation with the viscosity in both the cases. PMID:17328614

  15. Interacting fronts in a model for binary-mixture convection

    SciTech Connect

    Riecke, H.; Herrero, H.

    1994-06-01

    Motivated by the observation of localized traveling-wave states (`pulses`) in convection in binary liquid mixtures, the interaction of fronts is investigated in a real Ginzburg-Landau equation which is coupled to a large-scale field. In that system the Ginzburg-Landau equation describes the traveling-wave amplitude and the large-scale field corresponds to a concentration mode which arises due to the slowness of mass diffusion. For single fronts the large-scale field can lead to a hysteretic transition between slow and fast fronts. Its contribution to the interaction between fronts can be attractive as well as repulsive and depends strongly on their direction of propagation. Based on this mechanism alone, pairs of fronts in binary-mixture convection are expected to form stable pulses if they travel backward, i.e. opposite to the linear group velocity. For positive velocities the interaction becomes attractive and destabilizes the pulses. This is in qualitative agreement with recent experimental results. This new localization mechanism does not require any dispersion in contrast to that operating in the complex Ginzburg-Landau equation.

  16. HPTLC Determination of Three Gliptins in Binary Mixtures with Metformin.

    PubMed

    El-Kimary, Eman I; Hamdy, Dalia A; Mourad, Sara S; Barary, Magda A

    2016-01-01

    A single, simple, selective and validated high performance thin layer chromatographic (HPTLC) method was developed for the determination of either linagliptin (LGP), saxagliptin (SGP) or vildagliptin (VGP) in their binary mixtures with metformin (MET) in pharmaceutical preparations using environmentally preferable green mobile phase system. Separation was carried out on Merck HPTLC aluminum sheets of silica gel 60 F254 using methanol-0.5% w/v aqueous ammonium sulfate (8 : 2, v/v) as mobile phase. Densitometric measurement of the spots was performed at 225 nm for LGP/MET mixture and at 208 nm for both SGP/MET and VGP/MET mixtures. The linear regression analysis data were used for the regression line in the range of 0.05-0.5 µg/band for LGP and SGP and 0.2-2 and 5-40 µg/band for VGP and MET, respectively. The method was validated and showed good performances in terms of linearity, limits of detection and quantitation, precision, accuracy, selectivity and specificity. The calculated percentage relative error values and percentage relative standard deviation for intra- and interday precision studies did not exceed 2%. The developed method was satisfactorily applied for the analysis of pharmaceutical preparations and proved to be specific and accurate for the quality control of the cited drugs in their dosage forms. PMID:26223462

  17. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  18. Elastic response and phase behavior in binary liquid crystal mixtures.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2016-05-11

    Utilizing density-of-states simulations, we perform a full mapping of the phase behavior and elastic responses of binary liquid crystalline mixtures represented by the multicomponent Lebwohl-Lasher model. Our techniques are able to characterize the complete phase diagram, including nematic-nematic phase separation predicted by mean-field theories, but previously not observed in simulations. Mapping this phase diagram permits detailed study of elastic properties across the miscible nematic region. Importantly, we observe for the first time local phase separation and disordering driven by the application of small linear perturbations near the transition temperature and more significantly through nonlinear stresses. These findings are of key importance in systems of blended nematics which contain particulate inclusions, or are otherwise confined. PMID:27093188

  19. Slow spinodal decomposition in binary liquid mixtures of polymers

    NASA Astrophysics Data System (ADS)

    Izumitani, Tatsuo; Hashimoto, Takeji

    1985-10-01

    Isothermal demixing process of binary polymer mixtures of SBR (styrene-butadiene random copolymer) and polybutadiene at deep quench depths was investigated by time-resolved light scattering technique. The results indicated that the systems undergo extremely slow spinodal decomposition of the type as adequately characterized by Cahn's linearized theory in the early stage and in the small q regime (q≲qmax≂105 cm-1) covered in this experiment where q is wave number of growing fluctuations and qmax is the q value having maximum growth rate. The spinodal decomposition studied in this work was that in the diffusion-control regime, and in the slowest case of the decomposition, the early stage was found to extend up to about 80 min, corresponding to the reduced time τ about 2.7. The shortest reduced time achieved in this experiment is about 0.03.

  20. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  1. Cyclic Segregation State in Vertically Vibrated Binary Granular Mixtures

    NASA Astrophysics Data System (ADS)

    Shi, Qingfan; Pan, Beicheng; Lu, Changhong; Sun, Gang

    2014-01-01

    In this paper, the vertically vibrated binary granular mixtures at atmospheric pressure are studied experimentally. We find a nonstationary segregation state, of which the structure changes with time cyclically. The period of the cyclic segregation is measured and its variation with the vibration conditions is shown. The transition between the segregation states is also discussed, and a phase diagram on the plot of frequency against acceleration amplitude is given. In order to observe the effect of air flow in the segregation process, an alternative container with ventilated bottom is designed. Our experiments show that both regions of the Brazil nut segregation state and the cyclic segregation state shrink obviously by use of the latter container and disappear completely if the whole system is placed in vacuum. These results testify that the air pressure plays a positive role in both the Brazil nut effect and cyclic segregation.

  2. Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

    PubMed

    Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V; Evans, Geoffrey M; Dao, Dzung V; Nguyen, Nam-Trung

    2016-06-21

    Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble containing a liquid binary mixture has not been reported before. The present paper investigates the effective density and the effective surface tension of an evaporating liquid marble that contains aqueous ethanol at relatively low concentrations. The effective density of an evaporating liquid marble is determined from the concurrent measurement of instantaneous mass and volume. Density measurements combined with surface profile fitting provide the effective surface tension of the marble. We found that the density and surface tension of an evaporating marble are significantly affected by the particle coating. PMID:27230102

  3. Particle segregation during explosive dispersal of binary particle mixtures

    NASA Astrophysics Data System (ADS)

    Frost, David; Loiseau, Jason; Marr, Bradley; Goroshin, Sam

    2015-06-01

    The explosive dispersal of a layer of solid particles surrounding a spherical high explosive charge generates a turbulent, multiphase flow. The shock-compacted particle layer typically fractures into discrete fragments which shed particles in their wakes forming jet-like structures. The tendency to form jets depends on the particle to explosive mass ratio and type of particles, with brittle particles (e.g., glass) as well as ductile metallic particles particularly susceptible to jet formation. In contrast, tough, dense (e.g., steel) particles are much less prone to forming jets. Experiments have been carried out to determine the degree of particle segregation that occurs during the explosive dispersal of a uniform binary mixture containing both ``jetting'' (silicon carbide) and ``non-jetting'' (steel) particles with various mass fractions of each particle type. During the dispersal of mixtures that contain predominantly non-jetting (steel) particles, the steel particles form a stable layer whereas the jetting (silicon carbide) particles rapidly segregate and form jets which lag behind the steel particles. As the fraction of silicon carbide particles increases, the jet structures dominate the particle motion and the steel particles are entrained into the jets.

  4. Percolation in binary and ternary mixtures of patchy colloids.

    PubMed

    Seiferling, Felix; de Las Heras, Daniel; Telo da Gama, Margarida M

    2016-08-21

    We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically and using Monte Carlo simulations. Each particle has three identical patches, with distinct species having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding probabilities using Wertheim's first-order perturbation theory for association. For ternary mixtures, we find up to eight fundamentally different percolated states. The states differ in terms of the species and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles have percolated, but none of the species percolates by itself. The competition between entropy of mixing and internal energy of bonding determines the stability of each state. Theoretical and simulation results are in very good agreement. The only significant difference is the temperature at the percolation threshold, which is overestimated by the theory due to the absence of correlations between bonds in the theoretical description. PMID:27544122

  5. Determination of interfacial tension of binary mixtures from perturbative approaches

    NASA Astrophysics Data System (ADS)

    Martínez-Ruiz, F. J.; Blas, F. J.

    2015-05-01

    We determine the interfacial properties of mixtures of spherical Lennard-Jones molecules from direct simulation of the vapour-liquid interface. We consider mixtures with same molecular size but different dispersive energy parameter values. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janeček, presented recently by MacDowell and Blas and Martínez-Ruiz et al., to deal with the interaction energy and microscopic components of the pressure tensor. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of mixtures of Lennard-Jones molecules with a cut-off distance rc = 3σ in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The vapour-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, and interfacial thickness as functions of pressure, at a given temperature. According to our results, the main effect of increasing the ratio between the dispersive energy parameters of the mixture, ε22/ε11, is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative maximum in the density profiles of the less volatile component at the interface. This maximum is related with adsorption or accumulation of these molecules at the interface, a direct consequence of stronger attractive interactions between these molecules in

  6. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures.

    PubMed

    Krishnan, Kannan; Haddad, Sami; Béliveau, Martin; Tardif, Robert

    2002-12-01

    The available data on binary interactions are yet to be considered within the context of mixture risk assessment because of our inability to predict the effect of a third or a fourth chemical in the mixture on the interacting binary pairs. Physiologically based pharmacokinetic (PBPK) models represent a potentially useful framework for predicting the consequences of interactions in mixtures of increasing complexity. This article highlights the conceptual basis and validity of PBPK models for extrapolating the occurrence and magnitude of interactions from binary to more complex chemical mixtures. The methodology involves the development of PBPK models for all mixture components and interconnecting them at the level of the tissue where the interaction is occurring. Once all component models are interconnected at the binary level, the PBPK framework simulates the kinetics of all mixture components, accounting for the interactions occurring at various levels in more complex mixtures. This aspect was validated by comparing the simulations of a binary interaction-based PBPK model with experimental data on the inhalation kinetics of m-xylene, toluene, ethyl benzene, dichloromethane, and benzene in mixtures of varying composition and complexity. The ability to predict the kinetics of chemicals in complex mixtures by accounting for binary interactions alone within a PBPK model is a significant step toward the development of interaction-based risk assessment for chemical mixtures. PMID:12634130

  7. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2013-04-01

    We study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. We conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  8. Superlattice Formation in Binary Mixtures of Block Copolymer Micelles

    SciTech Connect

    Abbas, Sayeed; Lodge, Timothy P.

    2008-08-26

    Two distinct diblock copolymers, poly(styrene-b-isoprene) (SI) and poly(styrene-b-dimethylsiloxane) (SD), were codissolved at various concentrations in the polystyrene selective solvent diethyl phthalate. Two SI diblocks, with block molar masses of 12000-33000 and 30000-33000, and two SD diblocks, with block molar masses of 19000-6000 and 16000-9000, were employed. The size ratio of the smaller SD micelles (S) to the larger SI micelles (L) varied from approximately 0.5 to 0.6, based on hydrodynamic radii determined by dynamic light scattering on dilute solutions containing only one polymer component. Due to incompatibility between the polyisoprene and polydimethylsiloxane blocks, a binary mixture of distinct SI and SD micelles was formed in each mixed solution, as confirmed by cryogenic transmission electron microscopy. When the total concentration of polymer was increased to 20--30%, the micelles adopted a superlattice structure. Small angle X-ray scattering revealed the lattice to be the full LS{sub 13} superlattice (space group Fm{sub 3}c) in all cases, with unit cell dimensions in excess of 145 nm. A coexistent face-centered cubic phase composed of SD micelles was also observed when the number ratio of S to L micelles was large.

  9. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  10. Decomposition and interface evolution in films of binary mixtures

    NASA Astrophysics Data System (ADS)

    Madruga, Santiago; Bribesh, Fathi; Thiele, Uwe

    2011-11-01

    Model-H describes the coupled transport of concentration and momentum in binary mixtures such as polymer blends. Films of polymer blends are used in technological applications that involve coatings or the creation of structural functional layers. We use an extended version of the model-H for free evolving surfaces to analyze the stability of vertically stratified base states of polymer blends on a solid substrate. We determine the bifurcation diagram of the films by studying their free energy, and L2-norms of surface deflection and concentration field. We provide results for selected mean film thickness with and without energetic bias at the free surface and discuss the role of composition in extended and laterally bounded systems. In addition, we show that the inclusion of convective transport leads to new mechanisms of instability as compared to the purely diffusive case,. S.M. acknowledges support via FP7 Marie Curie Reintegration Grant (PERG04-GA-2008-234384), and U.T. by EU via FP7 (PITN-GA-2008-214919).

  11. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  12. New thermal diffusion coefficient measurements for hydrocarbon binary mixtures: viscosity and composition dependency.

    PubMed

    Leahy-Dios, Alana; Zhuo, Lin; Firoozabadi, Abbas

    2008-05-22

    New thermal diffusion coefficients of binary mixtures are measured for n-decane-n-alkanes and 1-methylnaphthalene-n-alkanes with 25 and 75 wt % at 25 degrees C and 1 atm using the thermogravitational column technique. The alkanes range from n-pentane to n-eicosane. The new results confirm the recently observed nonmonotonic behavior of thermal diffusion coefficients with molecular weight for binary mixtures of n-decane- n-alkanes at the compositions studied. In this work, the mobility and disparity effects on thermal diffusion coefficients are quantified for binary mixtures. We also show for the binary mixtures studied that the thermal diffusion coefficients and mixture viscosity, both nonequilibrium properties, are closely related. PMID:18438988

  13. The behavioral detection of binary mixtures of amino acids and their individual components by catfish.

    PubMed

    Valentincic, T; Kralj, J; Stenovec, M; Koce, A; Caprio, J

    2000-11-01

    The question of whether a binary mixture of amino acids is detected by fish as a unique odor or whether the qualities of the individual components are retained within the mixture was investigated in channel (Ictalurus punctatus) and brown bullhead (Ameiurus nebulosus) catfish, species that are highly similar in their olfactory receptor and behavioral responses to amino acid odorants. Catfish respond with greater appetitive food-searching (swimming) behavior to amino-acid-conditioned olfactory stimuli than to non-conditioned amino acids. In the present study, appetitive food-searching behavior was measured by counting the number of turns of the fish greater than 90 degrees within 90 s of stimulus onset and, in some tests, by video tracking. The two methods yielded highly correlated results. Channel catfish conditioned to a binary mixture composed of equimolar amino acids responded with searching behavior to the amino acid that produced the larger-amplitude electro-olfactogram (EOG) response as they did to the conditioned stimulus. In further studies, bullhead catfish were conditioned either to a binary mixture or to a single amino acid and tested to determine whether a binary mixture was detected as the component evoking the larger EOG response. In all initial tests (trials 1-3), the more stimulatory component of a binary mixture was not discriminated from the binary mixture; however, the less stimulatory component and all other amino acids tested were discriminated from the mixture. By increasing the concentration of the originally less potent component in a binary mixture, making it the more stimulatory compound, it was now detected as not significantly different from the binary mixture; however, the original more potent component (i.e. now the less potent stimulus) was detected as significantly different from the mixture. However, with 5-10 additional discrimination training trials, the less stimulatory component in a binary mixture influenced the perception of

  14. Taste responses to binary mixtures of amino acids in the sea catfish, Arius felis.

    PubMed

    Kohbara, J; Caprio, J

    1996-02-01

    In vivo electrophysiological recordings in the sea catfish, Arius felis, showed that the magnitude of the integrated facial taste responses to binary mixtures of amino acids was predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. Each component from which equal aliquots were drawn to form the mixtures was adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the taste responses to binary mixtures whose component amino acids showed minimal cross-adaptation was significantly greater than that to binary mixtures whose components exhibited considerable cross-reactivity. There was no evidence for mixture suppression. The relative magnitude of the taste responses in the sea catfish to stimulus mixtures is similar to that previously reported for olfactory receptor responses in the freshwater channel catfish and chorda tympani taste responses in the hamster. PMID:8646491

  15. Collective motion of binary self-propelled particle mixtures

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2012-02-01

    In this study, we investigate the phenomenon of collective motion in binary mixtures of self-propelled particles. More precisely, we consider two particle species, each of which consisting of pointlike objects that propel with a velocity of constant magnitude. Within each species, the particles try to achieve polar alignment of their velocity vectors, whereas we analyze the cases of preferred polar, antiparallel, as well as perpendicular alignment between particles of different species. Our focus is on the effect that the interplay between the two species has on the threshold densities for the onset of collective motion and on the nature of the solutions above onset. For this purpose, we start from suitable Langevin equations in the particle picture, from which we derive mean field equations of the Fokker-Planck type and finally macroscopic continuum field equations. We perform particle simulations of the Langevin equations and linear stability analyses of the Fokker-Planck and macroscopic continuum equations, and we numerically solve the Fokker-Planck equations. Both spatially homogeneous and inhomogeneous solutions are investigated, where the latter correspond to stripelike flocks of collectively moving particles. In general, the interaction between the two species reduces the threshold density for the onset of collective motion of each species. However, this interaction also reduces the spatial organization in the stripelike flocks. The case that shows the most interesting behavior is the one of preferred perpendicular alignment between different species. There a competition between polar and truly nematic orientational ordering of the velocity vectors takes place within each particle species. Finally, depending on the alignment rule for particles of different species and within certain ranges of particle densities, identical and inverted spatial density profiles can be found for the two particle species. The system under investigation is confined to two spatial

  16. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, X.; Narteau, C.; Rozier, O.

    2012-12-01

    Polydisperse granular materials are ubiquitous in the field of geomorphology. Nevertheless, it remains a challenge to address the impact of segregation, stratification and mixing on landscape dynamics and sediment transport. Here, we study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. Not surprisingly, we conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  17. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  18. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.

    PubMed

    Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K

    2006-11-01

    An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895

  19. Combining ability of binary mixtures of introduced, cool- and warm-season grasses and legumes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When two forage species are grown together they can be compatible, compete, or interact with each other. We estimated the combining ability effects for introduced, cool- and warm-season grasses and legumes grown in binary mixtures in NW Oklahoma. Six pure stands and 15 mixtures were transplanted int...

  20. Instability in evaporative binary mixtures. I. The effect of solutal Marangoni convection

    NASA Astrophysics Data System (ADS)

    Uguz, K. E.; Narayanan, R.

    2012-09-01

    The instability of an evaporating binary mixture underlying its own vapor in an enclosed container is investigated. The fluid dynamics of both liquid and vapor phases, in the absence of gravity, are taken into account as also a deflecting interface. It is concluded from calculations, exemplified by a low weight alcohol mixture, that unlike single component systems a non-dilute binary mixture can become unstable only when it is heated from the vapor side. This instability is caused by solutal Marangoni convection that is triggered in the presence of phase change.

  1. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  2. Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: fluorescence correlation spectroscopy.

    PubMed

    Chattoraj, Shyamtanu; Chowdhury, Rajdeep; Ghosh, Shirsendu; Bhattacharyya, Kankan

    2013-06-01

    Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffusion coefficient (Dt). In contrast, in the binary mixtures all of them display a bimodal distribution of Dt with broadly two components. One of the components of D(t) corresponds to the bulk viscosity. The other one is similar to that in pure DMSO. This clearly indicates the presence of two distinctly different nano-domains inside the binary mixture. In the first, the micro-environment of the solute consists of both DMSO and glycerol approximately at the bulk composition. The other corresponds to a situation where the first layer of the solute consists of DMSO only. The burst integrated fluorescence lifetime (BIFL) analysis also indicates presence of two micro-environments one of which resembles DMSO. The relative contribution of the DMSO-like environment obtained from the BIFL analysis is much larger than that obtained from FCS measurements. It is proposed that BIFL corresponds to an instantaneous environment in a small region (a few nm) around the probe. FCS, on the contrary, describes the long time trajectory of the probes in a region of dimension ~200 nm. The results are explained in terms of the theory of binary mixtures and recent simulations of binary mixtures containing DMSO. PMID:23758388

  3. Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: Fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chattoraj, Shyamtanu; Chowdhury, Rajdeep; Ghosh, Shirsendu; Bhattacharyya, Kankan

    2013-06-01

    Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffusion coefficient (Dt). In contrast, in the binary mixtures all of them display a bimodal distribution of Dt with broadly two components. One of the components of Dt corresponds to the bulk viscosity. The other one is similar to that in pure DMSO. This clearly indicates the presence of two distinctly different nano-domains inside the binary mixture. In the first, the micro-environment of the solute consists of both DMSO and glycerol approximately at the bulk composition. The other corresponds to a situation where the first layer of the solute consists of DMSO only. The burst integrated fluorescence lifetime (BIFL) analysis also indicates presence of two micro-environments one of which resembles DMSO. The relative contribution of the DMSO-like environment obtained from the BIFL analysis is much larger than that obtained from FCS measurements. It is proposed that BIFL corresponds to an instantaneous environment in a small region (a few nm) around the probe. FCS, on the contrary, describes the long time trajectory of the probes in a region of dimension ˜200 nm. The results are explained in terms of the theory of binary mixtures and recent simulations of binary mixtures containing DMSO.

  4. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  5. Glossopharyngeal taste responses of the channel catfish to binary mixtures of amino acids.

    PubMed

    Ogawa, K; Caprio, J

    2000-10-01

    This study examines the neural processing of binary mixtures in the glossopharyngeal (IX) taste system of the channel catfish, Ictalurus punctatus, and finds that the nature of the components of a mixture determines the intensity of the neural response to it. Taste buds in fish innervated by IX are located along the gill rakers of the first gill arch and rostral floor of the oral cavity, and function primarily in the consummatory phase of feeding behavior; however, few studies of IX taste responses have been reported in any species of teleost. Here, we report IX taste responses to eight different binary mixtures of amino acids whose components were adjusted to be approximately equipotent in electrophysiological recordings. Four binary (group I) mixtures whose components were indicated from prior electrophysiological cross-adaptation experiments to bind to independent receptor sites resulted in significantly larger (22% average increase) integrated IX taste activity than four other (group II) binary mixtures whose components were indicated to bind to the same or highly cross-reactive receptor sites. These results are similar to those observed previously from facial nerve recordings in channel catfish, and to olfactory and taste responses in other vertebrate and invertebrate species. The group I results help to explain behavioral observations that chemical mixtures of chemosensory stimuli are often more stimulatory than their individual components. PMID:11015321

  6. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  7. Correlation and prediction of thermodynamic properties of binary mixtures from perturbed chain statistical associating fluid theory

    NASA Astrophysics Data System (ADS)

    Almasi, Mohammad

    2014-11-01

    Densities and viscosities for binary mixtures of Diethanolamine (DEA) + 2 alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15-323.15 K. From the density and viscosity data, values of various properties such as isobaric thermal expansibility, excess isobaric thermal expansibility, partial molar volumes, excess molar volumes and viscosity deviations were calculated. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the intermolecular interactions between the unlike molecules of the binary mixtures. The ability of the perturbed chain statistical associating fluid theory (PC-SAFT) to correlate accurately the volumetric behavior of the binary mixtures is demonstrated.

  8. Prediction of surface tension of binary mixtures with the parachor method

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2015-05-01

    The parachor method for the estimation of the surface tension of binary mixtures is modified by considering temperature-dependent values of the parachor parameters. The temperature dependence is calculated by a least-squares fit of pure-solvent surface tension data to the binary parachor equation utilizing the Peng-Robinson equation of state for the calculation of equilibrium densities. A very good agreement between experimental binary surface tension data and the predictions of the modified parachor method are found for the case of the mixtures of carbon dioxide and butane, benzene, and cyclohexane, respectively. The surface tension is also predicted for three refrigerant mixtures, i.e. propane, isobutane, and chlorodifluoromethane, with carbon dioxide.

  9. Drag Coefficient of a Spherical Droplet Immersed in a Near-Critical Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei

    2014-02-01

    We consider a spherical liquid droplet immersed in a near-critical binary fluid mixture. A weak preferential attraction is assumed between the droplet and one of the two mixture components, and the difference in the viscosity is neglected between the mixture components. Using the Gaussian free-energy functional, we calculate the drag coefficient of a droplet. Whether it is increased or decreased by the preferential attraction turns out to depend on the bulk correlation length and the ratio of the viscosity of the surrounding mixture to that of the droplet.

  10. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  11. Undergraduate experiment in critical phenomena. II. The coexistence curve of a binary fluid mixture

    NASA Astrophysics Data System (ADS)

    Ngubane, S. B.; Jacobs, D. T.

    1986-06-01

    An undergraduate experiment is described that uses meniscus heights to determine the coexistence curve of a binary fluid mixture. The data can be obtained with a minimum of equipment and yield results that are easily interpreted by the theory also presented. Data taken on the binary liquid mixture methanol-isooctane are presented and analyzed. The critical temperature and composition were found to be (42.5±0.5) °C and (67.3±0.2)% by volume isooctane, respectively.

  12. Thermodynamic properties and diffusion of water + methane binary mixtures.

    PubMed

    Shvab, I; Sadus, Richard J

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298-650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions. PMID:24628180

  13. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  14. Quantum demixing in binary mixtures of dipolar bosons

    SciTech Connect

    Jain, Piyush; Boninsegni, Massimo

    2011-02-15

    Quantum Monte Carlo simulations of a two-component Bose mixture of trapped dipolar atoms of identical masses and dipole moments, provide numerical evidence of demixing at low finite temperatures. Demixing occurs as a consequence of quantum statistics, which results in an effective attraction between like bosons. Spatial separation of two components takes place at low temperature with the onset of long exchanges of identical particles, underlying Bose-Einstein condensation of both components. Conversely, at higher temperature the system is miscible due to the entropy of mixing. Exchanges are also found to enhance demixing in the case of mixtures of nonidentical and distinguishable species.

  15. Adiabatic evaporation of binary liquid mixtures on the porous ball surface

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2009-06-01

    Measured data for the temperature of a porous spherical surface to which an evaporating binary liquid mixture was supplied are reported. In the experiments, solutions of ethyl and methyl alcohols in water, and also solutions of acetone in water, were used. The concentration of mixture components was varied throughout the widest possible range of X L = 0-1, and the temperature of dry air flow past the sphere was in the range t 0 = 15-300 °C. In the present study, a strong influence of the composition of the mixtures on their adiabatic evaporation temperature was established. In the heat- and mass-transfer process, the air temperature is also of paramount importance. An experimental correlation is obtained which generalizes data on adiabatic evaporation temperature in a broad range of component concentrations and temperatures for the experimentally examined binary liquid mixtures.

  16. Sub-shock formation in Grad 10-moment equations for a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Bisi, Marzia; Conforto, Fiammetta; Martalò, Giorgio

    2015-09-01

    The shock structure problem for Grad 10-moment equations for an inert binary mixture is investigated: necessary conditions for the formation of sub-shocks in fields of only one gas or of both components are rigorously obtained, and a detailed comparison with the shock-wave structure of its principal sub-system (deduced assuming vanishing viscous stress tensors) and of the equilibrium Euler sub-system is performed. Some numerical simulations for a mixture of argon and helium are presented.

  17. Excess heat capacity in liquid binary alkali-fluoride mixtures.

    PubMed

    Beilmann, M; Beneš, O; Capelli, E; Reuscher, V; Konings, R J M; Fanghänel, Th

    2013-03-01

    Using drop calorimetry, we measured enthalpy increments of the LiF-KF, LiF-RbF, and LiF-CsF binary systems at temperatures above the melting point. Ten samples with different compositions (four compositions for LiF-KF, one composition for LiF-RbF, and five compositions for LiF-CsF) were prepared and measured between 884 K and 1382 K. To protect the calorimeter from corrosive fluoride vapor at high temperature, an encapsulating technique developed for this purpose was used. The samples were filled in nickel containers that were sealed by laser welding and afterward used for the measurements. From the obtained results, we derived the molar heat capacity functions of the respective samples. The heat capacities of the samples, having different compositions of the same binary system, were compared with the values for ideal behavior and the excess heat capacity function was determined for the entire composition range of the liquid solution. It was found that the excess heat capacities clearly depend on the cation radius and increase in the following order: LiF-NaF < LiF-KF < LiF-RbF < LiF-CsF. PMID:23421448

  18. Demixing in binary mixtures of apolar and dipolar hard spheres

    NASA Astrophysics Data System (ADS)

    Almarza, N. G.; Lomba, E.; Martín, C.; Gallardo, A.

    2008-12-01

    We study the demixing transition of mixtures of equal size hard spheres and dipolar hard spheres using computer simulation and integral equation theories. Calculations are carried out at constant pressure, and it is found that there is a strong correlation between the total density and the composition. The critical temperature and the critical total density are found to increase with pressure. The critical mole fraction of the dipolar component on the contrary decreases as pressure is augmented. These qualitative trends are reproduced by the theoretical approaches that on the other hand overestimate by far the value of the critical temperature. Interestingly, the critical parameters for the liquid-vapor equilibrium extrapolated from the mixture results in the limit of vanishing neutral hard sphere concentration agree rather well with recent estimates based on the extrapolation of charged hard dumbbell phase equilibria when dumbbell elongation shrinks to zero [G. Ganzenmüller and P. J. Camp, J. Chem. Phys. 126, 191104 (2007)].

  19. Benard convection in binary mixtures with Soret effects and solidification

    NASA Technical Reports Server (NTRS)

    Zimmermann, G.; Mueller, U.; Davis, S. H.

    1992-01-01

    Benard convection was studied in a two-component liquid which displayed Soret effects (Soret, 1879; DeGroot and Mazur, 1969) and in which the temperatures of the horizontal boundaries spanned the solidification temperature of the mixture. A steady basic state was observed, in which the layer is partly liquid (near the lower, heated plate) and partly solid (near the upper, cooled plate) with the interface being planar, and in which all transport is by conduction and diffusion. Linear stability of the basic state was examined to determine how the presence of solid and the ability of the material to solidify or melt under disturbance affects the critical conditions from the onset of instability. The theoretical results obtained for cases when the phase change is absent and when the Soret effects are absent (but the phase change is present) are compared with an experiment using alcohol-water mixtures.

  20. Establishment and yield of perennial grass monocultures and binary mixtures for bioenergy in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop appropriate bioenergy production systems to match site-specific situations, establishment and yield were evaluated for switchgrass, intermediate wheatgrass, tall wheatgrass, and three binary mixtures at four sites in North Dakota from 2006 to 2011. Canopy cover at harvest for intermediat...

  1. Combining nitrogen fertilizer with poultry litter in a binary mixture of tall fescue and bermudagrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem when poultry litter is applied to pastures in the southeastern USA is the buildup of soil P because of the difference in N-P-K ratio of the litter and plant requirements. This 2-yr study tested the theory that if the N requirement of a tall fescue-bermudagrass binary mixture is only...

  2. Solitary-wave solutions in binary mixtures of Bose-Einstein condensates under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Smyrnakis, J.; Magiropoulos, M.; Kavoulakis, G. M.; Jackson, A. D.

    2013-01-01

    We derive solitary-wave solutions within the mean-field approximation in quasi-one-dimensional binary mixtures of Bose-Einstein condensates under periodic boundary conditions, for the case of an effective repulsive interatomic interaction. The particular gray-bright solutions that give the global energy minima are determined. Their characteristics and the associated dispersion relation are derived.

  3. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  4. Phase behaviors of binary mixtures composed of banana-shaped and calamitic mesogens

    NASA Astrophysics Data System (ADS)

    Cvetinov, M.; Z. Obadovic, D.; Stojanovic, M.; Vajda, A.; Fodor-Csorba, K.; Eber, N.; Ristic, I.

    2014-09-01

    In this work, five mixtures with different concentrations of banana-shaped and calamitic compounds have been prepared and subsequently studied by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction on non-oriented samples. The phase sequences and molecular parameters of the binary systems are presented.

  5. Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data

    NASA Astrophysics Data System (ADS)

    Shukla, Rajeev K.; Kumar, Atul; Srivastava, Urvashi; Srivastava, Kirti; Pandey, Vivek K.

    2016-09-01

    Density and acoustic velocity were measured for binary liquid mixtures of formamide, N-methylacetamide (NMA), dimethylformamide (DMF), and dimethylacetamide (DMA) with acetonitrile at atmospheric pressure and 293.15 K, 298.15 K, 303.15 K, 308.15 K, or 313.15 K over the concentration range 0.12 to 0.97. Models assuming association and nonassociation of the components of the mixtures were used to predict the behavior of the studied liquids, which would typically show weak interactions. The measured properties were fitted to the Redlich-Kister polynomial to estimate the binary coefficients and standard errors. The data were used to study the molecular interactions in the binary mixtures. Furthermore, the McAllister multibody interaction model was used to correlate the properties of the binary liquid mixtures. Testing of the nonassociation and association models for the different systems showed that, compared with the nonassociation model theoretical results, the association model theoretical results were more consistent with the experimental results.

  6. Description of concentration fluctuations in liquid binary mixtures with nonadditive potentials

    SciTech Connect

    Osman, S.M.; Singh, R.N. )

    1995-01-01

    The segregation or phase separation in a binary mixture is investigated within a quasilattice model and the hard-sphere-like model. The hard-sphere results are improved by incorporating a nonadditive attractive tail interaction. An analytic expression for the concentration fluctuation [ital S][sub [ital c][ital c

  7. NEUROBEHAVIORAL EVALUATIONS OF BINARY AND TERTIARY MIXTURES OF CHEMICALS: LESSIONS LEARNING.

    EPA Science Inventory

    The classical approach to the statistical analysis of binary chemical mixtures is to construct full dose-response curves for one compound in the presence of a range of doses of the second compound (isobolographic analyses). For interaction studies using more than two chemicals, ...

  8. Thermal characteristics of oleochemical carbonate binary mixtures for potential latent heat storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study examines the thermal properties of melting and solidification for binary mixtures between dodecyl carbonate (1a), tetradecyl carbonate (1b), hexadecyl carbonate (1c), and octadecyl carbonate (1d) by differential scanning calorimetry (DSC) in order to gain further understanding of t...

  9. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    SciTech Connect

    Govindaiah, T. N. Sreepad, H. R.; Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  10. In vivo responses of single olfactory receptor neurons of channel catfish to binary mixtures of amino acids.

    PubMed

    Kang, J; Caprio, J

    1997-01-01

    For the first time in any vertebrate, in vivo responses of single olfactory receptor neurons to odorant mixtures were studied quantitatively. Extracellular electrophysiological response of 54 single olfactory receptor neurons from 23 channel catfish, Ictalurus punctatus, to binary mixtures of amino acids and to their components were recorded simultaneously with the electroolfactogram (EOG). For 57% (73 of 128) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 55 tests of binary mixtures were excitatory (E; 13%) or suppressive (S; 30%). No response type was associated with any specific mixture across the neurons sampled. Eighty-six percent of the responses of catfish olfactory receptor neurons to binary mixtures were classified similar to at least one of the component responses, a percentage comparable (i.e., 89%) with that observed for single olfactory bulb neurons in the same species to equivalent binary mixtures. The responses of single olfactory receptor neurons to component-similar binary mixtures (i.e., component responses were both E, both S, and both N, respectively) were generally (80% of 59 tests) classified similar to the responses to the components. For E+N and S+N binary mixtures, the N component often (66% of 58 tests) reduced or concealed (i.e., "masked") the excitatory and suppressive responses, respectively. For the majority (6 of 11 tests) of E + S binary mixtures, null activity resulted. Responses to the remaining five tests were either excitatory (n = 3) or suppressive (n = 2). PMID:9120550

  11. Evaluation of binary solvent mixtures for efficient monoacylglycerol production by continuous enzymatic glycerolysis.

    PubMed

    Damstrup, Marianne L; Abildskov, Jens; Kiil, Søren; Jensen, Anker D; Sparsø, Flemming V; Xu, Xuebing

    2006-09-20

    This study was aimed at evaluating different binary solvent mixtures for efficient industrial monoacylglycerol (MAG) production by enzymatic glycerolysis. Of all investigated cases, the binary mixture of tert-butanol:tert-pentanol (TB:TP) 80:20 vol % was the most suitable organic medium for continuous enzymatic glycerolysis, ensuring high MAG formation in a short time, reasonable solvent price, and easy handling during distillation/condensation processing. A minimum solvent dosage of 44-54 wt % of the reaction mixture was necessary to achieve high MAG yields of 47-56 wt %, within 20 min. The melting and boiling points of the TB:TP mixture were estimated to be 7 and 85 degrees C, respectively, using thermodynamic models. These predictions were in good agreement with experimentally determined values. In spite of the high reaction efficiency in the binary TB:TP system, the mixture of glycerol and sunflower oil (containing 97.1% triacylglycerol) yielded surprisingly a liquid/liquid phase split behavior even at high temperatures (>80 degrees C). This in contrast to thermodynamic model calculations suggested full miscibility in all proportions. These findings suggest that enhanced reaction efficiency in organic solvent also depends upon aspects other than the system homogeneity such as reduced viscosity, reduced mass transfer limitations, and the accessibility of the substrate to the active site of the enzyme. PMID:16968070

  12. Phase Diagrams and Ordering in Charged Membranes: Binary Mixtures of Charged and Neutral Lipids.

    PubMed

    Shimokawa, Naofumi; Himeno, Hiroki; Hamada, Tsutomu; Takagi, Masahiro; Komura, Shigeyuki; Andelman, David

    2016-07-01

    We propose a model describing the phase behavior of two-component membranes consisting of binary mixtures of electrically charged and neutral lipids. We take into account the structural phase transition (main-transition) of the hydrocarbon chains, and investigate the interplay between this phase transition and the lateral phase separation. The presence of charged lipids significantly affects the phase behavior of the multicomponent membrane. Due to the conservation of lipid molecular volume, the main-transition temperature of charged lipids is lower than that of neutral ones. Furthermore, as compared with binary mixtures of neutral lipids, the membrane phase separation in binary mixtures of charged lipids is suppressed, in accord with recent experiments. We distinguish between two types of charged membranes: mixtures of charged saturated lipid/neutral unsaturated lipid and a second case of mixtures of neutral saturated lipid/charged unsaturated lipid. The corresponding phase behavior is calculated and shown to be very different. Finally, we discuss the effect of added salt on the phase separation and the temperature dependence of the lipid molecular area. PMID:27141936

  13. Combined concentration and temperature-induced Marangoni convection in a binary mixture

    SciTech Connect

    Suzuki, Yuji; Noguchi, Suguru; Longtin, J.P.; Hijikata, Kunio

    1996-12-31

    In binary and multi-component mixtures, surface-tension-driven flow, i.e., Marangoni convection, can arise from both concentration and temperature gradients at the liquid surface. Depending on the liquids, concentration effects can complement or oppose temperature effects, which is important for many areas of engineering interest, e.g., mixing, solidification, distillation, evaporation, and drying. This work experimentally investigates combined temperature and concentration-induced Marangoni convection for an ethanol-water binary mixture in an enclosed cell with heated and cooled walls. Velocity profiles are obtained using a photochromic dye technique, and concentration variation at the liquid surface is measured using an interferometric technique. The results indicate that concentration effects dominate at 50/50 and 80/20 ethanol-water volume percent mixtures, resulting in a large surface velocity in the opposite direction to the bulk flow. Concentration effects can be arrested by exposing the free liquid surface to non-condensable gas at atmospheric pressure.

  14. Dissipative particle dynamics simulation study on the binary mixture phase separation coupled with polymerization.

    PubMed

    Liu, Hong; Qian, Hu-Jun; Zhao, Ying; Lu, Zhong-Yuan

    2007-10-14

    The influence of polymerization on the phase separation of binary immiscible mixtures has been investigated by the dissipative particle dynamics simulations in two dimensions. During polymerization, the bulk viscosity increases, which consequently slows down the spinodal decomposition process. The domain size growth is monitored in the simulations. The absence of 23 exponent for inertial hydrodynamic mechanism clearly reflects the suppressing effect of polymerization on the phase separation. Due to the increasing viscosity, the individual phase may be trapped in a metastable stage instead of the lamellar morphology identified for symmetric mixtures. Moreover, the polymerization induced phase separation in the binary miscible mixture has been studied. The domain growth is strongly dependent on the polymerization probability, which is naturally related to the activation energy for polymerization. The observed complex phase separation behavior is attributed to the interplay between the increasing thermodynamic driving force for phase separation and the increasing viscosity that suppresses phase separation as the polymerization proceeds. PMID:17935435

  15. Volumetric properties of binary mixtures of benzene with cyano-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Bustam, Mohamad Azmi; Moniruzzaman, Muhammad; Murugesan, Thanabalan

    2014-10-01

    The objective of this study is to investigate the volumetric properties of the binary mixtures comprised benzene and two ionic liquids, 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) and 1-butyl-3-methyl- imidazolium dicyanamide ([ BMIM ][ N ( CN )2]( . Densities (ρ) and viscosities (μ) of the binary mixtures were measured over a temperature range of 293.15 to 323.15 K and at atmospheric pressure. Excess molar volumes and viscosity deviations were calculated from the experimental densities and viscosities values. The volumetric properties of the mixtures were changed significantly with the change of compositions and temperatures. It was also found that the value of excess molar volume and viscosity deviations were negative (-ve) over the entire range of compositions. The results have been interpreted in terms of molecular interactions of ILs and benzene.

  16. Critical Lines in Binary Mixtures of Components with Multiple Critical Points

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    The principal aim of this work is a comprehensive analysis of the fluid phase behavior of binary fluid mixtures via the van der Waals like equation of state (EoS) which has a multiplicity of critical points in metastable region. We test the modified van der Waals equation of state (MVDW) proposed by Skibinski et al. (2004) which displays a complex phase behavior including three critical points and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). An improvement of repulsive part doesn't change a topological picture of phase behavior in the wide range of thermodynamic variables. The van der Waals attractive interaction and excluded volume for mixture are calculated from classical mixing rules. Critical lines in binary mixtures of type III of phase behavior in which the components exhibit polyamorphism are calculated and a continuity of fluid-fluid critical line at high pressure is observed.

  17. Chiral conglomerates observed for a binary mixture of a nematic liquid crystal trimer and 6OCB.

    PubMed

    Yoshizawa, Atsushi; Kato, Yusuke; Sasaki, Haruna; Takanishi, Yoichi; Yamamoto, Jun

    2015-12-01

    Dark conglomerates of domains with opposite handedness, which are designated as dark conglomerate phases (DC phases), have attracted much attention. After designing an achiral liquid crystal trimer, 4,4′-bis{7-[4-(5-octyloxypyrimidin-2-yl)phenyloxy]heptyloxy}biphenyl (1), which exhibits only a nematic phase, we prepared binary mixtures with some typical rod-like nematic liquid crystals, i.e., 4′-hexyloxy-4-cyanobiphenyl (6OCB), 2-(4-hexyloxyphenyl)-5-pentyloxypyrimidine (PPY), or 4-methyloxyphenyl 4-hexyloxycyclohexanecarboxylate (PCA), and investigated their phase transition behaviour. The binary mixtures containing 55–90 mol% of 6OCB were found to exhibit a nematic phase and a DC phase of chiral domains with opposite handedness. However, neither PPY nor PCA induced such a chiral conglomerate phase in the mixture with trimer 1. We discuss how core–core interactions contribute to produce such a chiral conglomerate phase. PMID:26395546

  18. Dynamics of binary phase separation in liquid He-3-He-4 mixtures

    NASA Technical Reports Server (NTRS)

    Hoffer, J. K.; Sinha, D. N.

    1986-01-01

    Binary phase-separation dynamics in liquid mixtures of He-3 and He-4 has been investigated near the tricritical point with laser-light scattering techniques. Rapid decompression of the mixtures results in quenches into the miscibility gap so that both the metastable and unstable (spinodal) regions can be probed. Quenches into the unstable region allowed measurements of the normalized dynamic structure factor S(k,t) that confirm the dynamical scaling hypotheses for spinodal decomposition. Measurements made for concentrations well away from the tricritical value show different behavior and suggest the presence of a spinodal boundary. Forward scattering intensities for shallow quenches probe nucleation phenomena and permit quantitative measurements of anomalous super-cooling as a function of quench rate. Comparisons with data in organic binary mixtures are given.

  19. Linear mixing rule in screened binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Chabrier, G.; Ashcroft, N. W.

    1990-01-01

    The validity of the linear mixing rule is examined for the following two cases (1) when the response of the electron gas is taken into account in the effective ionic interaction and (2) when finite-temperature effects are included in the dielectric response of the electrons, i.e., when the ions interact with both temperature- and density-dependent screened Coulomb potentials. It is found that the linear mixing rule remains valid when the electron response is taken into account in the interionic potential at any density, even though the departure from linearity can reach a few percent for the asymmetric mixtures in the region of weak degeneracy for the electron gas. A physical explanation of this behavior is proposed which is based on a simple additional length scale.

  20. Characterizing Olfactory Binary Mixture Interactions in Fischer 344 Rats Using Behavioral Reaction Times

    PubMed Central

    Yoder, Wendy M.; Gaynor, Leslie; Windham, Ethan; Lyman, Michelle; Munizza, Olivia; Setlow, Barry; Bizon, Jennifer L.

    2015-01-01

    Response times provide essential subthreshold perceptual data that extend beyond accuracy alone. Behavioral reaction times (RTs) were used to characterize rats’ ability to detect individual odorants in a series of complimentary binary odorant mixture ratios. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on an odor identification task using nonreinforced probe trials. Binary mixture ratios composed of aliphatic odorants (citral and octanol) were arranged such that relative contributions of the 2 components varied systematically by a factor of 1% (v/v). Odorant concentrations for the target (S+), control (S−), and mixture (S+:S−) odorants were presented relative to threshold for each rat. Rats were initially trained to respond by licking at a spout to obtain liquid reward for either citral or octanol as the reinforced target (S+) odorant. After achieving 100% accuracy, rats were transferred to variable ratio (VR 2) reinforcement for correct responding. Nonreinforced probe trials (2 per block of 22 trials) were tested for each mixture ratio and recorded as either S+ (rats lick-responded in the presence of the mixture) or S− (rats refrained from licking), thereby indicating detection of the trained, S+ odorant. To determine the perceived salience for each ratio, RTs (latency from odorant onset to lick response) were recorded for each trial. Consistent with previous studies, RTs for both odorants were shortest (~150–200ms) when the probe trials consisted of a single, monomolecular component. Binary mixtures that contained as little as 1% of the S−, nontarget odorant, however, were sufficiently different perceptually to increase behavioral RTs (i.e., rats hesitated longer before responding); RTs changed systematically as a function of the binary ratio. Interestingly, the rate of RT change was dependent on which odorant served as the S+, suggesting an asymmetric interaction between the 2 odorants. The data demonstrate

  1. Characterizing olfactory binary mixture interactions in Fischer 344 rats using behavioral reaction times.

    PubMed

    Yoder, Wendy M; Gaynor, Leslie; Windham, Ethan; Lyman, Michelle; Munizza, Olivia; Setlow, Barry; Bizon, Jennifer L; Smith, David W

    2015-06-01

    Response times provide essential subthreshold perceptual data that extend beyond accuracy alone. Behavioral reaction times (RTs) were used to characterize rats' ability to detect individual odorants in a series of complimentary binary odorant mixture ratios. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on an odor identification task using nonreinforced probe trials. Binary mixture ratios composed of aliphatic odorants (citral and octanol) were arranged such that relative contributions of the 2 components varied systematically by a factor of 1% (v/v). Odorant concentrations for the target (S+), control (S-), and mixture (S+:S-) odorants were presented relative to threshold for each rat. Rats were initially trained to respond by licking at a spout to obtain liquid reward for either citral or octanol as the reinforced target (S+) odorant. After achieving 100% accuracy, rats were transferred to variable ratio (VR 2) reinforcement for correct responding. Nonreinforced probe trials (2 per block of 22 trials) were tested for each mixture ratio and recorded as either S+ (rats lick-responded in the presence of the mixture) or S- (rats refrained from licking), thereby indicating detection of the trained, S+ odorant. To determine the perceived salience for each ratio, RTs (latency from odorant onset to lick response) were recorded for each trial. Consistent with previous studies, RTs for both odorants were shortest (~150-200ms) when the probe trials consisted of a single, monomolecular component. Binary mixtures that contained as little as 1% of the S-, nontarget odorant, however, were sufficiently different perceptually to increase behavioral RTs (i.e., rats hesitated longer before responding); RTs changed systematically as a function of the binary ratio. Interestingly, the rate of RT change was dependent on which odorant served as the S+, suggesting an asymmetric interaction between the 2 odorants. The data demonstrate the value

  2. Inherent structures of phase-separating binary mixtures: Nucleation, spinodal decomposition, and pattern formation

    NASA Astrophysics Data System (ADS)

    Sarkar, Sarmistha; Bagchi, Biman

    2011-03-01

    An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy () exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.

  3. Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate.

    PubMed

    Chen, Zhong-Xiu; Deng, Shao-Ping; Li, Xiao-Kui

    2008-02-15

    Mixed micelle formation and synergistic interactions of binary surfactant combinations of sodium nonylphenol polyoxyethylene ether sulfate (NPES) with typical surfactants such as sodium dodecyl sulfate (SDS), Triton X-100 (TX100), cetyl trimethyl ammonium bromide (CTAB), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at 25 degrees C in the presence of NaCl have been investigated. The critical micelle concentration of the binary mixtures has been quantitatively estimated by steady-state fluorescence measurements. The micellar characteristics such as composition, activity coefficients, and mutual interaction parameters have been estimated following different theoretical treatments. Investigation on the micellization and synergistic interaction of NPES with four kinds of surfactants showed that the behavior of the binary mixture deviated from the ideal state. The analysis revealed that the interaction parameter values (beta) varied with variation of solvent composition. Besides the strong electrostatic attraction between the oppositely charged surfactant NPES-CTAB mixture, the interaction between NPES and SDS also showed far more deviation from ideal behavior than that of TX100 and AOT. The reason for the synergism is also discussed and the results show that an ionic and a nonionic surfactant character existed concurrently in NPES due to the combination of a sulfate group and polyoxyethylene as a hydrophilic moiety. Zeta potential and diffusion coefficient measurements of micelles confirmed the synergistic interaction between the binary surfactants. PMID:18005979

  4. Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids.

    PubMed

    Podgoršek, A; Jacquemin, J; Pádua, A A H; Costa Gomes, M F

    2016-05-25

    A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism. PMID:27144455

  5. Mechanisms in the size segregation of a binary granular mixture

    NASA Astrophysics Data System (ADS)

    Schröter, Matthias; Ulrich, Stephan; Kreft, Jennifer; Swift, Jack B.; Swinney, Harry L.

    2006-07-01

    A granular mixture of particles of two sizes that is shaken vertically will in most cases segregate. If the larger particles accumulate at the top of the sample, this is called the Brazil-nut effect (BNE); if they accumulate at the bottom, it is called the reverse Brazil-nut effect (RBNE). While this process is of great industrial importance in the handling of bulk solids, it is not well understood. In recent years ten different mechanisms have been suggested to explain when each type of segregation is observed. However, the dependence of the mechanisms on driving conditions and material parameters and hence their relative importance is largely unknown. In this paper we present experiments and simulations where both types of particles are made from the same material and shaken under low air pressure, which reduces the number of mechanisms to be considered to seven. We observe both BNE and RBNE by varying systematically the driving frequency and amplitude, diameter ratio, ratio of total volume of small to large particles, and overall sample volume. All our results can be explained by a combination of three mechanisms: a geometrical mechanism called void filling, transport of particles in sidewall-driven convection rolls, and thermal diffusion, a mechanism predicted by kinetic theory.

  6. Effect of repeated presentation on sweetness intensity of binary and ternary mixtures of sweeteners.

    PubMed

    Schiffman, Susan S; Sattely-Miller, Elizabeth A; Graham, Brevick G; Zervakis, Jennifer; Butchko, Harriett H; Stargel, W Wayne

    2003-03-01

    The purpose of the present study was to determine the effect of repeated presentation of the same sweet stimulus on sweetness intensity ratings. The sweet stimuli tested in this study were binary and ternary blends of 14 sweeteners that varied widely in chemical structure. A trained panel evaluated the sweetness intensity over four sips of a given mixture presented at 30 s intervals. The individual components in the binary sweetener combinations were intensity-anchored with 5% sucrose, while the individual sweeteners in the ternary mixtures were intensity-anchored with 3% sucrose (according to formulae developed previously). Each self-mixture was also evaluated (e.g. acesulfame-K-acesulfame-K). The main finding of this study was that mixtures consisting of two or three different sweeteners exhibited less reduction in sweetness intensity over four repeated sips than a single sweetener at an equivalent sweetness level. Furthermore, ternary combinations tended to be slightly more effective than binary combinations at lessening the effect of repeated exposure to a given sweet stimulus. These findings suggest that the decline in sweetness intensity experienced over repeated exposure to a sweet stimulus could be reduced by the blending of sweeteners. PMID:12714444

  7. The structure of variable property, compressible mixing layers in binary gas mixtures

    NASA Technical Reports Server (NTRS)

    Kozusko, F.; Grosch, C. E.; Jackson, T. L.; Kennedy, Christipher A.; Gatski, Thomas B.

    1996-01-01

    We present the results of a study of the structure of a parallel compressible mixing layer in a binary mixture of gases. The gases included in this study are hydrogen (H2), helium (He), nitrogen (N2), oxygen (02), neon (Ne) and argon (Ar). Profiles of the variation of the Lewis and Prandtl numbers across the mixing layer for all thirty combinations of gases are given. It is shown that the Lewis number can vary by as much as a factor of eight and the Prandtl number by a factor of two across the mixing layer. Thus assuming constant values for the Lewis and Prandtl numbers of a binary gas mixture in the shear layer, as is done in many theoretical studies, is a poor approximation. We also present profiles of the velocity, mass fraction, temperature and density for representative binary gas mixtures at zero and supersonic Mach numbers. We show that the shape of these profiles is strongly dependent on which gases are in the mixture as well as on whether the denser gas is in the fast stream or the slow stream.

  8. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata.

    PubMed

    Magdaleno, A; Saenz, M E; Juárez, A B; Moretton, J

    2015-03-01

    The effect of ampicillin (AMP), amoxicillin (AMX), cephalotin (CEP), ciprofloxacin (CPF), gentamycin (GEN), and vancomycin (VAN) have been examined individually and as binary mixtures, on a non-target aquatic organism, the green alga Pseudokichneriella subcapitata. The β-lactam antibiotics AMP and AMX were not toxic to the alga at concentrations up to 2000 mgl(-1) (less than 10% of algal growth inhibition), whereas the fluoroquinolone CPF, and the aminoglycoside GEN were the most toxic antibiotics, with an EC50=11.3 ± 0.7 mgl(-1) and 19.2 ± 0.5 mgl(-1), respectively. The cephalosporin CEP and the glycopeptide VAN were less toxic than the last two mentioned, showing an EC50>600 mgl(-1) and 724 ± 20 mgl(-1), respectively. The toxicological interactions of binary mixtures were predicted by the two classical models of additivity: concentration addition (CA) and independent action (IA), and compared to the experimentally determined toxicities over a range of concentrations between 1 and 50 mgl(-1). In all cases a clear synergistic effect was observed, showing that single compound toxicity data are not adequate for the prediction of aquatic toxicities of antibiotic mixtures. Risk assessment was performed by calculating the ratio between predicted environmental concentrations (PEC) and the predicted no effect concentration (PNEC). All the antibiotics tested, excepting GEN, have a potential ecological risk, taking into account the PEC of hospital effluents from Buenos Aires, Argentina. These risks increase when antibiotics are present in binary mixtures. PMID:25483375

  9. Water dynamics and interactions in water-polyether binary mixtures.

    PubMed

    Fenn, Emily E; Moilanen, David E; Levinger, Nancy E; Fayer, Michael D

    2009-04-22

    Poly(ethylene) oxide (PEO) is a technologically important polymer with a wide range of applications including ion-exchange membranes, protein crystallization, and medical devices. PEO's versatility arises from its special interactions with water. Water molecules may form hydrogen-bond bridges between the ether oxygens of the backbone. While steady-state measurements and theoretical studies of PEO's interactions with water abound, experiments measuring dynamic observables are quite sparse. A major question is the nature of the interactions of water with the ether oxygens as opposed to the highly hydrophilic PEO terminal hydroxyls. Here, we examine a wide range of mixtures of water and tetraethylene glycol dimethyl ether (TEGDE), a methyl-terminated derivative of PEO with 4 repeat units (5 ether oxygens), using ultrafast infrared polarization selective pump-probe measurements on water's hydroxyl stretching mode to determine vibrational relaxation and orientational relaxation dynamics. The experiments focus on the dynamical interactions of water with the ether backbone because TEGDE does not have the PEO terminal hydroxyls. The experiments observe two distinct subensembles of water molecules: those that are hydrogen bonded to other waters and those that are associated with TEGDE molecules. The water orientational relaxation has a fast component of a few picoseconds (water-like) followed by much slower decay of approximately 20 ps (TEGDE associated). The two decay times vary only mildly with the water concentration. The two subensembles are evident even in very low water content samples, indicating pooling of water molecules. Structural change as water content is lowered through either conformational changes in the backbone or increasing hydrophobic interactions is discussed. PMID:19323522

  10. Excited-state proton transfer dynamics of firefly's chromophore D-luciferin in DMSO-water binary mixture.

    PubMed

    Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni

    2014-12-01

    In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture. PMID:25415652

  11. Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila

    PubMed Central

    Chakraborty, Tuhin Subhra; Siddiqi, Obaid

    2016-01-01

    Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303

  12. Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila.

    PubMed

    Kundu, Srikanya; Ganguly, Anindya; Chakraborty, Tuhin Subhra; Kumar, Arun; Siddiqi, Obaid

    2016-01-01

    Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303

  13. Grafting of vinyl acetate-ethylacrylate binary monomer mixture onto guar gum.

    PubMed

    Singh, Vandana; Singh, Angela; Joshi, Sneha; Malviya, Tulika

    2016-03-01

    Present article reports on guar gum (GG) functionalization through graftcopolymerization of vinylacetate (VAC) and ethylacrylate (EA) from their binary mixtures. The potassium persulfate/ascorbic acid (KPS/AA) redox initiator system has been used for the binary grafting under the previously optimized conditions for VAC grafting at guar gum. The concentration of ascorbic acid (AA), persulfate (KPS), and grafting temperature were varied to optimize the binary grafting. A preliminary investigation revealed that the copolymer has excellent ability to capture Hg(II) from aqueous solution. It was observed that the optimum % grafting sample (CP3) was best at Hg(II) adsorption. CP3 and mercury loaded CP3 (CP3-Hg) have been extensively characterized using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Thermo gravimetric analysis (TGA) and a plausible mechanism for the grafting has been proposed. PMID:26708437

  14. Interaction of phenolic uncouplers in binary mixtures: concentration-additive and synergistic effects.

    PubMed

    Escher, B I; Hunziker, R W; Schwarzenbach, R P

    2001-10-01

    The uncoupling activities of 14 binary mixtures of substituted phenols and of 4 binary mixtures of phenols and anisols were investigated at different pH values. Experiments were performed with time-resolved spectroscopy on membrane vesicles (chromatophores) of the photosynthetic bacteria Rhodobacter sphaeroides. Phenols are known to destroy the electrochemical proton gradient in energy-transducing membranes by a protonophoric mechanism. Anisols do not have protonophoric activity but disturb membrane structure and functioning as a nonspecific baseline toxicant. It was postulated in the literature that, for certain substituted phenols, the formation of a dimer between the phenoxide and the neutral phenol may contribute significantly to the overall protonophoric activity. In 13 of 14 mixtures of substituted phenols but in none of the mixtures of phenols with anisols, such a dimer appears to be formed between two different mixture partners. An extended shuttle mechanism of uncoupling, which includes a term for the contribution of such a mixed dimer, provided a good description of all experimental data. Opposite speciation favors interaction and ortho substituents abate interaction, which adds evidence for the dimerformation via a hydrogen bond between the phenol-OH and the phenoxide. These findings are significant not only regarding the mechanism of protonophoric action but also for the risk assessment process of chemical mixtures in the environment. When assessing the effect of mixtures, concentration addition is regarded as a reference X concept to estimate effects of similarly acting compounds. The substituted phenols in this work act according to the same action mechanism of uncoupling. Nevertheless, the overall effect of four of the investigated mixtures, which exhibit stronger dimer formation as compared to the single compounds or for which the resulting dimer is intrinsically more active, exceeded the effect calculated according to concentration addition

  15. Sedimentation stacking diagrams of binary mixtures of thick and thin hard rods.

    PubMed

    Drwenski, Tara; Hooijer, Patrick; van Roij, René

    2016-06-29

    We use Onsager theory and the local density approximation to study sedimentation-diffusion equilibrium density profiles of binary mixtures of thick and thin hard rods. We construct stacking diagrams for three diameter ratios, and find that even a simple spindle-shaped phase diagram with only isotropic-nematic demixing can lead to counter-intuitive stacking sequences such as an isotropic phase sandwiched between two nematic phases. For the most complex phase diagram considered here, we find sixteen distinct stacking sequences, including several with five sedimented layers. By adding sedimentation paths to composition-pressure and density-density phase diagrams and calculating density and composition profiles, we show that conclusions about bulk phase diagrams of binary mixtures on the basis of sedimentation-diffusion equilibria should be drawn warily. PMID:27279434

  16. Communication: Virial coefficients and demixing in highly asymmetric binary additive hard-sphere mixtures.

    PubMed

    López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés

    2013-04-28

    The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited. A comparison is presented between the results derived previously using truncated virial expansions for three finite size ratios with those that one obtains with the same approach in the extreme case in which one of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical constants arising in the truncated series in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures. PMID:23635104

  17. Effects of a temperature-dependent viscosity on thermal convection in binary mixtures

    NASA Astrophysics Data System (ADS)

    Hilt, Markus; Glässl, Martin; Zimmermann, Walter

    2014-05-01

    We investigate the effect of a temperature-dependent viscosity on the onset of thermal convection in a horizontal layer of a binary fluid mixture that is heated from below. For an exponential temperature dependence of the viscosity, we find, in binary mixtures as a function of a positive separation ratio ψ and beyond a certain viscosity contrast, a discontinuous transition between two stationary convection modes having different wavelengths. In the range of negative values of the separation ratio ψ, a (continuous or discontinuous) transition from an oscillatory to a stationary onset of convection occurs beyond a certain viscosity contrast, and for large values of the viscosity ratio, the oscillatory onset of convection is suppressed.

  18. Effects of a temperature-dependent viscosity on thermal convection in binary mixtures.

    PubMed

    Hilt, Markus; Glässl, Martin; Zimmermann, Walter

    2014-05-01

    We investigate the effect of a temperature-dependent viscosity on the onset of thermal convection in a horizontal layer of a binary fluid mixture that is heated from below. For an exponential temperature dependence of the viscosity, we find, in binary mixtures as a function of a positive separation ratio ψ and beyond a certain viscosity contrast, a discontinuous transition between two stationary convection modes having different wavelengths. In the range of negative values of the separation ratio ψ, a (continuous or discontinuous) transition from an oscillatory to a stationary onset of convection occurs beyond a certain viscosity contrast, and for large values of the viscosity ratio, the oscillatory onset of convection is suppressed. PMID:25353805

  19. Exact results for the jammed state of binary mixtures of superdisks on the plane

    NASA Astrophysics Data System (ADS)

    Švrakić, N. M.; Aleksić, Branislav N.; Belić, Milivoj R.

    2016-01-01

    By analytical and numerical methods we investigate the late stage deposition of binary mixtures of oriented "superdisks" on a plane. Superdisks are objects bounded by Lamé curves | x | 2 p +| y | 2 p = 1, where deformation parameter p controls their size and shape. For deposition of single-type superdisks, the maximum packing and jamming densities are known to be nonanalytic at p = 0.5. For binary mixtures of superdisks, we discover that nonanalyticities form a locus of points separating "phase diagram" of shape combinations into regions with different excluded-area constructions. An analytical expression for this phase boundary and exact constructions of the excluded-areas are presented. The corresponding saturation coverages are obtained by extensive numerical Monte Carlo simulations.

  20. Preferential solvation of lysozyme in dimethyl sulfoxide/water binary mixture probed by terahertz spectroscopy.

    PubMed

    Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar

    2016-09-01

    We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. PMID:27372901

  1. Regulation of dispersion of carbon nanotubes in binary water+1-Cyclohexyl-2-pyrrolidone mixtures

    NASA Astrophysics Data System (ADS)

    Deriabina, O.; Lebovka, N.; Bulavin, L.; Goncharuk, A.

    2014-05-01

    The microstructure and electrical conductivity of suspensions of multi-walled carbon nanotubes (MWCNTs) in binary water+1-Cyclohexyl-2-pyrrolidone (CHP) liquid mixtures were studied in the temperature interval of 253-318 K, in the heating and cooling cycles. The concentration of MWCNTs was varied in the interval between 0 and 1 wt% and the content of water in a binary mixture X=[water]/([CHP]+[water]) was varied within 0-1.0. The experimental data have shown that dispersing quality of MWCNTs in a mixture of good (CHP) and bad (water) solvents may be finely regulated by adjustment of composition of the CHP+water mixtures. The aggregation ability of MWCNTs in dependence on X was discussed. The surface of MWCNT clusters was highly tortuous, its fractal dimension df increased with increase of X, approaching ≈1.9 at X→1. It was concluded that the surface tension is not suitable characteristic for prediction of dispersion ability in the mixture of good and bad solvents. The electrical conductivity data evidenced the presence of a fuzzy-type percolation with multiple thresholds in the systems under investigation. This behavior was explained by formation of different percolation networks in dependence of MWCNT concentration.

  2. Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever

    SciTech Connect

    Loui, A; Sirbuly, D J; Elhadj, S; McCall, S K; Hart, B R; Ratto, T V

    2009-08-06

    A new method for detecting and discriminating pure gases and binary mixtures has been investigated. This approach combines two distinct physical mechanisms within a single piezoresistive microcantilever: heat dissipation and resonant damping in the viscous regime. An experimental study of the heat dissipation mechanism indicates that the sensor response is directly correlated to the thermal conductivity of the gaseous analyte. A theoretical data set of resonant damping was generated corresponding to the gas mixtures examined in the thermal response experiments. The combination of the thermal and resonant response data yields more distinct analyte signatures that cannot otherwise be obtained from the detection modes individually.

  3. Dependences between the boiling point of binary aqueous-organic mixtures and their composition

    NASA Astrophysics Data System (ADS)

    Preobrazhenskii, M. P.; Rudakov, O. B.

    2015-01-01

    The optimum three-parametric regression basis set that reflects the properties of permutation symmetry and takes into account the specificity of isobars of aqueous-organic mixtures is constructed. The optimum algorithm for the calculation of the regression parameters of the boiling point isobars is proposed. The parameters are calculated for a series of systems. The accuracy of the method proposed for the regression description of the dependence of the boiling point of binary aqueous-organic mixtures on the composition is determined by empirical inaccuracies and is sufficient for the most part of practical applications. Methods for increasing the accuracy of the regression description of equilibrium homogeneous systems are formulated.

  4. Optical studies on smectic phases in binary mixture of liquid crystals

    NASA Astrophysics Data System (ADS)

    Govindaiah, T. N.; Sreepad, H. R.; Nagaraja, N.; Sridhara, G. R.; Ravi, H. R.

    2015-06-01

    The binary mixture of two non-mesogenic compounds viz., Didodecyl dimethyl ammonium bromide (DDAB) and ethylene glycol (EG) exhibits different liquid crystalline phase's at large range of concentrations and temperature. The concentrations with lower / higher percentage of DDAB exhibit I-SmA-SmC*-SmE-K sequentially when the specimen is cooled from isotropic phase. Different liquid crystalline phases observed in the mixture were studied using DSC, X-ray, and Optical microscopic techniques. The temperature variations of optical anisotropy have also been discussed.

  5. Phase diagram involving the mesomorphic behavior of binary mixture of sodium oleate and orthophosphoric acid

    NASA Astrophysics Data System (ADS)

    Govindaiah, T. N.; Sreepad, H. R.

    2015-04-01

    The present investigation deals with the binary mixture of two non-mesogenic compounds, viz. sodium oleate (Naol) and orthophosphoric acid (H3PO4) which exhibits very interesting liquid crystalline smectic phases at large range of concentrations and temperature. The mixtures with concentrations ranging from 10% to 90% Naol in H3PO4 exhibit SmA, SmC, SmE and SmB phases, sequentially when the specimen is cooled from its isotropic phase. Physical properties, such as ultrasonic velocity, adiabatic compressibility and molar compressibility, show anomalous behavior at the isotropic to mesosphase transition.

  6. IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY

    SciTech Connect

    Stephen M Bajorek; J. Schnelle

    2002-05-01

    This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All

  7. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Plate-Fin Condenser

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    The heat transfer characteristics of binary refrigerant mixtures in a plate-fin condenser are experimentally investigated using a vapor compression heat transformer, in which binary refrigerant mixtures of R 134a/ R 123 are used as the working fluid and water is used as both heat sink and source. Pure refrigerants of R 22 and R 134a are also tested as the working fluid. The experimental ranges of heat flux and mass velocity are from 2 to 20 kW/m2 and from 50 to 100 kg/m2s, respectively. The heat transfer characteristics of the condensation and vapor single-phase flow of pure and mixed refrigerants are discussed, and empirical correlation equations of the condensate heat transfer and vapor single-phase heat transfer are proposed. The correlation equation of water-side heat transfer is also presented. Combining these correlation equations with a correlation equation of vapor mass transfer based on the Chilton-Colburn analogy, a prediction model for condensation of the binary refrigerant mixtures in a plate-fin heat exchanger is developed based on the assumption that the phase equilibrium is only established at the vapor-liquid interface. The calculation results for the pure and mixed refrigerants agree well with the present experimental data. The mass transfer characteristics are also revealed from the calculation results.

  8. Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures

    NASA Astrophysics Data System (ADS)

    Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni

    2015-02-01

    In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.

  9. Transport Properties of He-N{sub 2} Binary Gas Mixtures for CBC Space Applications

    SciTech Connect

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-21

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N{sub 2} and the binary mixtures of He-N{sub 2}. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  10. Smectic, nematic, and isotropic phases in binary mixtures of thin and thick hard spherocylinders.

    PubMed

    Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis; Velasco, Enrique

    2006-06-21

    A second-virial Onsager theory, based on Parsons-Lee rescaling and suitably extended to deal with multicomponent systems and smectic phases, has been used to calculate the phase diagram of a collection of binary mixtures of thin and thick hard spherocylinders. In particular, two types of phase diagrams are investigated. First, a number of binary mixtures where the two components have the same total length have been considered; in addition, the phase diagram of a binary mixture where the two components have the same volume has been calculated. For the particles of one of the two components, the length of the cylindrical part and the diameter have always been set equal to 5 and 1, respectively. Spherocylinders of the same total length and different diameter tend to demix considerably as soon as the diameter ratio deviates from unity. This happens especially at high pressures, when at least the phase richer in the thicker component is smectic. In the case where the two components have equal volumes, demixing is further increased due to the disparity not only in particle diameter but also in particle lengths. The incorporation of inhomogeneous layered phases is seen to alter significantly the phase diagrams calculated if only homogeneous phases are allowed, since transitions to a smectic phase often preempt those to a nematic or an isotropic phase. The apparent versatility of the recent experimental techniques suggests that the phase diagram features predicted by the theory might be also observed in real systems. PMID:16821950

  11. Transport Properties of He-N2 Binary Gas Mixtures for CBC Space Applications

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N2 and the binary mixtures of He-N2. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  12. Composition and thermal analysis of binary mixtures of mee fat and palm stearin.

    PubMed

    Abdul Manaf, Yanty Noorziana; Nazrim Marikkar, Jalaldeen Mohammed; Musthafa, Shuhaimi; Saari, Miskandar Mat

    2014-01-01

    Seed fat of Madhuca longifolia known as mee fat (MF) has been considered as a potential plant fat for producing fat mixture to simulate the properties of lard. A study was carried out to evaluate the effect of addition of palm stearin (PS) on the solidification behavior of MF to formulate a mixture to become similar in solidification characteristics of lard. Three fat mixtures were prepared by blending MF with palm stearin PS in different ratios: MF:PS (99.5:0.5), MF:PS (99:1), MF:PS (98:2) (w/w), and identified by the mass ratio of MF to PS. The fat mixtures were compared with lard in terms of their fatty acid and triacylglycerol compositions, differential scanning calorimetric (DSC) thermal profiles and solid fat content (SFC) characteristics. Results showed that there were considerable differences between lard and MF:PS fat mixtures with regard to fatty acid and triacylglycerol compositions. The increasing proportion of PS in MF:PS fat mixtures caused a general increase in SFC at different temperatures with respect to the SFC profile of native MF. Of the three binary mixtures, MF:PS (99:1) was found to show the least difference to lard in terms of SFC values throughout the temperature range. PMID:24671022

  13. Joint toxic action of binary metal mixtures of copper, manganese and nickel to Paronychiurus kimi (Collembola).

    PubMed

    Son, Jino; Lee, Yun-Sik; Kim, Yongeun; Shin, Key-Il; Hyun, Seunghun; Cho, Kijong

    2016-10-01

    The joint toxic effects of binary metal mixtures of copper (Cu), manganese (Mn) and nickel (Ni) on reproduction of Paronhchiurus kimi (Lee) was evaluated using a toxic unit (TU) approach by judging additivity across a range of effect levels (10-90%). For all metal mixtures, the joint toxic effects of metal mixtures on reproduction of P. kimi decreased in a TU-dependent manner. The joint toxic effects of metal mixtures also changed from less than additive to more than additive at an effect level lower than or equal to 50%, while a more than additive toxic effects were apparent at higher effect levels. These results indicate that the joint toxicity of metal mixtures is substantially different from that of individual metals based on additivity. Moreover, the close relationship of toxicity to effect level suggests that it is necessary to encompass a whole range of effect levels rather than a specific effect level when judging mixture toxicity. In conclusion, the less than additive toxicity at low effect levels suggests that the additivity assumption is sufficiently conservative to warrant predicting joint toxicity of metal mixtures, which may give an additional margin of safety when setting soil quality standards for ecological risk assessment. PMID:27318557

  14. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil. PMID:26971405

  15. Regularized moment equations for binary gas mixtures: Derivation and linear analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay Kumar; Struchtrup, Henning; Torrilhon, Manuel

    2016-04-01

    The applicability of the order of magnitude method [H. Struchtrup, "Stable transport equations for rarefied gases at high orders in the Knudsen number," Phys. Fluids 16, 3921-3934 (2004)] is extended to binary gas mixtures in order to derive various sets of equations—having minimum number of moments at a given order of accuracy in the Knudsen number—for binary mixtures of monatomic-inert-ideal gases interacting with the Maxwell interaction potential. For simplicity, the equations are derived in the linear regime up to third order accuracy in the Knudsen number. At zeroth order, the method produces the Euler equations; at first order, it results into the Fick, Navier-Stokes, and Fourier equations; at second order, it yields a set of 17 moment equations; and at third order, it leads to the regularized 17-moment equations. The transport coefficients in the Fick, Navier-Stokes, and Fourier equations obtained through order of magnitude method are compared with those obtained through the classical Chapman-Enskog expansion method. It is established that the different temperatures of different constituents do not play a role up to second order accurate theories in the Knudsen number, whereas they do contribute to third order accurate theory in the Knudsen number. Furthermore, it is found empirically that the zeroth, first, and second order accurate equations are linearly stable for all binary gas mixtures; however, although the third order accurate regularized 17-moment equations are linearly stable for most of the mixtures, they are linearly unstable for mixtures having extreme difference in molecular masses.

  16. The effects of binary UV filter mixtures on the midge Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. PMID:26971216

  17. True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures.

    PubMed

    Rein, Dmitry M; Khalfin, Rafail; Szekely, Noemi; Cohen, Yachin

    2014-11-01

    Evidence is presented for the first time of true molecular dissolution of cellulose in binary mixtures of common polar organic solvents with ionic liquid. Cryogenic transmission electron microscopy, small-angle neutron-, X-ray- and static light scattering were used to investigate the structure of cellulose solutions in mixture of dimethyl formamide and 1-ethyl-3-methylimidazolium acetate. Structural information on the dissolved chains (average molecular weight ∼ 5 × 10(4)g/mol; gyration radius ∼ 36 nm, persistence length ∼ 4.5 nm), indicate the absence of significant aggregation of the dissolved chains and the calculated value of the second virial coefficient ∼ 2.45 × 10(-2)mol ml/g(2) indicates that this solvent system is a good solvent for cellulose. More facile dissolution of cellulose could be achieved in solvent mixtures that exhibit the highest electrical conductivity. Highly concentrated cellulose solution in pure ionic liquid (27 wt.%) prepared according to novel method, utilizing the rapid evaporation of a volatile co-solvent in binary solvent mixtures at superheated conditions, shows insignificant cellulose molecular aggregation. PMID:25129726

  18. Gain measurements in binary and ternary dye mixture solutions under nitrogen laser excitation

    NASA Astrophysics Data System (ADS)

    Sanghi, Sujata; Mohan, D.; Singh, R. D.

    1997-05-01

    Energy transfer studies in the case of binary [Coumarin 485 (C485) + Rhodamine 610 perchlorate (Rh 610)] and ternary [C440 + C485 + Rh610 perchlorate] dye mixture solutions in ethanol have been made and discussed through optical gain characteristics at various acceptor concentrations and pump powers of the N 2-laser. In case of binary mixtures, we observe that the optical gain of the acceptor dye (Rh610) improves and the threshold power required for lasing action decreases when donor dye (C485) is added. The concentration dependence of peak gain and peak lasing wavelength of the energy transfer dye laser (ETDL) has been studied. The results have also been compared with the optical gain characteristics of these dyes in single component solutions. The energy transfer rate constants ( KF, the Förster type non-radiative and KR, the radiative rate constants) and critical transfer radius ( Ro) have been calculated using a Stern-Volmer analysis of the pump power dependence of the gain. From the experimental results, we find that the dominant mechanism responsible for efficient excitation transfer in this bimixture is of a radiative nature. Further, the gain equation for a ternary dye mixture has been derived using the transfer rate constants for two different possible bimixtures; C440 + C485 and C485 + Rh610, which is helpful in obtaining the optimum concentration to be used in the ternary mixture for higher gains.

  19. Inherent structures of phase-separating binary mixtures: nucleation, spinodal decomposition, and pattern formation.

    PubMed

    Sarkar, Sarmistha; Bagchi, Biman

    2011-03-01

    An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy () exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy. PMID:21517506

  20. Experimental Droplet Study of Inverted Marangoni Effect of a Binary Liquid Mixture on a Nonuniform Heated Substrate.

    PubMed

    Ouenzerfi, Safouene; Harmand, Souad

    2016-03-15

    We present an experimental study on the inversion of the Marangoni effect of a binary mixture droplet under a horizontal temperature gradient. In particular, we studied the dynamics and the evaporation behavior under these conditions. We show that a binary mixture (97% water-3% butanol) droplet has a tendency to migrate to warmer areas, as opposed to spreading in pure fluids. During the evaporation process, we distinguish three stages of evaporation that are correlated to the dynamics of the droplet. PMID:26881907

  1. Viscosity and phase separations of binary CO-He and CO-Ar mixtures

    NASA Astrophysics Data System (ADS)

    Rademacher, N.; Bayarjargal, L.; Morgenroth, W.; Ciezak-Jenkins, J. A.; Winkler, B.

    2015-01-01

    Binary mixtures of 10 and 25 vol% CO in He and 10 vol% CO in Ar have been studied at high pressures and ambient temperature in diamond anvil cells. Phase separations were observed at 5.7(3) GPa, 3.6(2) GPa and 1.6(1) GPa. Earlier studies of ?-He mixtures of comparable concentrations revealed phase separations at significantly larger pressures, while ?-Ar mixtures separate at pressures comparable to those observed in the CO-Ar system here. The viscosity of a CO-rich fluid phase was determined by measuring the velocities of rising He bubbles. After corrections for the influence of the finite container size and of remaining helium in CO, the viscosity of the CO-rich fluid at 3.8(1) GPa was ≈3(1) mPa s, similar to what would be expected for isoelectronic liquid ? under the same conditions.

  2. Measurement of thermodiffusion coefficient in n-alkane binary mixtures: composition dependence.

    PubMed

    Madariaga, J A; Santamaría, C; Bou-Ali, M Mounir; Urteaga, P; Alonso De Mezquia, D

    2010-05-27

    In this work, we have measured the thermodiffusion coefficient of different n-alkane binary mixtures at several concentrations using the thermogravitational technique. In particular, we have studied the n-dodecane/n-heptane system as a function of composition and other systems covering a large range of mass differences and concentration at 25 degrees C and 1 atm. The results show that for any concentration the thermodiffusion coefficient of n-alkane mixtures is proportional to the mass difference between the components and to the ratio of the thermal expansion coefficient and viscosity of the mixture. The obtained equation allows us to determine the infinite dilution values of the thermodiffusion coefficient. We compare these values with recent experimental results in dilute polymer solutions and analyze the Brenner theory of thermodiffusion. Finally, it is shown that the thermodiffusion coefficient depends linearly with the mass fraction, and it can be calculated from the viscosity and thermal expansion of the pure components. PMID:20429569

  3. Neural coding of binary mixtures in a structurally related odorant pair

    PubMed Central

    Cruz, Georgina; Lowe, Graeme

    2013-01-01

    The encoding of odorant mixtures by olfactory sensory neurons depends on molecular interactions at peripheral receptors. However, the pharmacological basis of these interactions is not well defined. Both competitive and noncompetitive mechanisms of receptor binding and activation, or suppression, could contribute to coding. We studied this by analyzing responses of olfactory bulb glomeruli evoked by a pair of structurally related odorants, eugenol (EG) and methyl isoeugenol (MIEG). Fluorescence imaging in synaptopHluorin (spH) mice revealed that EG and MIEG evoked highly overlapped glomerular inputs, increasing the likelihood of mixture interactions. Glomerular responses to binary mixtures of EG and MIEG mostly showed hypoadditive interactions at intermediate and high odorant concentrations, with a few near threshold responses showing hyperadditivity. Dose-response profiles were well fitted by a model of two odorants competitively binding and activating a shared receptor linked to a non-linear transduction cascade. We saw no evidence of non-competitive mechanisms. PMID:23386975

  4. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  5. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna.

    PubMed

    Meyer, Joseph S; Ranville, James F; Pontasch, Mandee; Gorsuch, Joseph W; Adams, William J

    2015-04-01

    Standard static-exposure acute lethality tests were conducted with Daphnia magna neonates exposed to binary or ternary mixtures of Cd, Cu, and Zn in moderately hard reconstituted water that contained 3 mg dissolved organic carbon/L added as Suwannee River fulvic acid. These experiments were conducted to test for additive toxicity (i.e., the response to the mixture can be predicted by combining the responses obtained in single-metal toxicity tests) or nonadditive toxicity (i.e., the response is less than or greater than additive). Based on total metal concentrations (>90% dissolved) the toxicity of the tested metal mixtures could be categorized into all 3 possible additivity categories: less-than-additive toxicity (e.g., Cd-Zn and Cd-Cu-Zn mixtures and Cd-Cu mixtures when Cu was titrated into Cd-containing waters), additive toxicity (e.g., some Cu-Zn mixtures), or more-than-additive toxicity (some Cu-Zn mixtures and Cd-Cu mixtures when Cd was titrated into Cu-containing waters). Exposing the organisms to a range of sublethal to supralethal concentrations of the titrated metal was especially helpful in identifying nonadditive interactions. Geochemical processes (e.g., metal-metal competition for binding to dissolved organic matter and/or the biotic ligand, and possibly supersaturation of exposure waters with the metals in some high-concentration exposures) can explain much of the observed metal-metal interactions. Therefore, bioavailability models that incorporate those geochemical (and possibly some physiological) processes might be able to predict metal mixture toxicity accurately. PMID:25336231

  6. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids

    SciTech Connect

    Finotello Alexia; Bara Jason E.; Narayan Suguna; Campder Dean; Noble Richard D.

    2008-07-01

    This study focuses on the solubility behaviors of CO{sub 2}, CH{sub 4}, and N{sub 2} gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ((C{sub 2}mim)(Tf{sub 2}N)) and l-ethyl-3-methylimidazolium tetrafluoroborate ((C{sub 2}mim)(BF{sub 4})) at 40{sup o}C and low pressures (about 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % (C{sub 2}mim)(BF{sub 4}) in (C{sub 2}-mim)(Tf2{sub N}). Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO{sub 2} with N{sub 2} or CH{sub 4} in pure (C{sub 2}mim)(BF4) can be enhanced by adding 5 mol% (C{sub 2}-mim)(Tf{sub 2}N).

  7. Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals.

    PubMed

    Cienega-Cacerez, Octavio; García-Alcántara, Consuelo; Moreno-Razo, José Antonio; Díaz-Herrera, Enrique; Sambriski, Edward John

    2016-01-28

    Three discotic liquid-crystalline binary mixtures, characterized by their extent of bidispersity in molecular thickness, were investigated with molecular dynamics simulations. Each equimolar mixture contained A-type (thin) and B-type (thick) discogens. The temperature-dependence of the orientational order parameter reveals that A-type liquid samples produce ordered phases more readily, with the (hexagonal) columnar phase being the most structured variant. Moderately and strongly bidisperse mixtures produce globally-segregated samples for temperatures corresponding to ordered phases; the weakly bidisperse mixture displays microheterogeneities. Ordered phases in the B-type liquid are induced partially by the presence of the A-type fluid. In the moderately bidisperse mixture, order is induced through orientational frustration: a mixed prenematic-like phase precedes global segregation to yield nematic and columnar mesophases upon further cooling. In the strongly bidisperse mixture, order is induced less efficiently through a paranematic-like mechanism: a highly-ordered A-type fluid imparts order to B-type discogens found at the interface of a fully-segregated sample. This ordering effect permeates into the disordered B-type domain until nematic and columnar phases emerge upon further cooling. At sufficiently low temperatures, all samples investigated exhibit the (hexagonal) columnar mesophase. PMID:26576703

  8. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. PMID:26886302

  9. Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy.

    PubMed

    Lu, Shaohua; Zhang, Xin; Zhang, Zhuoyong; Yang, Yuping; Xiang, Yuhong

    2016-11-15

    Terahertz time domain spectroscopy (THz-TDS) combined with chemometrics has been utilized for the qualitative and quantitative analysis of binary mixtures of l-glutamic acid and l-glutamine which have similar chemical structures and properties. The binary mixtures of amino acids were prepared with yellow foxtail millet matrix, substituted for polyethylene (PE) as previously reported. After proper pretreatment of absorption spectra, quantitative analysis was achieved by partial least squares (PLS) and interval partial least squares (iPLS) regressions. The performance of models was evaluated based on the root mean square error of prediction (RMSEP) and correlation coefficient (R(2)) of cross-validations with bootstrapped Latin partitions as criterion. The iPLS yielded better results with low RMSEP (0.39±0.02%, 0.39±0.02%), and higher R(2) values (0.9904, 0.9906) for glutamine and glutamic acid comparing to the conventional PLS models. Multivariate curve resolution alternating least squares (MCR-ALS) was successfully applied for resolution of pure THz spectra and concentration profiles of two amino acids components from mixtures. PMID:27283659

  10. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories. PMID:25467671

  11. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha A.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision.

  12. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    PubMed

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-01

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction. PMID:22263833

  13. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    PubMed Central

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  14. Implementation of ultrasonic sensing for high resolution measurement of binary gas mixture fractions.

    PubMed

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Da Riva, Enrico; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10(-5) is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  15. An Odor Interaction Model of Binary Odorant Mixtures by a Partial Differential Equation Method

    PubMed Central

    Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong

    2014-01-01

    A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions. PMID:25010698

  16. Toxicity of binary mixtures of oil fractions to sea urchin embryos.

    PubMed

    Rial, Diego; Vázquez, José A; Menduiña, Araceli; García, Ana M; González, M Pilar; Mirón, Jesús; Murado, Miguel A

    2013-12-15

    The assumption of additive toxicity for oil compounds is related to a narcotic mode of action. However, the joint toxicity of oil fractions has not been fully investigated. A fractionation of Maya crude oil into aliphatics, aromatics and polars was performed, fractions were dissolved in dimethyl sulfoxide (DMSO) and subsequently toxicity of single fractions and binary mixtures was assessed using the sea urchin embryo test. The descriptive ability of Concentration Addition (CA), Independent Action (IA) and modifications of both models for describing the joint toxicity of mixtures has also been evaluated. The hydrocarbon content extractable with dichloromethane of the fractions dissolved in DMSO was: 12.0 ± 1.8 mg mL(-1), 39.0 ± 0.5 mg mL(-1) and 20.5 ± 2.5 mg mL(-1) for aliphatics, aromatics and polars, respectively. The toxicity of the extracts in DMSO of the fractions as EC50 (μLL(-1)) was: aliphatics (165.8-242.3)binary mixtures (aliphatics-aromatics, aromatics-polars) greater than the IA (aliphatics-polars) according to the Akaike Information Criterion, so CA was considered a better option than IA to explain the joint toxicity of oil fractions. In addition, synergistic or antagonistic effects were not observed. PMID:24231335

  17. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  18. Thermal diffusion segregation in granular binary mixtures described by the Enskog equation

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente

    2011-05-01

    The diffusion induced by a thermal gradient in a granular binary mixture is analyzed here in the context of the (inelastic) Enskog equation. Although the Enskog equation neglects velocity correlations among particles that are about to collide, it retains the spatial correlations arising from volume exclusion effects and thus is expected to be applicable for moderate densities. In the steady state with gradients only along a given direction, a segregation criterion is obtained from the thermal diffusion factor Λ by measuring the amount of segregation parallel to the thermal gradient. As expected, the sign of the factor Λ provides a criterion for the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters of the mixture (the masses and sizes of particles, concentration, solid volume fraction and coefficients of restitution). The form of the phase diagrams for the BNE/RBNE transition is illustrated in detail for several systems, with special emphasis on the significant role played by the inelasticity of collisions. In particular, an effect already found in dilute gases (segregation in a binary mixture of identical masses and sizes but different coefficients of restitution) is extended to dense systems. A comparison with recent computer simulation results reveals good qualitative agreement at the level of the thermal diffusion factor. The present analysis generalizes to arbitrary concentration previous theoretical results derived in the tracer limit case.

  19. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture.

    PubMed

    Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2014-05-21

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision. PMID:24607469

  20. Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids.

    PubMed

    Lauerer, Alexander; Binder, Tomas; Chmelik, Christian; Miersemann, Erich; Haase, Jürgen; Ruthven, Douglas M; Kärger, Jörg

    2015-01-01

    Under certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of 'overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation. Here we report the application of interference microscopy to monitor 'uphill' fluxes, covering the entire period of overshooting from initiation until final equilibration. It is shown that the evolution of the profiles can be adequately predicted from the single-component diffusivities together with the binary adsorption equilibrium data. The guest molecules studied (carbon dioxide, ethane and propene) and the host material (ZSM-58 or DDR) are of practical interest in relation to the development of kinetically selective adsorption separation processes. PMID:26177626

  1. Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids

    NASA Astrophysics Data System (ADS)

    Lauerer, Alexander; Binder, Tomas; Chmelik, Christian; Miersemann, Erich; Haase, Jürgen; Ruthven, Douglas M.; Kärger, Jörg

    2015-07-01

    Under certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of `overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation. Here we report the application of interference microscopy to monitor `uphill' fluxes, covering the entire period of overshooting from initiation until final equilibration. It is shown that the evolution of the profiles can be adequately predicted from the single-component diffusivities together with the binary adsorption equilibrium data. The guest molecules studied (carbon dioxide, ethane and propene) and the host material (ZSM-58 or DDR) are of practical interest in relation to the development of kinetically selective adsorption separation processes.

  2. Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids

    PubMed Central

    Lauerer, Alexander; Binder, Tomas; Chmelik, Christian; Miersemann, Erich; Haase, Jürgen; Ruthven, Douglas M.; Kärger, Jörg

    2015-01-01

    Under certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of ‘overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation. Here we report the application of interference microscopy to monitor ‘uphill' fluxes, covering the entire period of overshooting from initiation until final equilibration. It is shown that the evolution of the profiles can be adequately predicted from the single-component diffusivities together with the binary adsorption equilibrium data. The guest molecules studied (carbon dioxide, ethane and propene) and the host material (ZSM-58 or DDR) are of practical interest in relation to the development of kinetically selective adsorption separation processes. PMID:26177626

  3. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    PubMed

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern. PMID:26920521

  4. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  5. Orientational ordering and phase behaviour of binary mixtures of hard spheres and hard spherocylinders

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Jackson, George; Müller, Erich A.; Avendaño, Carlos

    2015-07-01

    We study the structure and fluid-phase behaviour of binary mixtures of hard spheres (HSs) and hard spherocylinders (HSCs) in isotropic and nematic states using the NPnAT ensemble Monte Carlo (MC) approach in which the normal component of the pressure tensor is fixed in a system confined between two hard walls. The method allows one to estimate the location of the isotropic-nematic phase transition and to observe the asymmetry in the composition between the coexisting phases, with the expected enhancement of the HSC concentration in the nematic phase. This is in stark contrast with the previously reported MC simulations where a conventional isotropic NPT ensemble was used. We further compare the simulation results with the theoretical predictions of two analytic theories that extend the original Parsons-Lee theory using the one-fluid and the many-fluid approximations [Malijevský et al., J. Chem. Phys. 129, 144504 (2008)]. In the one-fluid version of the theory, the properties of the mixture are related to an effective one-component HS system, while in the many-fluid theory, the components of the mixtures are represented as separate effective HS particles. The comparison reveals that both the one- and the many-fluid approaches provide a reasonably accurate quantitative description of the mixture including the predictions of the isotropic-nematic phase boundary and degree of orientational order of the HSC-HS mixture.

  6. Adsorption Characteristics of Binary Mixtures of Two Halomethanes on Graphite Surface

    NASA Astrophysics Data System (ADS)

    Khanal, Kiran; Leuty, Gary; Tsige, Mesfin

    Understanding the physisorption mechanism of mixtures of small molecules on graphite substrate has been a growing interest in materials science in order to investigate the changes in adsorption behavior of mixtures near interfaces vs. the individual components. Using atomic-scale molecular dynamics simulations, we have studied the structure and dynamics of multilayer adsorption of binary mixtures of two halomethanes (CF4 and CF3Cl) on graphite substrates for different bulk compositions of CF4. Simulations were performed in the temperature range 60-120K. The goal of this study is to explore how the compositions of individual components as well as temperature, affect the structure of films near the interface, the mobility of molecules, the molecular orientation and the substrate affinity. Preliminary results suggest a strong influence of the concentration of CF4 and temperature on the structure and mobility of molecules in first adsorbed layer on the graphite surface. In agreement with the recent experimental results, CF4 displaces CF3Cl from the first absorbed layer at all temperatures in our range and becomes the leading component in the mixture at high temperature for large CF4 concentrations in the mixture. ``This work is supported by NSF Grant CHE #1506275''.

  7. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.

    PubMed

    Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie

    2016-06-01

    Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. PMID:27016814

  8. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  9. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  10. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  11. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients.

    PubMed

    Busignies, V; Leclerc, B; Porion, P; Evesque, P; Couarraze, G; Tchoreloff, P

    2006-08-01

    Three pharmaceutical excipients (microcrystalline cellulose, lactose, anhydrous calcium phosphate) and their binary mixtures were compacted to form compacts of various mean porosities. Some mechanical properties (Young's modulus, tensile strength and Brinell hardness) were studied on these compacts. The mechanical properties of the binary mixtures were not proportional to the mixture composition expressed in mass. More, for all the properties, a negative deviation was always observed from this linear relationship. In reference to a composition percolation phenomenon, critical mass fractions were detected from the graph mechanical property vs. mass composition of a mixture. The results obtained with Brinell hardness differed from the results of the Young's modulus and the tensile strength, i.e. the most plastic material in the binary mixture controlled the mixture behaviour. Secondly, a predictive model based on a statistical approach was proposed for the Young's modulus and the tensile strength. The validity of this model was verified on experimental data, and an interaction parameter used to characterize the affinity of the two compounds was calculated. Finally, the X-ray tomography technique was applied to the compacts of cellulose/phosphate mixtures to obtain cross-sections images of the compacts. The analysis of the cross-sections images allowed explaining the no linear relationship of the different mechanical properties results observed on these binary mixtures. PMID:16750353

  12. Picosecond solvation dynamics--a potential viewer of DMSO-water binary mixtures.

    PubMed

    Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni

    2015-02-01

    In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases. PMID:25662652

  13. Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures

    SciTech Connect

    Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni

    2015-02-07

    In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO X{sub D} = 0.12–0.17 and X{sub D} = 0.27–0.35, respectively. Among them, the second region (X{sub D} = 0.27–0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H{sub 2}O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.

  14. Dielectric Studies on Binary Mixtures of Diethyl Ether (DEE) in Polar Solvents

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dash, S. K.; Swain, M. D.; Swain, B. B.

    2011-11-01

    Dielectric constant (ɛ) of diethylether (DEE) in binary mixtures with four polar solvents such as n-butanl, i-butanol, t-butanol and tolune has been measured at 455 kHz and at a temperature 303.15 K. The refractive indices were measured at a regulated temperature by Pulfrich refractometer at sodium D-line. The data is used to evaluate mutual correlation factor gab, excess molar polarization and excess free energy of mixing ΔGab by using Winkelmann-Quitzsch equation for binary mixtures to asses the suitability of the polar solvents as modifiers. The trend of variation for these parameters exhibit marked dependence on the nature of alcohols. Diethylether is one of the solvent extractant used for the extraction and separation of zirconium and hafnium in reactor technology. The extractant is blended with appropriate polar modifiers for greater dispersal and more rapid phase disengagement. This facilitates in the elimination of the third organo-aqueous phase containing some of the metal ions. As such the study of molecular interaction among the component molecules has been undertaken in these binary mixtures using the dielectric route. The interaction parameters such as mutual correlation factor gab is found to be less than one in all alcohols, while it is negative in toluene upto 0.7 DEE molefraction and thereafter becoming positive. The nature of variation of the excess miolar polarization ΔP and excess free energy of mixing Gab tends to support the assessment of gab to choose a suitable polar modifier.

  15. Drag Coefficient of a Rigid Spherical Particle in a Near-Critical Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Fujitani, Youhei; Komura, Shigeyuki

    2013-08-01

    We calculate the drag coefficient of a rigid spherical particle in an incompressible binary fluid mixture. A weak preferential attraction is assumed between the particle surface and one of the fluid components, and the difference in the viscosity between the two components is neglected. Using the Gaussian free-energy functional and solving the hydrodynamic equation explicitly, we can show that the preferential attraction makes the drag coefficient larger as the bulk correlation length becomes longer. The dependence of the deviation from the Stokes law on the correlation length, when it is short, turns out to be much steeper than the previous estimates.

  16. Universal amplitude ratios and the interfacial tension near consolute points of binary liquid mixtures

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Schmidt, J. W.; Chaar, H.

    1986-01-01

    The interfacial tension of the binary liquid mixtures triethylamine/heavy water, triethylamine/water, and cyclohexane/methanol near their consolute temperatures is determined experimentally by measuring the densities of the phases and the capillary lengths. The results are presented in tables and graphs and compared with published data obtained by other methods and with theoretical predictions. The findings are shown to be in good agreement with previous experiments, confirming the discrepancy between temperature-independent universal amplitude ratios calculated from such data and those predicted by renormalization-group calculations or Monte Carlo simulations of Ising models.

  17. Axial segregation of horizontally vibrated binary granular mixtures in an offset-Christmas tree channel

    NASA Astrophysics Data System (ADS)

    Bhateja, Ashish; Sharma, Ishan; Singh, Jayant K.

    2013-06-01

    We investigate segregation in a horizontally vibrated binary granular mixture in a closed offset-Christmas tree channel. The segregation phenomenon occurs in two steps: vertical sorting followed by axial segregation. In the first step, sorting occurs via Brazil-nut effect or reverse Brazil-nut effect depending on the particles' size and density ratios. The two layers thus formed then separate axially towards opposite-ends of the channel with the top layer always moving towards root of the Christmas tree. We discuss the segregation mechanism responsible for axial segregation.

  18. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-05-15

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures. PMID:26950503

  19. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-05-01

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures.

  20. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor.

    PubMed

    Kok, Fatma N; Hasirci, Vasif

    2004-02-15

    In this study, acetylcholinesterase (AChE) and choline oxidase (ChO) were co-immobilized on poly(2-hydroxyethyl methacrylate) (pHEMA) membranes to construct a biosensor for the detection of anti-cholinesterase compounds. pHEMA membranes were prepared with the addition of SnCl(4) to achieve the desired porosity. Immobilization of the enzymes was done by surface attachment via epichlorohydrin (Epi) and Cibacron Blue F3G-A (CB) activation. Enzyme immobilized membrane was used in the detection of anti-cholinesterase activity of aldicarb (AS), carbofuran (CF) and carbaryl (CL), as well as two mixtures, (AS+CF) and (AS+CL). The total anti-cholinesterase activity of binary pesticide mixtures was found to be lower than the sum of the individual inhibition values. PMID:14709383

  1. Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Abdel-Aleem, Eglal A.; Hegazy, Maha A.; Sayed, Nour W.; Abdelkawy, M.; Abdelfatah, Rehab M.

    2015-02-01

    This work is concerned with development and validation of three simple, specific, accurate and precise spectrophotometric methods for determination of flumethasone pivalate (FP) and clioquinol (CL) in their binary mixture and ear drops. Method A is a ratio subtraction spectrophotometric one (RSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is a mean center spectrophotometric one (MCR). The calibration curves are linear over the concentration range of 3-45 μg/mL for FP, and 2-25 μg/mL for CL. The specificity of the developed methods was assessed by analyzing different laboratory prepared mixtures of the FP and CL. The three methods were validated as per ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits.

  2. Liquid-crystal phase diagrams of binary mixtures of hard spherocylinders.

    PubMed

    Cinacchi, Giorgio; Mederos, Luis; Velasco, Enrique

    2004-08-22

    We have built the liquid crystal phase diagram of several binary mixtures of freely rotating hard spherocylinders employing a second-order virial density functional theory with Parsons scaling, suitably generalized to deal with mixtures and smectic phases. The components have the same diameter and aspect ratio of moderate value, typical of many mesogens. Attention has been paid to smectic-smectic demixing and the types of arrangement that rods can adopt in layered phases. Results are shown to depend on the aspect ratio of the individual components and on the ratio of their lengths. Smectic phases are seen not to easily mix together at sufficiently high pressures. Layered phases where the longer rods are the majority component have a smectic-A structure. In the opposite case, a smectic-A(2) phase is obtained where the shorter particles populate the layers and the longer ones prefer to stay parallel to the latter in the interlayer region. PMID:15303954

  3. Spectrophotometric methods for simultaneous determination of betamethasone valerate and fusidic acid in their binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Salem, Hesham; Abdelkawy, Mohammad; Samir, Ahmed

    2015-04-01

    Five spectrophotometric methods were successfully developed and validated for the determination of betamethasone valerate and fusidic acid in their binary mixture. Those methods are isoabsorptive point method combined with the first derivative (ISO Point - D1) and the recently developed and well established methods namely ratio difference (RD) and constant center coupled with spectrum subtraction (CC) methods, in addition to derivative ratio (1DD) and mean centering of ratio spectra (MCR). New enrichment technique called spectrum addition technique was used instead of traditional spiking technique. The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of official methods. The statistical comparison showed that there is no significant difference between the proposed methods and the official ones regarding both accuracy and precision.

  4. Simultaneous determination of binary mixture of amlodipine besylate and atenolol based on dual wavelengths

    NASA Astrophysics Data System (ADS)

    Lamie, Nesrine T.

    2015-10-01

    Four, accurate, precise, and sensitive spectrophotometric methods are developed for simultaneous determination of a binary mixture of amlodipine besylate (AM) and atenolol (AT). AM is determined at its λmax 360 nm (0D), while atenolol can be determined by four different methods. Method (A) is absorption factor (AF). Method (B) is the new ratio difference method (RD) which measures the difference in amplitudes between 210 and 226 nm. Method (C) is novel constant center spectrophotometric method (CC). Method (D) is mean centering of the ratio spectra (MCR) at 284 nm. The methods are tested by analyzing synthetic mixtures of the cited drugs and they are applied to their commercial pharmaceutical preparation. The validity of results is assessed by applying standard addition technique. The results obtained are found to agree statistically with those obtained by official methods, showing no significant difference with respect to accuracy and precision.

  5. Nonlinear fluorescence quenching of newly synthesized coumarin derivative by aniline in binary mixtures.

    PubMed

    Hanagodimath, S M; Evale, Basavaraj G; Manohara, S R

    2009-11-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-phenyl-benzofuran-2-yl)-6-chloro-chromen-2-one (MPBClC) by aniline in different binary solvent mixtures of benzene and acetonitrile have been reported by steady state fluorescence measurements. All the measurements were carried out at room temperature (296K). A positive curvature from linearity was observed in the Stern-Volmer (S-V) plot in all the solvent mixtures. Various rate parameters for the fluorescence quenching have been determined by sphere of action static quenching model and finite sink approximation model. The results show that the positive curvature in the S-V plot is due to both static and dynamic quenching processes. Further, with the use of finite sink approximation model, it is concluded that these bimolecular reactions are diffusion-limited. PMID:19766529

  6. Phase behavior in binary fluid mixtures with spherical and non-spherical interactions

    NASA Astrophysics Data System (ADS)

    Diaz-Herrera, Enrique; Ramirez-Santiago, Guillermo; Moreno-Razo, J. Antonio

    2006-03-01

    We have carried out extensive MD simulations to study the T vs. ρ phase diagram and the mix-demix transition in fluid binary mixtures with (1) Lennard-Jones, (2) Stock-Mayer and (3) Gay-Berne molecular interactions. This analysis is performed in terms of the miscibility parameter, α=ɛAB/ɛAA, with ɛAA=ɛBB. When the miscibility of the mixture is in the range 0<α<1, a continuous critical line of consolute points appears. This line interscts the LV coexistence curve at different positions depending on the value of α, yielding mainly three different topologies for the phase diagrams. We also carried out a detailed study of the interfacial properties as function of T and α.

  7. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    SciTech Connect

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  8. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Martínez-Ruiz, F. J.; Moreno-Ventas Bravo, A. I.; Blas, F. J.

    2015-09-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ɛ11 = ɛ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  9. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture.

    PubMed

    Martínez-Ruiz, F J; Moreno-Ventas Bravo, A I; Blas, F J

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ϵ11 = ϵ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  10. Fluorescent probe partitioning in GUVs of binary phospholipid mixtures: implications for interpreting phase behavior.

    PubMed

    Juhasz, Janos; Davis, James H; Sharom, Frances J

    2012-01-01

    The phase behavior of membrane lipids is known to influence the organization and function of many integral proteins. Giant unilamellar vesicles (GUVs) provide a very useful model system in which to examine the details of lipid phase separation using fluorescence imaging. The visualization of domains in GUVs of binary and ternary lipid mixtures requires fluorescent probes with partitioning preference for one of the phases present. To avoid possible pitfalls when interpreting the phase behavior of these lipid mixtures, sufficiently thorough characterization of the fluorescent probes used in these studies is needed. It is now evident that fluorescent probes display different partitioning preferences between lipid phases, depending on the specific lipid host system. Here, we demonstrate the benefit of using a panel of fluorescent probes and confocal fluorescence microscopy to examine phase separation in GUVs of binary mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Patch and fibril gel phase domains were found to co-exist with liquid disordered (l(d)) domains on the surface of GUVs composed of 40:60 mol% DOPC/DPPC, over a wide range of temperatures (14-25°C). The fluorescent lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl (NBD-DPPE), proved to be the most effective probe for visualization of fibril domains. In the presence of Lissamine(TM) rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Rh-DPPE) we were unable to detect fibril domains. This fluorophore also affected the partitioning behavior of other fluorescent probes. Overall, we show that the selection of different fluorescent probes as lipid phase reporters can result in very different interpretation of the phase behavior of DOPC/DPPC mixtures. PMID:21945563

  11. Stokes shift dynamics in (non-dipolar ionic liquid + dipolar solvent) binary mixtures: A semi-molecular theory

    NASA Astrophysics Data System (ADS)

    Pal, Tamisra; Biswas, Ranjit

    2014-10-01

    A semi-molecular theory for studying composition dependent Stokes shift dynamics of a dipolar solute in binary mixtures of (non-dipolar ionic liquid + common dipolar solvent) is developed here. The theory provides microscopic expressions for solvation response functions in terms of static and dynamic structure factors of the mixture components and solute-solvent static correlations. In addition, the theory provides a framework for examining the interrelationship between the time dependent solvation response in and frequency dependent dielectric relaxation of a binary mixture containing electrolyte. Subsequently, the theory has been applied to predict ionic liquid (IL) mole fraction dependent dynamic Stokes shift magnitude and solvation energy relaxation for a dipolar solute, C153, in binary mixtures of an ionic liquid, trihexyltetradecylphosphonium chloride ([P14,666][Cl]) with a common dipolar solvent, methanol (MeOH). In the absence of suitable experimental data, necessary input parameters have been obtained from approximate methods. Dynamic shifts calculated for these mixtures exhibit a linear increase with IL mole fraction for the most part of the mixture composition, stressing the importance of solute-IL dipole-ion interaction. Average solvation rates, on the other hand, show a nonlinear IL mole fraction dependence which is qualitatively similar to what has been observed for such binary mixtures with imidazolium (dipolar) ILs. These predictions should be re-examined in suitable experiments.

  12. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  13. Dual-Mode Measurement and Theoretical Analysis of Evaporation Kinetics of Binary Mixtures

    NASA Astrophysics Data System (ADS)

    Song, Hanyu; He, Chi-Ruei; Basdeo, Carl; Li, Ji-Qin; Ye, Dezhuang; Kalonia, Devendra; Li, Si-Yu; Fan, Tai-Hsi

    Theoretical and experimental investigations are presented for the precision measurement of evaporation kinetics of binary mixtures using a quartz crystal resonator. A thin layer of light alcohol mixture including a volatile (methanol) and a much less volatile (1-butanol) components is deployed on top of the resonator. The normal or acoustic mode is to detect the moving liquid-vapor interface due to evaporation with a great spatial precision on the order of microns, and simultaneously the shear mode is used for in-situ detection of point viscosity or concentration of the mixture near the resonator. A one-dimensional theoretical model is developed to describe the underlying mass transfer and interfacial transport phenomena. Along with the modeling results, the transient evaporation kinetics, moving interface, and the stratification of viscosity of the liquid mixture during evaporation are simultaneously measured by the impedance response of the shear and longitudinal waves emitted from the resonator. The system can be used to characterize complicated evaporation kinetics involving multi-component fuels. American Chemical Society Petroleum Research Fund, NSF CMMI-0952646.

  14. Optical studies of a binary liquid crystal mixture exhibiting induced smectic A phase

    NASA Astrophysics Data System (ADS)

    Thingujam, Kiranmala; Bhattacharjee, Ayon; Choudhury, Basana; Sarkar, S. D.

    2016-08-01

    A binary liquid crystalline mixture of a monotropic polar compound 4-cyanophenyl 4'- n-pentyl benzoate (CPPB) and an enantiotropic non-polar compound 4- n-hexyl phenyl 4- n'-pentyloxy benzoate (ME5O.6) shows the presence of an induced smectic A phase in the region 0.1 ≤ x CPPB ≤ 0.82, where x CPPB is the mole fraction of CPPB. The results of texture study, density study and refractive index measurements of the eutectic mixture along with those of the pure samples are reported in this paper. The density values of the eutectic mixture are found to be much higher than that of the pure samples. The determination of order parameters of the pure samples and eutectic mixture has been carried out. In order to determine the order parameters of the samples, we have used different methods, Vuks', Neugebauer's, modified Vuks' and direct extrapolation method. The results of order parameters obtained from the different approaches are compared and analysed in detail.

  15. An experimental study of adsorption interference in binary mixtures flowing through activated carbon

    NASA Technical Reports Server (NTRS)

    Madey, R.; Photinos, P. J.

    1983-01-01

    The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.

  16. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction.

    PubMed

    Bhadauria, Ravi; Aluru, N R

    2016-08-21

    We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the confinement are modeled using the van der Waals one fluid approximation and the local average density method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to capture the species wall slip effects. The value of this friction coefficient is computed using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures confined between graphene slit shaped nanochannels are considered as examples. The proposed model yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with the interfacial friction displaying linear dependence on molar composition of the mixture. The results also indicate that the different species have different slip lengths, which remain unchanged with the channel width. PMID:27544095

  17. Discriminative Stimulus Effects of Binary Drug Mixtures: Studies with Cocaine, MDPV, and Caffeine.

    PubMed

    Collins, Gregory T; Abbott, Megan; Galindo, Kayla; Rush, Elise L; Rice, Kenner C; France, Charles P

    2016-10-01

    Illicit drug preparations often include more than one pharmacologically active compound. For example, cocaine and synthetic cathinones [e.g., 3,4-methylenedioxypyrovalerone (MDPV)] are often mixed with caffeine before sale. Caffeine is likely added to these preparations because it is inexpensive and legal; however, caffeine might also mimic or enhance some of the effects of cocaine or MDPV. In these studies, male Sprague-Dawley rats were trained to discriminate 10 mg/kg cocaine from saline, and the discriminative stimulus effects of cocaine, caffeine, and MDPV were evaluated alone and as binary mixtures (cocaine and caffeine, MDPV and caffeine, and cocaine and MDPV) at fixed-dose ratios of 3:1, 1:1, and 1:3 relative to the dose of each drug that produced 50% cocaine-appropriate responding. Dose-addition analyses were used to determine the nature of the drug-drug interactions for each mixture (e.g., additive, supra-additive, or subadditive). Although additive interactions were observed for most mixtures, supra-additive interactions were observed at the 50% effect level for the 1:1 mixture of cocaine and caffeine and at the 80% effect level for all three mixtures of cocaine and caffeine, as well as for the 3:1 and 1:3 mixtures of cocaine and MDPV. These results demonstrate that with respect to cocaine-like discriminative stimulus effects, caffeine can function as a substitute in drug preparations containing either cocaine or MDPV, with enhancements of cocaine-like effects possible under certain conditions. Further research is needed to determine whether similar interactions exist for other abuse-related or toxic effects of drug preparations, including cocaine, synthetic cathinones, and caffeine. PMID:27493274

  18. A law of mixtures for transport properties in binary particulate composites

    SciTech Connect

    Duncan, K.L.; Lodenquai, J.F.; Wagh, A.S.; Goretta, K.C.

    1998-09-01

    A connected-grain model was developed earlier to explain mechanical and thermal properties of porous ceramics and sedimentary rocks. We have now generalized this model for binary particulate composites, based on simulation of a connected-grain structure of individual components of the composites by randomly selecting individual grains and shrinking them. Repetition of this procedure results in a structure of a binary particulate composite that contains channels of individual components, through which transport occurs. We developed a generalized law of mixtures in which transport properties are expressed as scaling relationships that depend on the shrinking parameter expressed as an exponent. This parameter provides the skewness of the distribution of the grains. The model is compared with various transport properties of binary composites reported in the literature. In addition, the model is tested on YBa{sub 2}Cu{sub 3}O{sub x} superconductors and Ag composites that were fabricated in our laboratory and tested for electrical conductivity and elastic modulus. This test demonstrates how the model predicts two entirely different transport properties through their common microstructure and grain-size distribution. {copyright} {ital 1998 American Institute of Physics.}

  19. Mutual diffusion in the ternary mixture of water + methanol + ethanol and its binary subsystems.

    PubMed

    Parez, Stanislav; Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2013-03-21

    Mutual diffusion is investigated by means of experiment and molecular simulation for liquid mixtures containing water + methanol + ethanol. The Fick diffusion coefficient is measured by Taylor dispersion as a function of composition for all three binary subsystems under ambient conditions. For the aqueous systems, these data compare well with literature values. In the case of methanol + ethanol, experimental measurements of the Fick diffusion coefficient are presented for the first time. The Maxwell-Stefan diffusion coefficient and the thermodynamic factor are predicted for the ternary mixture as well as its binary subsystems by molecular simulation in a consistent manner. The resulting Fick diffusion coefficient is compared to present measurements and that obtained from the classical simulation approach, which requires experimental vapor-liquid equilibrium or excess enthalpy data. Moreover, the self-diffusion coefficients and the shear viscosity are predicted by molecular dynamics and are favorably compared to experimental literature values. The presented ternary diffusion data should facilitate the development of aggregated predictive models for diffusion coefficients of polar and hydrogen-bonding systems. PMID:23400088

  20. Quantum cluster equilibrium model of N-methylformamide-water binary mixtures

    NASA Astrophysics Data System (ADS)

    von Domaros, Michael; Jähnigen, Sascha; Friedrich, Joachim; Kirchner, Barbara

    2016-02-01

    The established quantum cluster equilibrium (QCE) approach is refined and applied to N-methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the cis-trans-isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory (DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic trans-NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF.

  1. Unusual microscopic dynamics in melts of star-like polymer grafted nanoparticles and their binary mixtures

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Srivastava, S.; C, Sivasurender; Kandar, A.; C, Sarika; Narayanan, S.; Sandy, A.

    2010-03-01

    Star polymers have attracted wide attention due to their fascinating structural, dynamical and rheological behavior including observation of multiple glassy states in concentrated solutions [1]. We have shown recently [2] that the microscopic dynamics in melts of a novel type of star-like polymers created by grafting of linear polymer chains on nanoparticle surfaces shows an unusual dynamical arrest in the case of low number, f, of grafted chains as opposed to that predicted and observed so far for both melts and solutions of star polymers. Here we extend our studies further to include similar star polymers with large range of f and their binary mixtures. Remarkably we find that the structural relaxation times of the star polymers becomes smaller with increasing arm number upto a certain value above which the relaxation time increases with f. Further, in binary mixtures of star polymers of two different sizes the relaxation time decreases dramatically with very low added small star fraction but shows dynamical arrest at significantly higher fraction of smaller stars. Reference: 1. C. Mayer et al Nature Materials 7, 780 (2008); 2. A. K. Kandar et al, J Chem Phys 130, 121102 (2009)

  2. Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point.

    PubMed

    Méndez-Castro, Pablo; Troncoso, Jacobo; Peleteiro, José; Romaní, Luis

    2013-10-01

    The critical anomaly of the isobaric molar heat capacity for the liquid-liquid phase transition in binary nonionic mixtures is explained through a theory based on the general assumption that their partition function can be exactly mapped into that of the Ising three-dimensional model. Under this approximation, it is found that the heat capacity singularity is directly linked to molar excess enthalpy. In order to check this prediction and complete the available data for such systems, isobaric molar heat capacity and molar excess enthalpy near the liquid-liquid critical point were experimentally determined for a large set of binary liquid mixtures. Agreement between theory and experimental results-both from literature and from present work-is good for most cases. This fact opens a way for explaining and predicting the heat capacity divergence at the liquid-liquid critical point through basically the same microscopic arguments as for molar excess enthalpy, widely used in the frame of solution thermodynamics. PMID:24229116

  3. Deterioration of Heat Transfer Performance in Condensation of Binary Vapor Mixtures

    NASA Astrophysics Data System (ADS)

    Fujii, Tetsu

    It is explained using theoretical results for laminar film condensation that the deterioration of heat transfer performance in the case of condensation of binary vapor mixtures is caused by the temperature drop in the vapor boundary layer due to the increase of the concentration of the volatile component at the vapor-liquid interface. As for free convection condensation the agreement between theory and experiment is satisfactory in the case where the condensate film is smooth, while the heat transfer coefficient becomes larger than the theoretical result in the case where drops and/or streaks appear in the film. It is also explained using some examples of experimental results that the heat transferred from a bulk vapor to a cooling surface can be evaluated by simultaneously solving the equations with respect to the heat transfer coefficient for condensation of pure vapors, the mass transfer coefficient in the vapor phase, and the phase equilibrium in the cases where binary vapor mixtures of water, Frons, alcohols and other organic vapors condense in a vertical tube, a plate-fin condenser, a horizontal tube and a horizontal tube bundle. Then, future problems are pointed out.

  4. Quantum cluster equilibrium model of N-methylformamide-water binary mixtures.

    PubMed

    von Domaros, Michael; Jähnigen, Sascha; Friedrich, Joachim; Kirchner, Barbara

    2016-02-14

    The established quantum cluster equilibrium (QCE) approach is refined and applied to N-methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the cis-trans-isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory (DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic trans-NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF. PMID:26874486

  5. PHARMACOKINETIC AND PHARMACODYNAMIC INTERACTION FOR A BINARY MIXTURE OF CHLORPYRIFOS AND DIAZINON IN THE RAT

    SciTech Connect

    Timchalk, Chuck; Poet, Torka S.; Hinman, Melissa N.; Busby, Andrea L.; Kousba, Ahmed A.

    2005-05-15

    Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE) by their oxon metabolites. The pharmacokinetic and pharmacodynamic impact of acute binary exposures to CPF and DZN in rats were evaluated in this study. Rats were orally administered CPF, DZN or a CPF/DZN mixture (0, 15, 30 or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12 and 24 h post-dosing, urine was also collected at 24 h. Chlorpyrifos, DZN and their respective metabolites 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBCs and plasma. Co-exposure to CPF/DZN at 15/15 mg/kg, did not appreciably alter the pharmacokinetics of CPF, DZN or their metabolites in blood; whereas, a 60/60 mg/kg dose resulted in a transient increase in Cmax, AUC, and decreased clearance of both compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and co-exposures. The overall potency for ChE inhibition was greater for CPF than DZN and the binary mixture response appeared to be strongly influenced by CPF. A comparison of the ChE binary response at the low dose (15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These are the first reported experiments we are aware of that characterize both the pharmacokinetic and pharmacodynamic interactions between CPF and DZN in the rat, and will be used to further develop a binary physiologically based pharmacokinetic and pharmacodynamic

  6. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment.

    PubMed

    Barata, Carlos; Baird, D J; Nogueira, A J A; Soares, A M V M; Riva, M C

    2006-06-10

    Two different concepts, termed concentration addition (CA) and independent action (IA), describe general relationships between the effects of single substances and their corresponding mixtures allowing calculation of an expected mixture toxicity on the basis of known toxicities of the mixture components. Both concepts are limited to cases in which all substances in a mixture influence the same experimental endpoint, and are usually tested against a "fixed ratio design" where the mixture ratio is kept constant throughout the studies and the overall concentration of the mixture is systematically varied. With this design, interaction among toxic components across different mixture ratios and endpoints (i.e. lethal versus sublethal) is not assessed. In this study lethal and sublethal (feeding) responses of Daphnia magna individuals to single and binary combinations of similarly and dissimilarly acting chemicals including the metals (cadmium, copper) and the pyrethroid insecticides (lambda-cyhalothrin and deltamethrin) were assayed using a composite experimental design to test for interactions among toxic components across mixture effect levels, mixture ratios, lethal and sublethal toxic effects. To account for inter-experiment response variability, in each binary mixture toxicity assay the toxicity of the individual mixture constituents was also assessed. Model adequacy was then evaluated comparing the slopes and elevations of predicted versus observed mixture toxicity curves with those estimated for the individual components. Model predictive abilities changed across endpoints. The IA concept was able to predict accurately mixture toxicities of dissimilarly acting chemicals for lethal responses, whereas the CA concept did so in three out of four pairings for feeding response, irrespective of the chemical mode of action. Interaction effects across mixture effect levels, evidenced by crossing slopes, were only observed for the binary mixture Cd and Cu for lethal effects

  7. Density and Viscosity of Binary Mixtures of Thiocyanate Ionic Liquids + Water as a Function of Temperature.

    PubMed

    Domańska, U; Królikowska, M

    2012-09-01

    Densities and viscosities have been determined for binary mixtures of the ionic liquids (ILs) 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-butyl-4-methylpyridinium thiocyanate [BMPy][SCN], or 1-butyl-1-methylpyrrolidinium thiocyanate [BMPYR][SCN], or 1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] with water over wide range of temperatures (298.15-348.15) K and ambient pressure. The thermal properties of [BMPy][SCN], i.e. glass transition temperature and the heat capacity at glass transition, have been measured using a differential scanning microcalorimetry, DSC. The decomposition of [BMPy][SCN] was detected. The density and viscosity correlations for these systems have been made using an empirical second-order polynomial and by the Vogel-Fulcher-Tammann equation, respectively. The concentration dependences have been described by polynomials. The excess molar volumes and deviations in viscosity have been calculated from the experimental values and were correlated by Redlich-Kister polynomial expansions. The variations of these parameters, with compositions of the mixtures and temperature, have been discussed in terms of molecular interactions. A qualitative analysis of the trend of properties with composition and temperature was performed. Further, the excess partial molar volumes, [Formula: see text] and [Formula: see text], were calculated and discussed. The isobaric expansivities (coefficient of thermal expansion), α, and the excess isobaric expansivities, α(E), were determined for four ILs and their mixtures with water. The results indicate that the interactions of thiocyanate ILs with water is not as strong as with alcohols, which is shown by the positive/slightly negative excess molar volumes in these binary systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10953-012-9875-7) contains supplementary material, which is available to authorized users. PMID:23002317

  8. Characterization of the ordered phase formed by sphingomyelin analogues and cholesterol binary mixtures

    PubMed Central

    Kinoshita, Masanao; Goretta, Sarah; Tsuchikawa, Hiroshi; Matsumori, Nobuaki; Murata, Michio

    2013-01-01

    The influences of structural alterations of sphingomyelin (SM) on its interactions with cholesterol (chol) and on ordered phase formation were examined by density measurements and surface pressure vs. molecular area isotherm measurements. In addition, we quantitatively characterized the ordered phase formed in each SM and chol binary mixture on the basis of the molecular compressional modulus of SM ( Cmol−1). Density measurements demonstrated that the ordered phase formation in threo-SM (tSM)/chol and dihydrosphingomyelin (DHSM)/chol binary bilayers shows similar chol concentration-dependency to that of natural erythro-SM (eSM)/chol bilayers; the ordered phase formation was completed in the presence of 25 mol% chol. In contrast, SM bearing a triple bond in the place of a double bond (tripleSM) required a greater concentration of chol to completely transform the bilayer into the ordered phase (at 40 mol% chol). Surface pressure vs. molecular area isotherms showed that the DHSM molecule ( Cmol−1 = 290 mN/m) is more rigid than eSM ( Cmol−1 = 240 mN/m) above 30 mol% chol (in the ordered phase), although these values are similar (140–150 mN/m) in the absence of chol (liquid condensed phase). Most likely, the DHSM/chol mixture forms a more ordered membrane than the eSM/chol mixture does. Moreover, in the absence of chol, the rigidity of the tripleSM molecule ( Cmol−1 = 250 mN/m) is significantly higher as compared with that of the eSM molecule ( Cmol−1 = 150 mN/m), which is probably due to the presence of a triple bond. PMID:27493539

  9. Large attractive depletion interactions in soft repulsive-sphere binary mixtures.

    PubMed

    Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis; Navascués, Guillermo; Tani, Alessandro; Velasco, Enrique

    2007-12-01

    We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure, and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results, the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed. PMID:18067358

  10. Solubilization of pentanol by cationic surfactants and binary mixtures of cationic surfactants

    SciTech Connect

    Morgan, M.E.

    1993-12-31

    The research reported here has included studies of the solubilization of pentanol in hexadecylpyridinium chloride (CPC), trimethyletetradecylammonium chloride (C{sub 14}Cl), benzyldimethyltetradecylammonium chloride (C{sub 14}BzCl), benzyldimethylhexadecylpyridinium chloride (C{sub 16}BzCl), hexadecyltrimethylammonium bromide (CTAB), and binary mixtures of CPC + C{sub 16}BzCl and C{sub 14}Cl + C{sub 14}BzCl. Rather than using calorimetric methods, this project will employ headspace chromatography to measure solubilization of pentanol over a wide range of solute concentrations. While not yielding as much thermodynamic data as calorimetry, headspace chromatography is a more direct measure of the extent of solubilization. Using headspace chromatography, is a more direct measure of the extent of solubilization. Using headspace chromatography, this study will seek to determine whether strongly synergistic mixture ratios exist in the case of binary cationic surfactant systems. There are two equilibria in the pentanol-water-surfactant system: (1) The pentanol solubilized in micelles is in equilibrium with the monomeric pentanol in solution, and (2) the monomeric pentanol is in equilibrium with the pentanol in the vapor above the solution. To establish the link between the two equilibria, a sample of the vapor above pure liquid pentanol must be collected, in order to find the activity of pentanol in solution. Also, a calibration curve for various concentrations of pentanol in solution. From this type of data it is possible to infer both the concentration of pentanol solubilized in micelles and the concentrations of pentanol in the ``bulk`` solution outside the micelles. The method is equally applicable to systems containing a single surfactant as well as mixtures of surfactants.

  11. CH/pi interaction between benzene and hydrocarbons having six carbon atoms in their binary liquid mixtures.

    PubMed

    Kasahara, Yasutoshi; Suzuki, Yuji; Kabasawa, Aino; Minami, Hideyuki; Matsuzawa, Hideyo; Iwahashi, Makio

    2010-01-01

    Molecular interactions between benzene and hydrocarbons having six carbon atoms, such as hexane, cyclohexane and 1-hexene in their binary liquid mixtures were studied through the measurements of density, viscosity, self-diffusion coefficient, (13)C NMR spin-lattice relaxation time and (1)H NMR chemical shift. CH/pi attraction between hexane and benzene in their binary mixture was observed in a relatively benzene rich region, whereas a special attractive interaction was not observed between cyclohexane and benzene. On the other hand, 1-hexene and benzene in their binary mixtures were characteristic in their self-diffusion coefficient behaviors: 1-hexene more strongly attract benzene not only by the CH/pi attraction but also probably by the p/p interaction between the double bond in 1-hexene and the p-electron in benzene ring. PMID:20032596

  12. Multiscale Modeling of the Effect of Pressure on the Interfacial Tension and Other Cohesion Parameters in Binary Mixtures.

    PubMed

    Mayoral, E; Nahmad-Achar, E

    2016-03-10

    We study and predict the interfacial tension, solubility parameters, and Flory-Huggins parameters of binary mixtures as functions of pressure and temperature, using multiscale numerical simulation. A mesoscopic approach is proposed for simulating the pressure dependence of the interfacial tension for binary mixtures, at different temperatures, using classical dissipative particle dynamics (DPD). The thermodynamic properties of real systems are reproduced via the parametrization of the repulsive interaction parameters as functions of pressure and temperature via molecular dynamics simulations. Using this methodology, we calculate and analyze the cohesive energy density and the solubility parameters of different species obtaining excellent agreement with reported experimental behavior. The pressure- and temperature-dependent Flory-Huggins and repulsive DPD interaction parameters for binary mixtures are also obtained and validated against experimental data. This multiscale methodology offers the benefit of being applicable for any species and under difficult or nonfeasible experimental conditions, at a relatively low computational cost. PMID:26840645

  13. Effect of HPLC binary mobile phase composition on the analysis of carbonyls.

    PubMed

    Ho, Duy Xuan; Kim, Ki-Hyun

    2011-09-01

    The relative performance of the binary mobile phase in the high-performance liquid chromatography analysis of carbonyl compounds (CCs) was tested using the liquid-phase standards containing 15 aldehyde/ketone-DNPH mixture. The Hichrome column was employed for the analysis of CCs at a flow rate of 1.5 mL min( - 1). The binary mobile phases prepared using both acetonitrile/water (AW) and a possible alternative of methanol:water (MW) mixture were examined by their calibration results. The data derived from these two binary phases were then evaluated in terms of three key variables (i.e., resolution, relative sensitivity, and retention time). The relative water content (or the water to organic solvent ratio (W/A) or (W/M)) of the binary phase was found as the key variable for the performance. The results indicate that the optimal resolution of AW combination was attained consistently for most composition, while MW generally suffered from overpressure problem. The changes of water content in the AW mixture led to the changes of all three variables in the quantitative analysis of CCs. The obtained results confirm that the AW mixture should be the optimal elutant for the CC analysis, as other simple binary compositions like MW are limited in many respects. PMID:21107904

  14. Size segregation in dense, dry, inclined flows of binary granular mixtures

    NASA Astrophysics Data System (ADS)

    Larcher, Michele; Jenkins, James T.

    2013-04-01

    Despite the importance of particle segregation in dense, collisional particle flows, the theoretical framework for its description is still incomplete. Phenomenological theories exist, such as those described by Gray and Ancey [1] that produce plausible predictions of species' concentrations and mixture velocity for appropriate choices of parameters. However, our goal here is to make such predictions in the context of a more fundamental theory that is based on the inter-particle interactions and that incorporates a measure of the energy of the particle velocity fluctuations. We phrase and solve a problem of particle segregation in a dry flow of two sizes of spheres down an inclined, rigid, bumpy bed in the absence of sidewalls. The flow is assumed to be steady and fully-developed, collisions between particles are dissipative, and the sizes and masses of the particles are not too different. For the mixture, we employ the kinetic theory for identical, inelastic spheres developed by Garzo & Dufty [2], modifying their expression for energy dissipation to take in to account the formation of particle clusters [3]. We incorporate friction in the particle interactions through the introduction of an effective coefficient restitution in the translational energy equation [4]; this accounts for energy lost to the fluctuations in translation velocity due both to their conversion to rotational velocity fluctuations and their dissipation due to sliding friction. We employ a theory for segregation in a binary mixture of spheres by Arnarson and Jenkins [5] that is appropriate for particles with relatively small differences in size and mass. We compare the predictions of species' concentration, mixture concentration and mixture velocity to the results of numerical simulations carried out by Tripathi and Khakhar [6]. We employ the particle sizes, masses and interaction parameters of their simulation in the theory; however, because the measures of size and mass difference employed in

  15. Solid-liquid phase equilibrium for binary Lennard-Jones mixtures

    NASA Astrophysics Data System (ADS)

    Hitchcock, Monica R.; Hall, Carol K.

    1999-06-01

    Solid-liquid phase diagrams are calculated for binary mixtures of Lennard-Jones spheres using Monte Carlo simulation and the Gibbs-Duhem integration technique of Kofke. We calculate solid-liquid phase diagrams for the model Lennard-Jones mixtures: argon-methane, krypton-methane, and argon-krypton, and compare our simulation results with experimental data and with Cottin and Monson's recent cell theory predictions. The Lennard-Jones model simulation results and the cell theory predictions show qualitative agreement with the experimental phase diagrams. One of the mixtures, argon-krypton, has a different phase diagram than its hard-sphere counterpart, suggesting that attractive interactions are an important consideration in determining solid-liquid phase behavior. We then systematically explore Lennard-Jones parameter space to investigate how solid-liquid phase diagrams change as a function of the Lennard-Jones diameter ratio, σ11/σ22, and well-depth ratio, ɛ11/ɛ22. This culminates in an estimate of the boundaries separating the regions of solid solution, azeotrope, and eutectic solid-liquid phase behavior in the space spanned by σ11/σ22 and ɛ11/ɛ22 for the case σ11/σ22<0.85.

  16. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    SciTech Connect

    Delage-Santacreu, Stephanie; Galliero, Guillaume Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  17. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    NASA Astrophysics Data System (ADS)

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  18. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to examine cycle performance for Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using pure Refrigerants 12, 22 and 114 was theoretically carried out in the present paper. For the purpose of systematizing the heat pump cycle characteristics with pure refrigerants, the cycle analysis for Refrigerants 502, 13B1, 152a, 717 (NH3) and 290 (C3H8) was also examined. It became clear that the maximum coefficients of performance with various refrigerants were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  19. Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures.

    PubMed

    Kundi, Michael; Parrella, Alfredo; Lavorgna, Margherita; Criscuolo, Emma; Russo, Chiara; Isidori, Marina

    2016-08-01

    The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET], and imatinib mesylate [IM]) were studied testing their binary mixtures in two crustaceans that are part of the freshwater food chain, namely Daphnia magna and Ceriodaphnia dubia. Genotoxicity was assessed using the in vivo comet assay. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results obtained for D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions, our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems. PMID:26139396

  20. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    PubMed

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values. PMID:27036455

  1. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures.

    PubMed

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule. PMID:25956107

  2. Tracking three-phase coexistences in binary mixtures of hard plates and spheres

    NASA Astrophysics Data System (ADS)

    Aliabadi, Roohollah; Moradi, Mahmood; Varga, Szabolcs

    2016-02-01

    The stability of demixing phase transition in binary mixtures of hard plates (with thickness L and diameter D) and hard spheres (with diameter σ) is studied by means of Parsons-Lee theory. The isotropic-isotropic demixing, which is found in mixtures of large spheres and small plates, is very likely to be pre-empted by crystallization. In contrast, the nematic-nematic demixing, which is obtained in mixtures of large plates and small spheres, can be stabilized at low diameter ratios (σ/D) and aspect ratios (L/D). At intermediate values of σ/D, where the sizes of the components are similar, neither the isotropic-isotropic nor the nematic-nematic demixing can be stabilized, but a very strong fractionation takes place between a plate rich nematic and a sphere rich isotropic phases. Our results show that the excluded volume interactions are capable alone to explain the experimental observation of the nematic-nematic demixing, but they fail in the description of isotropic-isotropic one [M. Chen et al., Soft Matter 11, 5775 (2015)].

  3. Shear viscosity for a heated granular binary mixture at low density.

    PubMed

    Montanero, José María; Garzó, Vicente

    2003-02-01

    The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed. The mixture is heated by the action of an external driving force (Gaussian thermostat) that exactly compensates for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat, and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free cooling case [V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002)], practical evaluation requires a Sonine polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow, using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement between theory and simulation over a wide range of values of the restitution coefficients and the parameters of the mixture (masses, concentrations, and sizes). PMID:12636672

  4. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran

    2016-03-01

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  5. Catalytic oxidation of dichloromethane, chloroform, and their binary mixtures over a platinum alumina catalyst

    SciTech Connect

    Papenmeier, D.M.; Rossin, J.A. . Gunpowder Branch)

    1994-12-01

    The complete catalytic oxidation of dichloromethane, chloroform, and their binary mixtures was examined over a 3% Pt/[kappa]-[delta] Al[sub 2]O[sub 3] catalyst at temperature between 300 and 400 C using a fixed bed catalytic reactor. The oxidation of chloroform and dichloromethane as pure compounds was nonlinear in the concentration of chloromethane and zeroth order in the concentration of oxygen. HCl, formed during the oxidation of each chloromethane, decreased the reaction rate. Kinetic rate expressions were developed to described the oxidation of dichloromethane and chloroform as pure compounds. These expressions were derived by assuming that the reaction occurred via adsorption and decomposition of the chloromethane into an oxygen covered platinum surface, with the reaction being inhibited by the presence of HCl. From the results of the pure compound studies, reaction rate expressions were developed to describe the oxidation of dichloromethane/chloroform mixtures. The resulting reaction rate expressions accurately predicted the catalyst's performance during the oxidation of dichloromethane/chloroform mixtures over a wide range of conditions.

  6. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures.

    PubMed

    Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A

    2016-06-01

    Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. PMID:26954086

  7. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    PubMed Central

    Hossain, Md. Uzzal; Rahman, Md. Toufiqur; Ehsan, Md. Qamrul

    2015-01-01

    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers. PMID:26770198

  8. Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

    PubMed

    Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M

    2014-11-01

    In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations. PMID:25376978

  9. Delineating solute-solvent interactions in binary mixtures of ionic liquids in molecular solvents and preferential solvation approach.

    PubMed

    Khupse, Nageshwar D; Kumar, Anil

    2011-02-01

    The effect of solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators in binary mixtures of ionic liquids with molecular solvents has been investigated. The binary mixtures of the pyridinium-based ionic liquids 1-butylpyridinium tetrafluoroborate ([BP][BF4]), 1-butyl-3-methylpyridinium tetrafluoroborate ([3-MBP][BF4]), and 1-butyl-4-methylpyridinium tetrafluoroborate ([4-MBP][BF4]) with molecular solvents like water, methanol, and dichloromethane have been selected for this investigation. The effect of addition of ionic liquids to molecular solvents on the polarity parameters E(T)(N), Kamlet-Taft parameters, hydrogen bond donor ability (HBD) (α), hydrogen bond acceptor ability (HBA) (β), and polarizability (π*) was obtained. The polarity parameters of the mixture display nonideality on addition of ionic liquids to water and dichloromethane. On the other hand, strong synergetic effects were seen in the ionic liquid-methanol binary mixtures. The preferential solvation models have been employed to analyze the collected data in order to achieve information on solute-solvent interactions in these binary mixtures. PMID:21142058

  10. Effects of Binary Mixtures of Inducers (Toluene Analogs) and of Metals on Bioluminescence Induction of a Recombinant Bioreporter Strain

    PubMed Central

    Kong, In Chul

    2014-01-01

    This paper investigated the effects of binary mixtures of bioluminescence inducers (toluene, xylene isomers, m-toluate) and of metals (Cu, Cd, As(III), As(V), and Cr) on bioluminescence activity of recombinant (Pm-lux) strain KG1206. Different responses and sensitivities were observed depending on the types and concentrations of mixtures of inducers or metals. In the case of inducer mixtures, antagonistic and synergistic modes of action were observed, whereas metal mixtures showed all three modes of action. Antagonistic mode of action was most common for mixtures of indirect inducers, which showed bioluminescence ranging from 29% to 62% of theoretically expected effects (P(E)). On the other hand, synergistic mode of action was observed for mixtures of direct and indirect inducers, which showed bioluminescence between 141% and 243% of P(E).In the case of binary metal mixtures, bioluminescence activities were ranged from 62% to 75% and 113% to 164% of P(E) for antagonistic and synergistic modes of action, respectively (p-values 0.0001–0.038). Therefore, mixture effects could not be generalized since they were dependent on both the types and concentrations of chemicals, suggesting that biomonitoring may constitute a better strategy by investigating types and concentrations of mixture pollutants at contaminated sites. PMID:25313497