Science.gov

Sample records for binary compact object

  1. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  2. Evolution of binaries with compact objects in globular clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia

    2016-02-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries with neutron stars, and how mass-transferring binaries with a black hole and a white dwarf can be formed. We discuss as well one old unsolved puzzle and two new puzzles posed by recent observations: what descendants do ultra-compact X-ray binaries produce, how are very compact triples formed, and how can black hole low-mass X-ray binaries acquire non-degenerate companions?

  3. Hans A. Bethe Prize: Mergers of Binary Compact Objects

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki

    2016-03-01

    The inspiral and eventual merger of two compact objects in binary systems are important in astrophysics across the electromagnetic spectrum and as potential gravitational-wave sources. In this talk I will select a few topics of current interest to highlight compact-object mergers, including in the context of multi-messenger astrophysics.

  4. Evidence for a binary origin of a central compact object

    NASA Astrophysics Data System (ADS)

    Doroshenko, Victor; Pühlhofer, Gerd; Kavanagh, Patrick; Santangelo, Andrea; Suleimanov, Valery; Klochkov, Dmitry

    2016-05-01

    Central compact objects (CCOs) are thought to be young thermally emitting isolated neutron stars that were born during the preceding core-collapse supernova explosion. Here, we present evidence that at least in one case the CCO could have been formed within a binary system. We show that the highly reddened optical source IRAS 17287-3443, located 25 arcsec away from the CCO candidate XMMUJ173203.3-344518 and classified previously as a post asymptotic giant branch star, is indeed surrounded by a dust shell. This shell is heated by the central star to temperatures of ˜90 K and observed as extended infrared emission in 8-160 μm band. The dust temperature also increases in the vicinity of the CCO which implies that it likely resides within the shell. We estimate the total dust mass to be ˜0.4-1.5 M⊙ which significantly exceeds expected dust yields by normal stars and thus likely condensed from supernova ejecta. Taking into account that both the age of the supernova remnant and the duration of active mass-loss phase by the optical star are much shorter than the total lifetime of either object, the supernova and the onset of the active mass-loss phase of the companion have likely occurred approximately simultaneously. This is most easily explained if the evolution of both objects is interconnected. We conclude, therefore, that both stars were likely members of the same binary system disrupted by a supernova.

  5. BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES

    SciTech Connect

    O'Shaughnessy, R.; Kalogera, V.; Belczynski, Krzysztof E-mail: vicky@northwestern.ed

    2010-06-10

    In this paper, we estimate binary compact object merger detection rates for LIGO, including the potentially significant contribution from binaries that are produced in elliptical galaxies near the epoch of peak star formation. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4 x 10{sup -3} Mpc{sup -3} Myr{sup -1} for binary black holes (BHs), 3 x 10{sup -2} Mpc{sup -3} Myr{sup -1} for binary neutron stars (NSs), and 10{sup -2} Mpc{sup -3} Myr{sup -1} for BH-NS binaries. We find that mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are likely dominated by the contribution from spiral galaxies. Limiting attention to elliptical-galaxy plus only those spiral-galaxy models that reproduce current observations of Galactic NS-NS, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (in practice as part of a network, to reduce its noise), corresponding to radii D {sub bns} of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M {sub sun} NSs of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9 x 10{sup -2}-0.46 and 25-400 yr{sup -1} (at 90% confidence level), respectively. We also find that the probability P {sub detect} of detecting one or more mergers with this single detector can be approximated by (1) P {sub detect} {approx_equal} 0.4 + 0.5 log(T/0.01 yr), assuming D {sub bns} = 197 Mpc and it operates for T yr, for T between 2 days and 0.1 yr, or by (2) P {sub detect} {approx_equal} 0.5 + 1.5 log(D {sub bns}/32 Mpc), for 1 yr of operation and for D {sub bns

  6. Tidal torque induced by orbital decay in compact object binaries

    NASA Astrophysics Data System (ADS)

    Dall'Osso, Simone; Rossi, Elena M.

    2013-01-01

    As we observe in the moon-earth system, tidal interactions in binary systems can lead to angular momentum exchange. The presence of viscosity is generally regarded as the condition for such transfer to happen. In this paper, we show how the orbital evolution can cause a persistent torque between the binary components, even for inviscid bodies. This preferentially occurs at the final stage of coalescence of compact binaries, when the orbit shrinks successively by gravitational waves and plunging on a time-scale shorter than the viscous time-scale. The total orbital energy transferred to the secondary by this torque is ˜10-2 of its binding energy. We further show that this persistent torque induces a differentially rotating quadrupolar perturbation. Specializing to the case of a secondary neutron star, we find that this non-equilibrium state has an associated free energy of 1047-1048 erg, just prior to coalescence. This energy is likely stored in internal fluid motions, with a sizeable amount of differential rotation. By tapping this free energy reservoir, a pre-existing weak magnetic field could be amplified up to a strength of ≈1015 G. Such a dynamically driven tidal torque can thus recycle an old neutron star into a magnetar, with possible observational consequences at merger.

  7. Maria Goeppert-Mayer Award Talk: Formation and Evolution of Compact Objects in Binary Systems

    NASA Astrophysics Data System (ADS)

    Kalogera, Vicky

    2008-04-01

    Ever since their discovery, first as X-ray sources and later as radio pulsars, binary stellar systems harboring neutron stars or black holes have been pivotal in our efforts to understand the formation and evolution of these most compact objects and the implications for gravitational wave searches. I will review some recent surprising results linking the formation of neutron stars and black holes. I will also discuss how studies of double compact objects can help uncover the origin of short gamma-ray bursts and assess the prospects for gravitational wave detections in the near future.

  8. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  9. Insights into stellar and binary evolution from gravitational-wave observations of merging compact objects

    NASA Astrophysics Data System (ADS)

    Stevenson, Simon

    2016-07-01

    Advanced LIGO finished its first observing run (O1) at the begining of 2016, at a sensitivity ~3 times that of the initial LIGO detectors. This increased sensitivity makes the possibility of detecting gravitational-waves a realistic prospect over the next few years. One of the most promising sources for advanced gravitational-wave detectors is the merger of two compact objects; neutron stars or black holes. These objects are formed as the end point of the evolution of massive stars in close binaries. There remain many poorly understood processes in the lives of massive stars and the evolution of close binary systems. These processes include the distribution of kicks received by black holes at birth, the amount of angular momentum lost from a system during a mass transfer episode, and the common envelope event. One way of attempting to understand these processes is to attempt to constrain them observationally using eventual gravitational-wave observations of compact binary mergers. Here we present recent work on this front.

  10. Compact symmetric objects and supermassive binary black holes in the VLBA Imaging and Polarimetry Survey

    NASA Astrophysics Data System (ADS)

    Tremblay, S. E.; Taylor, G. B.; Ortiz, A. A.; Tremblay, C. D.; Helmboldt, J. F.; Romani, R. W.

    2016-06-01

    We present multifrequency Very Long Baseline Array (VLBA) follow-up observations of VLBA Imaging and Polarimetry Survey sources identified as likely compact symmetric objects (CSOs) or supermassive binary black holes (SBBHs). We also present new spectroscopic redshifts for 11 sources observed with the Hobby-Eberly Telescope. While no new SBBHs can be confirmed from these observations, we have identified 24 CSOs in the sample, 15 of which are newly designated, and refuted 52 candidates leaving 33 unconfirmed candidates. This is the first large uniform sample of CSOs which can be used to elicit some of the general properties of these sources, including morphological evolution and environmental interaction. We have detected polarized emission from two of these CSOs the properties of which are consistent with active galactic nuclei unification schemes.

  11. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    SciTech Connect

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets of ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)

  12. Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zensus, J. A.

    2016-02-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.

  13. The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions

    NASA Astrophysics Data System (ADS)

    Rosswog, S.; Piran, T.; Nakar, E.

    2013-04-01

    We explore the multimessenger signatures of encounters between two neutron stars (ns2) and between a neutron star and a stellar mass black hole (nsbh). We focus on the differences between gravitational-wave-driven binary mergers and dynamical collisions that occur, for example, in globular clusters. Our discussion is based on Newtonian hydrodynamics simulations that incorporate a nuclear equation of state and a multiflavour neutrino treatment. For both types of encounters we compare the gravitational wave and neutrino emission properties. We also calculate the rates at which nearly unbound mass is delivered back to the central remnant in a ballistic-fallback-plus-viscous-disc model and we analyse the properties of the dynamically ejected matter. Last but not least we address the electromagnetic transients that accompany each type of encounter. We find that dynamical collisions are at least as promising as binary mergers for producing (short) gamma-ray bursts, but they also share the same possible caveats in terms of baryonic pollution. All encounter remnants produce peak neutrino luminosities of at least ˜1053 erg s-1, some of the collision cases exceed this value by more than an order of magnitude. The canonical ns2 merger case ejects more than 1 per cent of a solar mass of extremely neutron-rich (Ye ˜ 0.03) material, an amount that is consistent with double neutron star mergers being a major source of r-process in the galaxy. nsbh collisions eject very large amounts of matter (˜0.15 M⊙) which seriously constrains their admissible occurrence rates. The compact object collision rate (sum of ns2 and nsbh) must therefore be less, likely much less, than 10 per cent of the ns2 merger rate. The radioactively decaying ejecta produce optical-ultraviolet `macronova' which, for the canonical merger case, peak after ˜0.4 d with a luminosity of ˜5 × 1041 erg s-1. ns2 (nsbh) collisions reach up to two (four) times larger peak luminosities. The dynamic ejecta deposit a

  14. A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Kalogera, Vassiliki; Bulik, Tomasz

    2002-06-01

    A new generation of ground-based interferometric detectors for gravitational waves is currently under construction or has entered the commissioning phase (Laser Interferometer Gravitational-wave Observatory [LIGO], VIRGO, GEO600, TAMA300). The purpose of these detectors is to observe gravitational waves from astrophysical sources and help improve our understanding of the source origin and physical properties. In this paper we study the most promising candidate sources for these detectors: inspiraling double compact objects. We use population synthesis methods to calculate the properties and coalescence rates of compact object binaries: double neutron stars, black hole-neutron star systems, and double black holes. We also examine the formation channels available to double compact object binaries. We explicitly account for the evolution of low-mass helium stars and investigate the possibility of common-envelope evolution involving helium stars as well as two evolved stars. As a result we identify a significant number of new formation channels for double neutron stars, in particular, leading to populations with very distinct properties. We discuss the theoretical and observational implications of such populations, but we also note the need for hydrodynamical calculations to settle the question of whether such common-envelope evolution is possible. We also present and discuss the physical properties of compact object binaries and identify a number of robust, qualitative features as well as their origin. Using the calculated coalescence rates we compare our results to earlier studies and derive expected detection rates for LIGO. We find that our most optimistic estimate for the first LIGO detectors reach a couple of events per year and our most pessimistic estimate for advanced LIGO detectors exceed ~=10 events per year.

  15. Precession-tracking coordinates for simulations of compact-object binaries

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Kidder, Lawrence E.; Pfeiffer, Harald P.

    2013-10-01

    Binary black hole simulations with black hole excision using spectral methods require a coordinate transformation into a corotating coordinate system where the black holes are essentially at rest. This paper presents and discusses two coordinate transformations that are applicable to precessing binary systems, one based on Euler angles, the other on quaternions. Both approaches are found to work well for binaries with moderate precession, i.e., for cases where the orientation of the orbital plane changes by ≪90°. For strong precession, performance of the Euler-angle parametrization deteriorates, eventually failing for a 90° change in orientation because of singularities in the parametrization (“gimbal lock”). In contrast, the quaternion representation is invariant under an overall rotation and handles any orientation of the orbital plane as well as the Euler-angle technique handles nonprecessing binaries.

  16. DC CIRCUIT POWERED BY ORBITAL MOTION: MAGNETIC INTERACTIONS IN COMPACT OBJECT BINARIES AND EXOPLANETARY SYSTEMS

    SciTech Connect

    Lai Dong

    2012-09-20

    The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.

  17. A Statistical Approach to Identifying Compact Objects in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Vrtilek, Saeqa D.

    2013-04-01

    A standard approach towards statistical inferences in astronomy has been the application of Principal Components Analysis (PCA) to reduce dimensionality. However, for non-linear distributions this is not always an effective approach. A non-linear technique called ``diffusion maps" (Freema \\eta 2009; Richard \\eta 2009; Lee \\& Waterman 2010), a robust eigenmode-based framework, allows retention of the full ``connectivity" of the data points. Through this approach we define the highly non-linear geometry of X-ray binaries in a color-color-intensity diagram in an efficient and statistically sound manner providing a broadly applicable means of distinguishing between black holes and neutron stars in Galactic X-ray binaries.

  18. On the mass of the compact object in the black hole binary A0620-00

    NASA Technical Reports Server (NTRS)

    Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.

    1993-01-01

    Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.

  19. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    SciTech Connect

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B. E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.

  20. Coalescing binary systems of compact objects to (post) sup 5/2 -Newtonian order: Late-time evolution and gravitational radiation emission

    SciTech Connect

    Lincoln, C.W.

    1990-01-01

    The late-time evolution of binary systems of compact objects (neutron stars or black holes) is studied using the Damour-Derueele (post){sup 5/2}-Newtonian equations of motion with relativistic corrections of all orders up to and including radiation reaction. Using the method of close orbital elements from celestial mechanics, the author evolves the orbits to separations of r {approx} 2 m, where m is the total mass, at which point the (post){sup 5/2}-Newtonian approximation breaks down. With the orbits as input, he calculates the gravitational waveform and luminosity using a post-Newtonian formalism of Wagoner and Will. Results are obtained for systems containing various combinations of compact objects, for various values of the mass ratio m{sub 1}/m{sub 2}, and forg various initial values of the orbital eccentricity.

  1. THE MASS-LOSS-INDUCED ECCENTRIC KOZAI MECHANISM: A NEW CHANNEL FOR THE PRODUCTION OF CLOSE COMPACT OBJECT-STELLAR BINARIES

    SciTech Connect

    Shappee, Benjamin J.; Thompson, Todd A. E-mail: thompson@astronomy.ohio-state.edu

    2013-03-20

    Over a broad range of initial inclinations and eccentricities, an appreciable fraction of hierarchical triple star systems with similar masses are essentially unaffected by the Kozai-Lidov mechanism (KM) until the primary in the central binary evolves into a compact object. Once it does, it may be much less massive than the other components in the ternary, enabling the 'eccentric Kozai mechanism (EKM)': the mutual inclination between the inner and outer binaries can flip signs driving the inner binary to very high eccentricity, leading to a close binary or collision. We demonstrate this 'mass-loss-induced eccentric Kozai' (MIEK) mechanism by considering an example system and defining an ad hoc minimal separation between the inner two members at which tidal effects become important. For fixed initial masses and semimajor axes, but uniform distributions of eccentricity and cosine of the mutual inclination, {approx}10% of systems interact tidally or collide while the primary is on the main sequence (MS) due to the KM or EKM. Those affected by the EKM are not captured by earlier quadrupole-order secular calculations. We show that fully {approx}30% of systems interact tidally or collide for the first time as the primary swells to AU scales, mostly as a result of the KM. Finally, {approx}2% of systems interact tidally or collide for the first time after the primary sheds most of its mass and becomes a white dwarf (WD), mostly as a result of the MIEK mechanism. These findings motivate a more detailed study of mass loss in triple systems and the formation of close neutron star (NS)/WD-MS and NS/WD-NS/WD binaries without an initial common envelope phase.

  2. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780

  3. Winds from disks in compact binaries

    SciTech Connect

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  4. Gravity waves, chaos, and spinning compact binaries

    PubMed

    Levin

    2000-04-17

    Spinning compact binaries are shown to be chaotic in the post-Newtonian expansion of the two-body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template. PMID:11019134

  5. Accretion-powered Compact Binaries

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  6. Compact objects in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  7. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  8. Searching for gravitational waves from compact binaries with precessing spins

    NASA Astrophysics Data System (ADS)

    Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra

    2016-07-01

    Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.

  9. Double compact objects. II. Cosmological merger rates

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2013-12-10

    The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the 'local' universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.

  10. The origin of ultra-compact binaries

    NASA Technical Reports Server (NTRS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    1987-01-01

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  11. Eccentric motion of spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Tessmer, Manuel; Schäfer, Gerhard

    2014-05-01

    The equations of motion for spinning compact binaries on eccentric orbits are treated perturbatively in powers of a fractional mass-difference ordering parameter. The solution is valid through first order in the mass-difference parameter. A canonical point transformation removes the leading-order terms of the spin-orbit Hamiltonian which induce a wiggling precession of the orbital angular momentum around the conserved total angular momentum, a precession which disappears in the case of equal masses or one single spin. Action-angle variables are applied that make a canonical perturbation theory easily treatable.

  12. Spinning compact binary dynamics and chameleon orbits

    NASA Astrophysics Data System (ADS)

    Gergely, László Árpád; Keresztes, Zoltán

    2015-01-01

    We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.

  13. CONSTRAINTS ON THE COMPACT OBJECT MASS IN THE ECLIPSING HIGH-MASS X-RAY BINARY XMMU J013236.7+303228 IN M 33

    SciTech Connect

    Bhalerao, Varun B.; Harrison, Fiona A.; Van Kerkwijk, Marten H.

    2012-09-20

    We present optical spectroscopic measurements of the eclipsing high-mass X-ray binary (HMXB) XMMU J013236.7+303228 in M 33. Based on spectra taken at multiple epochs of the 1.73 day binary orbital period we determine physical as well as orbital parameters for the donor star. We find the donor to be a B1.5IV subgiant with effective temperature T = 22, 000-23, 000 K. From the luminosity, temperature, and known distance to M 33 we derive a radius of R 8.9 {+-} 0.5 R{sub Sun }. From the radial-velocity measurements, we determine a velocity semi-amplitude of K{sub opt} = 63 {+-} 12 km s{sup -1}. Using the physical properties of the B star determined from the optical spectrum, we estimate the star's mass to be M{sub opt} = 11 {+-} 1 M{sub Sun }. Based on the X-ray spectrum, the compact companion is likely a neutron star, although no pulsations have yet been detected. Using the spectroscopically derived B star mass we find the neutron star companion mass to be M{sub X} = 2.0 {+-} 0.4 M{sub Sun }, consistent with the neutron star mass in the HMXB Vela X-1, but heavier than the canonical value of 1.4 M{sub Sun} found for many millisecond pulsars. We attempt to use as an additional constraint that the B star radius inferred from temperature, flux, and distance should equate to the Roche radius, since the system accretes by Roche lobe overflow. This leads to substantially larger masses, but by trying to apply the technique to known systems, we find that the masses are consistently overestimated. Attempting to account for that in our uncertainties, we derive M{sub X} = 2.2{sup +0.8}{sub -0.6} M{sub Sun} and M{sub opt} = 13 {+-} 4 M{sub Sun }. We conclude that precise constraints require detailed modeling of the shape of the Roche surface.

  14. Probing the Environment of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since

  15. Recognition of compact astrophysical objects

    NASA Technical Reports Server (NTRS)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  16. Gravitational Radiation from Compact Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Antoniadis, John

    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems—if modeled properly—provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have allowed for a series of precise mass measurements is such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.

  17. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  18. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    SciTech Connect

    Kaplan, David L.; Bildsten, Lars; Steinfadt, Justin D. R. E-mail: bildsten@kitp.ucsb.edu

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  19. Composite gravitational-wave detection of compact binary coalescence

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.

    2011-04-15

    The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.

  20. Studies of compact objects with Einstein - Review and prospects

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1990-01-01

    X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.

  1. DOUBLE COMPACT OBJECTS AS LOW-FREQUENCY GRAVITATIONAL WAVE SOURCES

    SciTech Connect

    Belczynski, Krzysztof; Bulik, Tomasz; Benacquista, Matthew

    2010-12-10

    We study the Galactic field population of double compact objects (DCOs; NS-NS, BH-NS, BH-BH binaries) to investigate the number (if any) of these systems that can potentially be detected with the Laser Interferometer Space Antenna (LISA) at low gravitational wave frequencies. We calculate the Galactic numbers and physical properties of these binaries and show their relative contributions from the disk, bulge, and halo. Although the Galaxy hosts {approx}10{sup 5} DCO binaries emitting low-frequency gravitational waves, only a handful of these objects in the disk will be detectable with LISA, but none from the halo or bulge. This is because the bulk of these binaries are NS-NS systems with high eccentricities and long orbital periods (weeks/months) causing inefficient signal accumulation (a small number of signal bursts at periastron passage in one year of LISA observations) and rendering them undetectable in the majority of these cases. We adopt two evolutionary models that differ in their treatment of the common envelope (CE) phase that is a major (and still mostly unknown) process in the formation of close DCOs. Depending on the evolutionary model adopted, our calculations indicate the likely detection of about four NS-NS binaries and two BH-BH systems (model A; likely survival of progenitors through CE) or only a couple of NS-NS binaries (model B; suppression of the DCO formation due to CE mergers).

  2. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    SciTech Connect

    Antonini, Fabio; Perets, Hagai B.

    2012-09-20

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that {approx}0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e {approx}> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  3. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    SciTech Connect

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-03-20

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a {sup 2/7}. Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  4. Status of searches for compact binaries in aLIGO with PyCBC

    NASA Astrophysics Data System (ADS)

    Biwer, Christopher

    2016-03-01

    Advanced LIGO began its first observing in September 2015. Gravitational waves from binary neutron stars, binary black holes and neutron star-black hole binaries are an important science goal for Advanced LIGO. The PyCBC search uses match filtering to correlate LIGO data with a bank of templates to search for transient gravitational-wave from compact object binaries with a total mass between 2 and 100 solar masses with spin. In this talk, we describe results of the PyCBC search during the first aLIGO observing run. LIGO.

  5. Evolution of binary stars in multiple-population globular clusters - II. Compact binaries

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale

    2016-04-01

    We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.

  6. The evolution of highly compact binary stellar systems in globular clusters

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Meiksin, A.; Joss, P. C.

    1984-01-01

    A highly compact binary represents a system which is composed of a collapsed object (degenerate dwarf, neutron star, or black hole) in orbit with a low-mass (equal to or less than 0.5 solar mass) secondary star. Matter may be transferred from the secondary to the collapsed star due to the decay of the orbit resulting from the emission of gravitational radiation. The present investigation has the objective to study quantitatively the evolution of highly compact binaries in globular cluster cores, subject to the interplay of gravitational radiation and collisions with field stars. The investigation is exploratory in nature. The numerical methods employed are based on the techniques developed by Rappaport et al. (1982). It is found that occasional close encounters with field stars strongly dominate the evolution of highly compact binaries in dense globular cluster cores. Attention is given to the applicability of the findings to observations of X-ray sources and cataclysmic variables.

  7. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference

    NASA Technical Reports Server (NTRS)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.

    2015-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.

  8. Compact binary hashing for music retrieval

    NASA Astrophysics Data System (ADS)

    Seo, Jin S.

    2014-03-01

    With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.

  9. First law of mechanics for compact binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre

    2015-10-01

    Using the canonical Arnowitt-Deser-Misner Hamiltonian formalism, a "first law of mechanics" is established for binary systems of point masses moving along generic stable bound (eccentric) orbits. This relationship is checked to hold within the post-Newtonian approximation to general relativity, up to third order. Several applications are discussed, including the use of gravitational self-force results to inform post-Newtonian theory and the effective one-body model for eccentric-orbit compact binaries.

  10. Towards realistic simulations of non-vacuum compact binaries

    NASA Astrophysics Data System (ADS)

    Neilsen, David; Anderson, Matthew; Draper, Christian; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Miguel, Megevand; Motl, Patrick; Palenzuela, Carlos

    2011-04-01

    Binary mergers in non-vacuum spacetimes often display complex dynamics that are sensitive to the physical phenomena included in the model, and which may affect the gravitational wave signature from the system. For example, magnetic fields, cooling mechanisms, and equations of state influence the merger and post-merger evolution of compact binaries. Thus, these effects should be included in computational models that connect with astrophysical observations. In this talk we present results of neutron star evolutions with a finite-temperature equation of state in the context of binary mergers, and we also consider effects of other relevant physical phenomena.

  11. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  12. Expected Bounds on Compact Binary Coalescence Rates from LIGO Observations

    NASA Astrophysics Data System (ADS)

    Sampson, Laura; LIGO Scientific Collaboration Collaboration

    2016-03-01

    The Advanced LIGO detectors have recently completed their first observing run, with a sensitive spacetime volume over 27 times larger than the initial LIGO configuration. In this talk we will examine the expected bounds on compact binary coalescence rates from O1 observations, and discuss the corresponding impact on astrophysical models.

  13. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.

    PubMed

    Hadžović, Ervina; Betz, Gabriele; Hadžidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans

    2011-09-15

    Roller compaction is a dry granulation method which results in tablets with inferior tensile strength comparing to direct compaction. The effect of roller compaction on compressibility and compactibility of tablets prepared from Theophylline anhydrate powder, Theophylline anhydrate fine powder and Theophylline monohydrate was investigated by measuring tensile strength of tablets as well as calculating compressibility and compactibility parameters by Leuenberger equation. The tablets under the same conditions were prepared by direct compaction and roller compaction. The binary mixtures of Theophylline anhydrate powder, Theophylline anhydrate fine powder, Theophylline monohydrate and microcrystalline cellulose were prepared in order to determine the optimal ratio of active material and excipients which delivers a sufficient mechanical strength of tablets. Tensile strength of MCC tablets and compactibility parameters calculated by Leuenberger equation after roller compaction was significantly decreased, while THAP, THAFP and THMO tablets showed only a minor reduction in compactibility and compressibility. Adding MCC to a mixture with Theophylline showed that the right choice and ratio of excipients can enable a sufficient mechanical strength of the tablets after roller compaction. PMID:21704142

  14. COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-10

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.

  15. Compact Binary Progenitors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  16. Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins

    NASA Astrophysics Data System (ADS)

    Ajith, P.; Fotopoulos, N.; Privitera, S.; Neunzert, A.; Mazumder, N.; Weinstein, A. J.

    2014-04-01

    We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (nonprecessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semianalytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m2≲12M⊙) binaries, this template bank achieves effective fitting factors ˜0.92- 0.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black-hole neutron-star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black holes (neutron stars) are uniformly distributed between 0-0.98 [0-0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is ˜20%-52%, as compared to a search using a nonspinning bank.

  17. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  18. Gravitational radiation from compact binaries in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Lang, R. N.

    2015-05-01

    General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar- tensor theories. The waveforms are constructed using a standard GR method known as “direct integration of the relaxed Einstein equations,” appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity. In another, mixed black hole- neutron star systems, all differences from GR can be characterized by only a single parameter.

  19. Gravitational radiation from compact binaries in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Lang, Ryan

    2014-03-01

    General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as ``Direct Integration of the Relaxed Einstein equations,'' appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, mixed black hole-neutron star systems, all differences from GR can be characterized by only a single parameter. In another, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity.

  20. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  1. Recent developments in the tidal deformability of spinning compact objects

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2016-04-01

    We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.

  2. The lack of large compact symmetric objects

    NASA Astrophysics Data System (ADS)

    Augusto, P.

    2009-02-01

    In recent years, `baby' (< 103 yr) and `young' (103-105 yr) radio galaxies have been found and classified, although their numbers are still small (tens). Also, they have many different names, depending on the type of survey and scientific context in which they were found: compact steep spectrum sources (CSS), giga-Hertz peaked spectrum sources (GPS) and compact-medium symmetric objects (C-MSO). The latter have the radio galaxy structure more obvious and correspond to the `babies' (CSOs; < 1 kpc) and `young' (MSOs; 1-15 kpc) radio galaxies. The log-size distribution of CSOs shows a sharp drop at 0.3 kpc. This trend continues through flat-spectrum MSOs (over the full 1-15 kpc size range). In order to find out if this lack of large CSOs and flat-spectrum MSOs is due to poor sampling (lack of surveys that probe efficiently the 0.3-15 kpc size range) and/or has physical meaning (e.g. if the lobes of CSOs expand as they grow and age, they might become CSSs, `disappearing' from the flat-spectrum MSO statistics), we have built a sample of 157 flat-spectrum radio sources with structure on ˜0.3-15 kpc scales. We are using new, archived and published data to produce and inspect hundreds of multi-frequency multi-instrument maps and models. We have already found 13 new secure CSO/MSOs. We expect to uncover ˜30-40 new CSOs and MSOs, most on the 0.3-15 kpc size range, when our project is complete.

  3. Distinguishing Compact Binary Population Synthesis Models Using Gravitational Wave Observations of Coalescing Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such as supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.

  4. Merging compact binaries in hierarchical triple systems: Resonant excitation of binary eccentricity

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Lai, Dong; Yuan, Ye-Fei

    2015-12-01

    We study the secular dynamics of compact binaries (consisting of white dwarfs, neutron stars or black holes) with tertiary companions in hierarchical triple systems. As the inner binary (with initially negligible eccentricity) undergoes orbital decay due to gravitational radiation, its eccentricity can be excited by gravitational forcing from the tertiary. This excitation occurs when the triple system passes through an "apsidal precession resonance," when the precession rate of the inner binary, driven by the gravitational perturbation of the external companion and general relativity, matches the precession rate of the outer binary. The eccentricity excitation requires the outer companion to be on an eccentric orbit, with the mutual inclination between the inner and outer orbits less than ˜40 ° . Gravitational wave (GW) signals from the inner binary can be significantly modified as the system evolves through the apsidal precession resonance. For some system parameters (e.g., a white dwarf binary with a brown dwarf tertiary), the resonance can happen when the binary emits GWs in the 10-4-10-1 Hz range (the sensitivity band of LISA).

  5. The evolution of highly compact binary stellar systems

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Joss, P. C.; Webbink, R. F.

    1982-01-01

    A new theoretical treatment of the evolution of highly compact binary systems is presented. The evolution is calculated until almost the entire mass of the secondary has been transferred to the primary or lost from the system. It is assumed that gravitational radiation from the system is the cause of mass transfer. It is found that the structure of the mass-losing star can be approximated by an n = 3/2 polytrope, and as a result a relatively large number of different cases can be explored and some general conclusions drawn. An explanation is found for the existence of a cutoff in the orbital period distribution among the cataclysmic variables and light is shed upon the possible generic relationships among cataclysmic variables, the low-mass X-ray binaries, and the spectrally soft transient X-ray sources.

  6. The dynamic ejecta of compact object mergers and eccentric collisions.

    PubMed

    Rosswog, Stephan

    2013-06-13

    Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium. PMID:23630377

  7. NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3

    SciTech Connect

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-07-20

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M{sub sun}, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M{sub sun} and 14.4 M{sub sun}. Our favored estimate, based on a 9.0 kpc distance estimate, is {approx}10 M{sub sun}, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.

  8. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  9. Large-margin Learning of Compact Binary Image Encodings.

    PubMed

    Paisitkriangkrai, Sakrapee; Shen, Chunhua; Van den Hengel, Anton

    2014-07-16

    The use of high-dimensional features has become a normal practice in many computer vision applications. The large dimension of these features is a limiting factor upon the number of data points which may be effectively stored and processed, however. We address this problem by developing a novel approach to learning a compact binary encoding, which exploits both pair-wise proximity and class-label information on training data set. Exploiting this extra information allows the development of encodings which, although compact, outperform the original high-dimensional features in terms of final classification or retrieval performance. The method is general, in that it is applicable to both non-parametric and parametric learning methods. This generality means that the embedded features are suitable for a wide variety of computer vision tasks, such as image classification and content-based image retrieval. Experimental results demonstrate that the new compact descriptor achieves an accuracy comparable to, and in some cases better than, the visual descriptor in the original space despite being significantly more compact. Moreover, any convex loss function and convex regularization penalty (e.g., `p norm with p 1) can be incorporated into the framework, which provides future flexibility. PMID:25051551

  10. Fast and accurate inference on gravitational waves from precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Smith, Rory; Field, Scott E.; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia

    2016-08-01

    Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments, we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced-order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper, we construct the first reduced-order models of gravitational-wave signals that include the effects of spin precession, inspiral, merger, and ringdown in compact object binaries and that are valid for component masses describing binary neutron star, binary black hole, and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2." Our ROM enables the use of a fast reduced-order quadrature (ROQ) integration rule which allows us to approximate Bayesian probability density functions at a greatly reduced computational cost. We find that the ROQ rule can be used to speed-up inference by factors as high as 300 without introducing systematic bias. This corresponds to a reduction in computational time from around half a year to half a day for the longest duration and lowest mass signals. The ROM and ROQ rules are available with the main inference library of the LIGO Scientific Collaboration, LALInference.

  11. Compact Binary Mergers as Multimessenger Sources of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart

    2015-04-01

    On the centennial anniversary of Einstein's theory of general relativity, we are on the verge of directly detecting one of its most remarkable predictions - gravitational waves (GWs). The inspiral and merger of compact binaries - binaries with black hole, neutron star or white dwarf companions - are among the most promising sources of GWs. Many of these sources are likely to generate observable electromagnetic (EM) and/or neutrino counterparts to the GWs, constituting a major advance in multimessenger astronomy. By way of illustration, we describe recent magnetohydrodynamic simulations in general relativity (GRMHD) that show how black hole-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short-hard gamma-ray bursts. We also discuss other recent GRMHD simulations that show how an inspiraling, supermassive binary black hole in a galaxy core stirs and accretes magnetized plasma that orbits the holes in a circumbinary disk. This process can generate ``precursor'' and ``aftermath'' EM radiation with respect to the peak GW emission at merger. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grant PHY-1300903 and NASA Grant NNX13AH44G at the University of Illinois at Urbana-Champaign.

  12. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

    NASA Astrophysics Data System (ADS)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.; Del Pozzo, W.; Feroz, F.; Gair, J.; Haster, C.-J.; Kalogera, V.; Littenberg, T.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Rodriguez, C.; Röver, C.; Sidery, T.; Smith, R.; Van Der Sluys, M.; Vecchio, A.; Vousden, W.; Wade, L.

    2015-02-01

    The Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star-black hole binary and a binary black hole, where we show a cross comparison of results obtained using three independent sampling algorithms. These systems were analyzed with nonspinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analyzing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.

  13. Targeted coherent search for gravitational waves from compact binary coalescences

    SciTech Connect

    Harry, I. W.; Fairhurst, S.

    2011-04-15

    We introduce a method for conducting a targeted, coherent search for compact binary coalescences. The search is tailored to be used as a follow-up to electromagnetic transients such as gamma-ray bursts. We derive the coherent search statistic for Gaussian detector noise and discuss the benefits of a coherent, multidetector search over coincidence methods. To mitigate the effects of nonstationary data, we introduce a number of signal consistency tests, including the null signal-to-noise ratio, amplitude consistency, and several {chi}{sup 2} tests. We demonstrate the search performance on Gaussian noise and on data from LIGO's fourth science run and verify that the signal consistency tests are capable of removing the majority of noise transients, giving the search an efficiency comparable to that achieved in Gaussian noise.

  14. A massive pulsar in a compact relativistic binary.

    PubMed

    Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G

    2013-04-26

    Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling. PMID:23620056

  15. Sparse representations of gravitational waves from precessing compact binaries.

    PubMed

    Blackman, Jonathan; Szilagyi, Bela; Galley, Chad R; Tiglio, Manuel

    2014-07-11

    Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges. PMID:25062160

  16. Effective one body description of tidal effects in inspiralling compact binaries

    SciTech Connect

    Damour, Thibault; Nagar, Alessandro

    2010-04-15

    The late part of the gravitational wave signal of binary neutron-star (or black-hole-neutron-star) inspirals can in principle yield crucial information on the nuclear equation of state via its dependence on relativistic tidal parameters. In the hope of analytically describing the gravitational wave phasing during the late inspiral (essentially up to merger) we propose an extension of the effective one body (EOB) formalism which includes tidal effects. We compare the prediction of this tidal-EOB formalism to recently computed nonconformally flat quasiequilibrium circular sequences of binary neutron-star systems. Our analysis suggests the importance of higher-order (post-Newtonian) corrections to tidal effects, even beyond the first post-Newtonian order, and their tendency to significantly increase the 'effective tidal polarizability' of neutron stars. We propose to use the EOB description up to the moment where the tidally deformed compact objects formally enter 'into contact'. We compare the EOB predictions to some recently advocated, nonresummed, post-Newtonian based ('Taylor-T4') description of the phasing of inspiralling systems. This comparison shows the strong sensitivity of the late-inspiral phasing to the choice of the analytical model. A sufficiently accurate numerical-relativity - 'calibrated' EOB model might, however, give us a reliable analytical description of the late inspiral of compact binaries (and might also help in predicting the conditions necessary for the generation of short gamma-ray bursts).

  17. Effective one body description of tidal effects in inspiralling compact binaries

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Nagar, Alessandro

    2010-04-01

    The late part of the gravitational wave signal of binary neutron-star (or black-hole-neutron-star) inspirals can in principle yield crucial information on the nuclear equation of state via its dependence on relativistic tidal parameters. In the hope of analytically describing the gravitational wave phasing during the late inspiral (essentially up to merger) we propose an extension of the effective one body (EOB) formalism which includes tidal effects. We compare the prediction of this tidal-EOB formalism to recently computed nonconformally flat quasiequilibrium circular sequences of binary neutron-star systems. Our analysis suggests the importance of higher-order (post-Newtonian) corrections to tidal effects, even beyond the first post-Newtonian order, and their tendency to significantly increase the “effective tidal polarizability” of neutron stars. We propose to use the EOB description up to the moment where the tidally deformed compact objects formally enter “into contact.” We compare the EOB predictions to some recently advocated, nonresummed, post-Newtonian based (“Taylor-T4”) description of the phasing of inspiralling systems. This comparison shows the strong sensitivity of the late-inspiral phasing to the choice of the analytical model. A sufficiently accurate numerical-relativity-“calibrated” EOB model might, however, give us a reliable analytical description of the late inspiral of compact binaries (and might also help in predicting the conditions necessary for the generation of short gamma-ray bursts).

  18. SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING

    SciTech Connect

    Lee, William H.; Ramirez-Ruiz, Enrico; Van de Ven, Glenn E-mail: enrico@ucolick.or

    2010-09-01

    We present a detailed assessment of the various dynamical pathways leading to the coalescence of compact objects in globular clusters (GCs) and Short Gamma-ray Burst (SGRB) production. We consider primordial binaries, dynamically formed binaries (through tidal two-body and three-body exchange interactions), and direct impacts of compact objects (WD/NS/BH). Here, we show that if the primordial binary fraction is small, close encounters dominate the production rate of coalescing compact systems. We find that the two dominant channels are the interaction of field neutron stars (NSs) with dynamically formed binaries and two-body encounters. Under such conditions, we estimate the redshift distribution and host galaxy demographics of SGRB progenitors, and find that GCs can provide a significant contribution to the overall observed rate. Regarding the newly identified channel of close stellar encounters involving WD/NS/BH, we have carried out precise modeling of the hydrodynamical evolution, giving us a detailed description of the resulting merged system. Our calculations show that there is in principle no problem in accounting for the global energy budget of a typical SGRB. The particulars of each encounter, however, are variable in several aspects and can lead to interesting diversity. First and most importantly, the characteristics of the encounter are highly dependent on the impact parameter. This is in contrast to the merger scenario, where the masses of the compact objects dictate a typical length and luminosity scale for SGRB activity. Second, the nature of the compact star itself can produce very different outcomes. Finally, the presence of tidal tails in which material will fall back onto the central object at a later time is a robust feature of the present set of calculations. The mass involved in these structures is considerably larger than for binary mergers. It is thus possible to account generically in this scenario for a prompt episode of energy release, as

  19. Exploring the Physics of Compact Objects with Gravitational-Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    2016-03-01

    The Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) has recently completed its first observing run. Future observations of gravitational waves by LIGO will open a new field in astronomy. The gravitational waves radiated by binaries containing neutron stars and/or black holes contain information about strong field gravity and the properties of dense matter. In this talk I will discuss the nuclear and gravitational physics that can be learned from the observation of compact-object mergers

  20. Substellar objects around the sdB eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Zhu, Liying; Qian, Shengbang; Liao, Wenping; Zhao, Ergang; Li, Linjia

    2016-07-01

    The sdB-type eclipsing binary consists a very hot subdwarf B (sdB) type primary and a low mass secondary with short period. They are detached binaries and show very narrow eclipse profiles, which benefits the determination of the precise eclipse times. With the precise times of light minimum, we can detected small mass objects around them by analyzing the observed-calculated (O-C) curve based on the light time effect. For searching the substellar objects orbiting around the binaries, we have monitored sdB-type eclipsing binaries for decades. A group of brown dwarfs and planets have been detected since then. In the present paper, we focus on the target NSVS07826147, which may be another exoplanet host candidate among the group of the sdB-type eclipsing binaries.

  1. Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Barausse, Enrico; Buonanno, Alessandra

    2012-03-01

    Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular momentum J of two nonspinning compact objects moving on circular orbits with frequency Ω, at leading order beyond the test-particle approximation. By minimizing E(Ω) we recover the exact frequency shift of the Schwarzschild innermost stable circular orbit induced by the conservative piece of the gravitational self-force. Comparing our results for the coordinate-invariant relation E(J) to those recently obtained from numerical simulations of comparable-mass nonspinning black-hole binaries, we find a remarkably good agreement, even in the strong-field regime. Our findings confirm that the domain of validity of perturbative calculations may extend well beyond the extreme mass-ratio limit.

  2. Third post-Newtonian gravitational waveforms for compact binary systems in general orbits: Instantaneous terms

    NASA Astrophysics Data System (ADS)

    Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.

    2015-04-01

    We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian (PN) order. We further extend these results for compact binaries in quasielliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current-type multipole moments, we compute the spin-weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasielliptical orbits.

  3. Cold dark matter as compact composite objects

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2006-08-01

    Dark matter (DM) being the vital ingredient in the cosmos, still remains a mystery. The standard assumption is that the collisionless cold dark matter (CCDM) particles are represented by some weakly interacting fundamental fields which cannot be associated with any standard quarks or leptons. However, recent analyses of structure on galactic and subgalactic scales have suggested discrepancies and stimulated numerous alternative proposals including, e.g. self-interacting dark matter, self-annihilating dark matter, decaying dark matter, to name just a few. We propose the alternative to the standard assumption about the nature of DM particles (which are typically assumed to be weakly interacting fundamental pointlike particles, yet to be discovered). Our proposal is based on the idea that DM particles are strongly interacting composite macroscopically large objects which made of well-known light quarks (or even antiquarks). The required weakness of the DM particle interactions is guaranteed by a small geometrical factor γ˜(area)/(volume)˜B-1/3≪1 of the composite objects with a large baryon charge B≫1, rather than by a weak coupling constant of a new field. We argue that the interaction between hadronic matter and composite dark objects does not spoil the desired properties of the latter as cold matter. We also argue that such a scenario does not contradict to the current observational data. Rather, it has natural explanations of many observed data, such as ΩDM/ΩB˜1 or 511 KeV line from the bulge of our galaxy. We also suggest that composite dark matter may modify the dynamics of structure formation in the central overdense regions of galaxies. We also present a number of other cosmological/astrophysical observations which indirectly support the novel concept of DM nature.

  4. Octupolar invariants for compact binaries on quasicircular orbits

    NASA Astrophysics Data System (ADS)

    Nolan, Patrick; Kavanagh, Chris; Dolan, Sam R.; Ottewill, Adrian C.; Warburton, Niels; Wardell, Barry

    2015-12-01

    We extend the gravitational self-force methodology to identify and compute new O (μ ) tidal invariants for a compact body of mass μ on a quasicircular orbit about a black hole of mass M ≫μ . In the octupolar sector we find seven new degrees of freedom, made up of 3 +3 conservative/dissipative `electric' invariants and 3 +1 `magnetic' invariants, satisfying 1 +1 and 1 +0 trace conditions. We express the new invariants for equatorial circular orbits on Kerr spacetime in terms of the regularized metric perturbation and its derivatives; and we evaluate the expressions in the Schwarzschild case. We employ both Lorenz gauge and Regge-Wheeler gauge numerical codes, and the functional series method of Mano, Suzuki and Takasugi. We present (i) highly-accurate numerical data and (ii) high-order analytical post-Newtonian expansions. We demonstrate consistency between numerical and analytical results, and prior work. We explore the application of these invariants in effective one-body models and binary black hole initial-data formulations.

  5. KEPLER OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS

    SciTech Connect

    Rowe, Jason F.; Borucki, William J.; Koch, David; Lissauer, Jack J.; Howell, Steve B.; Basri, Gibor; Marcy, Geoff; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; Jenkins, Jon; Cochran, William D.; Dunham, Edward; Dupree, Andrea K.; Latham, David W.; Sasselov, Dimitar; Fortney, Jonathan J.; Gautier, Thomas N.; Monet, David G.

    2010-04-20

    Kepler photometry has revealed two unusual transiting companions: one orbiting an early A-star and the other orbiting a late B-star. In both cases, the occultation of the companion is deeper than the transit. The occultation and transit with follow-up optical spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a companion in a 5.2 day orbit with a radius of 0.08 R {sub sun} and a 10,000 K late B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a radius of 0.2 R {sub sun}. We infer a temperature of 12,250 K for KOI-74b and 13,500 K for KOI-81b. We present 43 days of high duty cycle, 30 minute cadence photometry, with models demonstrating the intriguing properties of these objects, and speculate on their nature.

  6. Gravitational-wave radiation from double compact objects with eLISA in the Galaxy

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhong; Zhang, Yu

    2014-03-01

    The phase of inspiral of double compact objects (DCOs: NS + WD, NS + NS, BH + NS, and BH + BH binaries) in the disk field population of the Galaxy provides a potential source in the frequency range from 10-4 to 0.1 Hz, which can be detected by the European New Gravitational Observatory (NGO: eLISA is derived from the previous LISA proposal) project. In this frequency range, much stronger gravitational wave (GW) radiation can be obtained from DCO sources because they possess more mass than other compact binaries (e.g., close double white dwarfs). In this study, we aim to calculate the gravitational wave signals from the resolvable DCO sources in the Galaxy using a binary population synthesis approach, and determine physical properties of these binaries using Monte Carlo simulations. Combining the sensitivity curve of the eLISA detector and a confusion-limited noise floor of close double white dwarfs, we find that only a handful of DCO sources can be detected by the eLISA detector. The detectable number of DCO sources reaches 160; in the context of low-frequency eLISA observations we find that the number of NS + WD, NS + NS, BH + NS, and BH + BH objects are 132, 16, 3, and 6, respectively.

  7. The binary Kuiper-belt object 1998 WW31.

    PubMed

    Veillet, Christian; Parker, Joel Wm; Griffin, Ian; Marsden, Brian; Doressoundiram, Alain; Buie, Marc; Tholen, David J; Connelley, Michael; Holman, Matthew J

    2002-04-18

    The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects. PMID:11961547

  8. Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order

    NASA Astrophysics Data System (ADS)

    Moore, Blake; Favata, Marc; Arun, K. G.; Mishra, Chandra Kant

    2016-06-01

    Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but non-negligible orbital eccentricities when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101 (2014)]. Gravitational-wave search templates typically rely on the quasicircular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. Damour, Gopakumar, Iyer, and others have developed an elegant but complex quasi-Keplerian formalism for describing the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here, we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit, the nonperiodic contribution to the gravitational-wave phasing can be expressed explicitly as simple functions of frequency or time, with little additional complexity beyond the well-known formulas for circular binaries. These eccentric phase corrections are computed to 3PN order and to leading order in the eccentricity for the standard PN approximants. For a variety of systems, these eccentricity corrections cause significant corrections to the number of gravitational-wave cycles that sweep through a detector's frequency band. This is evaluated using several measures, including a modification of the useful cycles. By comparing to numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up to e0≲0.1 for comparable-mass systems, where e0 is the eccentricity when the source enters the detector band. We also evaluate the role of periodic terms that enter the phasing and discuss how they can be incorporated into some of

  9. Status and Future of Deep Searches for Compact Binary Mergers

    NASA Astrophysics Data System (ADS)

    Nitz, Alexander` Harvey; LIGO Scientific Collaboration

    2016-06-01

    Deep offline searches for gravitational waves from binary black hole, binary neutron star, and neutron star- black hole mergers were conducted during the first Advanced LIGO observing run, and recently Advanced LIGO announced the first detection of gravitational waves from a binary black hole merger. We discuss the recent results, the methodology of the high latency searches, along with improvements for the upcoming observing runs.

  10. Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux

    SciTech Connect

    Arun, K. G.; Iyer, Bala R.; Qusailah, Moh'd S. S.

    2008-03-15

    The instantaneous contributions to the third post-Newtonian (3PN) gravitational wave luminosity from the inspiral phase of a binary system of compact objects moving in a quasi-elliptical orbit is computed using the multipolar post-Minkowskian wave generation formalism. The necessary inputs for this calculation include the 3PN accurate mass quadrupole moment for general orbits and the mass octupole and current quadrupole moments at 2PN. Using the recently obtained 3PN quasi-Keplerian representation of elliptical orbits, the flux is averaged over the binary's orbit. Supplementing this by the important hereditary contributions arising from tails, tails of tails, and tails-squared terms calculated in a previous paper, the complete 3PN energy flux is obtained. The final result presented in this paper would be needed for the construction of ready-to-use templates for binaries moving on noncircular orbits, a plausible class of sources not only for the space-based detectors like LISA but also for the ground-based ones.

  11. Reliability of complete gravitational waveform models for compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Ohme, Frank; Hannam, Mark; Husa, Sascha

    2011-09-01

    Accurate knowledge of the gravitational-wave (GW) signal from inspiraling compact binaries is essential to detect these signatures in the data from GW interferometers. With recent advances in post-Newtonian (PN) theory and numerical relativity (NR) it has become possible to construct inspiral-merger-ringdown waveforms by combining both descriptions into one complete hybrid signal. While addressing the reliability of such waveforms in different points of the physical parameter space, previous studies have identified the PN contribution as the dominant source of error, which can be reduced by incorporating longer NR simulations. In this paper we overcome the two outstanding issues that make it difficult to determine the minimum simulation length necessary to produce suitably accurate hybrids for GW astronomy applications: (1) the relevant criteria for a GW search is the mismatch between the true waveform and a set of model waveforms, optimized over all waveforms in the model, but for discrete hybrids this optimization was not yet possible. (2) these calculations typically require that numerical waveforms already exist, while we develop an algorithm to estimate hybrid mismatch errors without numerical data, which enables us to estimate the necessary NR waveform length before performing the simulation. Our procedure relies on combining supposedly equivalent PN models at highest available order with common data in the NR regime, and their difference serves as a measure of the uncertainty assumed in each waveform. Contrary to some earlier studies, we estimate that ˜10 NR orbits before merger should allow for the construction of waveform families that are accurate enough for detection in a broad range of parameters, only excluding highly spinning, unequal-mass systems. Nonspinning systems, even with high mass-ratio (q≳20) are well modeled for astrophysically reasonable component masses. In addition, the parameter bias is only of the order of 1% for total mass and

  12. Orbits and Physical Properties of Four Binary Transneptunian Objects

    NASA Astrophysics Data System (ADS)

    Grundy, William

    2014-10-01

    Intriguing patterns are evident in both the orbits of transneptunian objects and in their observable external characteristics (colors, spectral features, etc.). Bulk physical properties are needed to make sense of the observations and to exploit them to constrain conditions in the protoplanetary disk where these objects formed. The key to obtaining bulk properties of transneptunian objects is that a sizeable proportion of them are binaries. Binary mutual orbits provide dynamical masses that can in turn be used to compute bulk densities. A statistical sample of binary orbits offers powerful constraints on formation mechanisms as well as subsequent evolution. This proposal seeks to continue a multi-year campaign to obtain orbits for as large of a sample of binary transneptunian objects as possible. We seek to make efficient use of HST by targeting four systems where we can obtain a dramatic improvement in orbital knowledge from relatively few, strategically timed visits, and where the secondary is too faint for reliable detection with ground-based near-IR adaptive optics techniques.

  13. What Are the Compact Central Objects in Supernova Remnants?

    NASA Astrophysics Data System (ADS)

    Graber, James

    2002-04-01

    Recent Chandra observations of the compact central objects in supernova remnants have shown puzzling results that do not seem to be consistent with either black holes or neutron stars. (See e.g. Pavlov, Sanwal, Garmire and Zavlin, astro-ph-0112322.) In particular, the inferred effective emitting surface is too small to be the entire surface of a neutron star, but too bright to be a black hole. We discuss the possibility that these compact objects might be red holes instead of black holes or neutron stars. Red holes, which occur in alternate theories of gravity, naturally predict both the greater brightness of the emissions and the smaller effective size of the emitting surface from a collapsed object of the appropriate mass.

  14. The ``Uberbank'': A search for compact binary coalescences in the first Observing run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Capano, Collin; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Modeled searches for gravitational waves from compact binary coalescence (CBC) use a ``bank'' of template waveforms to search the wide range of parameters that binaries may have. Recent advances in waveform modeling and template placement techniques have opened up the possibility to efficiently search for systems with non-precessing spin, using waveforms that model the inspiral, merger, and ringdown of coalescing binaries. I discuss how these advances were combined to produce the template bank used to search for CBCs in the first observing run of Advanced LIGO. This bank covered the full range of plausible masses and non-precessing spins of binary neutron stars, stellar-mass binary black holes, and binaries consisting of a neutron star and a stellar-mass black hole.

  15. Classification of compact binaries: an X-ray analog to the HR diagram

    NASA Astrophysics Data System (ADS)

    Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  16. Modeling and detecting gravitational waves from compact stellar objects

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele

    In the next few years, the first detections of gravity- wave signals using Earth-based interferometric detectors will begin to provide precious new information about the structure, dynamics, and evolution of compact bodies, such as neutron stars and black holes, both isolated and in binary systems. The intrinsic weakness of gravity-wave signals requires a proactive approach to modeling the prospective sources and anticipating the shape of the signals that we seek to detect. Full-blown 3-D numerical simulations of the sources are playing and will play an important role in planning the gravity-wave data-analysis effort. This thesis explores the interplay between numerical source modeling and data analysis, looking closely at three case studies. (1)I evaluate the prospects for extracting equation-of-state information from neutron-star tidal disruption in neutron-star-black- hole binaries with LIGO-II, and I estimate that the observation of disrupting systems at distances that yield about one event per year should allow the determination of the neutron-star radius to about 15%, which compares favorably to the currently available electromagnetic determinations. (2)In collaboration with Lee Lindblom and Joel Tohline, I perform numerical simulations of the nonlinear dynamics of the r-mode instability in young, rapidly spinning neutron stars, and I find evidence that nonlinear couplings to other modes will not pose a significant limitation to the growth of the r-mode amplitude. (3)In collaboration with Alessandra Buonanno and Yanbei Chen, I study the problem of detecting gravity waves from solar-mass black-hole - black-hole binaries with LIGO-I, and I construct two families of detection templates that address the inadequacy of standard post-Newtonian theory to predict reliable waveforms for these systems.

  17. Gravitational effects of condensate dark matter on compact stellar objects

    SciTech Connect

    Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com

    2012-10-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.

  18. Compact binary mergers as the origin of r-process elements in the Galactic halo

    SciTech Connect

    Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    2014-05-02

    Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ∼ −3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ⊙} and 2 × 10{sup 8}M{sub ⊙}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ≤ −3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ∼ −1.5 for [Fe/H] < −3) are explained by the contribution from the short-lived (∼ 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.

  19. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc

    2014-02-01

    To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (eLISA, etc.), inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins), and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.

  20. Holographic equations of state and astrophysical compact objects

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Lee, Chang-Hwan; Shin, Ik Jae; Wan, Mew-Bing

    2011-10-01

    We solve the Tolman-Oppenheimer-Volkoff equation using an equation of state (EoS) calculated in holographic QCD. The aim is to use compact astrophysical objects like neutron stars as an indicator to test holographic equations of state. We first try an EoS from a dense D4/D8/D8 model. In this case, however, we could not find a stable compact star, a star satisfying pressure-zero condition with a radius R, p( R) = 0, within a reasonable value of the radius. This means that the EoS from the D4/D8/D8 model may not support any stable compact stars or may support one whose radius is very large. This might be due to a deficit of attractive force from a scalar field or two-pion exchange in the D4/D8/D8 model. Then, we consider D4/D6 type models with different number of quark flavors, N f = 1 , 2 , 3. Though the mass and radius of a holographic star is larger than those of normal neutron stars, the D4/D6 type EoS renders a stable compact star.

  1. Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Meyers, P.; Thrane, E.; Luo, J.; Christensen, N.

    2015-03-01

    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. While most binaries are expected to possess circular orbits, some may be eccentric, for example, if they are formed through dynamical capture. Eccentric orbits can create difficulty for matched filtering searches due to the challenges of creating effective template banks to detect these signals. In previous work, we showed how seedless clustering can be used to detect low-mass (Mtotal≤10 M⊙) compact binary coalescences for both spinning and eccentric systems, assuming a circular post-Newtonian expansion. Here, we describe a parametrization that is designed to maximize sensitivity to low-eccentricity (0 ≤ɛ ≤0.6 ) systems, derived from the analytic equations. We show that this parametrization provides a robust and computationally efficient method for detecting eccentric low-mass compact binaries. Based on these results, we conclude that advanced detectors will have a chance of detecting eccentric binaries if optimistic models prove true. However, a null observation is unlikely to firmly rule out models of eccentric binary populations.

  2. Detection, classification, and tracking of compact objects in video imagery

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.; Nebrich, Mark A.

    2012-06-01

    A video data conditioner (VDC) for automated full-­motion video (FMV) detection, classification, and tracking is described. VDC extends our multi-­stage image data conditioner (IDC) to video. Key features include robust detection of compact objects in motion imagery, coarse classification of all detections, and tracking of fixed and moving objects. An implementation of the detection and tracking components of the VDC on an Apple iPhone is discussed. Preliminary tracking results of naval ships captured during the Phoenix Express 2009 Photo Exercise are presented.

  3. Compact objects from gravitational collapse: an analytical toy model

    NASA Astrophysics Data System (ADS)

    Malafarina, Daniele; Joshi, Pankaj S.

    2015-12-01

    We develop here a procedure to obtain regular static configurations resulting from dynamical gravitational collapse of a massive matter cloud in general relativity. Under certain general physical assumptions for the collapsing cloud, we find the class of dynamical models that lead to an equilibrium configuration. To illustrate this, we provide a class of perfect fluid collapse models that lead to a static constant density object as limit. We suggest that similar models might possibly constitute the basis for the description of formation of compact objects in nature.

  4. Cataclysmic Variables and Other Compact Binaries in the Globular Cluster NGC 362: Candidates from Chandra and HST

    NASA Astrophysics Data System (ADS)

    Margon, B.; Beck-Winchatz, B.; Homer, L.; Pooley, D.; Bassa, C. G.; Anderson, S. F.; Lewin, W. H. G.; Verbunt, F.; Kong, A. K. H.; Plotkin, R. M.

    2010-12-01

    Highly sensitive and precise X-ray imaging from Chandra, combined with the superb spatial resolution of HST optical images, dramatically enhances our empirical understanding of compact binaries such as cataclysmic variables and low mass X-ray binaries, their progeny, and other stellar X-ray source populations deep into the cores of globular clusters. Our Chandra X-ray images of the globular cluster NGC 362 reveal 100 X-ray sources, the bulk of which are likely cluster members. Using HST color-magnitude and color-color diagrams, we quantitatively consider the optical content of the NGC 362 Chandra X-ray error circles, especially to assess and identify the compact binary population in this condensed-core globular cluster. Despite residual significant crowding in both X-rays and optical, we identify an excess population of Hα-emitting objects that is statistically associated with the Chandra X-ray sources. The X-ray and optical characteristics suggest that these are mainly cataclysmic variables, but we also identify a candidate quiescent low mass X-ray binary. A potentially interesting and largely unanticipated use of observations such as these may be to help constrain the macroscopic dynamic state of globular clusters.

  5. High-resolution x-ray imaging of a globular cluster core: compact binaries in 47Tuc.

    PubMed

    Grindlay, J E; Heinke, C; Edmonds, P D; Murray, S S

    2001-06-22

    We have obtained high-resolution (approximately 1") deep x-ray images of the globular cluster 47Tucanae (NGC 104) with the Chandra X-ray Observatory to study the population of compact binaries in the high stellar density core. A 70-kilosecond exposure of the cluster reveals a centrally concentrated population of faint (Lx approximately 10(30-33) ergs per second) x-ray sources, with at least 108 located within the central 2' x 2.5' and greater, similar half with Lx approximately 10(30.5) ergs per second. All 15 millisecond pulsars (MSPs) recently located precisely by radio observations are identified, though 2 are unresolved by Chandra. The x-ray spectral and temporal characteristics, as well as initial optical identifications with the Hubble Space Telescope, suggest that greater, similar50 percent are MSPs, about 30 percent are accreting white dwarfs, about 15 percent are main-sequence binaries in flare outbursts, and only two to three are quiescent low-mass x-ray binaries containing neutron stars, the conventional progenitors of MSPs. An upper limit of about 470 times the mass of the sun is derived for the mass of an accreting central black hole in the cluster. These observations provide the first x-ray "color-magnitude" diagram for a globular cluster and census of its compact object and binary population. PMID:11358997

  6. Binaries in a medium of fast low-mass objects

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    1991-09-01

    The effect of dynamical friction on binaries in a medium of fast low-mass objects is determined. Results are obtained for an arbitrary particle distribution and for any value of Eb/m(sigma squared). Heggie's Law is confirmed and made more precise. The error in the calculation of Hills (1990) is traced to the very specialized and atypical choice of phase space for performing numerical simulations. The efforts of Bekenstein and Zamir (1990) are traced to inconsistencies in their use of the Vlasov equation. It is found that both the hardening and softening terms are generated by the action of objects with speeds relative to the binary center of mass which are greater than the orbital speed. For binaries at rest with respect to isotropic distribution, this contradicts a standard result, namely, that the viscous effect of fast objects vanishes identically. This paradox is resolved by deriving a more accurate dynamical friction formula. It is shown that a term which is usually dropped is in fact the dominant one.

  7. Searching for Spectroscopic Binaries within Transition Disk Objects

    NASA Astrophysics Data System (ADS)

    Kohn, Saul A.; Shkolnik, Evgenya L.; Weinberger, Alycia J.; Carlberg, Joleen K.; Llama, Joe

    2016-03-01

    Transition disks (TDs) are intermediate stage circumstellar disks characterized by an inner gap within the disk structure. To test whether these gaps may have been formed by closely orbiting, previously undetected stellar companions, we collected high-resolution optical spectra of 31 TD objects to search for spectroscopic binaries (SBs). Twenty-four of these objects are in Ophiuchus and seven are within the Coronet, Corona Australis, and Chameleon I star-forming regions. We measured radial velocities for multiple epochs, obtaining a median precision of 400 ms-1. We identified double-lined SB SSTc2d J163154.7-250324 in Ophiuchus, which we determined to be composed of a K7(±0.5) and a K9(±0.5) star, with orbital limits of a < 0.6 au and P < 150 days. This results in an SB fraction of {0.04}-0.03+0.12 in Ophiuchus, which is consistent with other spectroscopic surveys of non-TD objects in the region. This similarity suggests that TDs are not preferentially sculpted by the presence of close binaries and that planet formation around close binaries may take place over similar timescales to that around single stars. This paper is based on data gathered with the 6.5 m Clay Telescope located at Las Campanas Observatory, Chile.

  8. Spectral calculation through outflows around compact objects and its hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro; Ohsuga, Ken; Nakagawa, Yujin; Nomura, Mariko

    Compact objects such as black holes and neutron starts are shining by converting the gravitational energy via mass accretion. Recent theoretical studies predict that outflows tend to accompany the mass accretion process and affect X-ray spectra. In fact, ``blue-shifted'' metal absorption lines have been observed from active galactic nuclei and X-ray binaries, indicating that the absorbers are moving toward us, namely the outflows do exist. In order to constrain physical conditions and geometries around the compact objects, we need to compare the observed X-ray spectra and theoretically expected signatures caused by the outflows. For the observational side, we will use the micro calorimeter with the unprecedented spectral resolution of E/DeltaE˜1000 on-board Astro-H (in 2015 launch), which is the ONLY detector that can observe the detailed line profiles containing information of the outflows. The radiation-hydrodynamic simulation is needed to interpret the Astro-H spectra. We construct the spectral model by the following two theoretical steps: We first determine the density and velocity profiles of the outflows around the compact object by a hydrodynamic simulation. We then calculate X-ray spectra through such outflows, by using the spectral synthesis code ``Cloudy''. We present the results of the simulated profiles and the calculated spectra.

  9. Discussion of AN Advanced LIGO Low-Latency Search for Compact Binary Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Messick, Cody; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Advanced ligo completed its first observing run in january, marking the beginning of a new era in gravitational wave astronomy. Low-latency pipelines searched for gravitational waves from compact binary mergers during the observing run, uploading candidate events to a database within seconds. In my presentation, we will report on the low-latency gstlal-inspiral advanced ligo search.

  10. Template banks to search for compact binaries with spinning components in gravitational wave data

    SciTech Connect

    Van Den Broeck, Chris; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Brown, Duncan A.; Tagoshi, Hideyuki; Takahashi, Hirotaka

    2009-07-15

    Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary's orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67, 104025 (2003)]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.

  11. Object tracking on mobile devices using binary descriptors

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton

    2015-03-01

    With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.

  12. Compact real-time image processor for moving object tracking

    NASA Astrophysics Data System (ADS)

    Kinoshita, Noboru

    1996-03-01

    Latency time and hardware compactness are two important problems of real-time image processors for moving object tracking. We have developed a compact self-contained real-time image processor that is implemented on a single double-height VME board. The processor can execute major processing steps for moving object tacking during a single video field time. These steps are preprocessing, binarizing, labeling, feature extraction, and feature evaluation. We can obtain sorted feature vectors simultaneously when image data is read out from a sensor. Here a feature vector represents areas, centroid, and maximum intensity of each connected region in a binarized image. Some conventional image processors can execute the above steps individually in real-time and thread some steps in a pixel pipeline manner. However it is difficult to integrate feature extraction and feature evaluation in a pixel pipeline path. For real-time execution of all steps we focused on new architecture particularly for the latter three steps. To minimize the hardware we have developed three ASICs: labeler, feature accumulator, and sorter. To make our processor self-contained and scalable, it has an on- board micro processor, a digital video bus interface, and an RS232C port, and it is VME compatible in bus interface and mechanical dimension.

  13. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  14. Inspiral waveforms for spinning compact binaries in a new precessing convention

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Gopakumar, Achamveedu

    2016-05-01

    It is customary to use a precessing convention, based on Newtonian orbital angular momentum L N, to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a postNewtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum L, to evolve the L N-based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use L to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual L N-based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between inspiral waveforms that employ L and L N-based precessing conventions. We found that the match estimates are smaller than the optimal value, namely 0.97, for a non-negligible fraction of unequal mass spinning compact binaries.

  15. Tail effects in the third post-Newtonian gravitational wave energy flux of compact binaries in quasi-elliptical orbits

    SciTech Connect

    Arun, K. G.; Iyer, Bala R.; Qusailah, Moh'd S. S.

    2008-03-15

    The far-zone flux of energy contains hereditary (tail) contributions that depend on the entire past history of the source. Using the multipolar post-Minkowskian wave generation formalism, we propose and implement a semianalytical method in the frequency domain to compute these contributions from the inspiral phase of a binary system of compact objects moving in quasi-elliptical orbits up to third post-Newtonian (3PN) order. The method explicitly uses the quasi-Keplerian representation of elliptical orbits at 1PN order and exploits the doubly periodic nature of the motion to average the 3PN fluxes over the binary's orbit. Together with the instantaneous (nontail) contributions evaluated in a companion paper, it provides crucial inputs for the construction of ready-to-use templates for compact binaries moving on quasi-elliptic orbits, an interesting class of sources for the ground-based gravitational-wave detectors such as LIGO and Virgo, as well as space-based detectors like LISA.

  16. Compact Binary Merger Rates: Comparison with LIGO/Virgo Upper Limits

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; O'Shaughnessy, Richard; Bulik, Tomasz; Berti, Emanuele; Fryer, Christopher; Dominik, Michal

    2016-03-01

    We compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH-BH systems, indicating that a modest increase in observational sensitivity (by a factor of ˜2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH-BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z ≃ 2 with templates including inspiral, merger, and ringdown. Normal stars (\\lt 150 {M}⊙ ) can produce such mergers with total redshifted mass up to {M}{{tot,z}}≃ 400 {M}⊙ . (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH-BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS-NS, BH-NS, BH-BH) with advanced detectors. Numerous massive BH-BH merger detections will indicate small (if any) natal kicks for massive BHs.

  17. Compact binary merger rates: Comparison with LIGO/Virgo upper limits

    DOE PAGESBeta

    Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; O'Shaugnessy, Richard; Bulik, Tomasz; Berti, Emanuele; Fryer, Christopher Lee; Dominik, Michal

    2016-03-03

    Here, we compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH–BH systems, indicating that a modest increase in observational sensitivity (by a factor of ~2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH–BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z sime 2 with templates including inspiral, merger, and ringdown. Normal stars (more » $$\\lt 150\\;{M}_{\\odot }$$) can produce such mergers with total redshifted mass up to $${M}_{{\\rm{tot,z}}}\\simeq 400\\;{M}_{\\odot }$$. (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH–BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS–NS, BH–NS, BH–BH) with advanced detectors. Numerous massive BH–BH merger detections will indicate small (if any) natal kicks for massive BHs.« less

  18. Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order.

    PubMed

    Blanchet, Luc; Damour, Thibault; Esposito-Farèse, Gilles; Iyer, Bala R

    2004-08-27

    The gravitational radiation from point particle binaries is computed at the third post-Newtonian (3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are consistently determined by means of dimensional regularization, and proved to have the values xi=-9871/9240, kappa=0, and zeta=-7/33. These results complete the derivation of the general relativistic prediction for compact binary inspiral up to 3.5PN order, and should be of use for searching and deciphering the signals in the current network of gravitational wave detectors. PMID:15447090

  19. Tidal invariants for compact binaries on quasi-circular orbits

    NASA Astrophysics Data System (ADS)

    Warburton, Niels; Dolan, Sam; Nolan, Patrick; Ottewill, Adrian; Wardell, Barry

    2015-04-01

    We extend the gravitational self-force approach to encompass `self-interaction' tidal effects for a compact body of mass μ on a quasi-circular orbit around a black hole of mass M >> μ . Specifically, we define and calculate at O(μ) (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at O(μ) . We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body probl

  20. Tidal invariants for compact binaries on quasicircular orbits

    NASA Astrophysics Data System (ADS)

    Dolan, Sam R.; Nolan, Patrick; Ottewill, Adrian C.; Warburton, Niels; Wardell, Barry

    2015-01-01

    We extend the gravitational self-force approach to encompass "self-interaction" tidal effects for a compact body of mass μ on a quasicircular orbit around a black hole of mass M ≫μ . Specifically, we define and calculate at O (μ ) (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at O (μ ) . We present accurate numerical results for the Schwarzschild case for orbital radii up to the light ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body problem that are invaluable in the ongoing search for gravitational waves.

  1. Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Kaplan, David L. A.

    2013-01-01

    Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.

  2. Study of Compact Binaries in the Extreme Globular Cluster Terzan 5

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    1997-07-01

    Stellar collisions and interactions in dense star clusters are fundamental to the evolution of globular clusters and galactic nuclei. The highest stellar collision rate suspected in the Galaxy is in the obscured bulge globular, Terzan 5. We shall identify compact binaries formed, and ejected, in this cluster with Paschen alpha {F187N} vs. continuum {F187W or F190N} imaging to identify emission line objects and CVs. By centering NIC1 on the bright eclipsing {1.8h} millisecond pulsar 32" from the cluster center, we shall also conduct a sensitive search for its counterpart and both constrain the pulsar spin up and cluster gravitational potential, while the highest resolution NIC1 field surveys the cluster core. Scaling from our successful H Alpha vs. R {WFPC1} and followup FOS programs in NGC 6397, we expect at least 30 emission line CVs in the cluster core. Ter 5 is both more massive and much more metal rich, enabling constraints on WD and NS production vs. original IMF of the cluster. This cluster can only be studied in the near-IR, and HST resolution is essential given its extreme crowding.

  3. Super-spinning compact objects generated by thick accretion disks

    SciTech Connect

    Li, Zilong; Bambi, Cosimo E-mail: bambi@fudan.edu.cn

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  4. Searching for spectroscopic binaries within transition disk objects

    NASA Astrophysics Data System (ADS)

    Kohn, Saul; Shkolnik, E.; Weinberger, A. J.; Carlberg, J. K.

    2014-01-01

    We have searched for spectroscopic binaries (SB) among 30 pre-main sequence stars that are reported to host transition disks (TD). Twenty-three of these objects are in the star-forming region rho-Ophiuchus and seven are among Coronet, Corona Australis and Chameleon I. We set out to determine whether these disks are truly disks in transition due to some mechanism such as planet formation, or are circumbinary disks. Radial velocities were measured for all targets from high-resolution optical spectra obtained over a two year baseline with the MIKE spectrograph on the 6.5-m Clay Telescope. Only one double-lined SB was found in Ophiuchus. We were sensitive to companions between 0.5 and 25 AU from the primary, complementing earlier high-resolution imaging surveys for stellar companions. We find a deficiency in the binary fraction of Ophiuchus TD stars compared to other SB surveys of that region (4% versus 12-70% quoted in the literature), and we explore possible causes related to disk dispersal mechanisms. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST-1004107.

  5. TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE

    SciTech Connect

    Cannon, Kipp; Cariou, Romain; Chapman, Adrian; Fotopoulos, Nickolas; Privitera, Stephen; Searle, Antony; Singer, Leo; Weinstein, Alan; Crispin-Ortuzar, Mireia; Frei, Melissa; Hanna, Chad; Kara, Erin; Keppel, Drew; Liao, Laura

    2012-04-01

    Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from CBC. We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.

  6. Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing

    SciTech Connect

    Yamamoto, Kazuhiro

    2005-05-15

    A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.

  7. Tests of General Relativity with gravitational waves from compact binary coalescences with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; LIGO Collaboration; Virgo Collaboration

    2016-03-01

    Gravitational waves from compact binary systems provide access to the hitherto unexplored non-linear regime of Einstein's theory of general relativity. The Advanced LIGO first observing run successfully achieved a sensitivity a few times better than the initial generation of interferometers in the hundred hertz frequency band. In this talk, I will describe the methods devised to verify the predictions of general relativity in the Advanced Detector era. on behalf of the LIGO and Virgo collaboration.

  8. Gravidynamics Scalar-Tensor Gravitation) and the Observed Discrete Mass Spectrum of Compact Stellar Remnants in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.

    2015-06-01

    There are two new observational facts: the mass spectrum of neutron stars and black hole candidates (or collapsars) shows an evident absence of compact objects with masses within the interval from 2 M⊙ (with a peak for neutron stars about 1.4 M⊙) to about 6 M⊙, and in close binary stellar systems with a low-massive (about 0.6 M⊙) optical companion the most probable mass value (the peak in the masses distribution of black hole candidates) is close to 7 M⊙. The problem of the compact objects discrete mass spectra demands some solution both in the context of the supernovae and gamma-ray bursts relation, and in connection with the core-collapse supernovae explosion mechanism itself. In the totally non-metric scalar-tensor model of gravitational interaction (in a modified or extended Feynman field approach to gravitation) the total mass of a compact relativistic object with extremely strong gravitational field (an analog of black holes in General Relativity) is approximately equal to 6.7 M⊙ with radius of a region filled with a matter (quark-gluon plasma) ≈ 10 km. Polarized emission of long gamma-ray bursts, a black-body component in their spectrum and other observed properties could be explained by the direct manifestation of a surface of these collapsars.

  9. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    SciTech Connect

    Jia, Kun; Li, X.-D.

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  10. Hot Collionsal Plasma Emissions in the Ultra-compact Binary Pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Chakrabarty, Deepto; Marshall, Herman

    2016-07-01

    4U 1626-67 is an ultra-compact binary pulsar with a pulse period of 7.7 sec and an orbital period of 40 min. Its X-ray spectrum varies distinctively before and after torque reversal episodes. 4U 1626-67 is a peculiar ultra-compact binary in that it not only truncates its accretion disk at the magnetospheric radius, but also emits Ne and O Doppler X-ray lines, The nature of these lines have remained quite mysterious but we can now show that these lines originate from a coronal type plasma with temperatures up to 10 Million degrees located at the magnetospheric radius. The disk line fits constrain the source distance to about 5 kpc. We also observe consistent variations in the disk lines before and after torque reversal. The observed disk lines constrain the angle of inclination to 38 degrees, which is is significantly larger than previously assumed. We discuss these findings in the context of accreting X-ray binaries and binary pulsar properties.

  11. Stability of coorbital objects around the Pluto-Charon binary

    NASA Astrophysics Data System (ADS)

    Amarante Luiz, Andre; Hamilton, Douglas P.

    2015-11-01

    The Pluto-Charon binary system is dynamical interesting with its unusual retinue of four small moons. The system is relatively full with few remaining stable locations for additional moons on uninclined, circular orbits; most of these are Trojan (Tadpole/Horseshoe) orbits (Pires et al. 2011; Porter and Stern 2015).In this work, we study the coorbital region of each moon with long time integrations taking into account the gravitational effects of the satellites Charon, Styx, Nix, Kerberos and Hydra. We numerically simulate a sample of 10,000 test particles initially located randomly around each moon's orbit. All test particles start on nearly circular and uninclined orbits and are followed for 5,000 years. The results of our numerical simulations show stable coorbital objects - both Tadpoles and Horseshoes - for each of the small moons. Horseshoe orbits are most common at all moons, although Hydra also has a sizeable population of Tadpole orbits. We also find interesting cases where the orbits switch from L4 Tadpoles to Horseshoes and even to L5 Tadpoles. These transitioning orbits comprise less than 1% of coorbital objects at all moons, and are most common at Styx. We have also tested two different models for the system: i) Pluto and Charon as independent bodies. ii) A single central body with the combined mass of Pluto-Charon and an effective J2 coefficient. Preliminary results show only minor differences between the two models indicating that the binary does not have a strong effect on coorbital motion. We have also investigated eccentric and inclined orbits and will report on our findings.

  12. Initial data for high-compactness black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-05-01

    For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.

  13. Detecting compact galactic binaries using a hybrid swarm-based algorithm

    NASA Astrophysics Data System (ADS)

    Bouffanais, Yann; Porter, Edward K.

    2016-03-01

    Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources and the extraction of the signal parameters in a noisy environment are real challenges for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work, we present the first application of a swarm-based algorithm combining Particle Swarm Optimization and Differential Evolution. These algorithms have been shown to converge faster to global solutions on complicated likelihood surfaces than other stochastic methods. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1-mHz search bandwidth. This interesting problem gave the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low-frequency source, as well as the verification binary RXJ 0806.3 +1527 , we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources and recover the true parameters within a 99% credible interval.

  14. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  15. Electromagnetic Powers Of Merging And Collapsing Compact Objects

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2011-09-01

    Understanding possible EM signatures of the merging and collapsing compact object is important for identifying possible sources of LIGO & LISA signals. We estimate the electromagnetic powers that can be produced as a precursor to the merger, as a prompt emission during the collapse of a NS and at the spin-down stage of the resulting Kerr BH. In particular, we find exact non-linear time-dependent structure of magnetospheres of spinning and collapsing NSs in Schwarzschild geometry. Based on this solution, we argue that the collapse of a NS into the BH happens smoothly, without natural formation of current sheets or other dissipative structures on the open field lines and, thus, does not allow the magnetic field to become disconnected from the star and escape to infinity. Thus, as long as an isolated Kerr BH can produce plasma and currents, it does not lose its open magnetic field lines, its magnetospheric structure evolved towards a split monopole and the BH spins down electromagnetically (the closed field lines get absorbed by the hole). The "no hair theorem", which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the BH. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the BH engine forever.

  16. Template banks to search for compact binaries with spinning components in gravitational wave data

    NASA Astrophysics Data System (ADS)

    van den Broeck, Chris; Brown, Duncan A.; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Tagoshi, Hideyuki; Takahashi, Hirotaka

    2009-07-01

    Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary’s orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. DPRVDAQ0556-2821 67, 104025 (2003)10.1103/PhysRevD.67.104025]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.

  17. Numerical simulations of axisymmetric hydrodynamical Bondi-Hoyle accretion on to a compact object

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2015-12-01

    Bondi-Hoyle accretion configurations occur as soon as a gravitating body is immersed in an ambient medium with a supersonic relative velocity. From wind-accreting X-ray binaries to runaway neutron stars, such a regime has been witnessed many times and is believed to account for shock formation, the properties of which can be only marginally derived analytically. In this paper, we present the first results of the numerical characterization of the stationary flow structure of Bondi-Hoyle accretion on to a compact object, from the large-scale accretion radius down to the vicinity of the compact body. For different Mach numbers, we study the associated bow shock. It turns out that those simulations confirm the analytical prediction by Foglizzo & Ruffert concerning the topology of the inner sonic surface with an adiabatic index of 5/3. They also enable us to derive the related mass accretion rates, the position and the temperature of the bow shock, as function of the flow parameters, along with the transverse density and temperature profiles in the wake.

  18. Compressibility of binary powder formulations: investigation and evaluation with compaction equations.

    PubMed

    Gentis, Nicolaos D; Betz, Gabriele

    2012-02-01

    The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. PMID:22081488

  19. Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors

    SciTech Connect

    Brown, Duncan A.; Zimmerman, Peter J.

    2010-01-15

    Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model the gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.

  20. Study of statistical properties of hybrid statistic in coherent multidetector compact binary coalescences search

    NASA Astrophysics Data System (ADS)

    Haris, K.; Pai, Archana

    2016-05-01

    In this article, we revisit the coherent gravitational wave search problem of compact binary coalescences with multidetector network consisting of advanced interferometers like LIGO-Virgo. Based on the loss of the optimal multidetector signal-to-noise ratio (SNR), we construct a hybrid statistic as a best of maximum-likelihood-ratio (MLR) statistic tuned for face-on and face-off binaries. The statistical properties of the hybrid statistic is studied. The performance of this hybrid statistic is compared with that of the coherent MLR statistic for generic inclination angles. Owing to the single synthetic data stream, the hybrid statistic gives few false alarms compared to the multidetector MLR statistic and small fractional loss in the optimum SNR for a large range of binary inclinations. We demonstrate that, for a LIGO-Virgo network and binary inclination ɛ <7 0 ° and ɛ >11 0 ° , the hybrid statistic captures more than 98% of the network optimum matched filter SNR with a low false alarm rate. The Monte Carlo exercise with two distributions of incoming inclination angles—namely, U [cos ɛ ] and a more realistic distribution proposed by B. F. Schutz [Classical Quantum Gravity 28, 125023 (2011)]—are performed with the hybrid statistic and give approximately 5% and 7% higher detection probabilities, respectively, compared to the two stream multidetector MLR statistic for a fixed false alarm probability of 1 0-5.

  1. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals

    NASA Astrophysics Data System (ADS)

    Cokelaer, T.

    2007-11-01

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Padé resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO).

  2. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals

    SciTech Connect

    Cokelaer, T.

    2007-11-15

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Pade resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO)

  3. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  4. Recent achievements in the Hamiltonian treatment of the dynamics and motion of compact binaries in general relativity

    SciTech Connect

    Schäfer, Gerhard

    2014-01-14

    The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.

  5. Electromagnetic power of merging and collapsing compact objects

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2011-06-01

    Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever

  6. Parameter Estimation Using Markov Chain Monte Carlo Methods for Gravitational Waves from Spinning Inspirals of Compact Objects

    NASA Astrophysics Data System (ADS)

    Raymond, Vivien

    2012-05-01

    Gravitational waves are on the verge of opening a brand new window on the Universe. However, gravitational wave astronomy comes with very unique challenges in data analysis and signal processing in order to lead to new discoveries in astrophysics. Among the sources of gravitational waves, inspiraling binary systems of compact objects, neutron stars and/or black holes in the mass range 1Msun--100Msun stand out as likely to be detected and relatively easy to model. The detection of a gravitational wave event is challenging and will be a rewarding achievement by itself. After such a detection, measurement of source properties holds major promise for improving our astrophysical understanding and requires reliable methods for parameter estimation and model selection. This is a complicated problem, because of the large number of parameters (15 for spinning compact objects in a quasi-circular orbit) and the degeneracies between them, the significant amount of structure in the parameter space, and the particularities of the detector noise. This work presents the development of a parameter-estimation and model-selection algorithm, based on Bayesian statistical theory and using Markov chain Monte Carlo methods for ground-based gravitational-wave detectors (LIGO and Virgo). This method started from existing non-spinning and single spin stand-alone analysis codes and was developed into a method able to tackle the complexity of fully spinning systems, and infer all spinning parameters of a compact binary. Not only are spinning parameters believed to be astrophysically significant, but this work has shown that not including them in the analysis can lead to biases in parameter recovery. This work made it possible to answer several scientific questions involving parameter estimation of inspiraling spinning compact objects, which are addressed in the chapters of this dissertation.

  7. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    NASA Astrophysics Data System (ADS)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The

  8. Evolution of Compact Binary Populations in Globular Clusters: A Boltzmann Study. II. Introducing Stochasticity

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Ghosh, Pranab

    2008-06-01

    We continue the exploration that we began in Paper I of using the Boltzmann scheme to study the evolution of compact binary populations of globular clusters, introducing in this paper our method of handling the stochasticity inherent in the dynamical processes of binary formation, destruction, and hardening in globular clusters. We describe these stochastic processes as "Wiener processes," whereupon the Boltzmann equation becomes a stochastic partial differential equation, the solution of which involves the use of "Itō calculus" (this use being the first, to our knowledge, in this subject), in addition to ordinary calculus. As in Paper I, we focus on the evolution of (1) the number of X-ray binaries NXB in globular clusters and (2) the orbital period distribution of these binaries. We show that, although the details of the fluctuations in the above quantities differ from one "realization" to another of the stochastic processes, the general trends follow those found in the continuous-limit study of Paper I, and the average result over many such realizations is very close to the continuous-limit result. We investigate the dependence of NXB found by these calculations on two essential globular cluster properties, namely, the star-star and star-binary encounter rate parameters Γ and γ, for which we coined the name "Verbunt parameters" in Paper I. We compare our computed results with those from Chandra observations of Galactic globular clusters, showing that the expected scalings of NXB with the Verbunt parameters are in good agreement with those observed. We indicate additional features that can be incorporated into the scheme in the future, as well as how more elaborate problems can be tackled.

  9. Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Lang, Ryan N.

    2014-04-01

    We derive the tensor gravitational waveform generated by a binary of nonspinning compact objects (black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate to second post-Newtonian order beyond the leading order quadrupole approximation. We use the direct integration of the relaxed Einstein equations formalism, appropriately adapted to scalar-tensor theories, along with previous results for the equations of motion in these theories. The self-gravity of the compact objects is treated with an approach developed by Eardley. The scalar field causes deviations from the general relativistic waveform that depend only on a small number of parameters. Among the effects of the scalar field are new hereditary terms which depend on the past history of the source. One of these, a dipole-dipole coupling, produces a zero-frequency "gravitational-wave memory" equivalent to the Christodoulou memory of general relativity. In the special case of two black holes, the waveform reduces to the general relativistic waveform. For a mixed (black hole-neutron star) system, the waveform is identical to that of Einstein's theory to first post-Newtonian order, with deviations at higher order depending only on a single parameter. The behavior in these cases matches that found for the equations of motion.

  10. Binary asteroids in the near-Earth object population.

    PubMed

    Margot, J L; Nolan, M C; Benner, L A M; Ostro, S J; Jurgens, R F; Giorgini, J D; Slade, M A; Campbell, D B

    2002-05-24

    Radar images of near-Earth asteroid 2000 DP107 show that it is composed of an approximately 800-meter-diameter primary and an approximately 300-meter-diameter secondary revolving around their common center of mass. The orbital period of 1.755 +/- 0.007 days and semimajor axis of 2620 +/- 160 meters constrain the total mass of the system to 4.6 +/- 0.5 x 10(11) kilograms and the bulk density of the primary to 1.7 +/- 1.1 grams per cubic centimeter. This system and other binary near-Earth asteroids have spheroidal primaries spinning near the breakup point for strengthless bodies, suggesting that the binaries formed by spin-up and fission, probably as a result of tidal disruption during close planetary encounters. About 16% of near-Earth asteroids larger than 200 meters in diameter may be binary systems. PMID:11951001

  11. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  12. Evolution of photon and particle spectra in compact, luminous objects

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.; Caroff, Lawrence J.; Noerdlinger, Peter D.

    1988-01-01

    The physics of high energy photons and particles (especially electrons and positrons) in the compact, high-energy-density of galactic nuclei and quasars was investigated. A numerical code was developed which follows the nonlinear spectral evolution of a pair/photon plasma, due to two-body scattering and interaction process, in an unmagnetized system. The code was applied both to static plasmas and to relativistic expanding winds.

  13. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement

    NASA Astrophysics Data System (ADS)

    Owen, Benjamin J.; Sathyaprakash, B. S.

    1999-07-01

    We estimate the number of templates, computational power, and storage required for a one-step matched filtering search for gravitational waves from inspiraling compact binaries. Our estimates for the one-step search strategy should serve as benchmarks for the evaluation of more sophisticated strategies such as hierarchical searches. We use a discrete family of two-parameter wave form templates based on the second post-Newtonian approximation for binaries composed of nonspinning compact bodies in circular orbits. We present estimates for all of the large- and mid-scale interferometers now under construction: LIGO (three configurations), VIRGO, GEO600, and TAMA. To search for binaries with components more massive than mmin=0.2Msolar while losing no more than 10% of events due to coarseness of template spacing, the initial LIGO interferometers will require about 1.0×1011 flops (floating point operations per second) for data analysis to keep up with data acquisition. This is several times higher than estimated in previous work by Owen, in part because of the improved family of templates and in part because we use more realistic (higher) sampling rates. Enhanced LIGO, GEO600, and TAMA will require computational power similar to initial LIGO. Advanced LIGO will require 7.8×1011 flops, and VIRGO will require 4.8×1012 flops to take full advantage of its broad target noise spectrum. If the templates are stored rather than generated as needed, storage requirements range from 1.5×1011 real numbers for TAMA to 6.2×1014 for VIRGO. The computational power required scales roughly as m-8/3min and the storage as m-13/3min. Since these scalings are perturbed by the curvature of the parameter space at second post-Newtonian order, we also provide estimates for a search with mmin=1Msolar. Finally, we sketch and discuss an algorithm for placing the templates in the parameter space.

  14. DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2012-11-01

    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{sup )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.

  15. UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. III. THE CASE OF CYGNUS X-1

    SciTech Connect

    Wong, Tsing-Wai; Valsecchi, Francesca; Kalogera, Vassiliki; Fragos, Tassos E-mail: francesca@u.northwestern.edu E-mail: tfragos@cfa.harvard.edu

    2012-03-10

    In recent years, accurate observational constraints have become available for an increasing number of Galactic X-ray binaries (XRBs). Together with proper-motion measurements, we could reconstruct the full evolutionary history of XRBs back to the time of compact object formation. In this paper, we present the first study of the persistent X-ray source Cygnus X-1 that takes into account all available observational constraints. Our analysis accounts for three evolutionary phases: orbital evolution and motion through the Galactic potential after the formation of a black hole (BH), and binary orbital dynamics at the time of core collapse. We find that the mass of the BH immediate progenitor is 15.0-20.0 M{sub Sun }, and at the time of core collapse, the BH has potentially received a small kick velocity of {<=}77 km s{sup -1} at 95% confidence. If the BH progenitor mass is less than {approx}17 M{sub Sun }, a non-zero natal kick velocity is required to explain the currently observed properties of Cygnus X-1. Since the BH has only accreted mass from its companion's stellar wind, the negligible amount of accreted mass does not explain the observationally inferred BH spin of a{sub *} > 0.95, and the origin of this extreme BH spin must be connected to the BH formation itself. Right after the BH formation, we find that the BH companion is a 19.8-22.6 M{sub Sun} main-sequence star, orbiting the BH at a period of 4.7-5.2 days. Furthermore, recent observations show that the BH companion is currently super-synchronized. This super-synchronism indicates that the strength of tides exerted on the BH companion should be weaker by a factor of at least two compared to the usually adopted strength.

  16. Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries

    SciTech Connect

    Favata, Marc

    2009-07-15

    The Christodoulou memory is a nonlinear contribution to the gravitational-wave field that is sourced by the gravitational-wave stress-energy tensor. For quasicircular, inspiralling binaries, the Christodoulou memory produces a growing, nonoscillatory change in the gravitational-wave 'plus' polarization, resulting in the permanent displacement of a pair of freely-falling test masses after the wave has passed. In addition to its nonoscillatory behavior, the Christodoulou memory is interesting because even though it originates from 2.5 post-Newtonian (PN) order multipole interactions, it affects the waveform at leading (Newtonian/quadrupole) order. The memory is also potentially detectable in binary black-hole mergers. While the oscillatory pieces of the gravitational-wave polarizations for quasicircular, inspiralling compact binaries have been computed to 3PN order, the memory contribution to the polarizations has only been calculated to leading order (the next-to-leading order 0.5PN term has previously been shown to vanish). Here the calculation of the memory for quasicircular, inspiralling binaries is extended to 3PN order. While the angular dependence of the memory remains qualitatively unchanged, the PN correction terms tend to reduce the memory's magnitude. Explicit expressions are given for the memory contributions to the plus polarization and the spin-weighted spherical-harmonic modes of the metric and curvature perturbations. Combined with the recent results of Blanchet et al.[Classical Quantum Gravity 25, 165003 (2008)], this completes the waveform polarizations to 3PN order. This paper also discusses: (i) the difficulties in extracting the memory from numerical relativity simulations, (ii) other nonoscillatory effects that enter the waveform polarizations at high PN orders, and (iii) issues concerning the observability of the memory in gravitational-wave detectors.

  17. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients.

    PubMed

    Busignies, V; Leclerc, B; Porion, P; Evesque, P; Couarraze, G; Tchoreloff, P

    2006-08-01

    Three pharmaceutical excipients (microcrystalline cellulose, lactose, anhydrous calcium phosphate) and their binary mixtures were compacted to form compacts of various mean porosities. Some mechanical properties (Young's modulus, tensile strength and Brinell hardness) were studied on these compacts. The mechanical properties of the binary mixtures were not proportional to the mixture composition expressed in mass. More, for all the properties, a negative deviation was always observed from this linear relationship. In reference to a composition percolation phenomenon, critical mass fractions were detected from the graph mechanical property vs. mass composition of a mixture. The results obtained with Brinell hardness differed from the results of the Young's modulus and the tensile strength, i.e. the most plastic material in the binary mixture controlled the mixture behaviour. Secondly, a predictive model based on a statistical approach was proposed for the Young's modulus and the tensile strength. The validity of this model was verified on experimental data, and an interaction parameter used to characterize the affinity of the two compounds was calculated. Finally, the X-ray tomography technique was applied to the compacts of cellulose/phosphate mixtures to obtain cross-sections images of the compacts. The analysis of the cross-sections images allowed explaining the no linear relationship of the different mechanical properties results observed on these binary mixtures. PMID:16750353

  18. Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation

    SciTech Connect

    Mitra, S.; Dhurandhar, S.V.; Finn, L.S.

    2005-11-15

    Inspiraling compact-object binary systems are promising gravitational wave sources for ground and space-based detectors. The time-dependent signature of these sources is a well-characterized function of a relatively small number of parameters; thus, the favored analysis technique makes use of matched filtering and maximum likelihood methods. As the parameters that characterize the source model vary, so do the templates against which the detector data are compared in the matched filter. For small variations in the parameters, the filter responses are closely correlated. Current analysis methodology samples a bank of filters whose parameter values are chosen so that the correlation between successive samples from successive filters in the bank is 97%. Correspondingly, the additional information available with each successive template evaluation is, in a real sense, only 3% of that already provided by the nearby templates. The reason for such a dense coverage of parameter space is to minimize the chance that a real signal, near the detection threshold, will be missed by the parameter space sampling. Here we investigate the use of Chebyshev interpolation for reducing the number of templates that must be evaluated to obtain the same analysis sensitivity. Additionally, rather than focus on the 'loss' of signal-to-noise associated with the finite number of filters in the template bank, we evaluate the receiver operating characteristic (ROC) as a measure of the effectiveness of an analysis technique. The ROC relates the false alarm probability to the false dismissal probability of an analysis, which are the quantities that bear most directly on the effectiveness of an analysis scheme. As a demonstration, we compare the present 'dense sampling' analysis methodology with the 'interpolation' methodology using Chebyshev polynomials, restricted to one dimension of the multidimensional analysis problem by plotting the ROC curves. We find that the interpolated search can be

  19. Compact objects at the heart of outflows in large and small systems

    NASA Astrophysics Data System (ADS)

    Sell, Paul Harrison

    2013-12-01

    This thesis focuses on studying and assessing high-energy feedback generated by both stellar mass and supermassive compact objects. From these two perspectives, I help bridge the gap in understanding how jets and winds can transform their much larger environments in thousands to millions of years, astronomically short timescales. I have acquired X-ray and optical data that aim to elucidate the role these objects play in powering parsec-scale shockwaves in the ISM and in driving kiloparsec-scale outflows in galaxies. I present Chandra X-ray imaging, Hubble Space Telescope imaging, and WIYN Hydra multi-object optical spectroscopic observations. The data reveal the morphologies of the systems and constrain on a range of interesting parameters: power, outflow velocity, density, accretion efficiency, and timescale. My analysis provides perspective on the importance of black holes, both large and small, and neutron stars for driving outflows into the interstellar and intergalactic medium. On kiloparsec scales, I explore the nature of what appear to be merging or recently merging post-starburst galaxies with very high-velocity winds. This work is part of a multiwavelength effort to characterize the niche these galaxies fill in the larger scheme of galaxy evolution. My focus is on the accretion activity of the coalescing supermassive black holes in their cores. This work leads us to compare the relative importance of a massive starburst to the supermassive black holes in the cores of the galaxies. On parsec scales, I present case studies of two prominent microquasars, Galactic X-ray binaries with jets, Circinus X-1 and Cygnus X-1. In the case of Circinus X-1, I present very deep follow-up observations of parsec-scale shock plumes driven by a powerful, bipolar jet. In the case of Cygnus X-1, I present follow-up observations to probe a recently discovered outflow near the binary. I calculate robust, physically motivated limits on the total power needed to drive the outflows

  20. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era

    NASA Astrophysics Data System (ADS)

    Adams, T.; Buskulic, D.; Germain, V.; Guidi, G. M.; Marion, F.; Montani, M.; Mours, B.; Piergiovanni, F.; Wang, G.

    2016-09-01

    The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring.

  1. Efficiently enclosing the compact binary parameter space by singular-value decomposition

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew

    2011-10-15

    Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.

  2. Parameter estimation for compact binary inspirals with a simple noise realization

    NASA Astrophysics Data System (ADS)

    Kim, Jeongcho; Kim, Chunglee; Lee, Hyung Won

    2016-05-01

    In the context of parameter estimation of gravitational waves (GWs), detector noise is assumed to be Gaussian and stationary. In reality, many electric glitches, which are neither Gaussian nor stationary, were observed and reported in publications by the LSC-Virgo collabotation. Proper noise reduction is important in GW data analysis, as these glitches would limit, if not downgrade, the quality of parameter estimation. In this work, we investigate the accuracy of results obtained by Markov Chain Monte Carlo (MCMC) parameter estimation for compact binary inspirals with the LIGO-Virgo network when non-Gaussian, stationary noise is remained in data of each interferometer. Spiky, delta function-like glitches, which are stationary, do not affect correlations between parameters. However, most likely values of chirp mass and distance seem to be shifted by the specific frequencies and amplitudes of glitches.

  3. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-09-01

    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M⊙-25M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.

  4. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu

    2016-03-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.

  5. Strange Stars : An interesting member of the compact object family

    SciTech Connect

    Bagchi, Manjari; Ray, Subharthi; Dey, Jishnu; Dey, Mira

    2008-01-10

    We have studied strange star properties both at zero temperature and at finite temperatures and searched signatures of strange stars in gamma-ray, x-ray and radio astronomy. We have a set of Equations of State (EoS) for strange quark matter (SQM) and solving the TOV equations, we get the structure of strange stars. The maximum mass for a strange star decreases with the increase of temperature, because at high temperatures, the EoS become softer. One important aspect of strange star is that, surface tension depends on the size and structure of the star and is significantly larger than the conventional values. Moment of inertia is another important parameter for compact stars as by comparing theoretical values with observed estimate, it is possible to constrain the dense matter Equation of State. We hope that this approach will help us to decide whether the members of the double pulsar system PSR J0737-3039 are neutron stars or strange stars.

  6. Learning about compact binary merger: The interplay between numerical relativity and gravitational-wave astronomy

    SciTech Connect

    Baumgarte, Thomas; Brady, Patrick R.; Creighton, Jolien D E; Lehner, Luis; Pretorius, Frans; DeVoe, Ricky

    2008-04-15

    Activities in data analysis and numerical simulation of gravitational waves have to date largely proceeded independently. In this work we study how waveforms obtained from numerical simulations could be effectively used within the data analysis effort to search for gravitational waves from black hole binaries. To this end we analyze the cross-correlation between different numerical waveforms weighted by the detector's noise. This allow us to propose measures to quantify the accuracy of numerical waveforms for the purpose of data analysis, study how sensitive the analysis is to errors in the waveforms, and propose a way to efficiently encode the waveform's information for its use as a member of the template bank. We estimate that {approx}100 templates (and {approx}10 simulations with different mass ratios) are needed to detect waves from nonspinning binary black holes with total masses in the range 100M{sub {center_dot}}{<=}M{<=}400M{sub {center_dot}} using initial LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors in numerical waveform extraction and provide order of magnitude estimates for the computational cost of simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what information from near-future numerical simulations of compact binary systems would be most useful for enhancing the detectability of such events with contemporary gravitational-wave detectors and emphasize the role of numerical simulations for the interpretation of eventual gravitational-wave observations.

  7. The Fate of Fallback Matter around Newly Born Compact Objects

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Duffell, Paul; Cantiello, Matteo; MacFadyen, Andrew I.

    2014-02-01

    The presence of fallback disks around young neutron stars (NSs) has been invoked over the years to explain a large variety of phenomena. Here we perform a numerical investigation of the formation of such disks during a supernova (SN) explosion, considering both NS and black hole (BH) remnants. Using the public code MESA, we compute the angular momentum distribution of the pre-SN material, for stars with initial masses M in the range 13-40 M ⊙, initial surface rotational velocities v surf between 25% and 75% of the critical velocity, and for metallicities Z of 1%, 10%, and 100% of the solar value. These pre-SN models are exploded with energies E varying between 1050-3 × 1052 erg, and the amount of fallback material is computed. We find that, if magnetic torques play an important role in angular momentum transport, then fallback disks around NSs, even for low-metallicity main-sequence stars, are not an outcome of SN explosions. Formation of such disks around young NSs can only happen under the condition of negligible magnetic torques and a fine-tuned explosion energy. For those stars that leave behind BH remnants, disk formation is ubiquitous if magnetic fields do not play a strong role; however, unlike the NS case, even with strong magnetic coupling in the interior, a disk can form in a large region of the Z, M, v surf, E parameter space. Together with the compact, hyperaccreting fallback disks widely discussed in the literature, we identify regions in the above parameter space that lead to extended, long-lived disks around BHs. We find that the physical conditions in these disks may be conducive to planet formation, hence leading to the possible existence of planets orbiting BHs.

  8. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  9. Extremely red compact radio sources - The empty field objects

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Neugebauer, G.; Soifer, B. T.; Matthews, K.; Wootten, H. A.; Pravdo, S. H.

    1981-01-01

    Radiation of 10 microns has been detected from 1413+135, one of the very red objects discovered by Rieke, Lebofsky, and Kinman (1979) at near-infrared wavelengths. The spectrum of this object flattens at wavelengths longer than 2.2 microns. Upper limits are also given for the 10-micron emission from 2255+14, 0026+34, and 0406+121. Photometry between 1.25 and 2.2 microns confirms the variability of 1413+135, 2255+41, and 0406+121. Five percent resolution spectra of 1413+135 and 0406+121 between 1.5 and 2.4 microns show no emission or absorption lines. The spectral data rule out the possibility that 1413+135 is a quasar with normal line strengths and a redshift less than 1.3 and greater than 4. The lack of features of the 1.5-2.4-micron spectra, the rapid variability, and the overall shape of the radio, infrared, and X-ray energy distributions are consistent with a BL Lac nature for these objects.

  10. Magnetar-like Activity from the Central Compact Object in the SNR RCW103

    NASA Astrophysics Data System (ADS)

    Rea, N.; Borghese, A.; Esposito, P.; Coti Zelati, F.; Bachetti, M.; Israel, G. L.; De Luca, A.

    2016-09-01

    The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the “anti-magnetar” scenario for other CCOs.

  11. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Ceron, E. Amador; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Camp, J. B.; Cannizzo, J.

    2010-01-01

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.

  12. A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. I. QUASI-KERR BLACK HOLES

    SciTech Connect

    Psaltis, Dimitrios; Johannsen, Tim

    2012-01-20

    We describe a new numerical algorithm for ray tracing in the external spacetimes of spinning compact objects characterized by arbitrary quadrupole moments. Such spacetimes describe non-Kerr vacuum solutions that can be used to test the no-hair theorem in conjunction with observations of accreting black holes. They are also appropriate for neutron stars with spin frequencies in the {approx_equal} 300-600 Hz range, which are typical of the bursting sources in low-mass X-ray binaries. We use our algorithm to show that allowing for the quadrupole moment of the spacetime to take arbitrary values leads to observable effects in the profiles of relativistic broadened fluorescent iron lines from geometrically thin accretion disks.

  13. Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; Berry, Christopher P. L.; Ohme, Frank; Fairhurst, Stephen; Farr, Will M.

    2014-08-01

    Gravitational-wave (GW) astronomy seeks to extract information about astrophysical systems from the GW signals they emit. For coalescing compact-binary sources this requires accurate model templates for the inspiral and, potentially, the subsequent merger and ringdown. Models with frequency-domain waveforms that terminate abruptly in the sensitive band of the detector are often used for parameter-estimation studies. We show that the abrupt waveform termination contains significant information that affects parameter-estimation accuracy. If the sharp cutoff is not physically motivated, this extra information can lead to misleadingly good accuracy claims. We also show that using waveforms with a cutoff as templates to recover complete signals can lead to biases in parameter estimates. We evaluate when the information content in the cutoff is likely to be important in both cases. We also point out that the standard Fisher matrix formalism, frequently employed for approximately predicting parameter-estimation accuracy, cannot properly incorporate an abrupt cutoff that is present in both signals and templates; this observation explains some previously unexpected results found in the literature. These effects emphasize the importance of using complete waveforms with accurate merger and ringdown phases for parameter estimation.

  14. Radio flares of compact binary mergers: the effect of non-trivial outflow geometry

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Piran, Tsvi

    2015-10-01

    The next generation gravitational waves (GW) detectors are most sensitive to GW emitted by compact (neutron star/black hole) binary mergers. If one of those is a neutron star the merger will also emit electromagnetic radiation via three possible channels: gamma-ray bursts and their (possibly orphan) afterglows, Li-Paczynski Macronovae and radio flares. This accompanying electromagnetic radiation is vitally important in confirming the GW detections. It could also reveal a wealth of information regarding the merger and will open a window towards multimessenger astronomy. Identifying and characterizing these counterparts is therefore of utmost importance. In this work, we explore late time radio flares emitted by the dynamically ejected outflows. We build upon previous work and consider the effect of the outflow's non-trivial geometry. Using an approximate method, we estimate the radio light-curves for several ejected matter distributions obtained in numerical simulations. Our method provides an upper limit to the effect of non-sphericity. Together with the spherical estimates, the resulting light curves bound the actual signal. We find that while non-spherical geometries can in principle lead to an enhanced emission, in most cases they result in an increase in the time-scale compared with a corresponding spherical configuration. This would weaken somewhat these signals and might decrease the detection prospects.

  15. Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2016-04-01

    The Fokker action governing the motion of compact binary systems without spins is derived in harmonic coordinates at the fourth post-Newtonian approximation (4PN) of general relativity. Dimensional regularization is used for treating the local ultraviolet (UV) divergences associated with point particles, followed by a renormalization of the poles into a redefinition of the trajectories of the point masses. Effects at the 4PN order associated with wave tails propagating at infinity are included consistently at the level of the action. A finite part procedure based on analytic continuation deals with the infrared (IR) divergencies at spatial infinity, which are shown to be fully consistent with the presence of near-zone tails. Our end result at 4PN order is Lorentz invariant and has the correct self-force limit for the energy of circular orbits. However, we find that it differs from the recently published result derived within the ADM Hamiltonian formulation of general relativity [T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014), 10.1103/PhysRevD.89.064058]. More work is needed to understand this discrepancy.

  16. ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR 'PROMPT' TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA

    SciTech Connect

    Thompson, Todd A.

    2011-11-10

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t{sub H}), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t{sub merge} < t{sub H}. In principle, Chandrasekhar-mass binaries with P {approx} 300 days can merge in {approx}< t{sub H} if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t{sub merge} {approx}< t{sub H} is yet larger. In contrast, P {approx}< 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  17. Accelerating Compact Object Mergers in Triple Systems with the Kozai Resonance: A Mechanism for "Prompt" Type Ia Supernovae, Gamma-Ray Bursts, and Other Exotica

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.

    2011-11-01

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge < t H. In principle, Chandrasekhar-mass binaries with P ~ 300 days can merge in <~ t H if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge <~ t H is yet larger. In contrast, P <~ 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  18. Spectroscopy of the short-hard GRB 130603B. The host galaxy and environment of a compact object merger

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Thöne, C. C.; Rowlinson, A.; García-Benito, R.; Levan, A. J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sánchez-Ramírez, R.; Melandri, A.; D'Avanzo, P.; Oates, S.; D'Elia, V.; De Pasquale, M.; Krühler, T.; van der Horst, A. J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S. D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J. P. U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O. E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Vestergaard, M.; Wijers, R. A. M. J.

    2014-03-01

    Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-likesignature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims: Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods: Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results: From these spectra we determine the redshift of the burst to be z = 0.3565 ± 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of AV = 0.86 ± 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), NHX/AV is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions: The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary. Appendices are available in electronic form at http://www.aanda.org

  19. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  20. Ruling out chaos in comparable mass compact binary systems with one body spinning

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Huang, Guoqing

    2015-09-01

    Levin (2006, Phys. Rev. D, 74, 124027) has given two contrary claims on the chaotic behaviour of a system in which only one body of comparable mass binaries spins and spin effects are restricted to the leading order spin-orbit couplings. Chaos in one set of second post-Newtonian (2PN) harmonic coordinate Lagrangian equations of motion was allowed via the fractal basin boundary method. However, in another set of 2PN Arnowitt-Deser-Misner (ADM) Hamiltonian equations of motion no chaos was confirmed with the aid of parametric solutions. Is there chaos for conservative PN Lagrangian and Hamiltonian approaches to the dynamics of comparable mass binaries when only one object spins? This is still an open question. A paper on canonical, conjugate spin variables (Wu and Xie, 2010, Phys. Rev. D, 81, 084045) has directly shown that these Hamiltonian approaches are integrable and non-chaotic regardless of PN orders and spin effects. In this sense, what we are required to answer is only the question of whether the Lagrangian approaches allow chaos. As recently confirmed by Wu et al. (2015, Phys. Rev. D, 91, 024042), in ADM coordinates, any one of these Lagrangian approaches at a certain order generally has an analytical mathematical equivalent Hamiltonian at an infinite order from an analytical point of view or at a certain high enough finite order from a numerical point of view. The Hamiltonian is completely canonical and has four integrals of the total energy and total angular momentum in an eight-dimensional phase space, and therefore it is typically integrable. We use this to show the absence of chaos in the Lagrangian. On the other hand, we use the method of fast Lyapunov exponents to revisit the 2PN harmonic coordinate Lagrangian dynamics with the leading-order spin-orbit coupling of one body spinning. It is found that the fractal method is not sufficient to support chaos in unstable merging binaries, even if the radiation reaction is turned off. In summary, neither the

  1. Parameter estimation of eccentric inspiraling compact binaries using an enhanced post circular model for ground-based detectors

    NASA Astrophysics Data System (ADS)

    Sun, Baosan; Cao, Zhoujian; Wang, Yan; Yeh, Hsien-Chi

    2015-08-01

    Inspiraling compact binaries have been identified as one of the most promising sources for gravitational-wave detection. These binaries are always expected to have been circularized by the gravitational radiation when they enter the detector's frequency band. However, recent studies indicate that some binaries may still possess a significant eccentricity. In light of the enhanced post-circular waveform model for eccentric binaries in the frequency domain, we do a systematic study of the possible signal-to-noise ratio loss if one uses quasicircular waveform templates to analyze the eccentric signal, and revisit the problem of parameter estimation of gravitational-wave chirp signals from eccentric compact binaries. We confirm previous results from other researchers that the resulting signal-to-noise ratio loss becomes larger than 5% for eccentricity bigger than 0.1 and the resulting parameter estimation bias is more than 0.1%. We study the parameter estimation accuracy for such a waveform with different initial eccentricities from 0.1 to 0.4 by using the Fisher matrix method. As expected, the eccentricity improves the parameter estimation accuracy significantly by breaking degeneracies between different parameters. Particularly, we find that the eccentricity errors improve by 2 orders of magnitude from 10-2 to 10-4 when eccentricity grows from 0.1 to 0.4, and the estimated errors of the chirp mass are about 10-3 for a binary black hole using the Advanced LIGO detector. For the Einstein Telescope detector, the estimated accuracy of parameters will be 2 orders of magnitude higher.

  2. A Study on the Evolution of Compact Star Binaries and Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Xu, X. J.

    2014-03-01

    X-ray serves as one of the most important domains of discovery in astronomy. It could be used to study the properties as well as the formation and evolution of X-ray emitting objects. X-ray can also be used to constrain the formation and evolution history of galaxies in the universe. In this thesis, we discuss the properties of the X-ray point sources, especially those with white dwarfs as accretors. We focus on the evolution of these binaries and their progenitors, as well as the relation between these objects and their host environments with the numerical and observational methods. We further put constraints on the final product and the possible connection to the type Ia supernovae. Our main results are as follows: (1) We study the case in which the thermally unstable accretion disks occur in binaries, and apply to the evolution of GRO J1744-28 and type Ia supernovae. Our result shows that GRO J1744-28 could have evolved from a binary composed by a normal star and an ONeMg white dwarf and with the white dwarf as the accretor. During its evolution, the white dwarf experienced accretion from the X-ray irradiated unstable accretion disk, then accumulated mass by burning the accreted matter on its surface before it collapsed to a neutron star. The new formed neutron star then accreted from the companion again, and evolved to its present properties. We also apply the unstable disks to the binaries with C/O white dwarfs as accretors, and calculate the region of the initial companion masses and orbital periods which could lead to successful type Ia supernovae. The results suggest that the companion star of the progenitor system could have the initial mass as low as ≲ 1.5 M_{⊙}. (2) We study the λ parameter in the common envelope evolution. Our results show that the λ parameter varies for the stars with different initial masses. For the same star, λ also varies in different evolutional stages. At the end of their evolution, the stars with the approximate initial

  3. Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, C.

    2014-03-01

    The second-generation interferometric gravitational wave detectors, currently under construction are expected to make their first detections within this decade. This will firmly establish gravitational wave physics as an empirical science, and will open up a new era in astrophysics, cosmology, and fundamental physics. Already with the first detections, we will be able to, among other things, establish the nature of short-hard gamma ray bursts, definitively confirm the existence of black holes, measure the Hubble constant in a completely independent way, and for the first time gain access to the genuinely strong-field dynamics of gravity. Hence, it is time to consider the longer-term future of this new field. The Einstein Telescope (ET) is a concrete conceptual proposal for a third-generation gravitational wave observatory, which will be ~ 10 times more sensitive in strain than the second-generation detectors. This will give access to sources at cosmological distances, with a correspondingly higher detection rate. We have given an overview of the science case for ET, with a focus on what can be learned from signals emitted by coalescing compact binaries. Third-generation observatories will allow us to map the coalescence rate out to redshifts z ~ 3, determine the mass functions of neutron stars and black holes, and perform precision measurements of the neutron star equation of state. ET will enable us to study the large-scale structure and evolution of the Universe without recourse to a cosmic distance ladder. Finally, we have discussed how it will allow for high-precision measurements of strong-field, dynamical gravity.

  4. Derivation of local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries

    NASA Astrophysics Data System (ADS)

    Jaranowski, Piotr; Schäfer, Gerhard

    2015-12-01

    The paper gives full details of the computation within the canonical formalism of Arnowitt, Deser, and Misner of the local-in-time part of the fourth post-Newtonian, i.e. of power eight in one over speed of light, conservative Hamiltonian of spinless compact binary systems. The Hamiltonian depends only on the bodies' positions and momenta. Dirac delta distributions are taken as source functions. Their full control is furnished by dimensional continuation, by means of which the occurring ultraviolet (UV) divergences are uniquely regularized. The applied near-zone expansion of the time-symmetric Green function leads to infrared (IR) divergences. Their analytic regularization results in one single ambiguity parameter. Unique fixation of it was successfully performed in T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014) through far-zone matching. Technically as well as conceptually (backscatter binding energy), the level of the Lamb shift in quantum electrodynamics is reached. In a first run a computation of all terms is performed in three-dimensional space using analytic Riesz-Hadamard regularization techniques. Then divergences are treated locally (i.e., around particles' positions for UV and in the vicinity of spatial infinity for IR divergences) by means of combined dimensional and analytic regularization. Various evolved analytic expressions are presented for the first time. The breakdown of the Leibniz rule for distributional derivatives is addressed as well as the in general nondistributive law when regularizing value of products of functions evaluated at their singular point.

  5. Extracting Astrophysical Information from the Gravitational Waves of Compact Binary Mergers and Their Electromagnetic Counterparts

    NASA Astrophysics Data System (ADS)

    Farr, Benjamin

    With the advanced-detector era of ground-based gravitational wave astronomy beginning in the next year, and with it the first detections of gravitational waves, it is critical that the LIGO-Virgo collaboration be prepared to make astronomical statements about the sources it could detect. The estimation of compact binary parameters from gravitational wave signals is a computationally expensive analysis that is highly susceptible to systematic biases due to the approximations that are necessary. To be prepared for the advanced-detector era these tools need to be efficient enough to follow up all interesting candidate signals, and also must be shown to provide estimates of parameters with systematic uncertainties smaller than the statistical uncertainties. This work focuses on the development of the parameter estimation tools used by the LIGO-Virgo collaboration, preparing them for the advanced-detector era. Work began with existing parameter estimation algorithms that would take several months to complete. Being so expensive, it was infeasible to conduct the systematic studies required to validate them. With techniques partly developed in this work analysis times are reduced to hours to days. With these advancements in place I conduct several systematic studies, both to assess the potential systematic biases in parameter estimates due to the use of approximate models for waveforms, and to make robust predictions for what constraints will be placed on gravitational-wave sources from detections in the early advanced-detector era. Lastly, I introduce a novel approach to parameter estimation that reduces the analysis time from hours to minutes, providing information at latencies low enough to guide the search for electromagnetic counterparts.

  6. High-ionization accretion signatures in compact binary candidates from SOAR Telescope observations

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F.; Silva, K. M. G.; Almeida, L. A.

    2014-10-01

    The increasing number of synoptic surveys made by small robotic telescopes, like the photometric Catalina Real-Time Transient Survey (CRTS - Drake et al., 2009, ApJ, 696, 870), represents a unique opportunity for the discovery of new variable objects and also to improve the samples of many classes of variables. Our goal in this work was the discovery of new polars, a subclass of magnetic Cataclysmic Variables (mCVs) with no accretion disk, and Close Binary Supersoft X-ray Sources (CBSS), strong candidates to Type Ia Supernova progenitors. Both are rare objects and probe interesting accretion scenarios. Finding spectral features associated to high-ionization mass accretion constrains the CBSS or magnetic CV nature for the candidates, expanding the hitherto small samples of these classes (specially CBSS) and allowing for detailed observational follow-up. We used the Goodman Spectrograph on SOAR 4.1 m Telescope to search for signatures of high-ionization mass accretion, as He II 468,6 nm emission line and inverted Balmer decrement, on 39 variable objects selected mostly from CRTS. In this sample we found 14 strong candidates to mCVs, 1 Nova in the final stages of eruption, 14 candidates to Dwarf Novae, 5 extragalactic sources (AGN), 1 object previously identified as a Black Hole Nova, 3 objects with pure absorption spectral features and 1 unidentified object with low S/N ratio. The mCVs candidates found in this work will be studied using time-resolved spectroscopic, polarimetric, and photometric observations in a follow-up project.

  7. An accurate geometric distance to the compact binary SS Cygni vindicates accretion disc theory.

    PubMed

    Miller-Jones, J C A; Sivakoff, G R; Knigge, C; Körding, E G; Templeton, M; Waagen, E O

    2013-05-24

    Dwarf novae are white dwarfs accreting matter from a nearby red dwarf companion. Their regular outbursts are explained by a thermal-viscous instability in the accretion disc, described by the disc instability model that has since been successfully extended to other accreting systems. However, the prototypical dwarf nova, SS Cygni, presents a major challenge to our understanding of accretion disc theory. At the distance of 159 ± 12 parsecs measured by the Hubble Space Telescope, it is too luminous to be undergoing the observed regular outbursts. Using very long baseline interferometric radio observations, we report an accurate, model-independent distance to SS Cygni that places the source substantially closer at 114 ± 2 parsecs. This reconciles the source behavior with our understanding of accretion disc theory in accreting compact objects. PMID:23704566

  8. Bidirectional motion observed in the compact symmetric object 1946+708.

    PubMed Central

    Taylor, G B; Vermeulen, R C; Pearson, T J

    1995-01-01

    We present the first direct measurements of bidirectional motions in an extragalactic radio jet. The radio source 1946+708 is a compact symmetric object with striking S-symmetry identified with a galaxy at a redshift of 0.101. From observations 2 years apart we have determined the velocities of four compact components in the jet, the fastest of which has an apparent velocity of 1.09 h-1c. By pairing up the components, assuming they were simultaneously ejected in opposite directions, we derive a 1 lower limit on the Hubble constant, H0 > 42 km.s-1.Mpc-1. PMID:11607603

  9. Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Piran, Tsvi; Paul, Michael

    2015-12-01

    The origin of heavy elements produced through rapid neutron capture (`r-process’) by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe; ref. ) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth’s deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretical and observational macronova/kilonova estimates.

  10. Casimir potential of a compact object enclosed by a spherical cavity

    SciTech Connect

    Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.

    2010-11-15

    We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic spheres both outside and within one another.

  11. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  12. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Ceron, E. Amador; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Blackburn, L.; Camp, J. B.; Cannizzo, J.

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  13. Optical, X-ray and gamma-ray observations of compact objects in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1993-01-01

    In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and Hubble Space Telescope (HST) as well as our balloon-borne hard x-ray telescope EXITE (Energetic X-ray Imaging Telescope Experiment) and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H-alpha images of two clusters with HST and found CV candiates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two 'dim source' fields in omega-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and low mass X-ray binaries (LMXBs) and the origin of hot gas in globulars.

  14. Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit

    SciTech Connect

    Kidder, Lawrence E.

    2008-02-15

    The increasing sophistication and accuracy of numerical simulations of compact binaries (especially binary black holes) presents the opportunity to test the regime in which post-Newtonian (PN) predictions for the emitted gravitational waves are accurate. In order to confront numerical results with those of post-Newtonian theory, it is convenient to compare multipolar decompositions of the two waveforms. It is pointed out here that the individual modes can be computed to higher post-Newtonian order by examining the radiative multipole moments of the system, rather than by decomposing the 2.5PN polarization waveforms. In particular, the dominant (l=2, m={+-}2) mode can be computed to 3PN order. Individual modes are computed to as high a post-Newtonian order as possible given previous post-Newtonian results.

  15. Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.

    2015-05-01

    We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.

  16. A search for pulsations from the compact object of GRB 060218

    NASA Astrophysics Data System (ADS)

    Mirabal, N.; Gotthelf, E. V.

    2010-02-01

    Aims: A fraction of massive stars are expected to collapse into compact objects (accreting black holes or rapidly rotating neutron stars) that successfully produce gamma-ray bursts (GRBs). We examine the possibility of directly observing these gamma-ray burst compact objects (GCOs) using post-explosion observations of past and future GRB sites. Methods: We present a search for early pulsations from the nearby (z=0.0335) gamma-ray burst GRB 060218, which exhibited features possibly consistent with a rapidly spinning neutron star as its underlying GCO. We also consider alternative techniques that could potentially achieve a detection of GCOs either in the Local Volume or near the plane of our own Galaxy. Results: We report the non-detection of pulsations from the GCO of GRB 060218. In particular, fast fourier transform analysis applied to the light curve shows no significant power over the range of frequencies 0.78 mHz < f < 227 Hz with an upper limit on the pulsed fraction of ~2%. In addition, we present detection limits of current high-resolution archival X-ray images of galaxies within the Local Volume. The existing data could be harnessed to rule out the presence of any background contaminants at the GRB position of future nearby events. Conclusions: The null detection of pulsations from the GCO of GRB 060218 is most likely explained by the fact that the afterglow emission occurs near the head of the jet and should be far removed from the compact object. We also find that the comparison of pre- and post-explosion explosion images of future GRBs within the Local Volume, as well as the firm identification of a GCO within an ancient GRB remnant near the Galactic plane are extremely challenging with current GeV/TeV capabilities. Finally, we conclude that only under some very exceptional circumstances will it be possible to directly detect the compact object responsible for gamma-ray bursts.

  17. Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: Quasi-equilibrium sequences and first evolutions

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Moldenhauer, Niclas; Johnson-McDaniel, Nathan K.; Bernuzzi, Sebastiano; Markakis, Charalampos M.; Brügmann, Bernd; Tichy, Wolfgang

    2015-12-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasiequilibrium configurations and dynamical evolutions. In this article, we construct quasiequilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the sgrid code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity-reduced data; we present the possibility of computing data for significantly unequal-mass binaries with mass ratios q ≃2 ; and we create equal-mass binaries with individual compactness up to C ≃0.23 . As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a q =2.06 mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of ˜10-2M⊙ is transferred between the two stars. This amount of mass accretion corresponds to ˜1051 ergs of accretion energy. This configuration also ejects a large amount of material during merger (˜7.6 ×1 0-2M⊙), imparting a substantial kick to the remnant neutron star. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity-reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies. However, one also needs to reduce other errors in the waveforms, notably truncation errors, in order for the improvement due to

  18. SUBARU AND GEMINI OBSERVATIONS OF SS 433: NEW CONSTRAINT ON THE MASS OF THE COMPACT OBJECT

    SciTech Connect

    Kubota, K.; Ueda, Y.; Fabrika, S.; Barsukova, E. A.; Sholukhova, O.; Medvedev, A.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 A. This region is selected to avoid 'strong' absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig and Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 +- 3.8 km s{sup -1} with a systemic velocity of 59.2 +- 2.5 km s{sup -1}. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M{sub O} = 12.4 +- 1.9 M{sub sun} and M{sub X} = 4.3 +- 0.6 M{sub sun}, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 +- 5 km s{sup -1} in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M{sub O} = 10.4{sup +2.3}{sub -1.9} M{sub sun} and M{sub X} = 2.5{sup +0.7}{sub -0.6} M{sub sun}. Our final constraint, 1.9 M{sub sun} <=M{sub X}<= 4.9 M{sub sun}, indicates that the compact object in SS 433 is most likely a

  19. HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field - I. Single-lined objects

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Sybilski, P.; Ratajczak, M.; Maehara, H.; Konacki, M.

    2016-09-01

    We present results of our spectroscopic observations of nine detached eclipsing binaries (DEBs), selected from the Kepler Eclipsing Binary Catalog, that only show one set of spectral lines. Radial velocities (RVs) were calculated from the high-resolution spectra obtained with the HIgh-Dispersion Echelle Spectrograph (HIDES) instrument, attached to the 1.88-m telescope at the Okayama Astrophysical Observatory, and from the public Apache Point Observatory Galactic Evolution Experiment archive. In our sample, we found five single-lined binaries, with one component dominating the spectrum. The orbital and light-curve solutions were found for four of them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. For the fifth case, we only update the orbital parameters, and estimate the properties of the unseen star. Two other systems show orbital motion with a period known from the eclipse timing variations (ETVs). For these we obtained parameters of outer orbits, by translating the ETVs to RVs of the centre of mass of the eclipsing binary, and combining with the RVs of the outer star. Of the two remaining ones, one is most likely a blend of a faint background DEB with a bright foreground star, which lines we see in the spectra, and the last case is possibly a quadruple bearing a sub-stellar mass object. Where possible, we compare our results with literature, especially with results from asteroseismology. We also report possible detections of solar-like oscillations in our RVs.

  20. Micro-tidal Disruption Events by Stellar Compact Objects and the Production of Ultra-long GRBs

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.; Li, Zhuo; Lombardi, James C., Jr.; Milcarek, Stephen R., Jr.

    2016-06-01

    We explore full/partial tidal disruption events (TDEs) of stars/planets by stellar compact objects (black holes (BHs) or neutron stars (NSs)), which we term micro-TDEs. Disruption of a star/planet with mass M ⋆ may lead to the formation of a debris disk around the BH/NS. Efficient accretion of a fraction ({f}{acc}=0.1 of the debris may then give rise to bright, energetic, long (103–104 s), X-ray/gamma-ray flares, with total energies of up to ({f}{acc}/0.1)× {10}52 ({M}\\star /0.6 {M}ȯ ) erg, possibly resembling ultra-long gamma-ray bursts (GRBs)/X-ray flashes (XRFs). The energy of such flares depends on the poorly constrained accretion processes. Significantly fainter flares might be produced if most of the disk mass is blown away through strong outflows. We suggest three dynamical origins for such disruptions. In the first, a star/planet is tidally disrupted following a close random encounter with a BH/NS in a dense cluster. We estimate the BH (NS) micro-TDE rates from this scenario to be a few × {10}-6 (a few × {10}-7) {{{yr}}}-1 per Milky Way galaxy. Another scenario involves the interaction of wide companions due to perturbations by stars in the field, likely producing comparable but lower rates. Finally, a third scenario involves a BH/NS that gains a natal velocity kick at birth, leading to a close encounter with a binary companion and the tidal disruption of that companion. Such events could be associated with a supernova, or even with a preceding GRB/XRF event, and would likely occur hours to days after the prompt explosion; the rates of such events could be larger than those obtained from the other scenarios, depending on the preceding complex binary stellar evolution.

  1. Multiwavelength observations of V479 Andromedae: a close compact binary with an identity crisis

    NASA Astrophysics Data System (ADS)

    González-Buitrago, D.; Tovmassian, G.; Zharikov, S.; Yungelson, L.; Miyaji, T.; Echevarría, J.; Aviles, A.; Valyavin, G.

    2013-05-01

    Aims: We conducted a multi-wavelength study to unveil the properties of the extremely long-period cataclysmic variable V479 And. Methods: We performed series of observations, including moderate to high spectral resolution optical spectrophotometry, X-ray observations with Swift, linear polarimetry, and near-IR photometry. Results: This binary system is a low-inclination ~17° system with a 0.594093(4) day orbital period. The absorption line complex in the spectra indicate a G8-K0 spectral type for the donor star, which has departed from the zero-age main sequence. This implies a distance to the object of about 4 kpc. The primary is probably a massive 1.1-1.4 M⊙ magnetic white dwarf, accreting matter at a rate Ṁ > 10-10 M⊙ yr-1. This rate can be achieved if the donor star fills its corresponding Roche lobe, but there is little observational evidence for a mass-transfer stream in this system. An alternative explanation is a stellar wind from the donor star, although such a high rate mass loss is not anticipated from a subgiant. If the strongly magnetic white dwarf in V479 And is confirmed by future observations, the system would be the polar with the longest observed orbital period. We also discuss the evolutionary state of V479 And. Photometry and reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A28

  2. Numerical simulations of axisymmetric Bondi-Hoyle accretion onto a compact object

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2015-12-01

    Compact bodies which are not at rest compare to an homogeneous ambient environment are believed to undergo Bondi-Hoyle axisymmetric accretion as soon as their relative velocity reaches supersonic levels. Contrary to its spherical counterpart, B-H accretion presents flow structures difficult to analytically derive, hence the need for numerical investigations. The broad dynamics at stake when a tiny compact object engulfs surrounding material at a much larger scale has made numerical consistency a polemical issue as it has prevented both scales to be grasped for reasonable wind velocities. We designed a numerical setup which reconciliates the requirement for finite size accretor with steady states properties of the Bondi-Hoyle flow independent of the size of the inner boundary. The robustness of this setup is evaluated accordingly to predictions concerning the mass accretion rate evolution with the Mach number at infinity and the topology of the sonic surface as determined by te{Foglizzo1996}. It provides an estimation of the mass accretion rates and thus, of the expected X-ray luminosity for an idealized B-H configuration which might not be too far off for isolated compact objects like runaway neutron stars or hyper-luminous X-ray sources.

  3. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  4. Internal shocks driven by accretion flow variability in the compact jet of the black hole binary GX 339-4

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Belmont, R.; Gandhi, P.; Corbel, S.

    2015-03-01

    In recent years, compact jets have been playing a growing role in the understanding of accreting black hole engines. In the case of X-ray binary systems, compact jets are usually associated with the hard state phase of a source outburst. Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with its compact jet. In the model used in this study, we assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. Taking the PSD of the jet Lorentz factor fluctuations to be identical to the observed X-ray PSD, our study finds that the internal shock model successfully reproduces the radio to infrared SED of the source at the time of the observations as well as the reported strong mid-infrared spectral variability.

  5. Fully-coherent all-sky search for gravitational-waves from compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Macleod, D.; Harry, I. W.; Fairhurst, S.

    2016-03-01

    We introduce a fully coherent method for searching for gravitational wave signals generated by the merger of black hole and/or neutron star binaries. This extends the coherent analysis previously developed and used for targeted gravitational wave searches to an all-sky, all-time search. We apply the search to one month of data taken during the fifth science run of the LIGO detectors. We demonstrate an increase in sensitivity of 25% over the coincidence search, which is commensurate with expectations. Finally, we discuss prospects for implementing and running a coherent search for gravitational wave signals from binary coalescence in the advanced gravitational wave detector data.

  6. The last three minutes - Issues in gravitational-wave measurements of coalescing compact binaries

    NASA Technical Reports Server (NTRS)

    Cutler, Curt; Apostolatos, Theocharis A.; Bildsten, Lars; Finn, Lee S.; Flanagan, Eanna E.; Kennefick, Daniel; Markovic, Dragoljub M.; Ori, Amos; Poisson, Eric; Sussman, Gerald J.

    1993-01-01

    Gravitational-wave interferometers are expected to monitor the last three minutes of inspiral and final coalescence of neutron star and black hole binaries at distances approaching cosmological, where the event rate may be many per year. Because the binary's accumulated orbital phase can be measured to a fractional accuracy much lower than 10 exp -3, and relativistic effects are large, the wave forms will be far more complex and carry more information than has been expected. Improved wave form modeling is needed as a foundation for extracting the waves' information, but is not necessary for wave detection.

  7. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  8. Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order

    NASA Astrophysics Data System (ADS)

    Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain; Porter, Edward K.

    2015-10-01

    We investigate the dynamics of spinning binaries of compact objects at the next-to-leading order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN). Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric within the near zone, we derive the post-Newtonian equations of motion as well as the equations of spin precession. We find full equivalence with available results. We then focus on the far-zone field produced by those systems and obtain the previously unknown 3PN spin contributions to the gravitational-wave energy flux by means of the multipolar post-Minkowskian wave generation formalism. Our results are presented in the center-of-mass frame for generic orbits, before being further specialized to the case of spin-aligned, circular orbits. Based on the energy balance equation, we derive the orbital phase of the binary at the order 3PN including all conservative spin effects and briefly discuss the relevance of the new terms.

  9. Properties of long gamma-ray bursts from massive compact binaries.

    PubMed

    Church, Ross P; Levan, Andrew J; Davies, Melvyn B; Kim, Chunglee

    2013-06-13

    We consider the implications of a model for long-duration gamma-ray bursts in which the progenitor is spun up in a close binary by tidal interactions with a massive black-hole companion. We investigate a sample of such binaries produced by a binary population synthesis, and show that the model predicts several common features in the accretion on to the newly formed black hole. In all cases, the accretion rate declines as approximately t(-5/3) until a break at a time of order 10(4) s. The accretion rate declines steeply thereafter. Subsequently, there is flaring activity, with the flare peaking between 10(4) and 10(5) s, the peak time being correlated with the flare energy. We show that these times are set by the semi-major axis of the binary, and hence the process of tidal spin-up; furthermore, they are consistent with flares seen in the X-ray light curves of some long gamma-ray bursts. PMID:23630369

  10. A Central Compact Object in Kes 79: The hypercritical regime and neutrino expectation

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Fraija, N.

    2016-08-01

    We present magnetohydrodynamical simulations of a strong accretion onto magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the center of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called Central Compact Objects, which exhibits no evidence for a surrounding pulsar wind nebula. In this work we show that the submergence of the magnetic field during the hypercritical phase can explain such behavior for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733±364. In addition, we compute the flavor ratio on Earth for a progenitor model.

  11. COMPACT OBJECT COALESCENCE RATE ESTIMATION FROM SHORT GAMMA-RAY BURST OBSERVATIONS

    SciTech Connect

    Petrillo, Carlo Enrico; Dietz, Alexander; Cavaglia, Marco

    2013-04-20

    Recent observational and theoretical results suggest that short-duration gamma-ray bursts (SGRBs) originate from the merger of compact binary systems of two neutron stars or a neutron star and a black hole. The observation of SGRBs with known redshifts allows astronomers to infer the merger rate of these systems in the local universe. We use data from the SWIFT satellite to estimate this rate to be in the range {approx}500-1500 Gpc{sup -3} yr{sup -1}. This result is consistent with earlier published results which were obtained through alternative approaches. We estimate the number of coincident observations of gravitational-wave signals with SGRBs in the advanced gravitational-wave detector era. By assuming that all SGRBs are created by neutron star-neutron star (neutron star-black hole) mergers, we estimate the expected rate of coincident observations to be in the range {approx_equal} 0.2-1 ({approx_equal} 1-3) yr{sup -1}.

  12. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    SciTech Connect

    Pokrovsky, Yu. E.

    2015-12-15

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  13. First spectroscopy of a short-hard GRB: the environment of a compact object merger

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, Antonio; Thöne, Christina C.; Rowllinson, Antonia; Benito, Rubén García; Levan, Andrew J.; Gorosabel, Javier; Goldoni, Paolo; Schulze, Steve

    2015-03-01

    Short gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigo et al. (2014).

  14. THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS

    SciTech Connect

    Van Eyken, Julian C.; Ciardi, David R.; Akeson, Rachel L.; Beichman, Charles A.; Von Braun, Kaspar; Gelino, Dawn M.; Kane, Stephen R.; Plavchan, Peter; RamIrez, Solange V.; Rebull, Luisa M.; Stauffer, John R.; Hoard, D. W.; Howell, Steve B.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.

    2011-08-15

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3.{sup 0}5 x 2.{sup 0}3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 {+-} 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known

  15. Subaru And Gemini Observations Of SS 433: New Constraint On The Mass Of The Compact Object

    NASA Astrophysics Data System (ADS)

    Kubota, K.; Ueda, Y.; Fabrika, S.; Medvedev, A.; Barsukova, E. A.; Sholukhova, O.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Å. This region is selected to avoid "strong" absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig & Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 ± 3.8 km s-1 with a systemic velocity of 59.2 ± 2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M O = 12.4 ± 1.9 M sun and M X = 4.3 ± 0.6 M sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 ± 5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M O = 10.4+2.3 -1.9 M sun and M X = 2.5+0.7 -0.6 M sun. Our final constraint, 1.9 M sun <=M X<= 4.9 M sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly

  16. Time evolution of accreting magnetofluid around a compact object-Newtonian analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Fahimeh; Shaghaghian, Mahboobeh; Pazhouhesh, Reza

    2015-07-01

    Time evolution of a thick disc with finite conductivity around a nonrotating compact object is presented. Along with the Maxwell equations and the Ohm's law, the Newtonian limit of the relativistic fluid equations governing the motion of a finitely conducting plasma is derived. The magnetofluid is considered to possess only the poloidal components of the electromagnetic field. Moreover, the shear viscous stress is neglected, as well as the self-gravity of the disc. In order to solve the equations, we have used a self-similar solution. The main features of this solution are as follows. The azimuthal velocity is somewhat increased from the Keplerian value in the equator plane to the super-Keplerian values at the surface of disc. Moreover, the radial velocity is obtained proportional to the meridional velocity. Magnetofluid does not have any nonzero component of the current density. Subsequently, the electromagnetic force is vanished and does not play any role in the force balance. While the pressure gradient maintains the disc structure in latitudinal direction, magnetofluid has no accretion on the central compact object. Analogously to the parameter α in the standard model, our calculations contain one parameter η0 which specifies the size of the electrical resistivity.

  17. Accretion-caused deceleration of a gravitationally powerful compact stellar object moving within a dense Fermi gas

    NASA Astrophysics Data System (ADS)

    Tito, E. P.; Pavlov, V. I.

    2016-07-01

    We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.

  18. Universal charge-radius relation for subatomic and astrophysical compact objects.

    PubMed

    Madsen, Jes

    2008-04-18

    Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature. PMID:18518093

  19. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    NASA Technical Reports Server (NTRS)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Roever, C.; Singer, L.; vanderSluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  20. Acoustics of marine sediment under compaction: binary grain-size model and viscoelastic extension of Biot's theory.

    PubMed

    Leurer, Klaus C; Brown, Colin

    2008-04-01

    This paper presents a model of acoustic wave propagation in unconsolidated marine sediment, including compaction, using a concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. Compressional- and shear-wave velocities and attenuation follow from a combination of Biot's model, used as the general framework, and two viscoelastic extensions resulting in complex grain and frame moduli, respectively. An effective-grain model accounts for the viscoelasticity arising from local fluid flow in expandable clay minerals in clay-bearing sediments. A viscoelastic-contact model describes local fluid flow at the grain contacts. Porosity, density, and the structural Biot parameters (permeability, pore size, structure factor) as a function of pressure follow from the binary model, so that the remaining input parameters to the acoustic model consist solely of the mass fractions and the known mechanical properties of each constituent (e.g., carbonates, sand, clay, and expandable clay) of the sediment, effective pressure, or depth, and the environmental parameters (water depth, salinity, temperature). Velocity and attenuation as a function of pressure from the model are in good agreement with data on coarse- and fine-grained unconsolidated marine sediments. PMID:18397002

  1. Three-dimensional trace measurements for fast-moving objects using binary-encoded fringe projection techniques.

    PubMed

    Su, Wei-Hung; Kuo, Cho-Yo; Kao, Fu-Jen

    2014-08-20

    A fringe projection technique to trace the shape of a fast-moving object is proposed. A binary-encoded fringe pattern is illuminated by a strobe lamp and then projected onto the moving object at a sequence of time. Phases of the projected fringes obtained from the sequent measurements are extracted by the Fourier transform method. Unwrapping is then performed with reference to the binary-encoded fringe pattern. Even though the inspected object is colorful, fringe orders can be identified. A stream of profiles is therefore retrieved from the sequent unwrapped phases. This makes it possible to analyze physical properties of the dynamic objects. Advantages of the binary-encoded fringe pattern for phase unwrapping also include (1) reliable performance for colorful objects, spatially isolated objects, and surfaces with large depth discontinuities; (2) unwrapped errors only confined in a local area; and (3) low computation cost. PMID:25321097

  2. MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES

    SciTech Connect

    Mediavilla, E.; Guerras, E.; Canovas, H.; Oscoz, A.; Falco, E.; Motta, V.; Jean, C.; Mosquera, A. M.

    2009-12-01

    We estimate the fraction of mass that is composed of compact objects in gravitational lens galaxies. This study is based on microlensing measurements (obtained from the literature) of a sample of 29 quasar image pairs seen through 20 lens galaxies. We determine the baseline for no microlensing magnification between two images from the ratios of emission line fluxes. Relative to this baseline, the ratio between the continua of the two images gives the difference in microlensing magnification. The histogram of observed microlensing events peaks close to no magnification and is concentrated below 0.6 mag, although two events of high magnification, DELTAm approx 1.5, are also present. We study the likelihood of the microlensing measurements using frequency distributions obtained from simulated microlensing magnification maps for different values of the fraction of mass in compact objects, alpha. The concentration of microlensing measurements close to DELTAm approx 0 can be explained only by simulations corresponding to very low values of alpha (10% or less). A maximum likelihood test yields alpha = 0.05{sup +0.09}{sub -0.03} (90% confidence interval) for a quasar continuum source of intrinsic size r{sub s{sub 0}}approx2.6x10{sup 15} cm. This estimate is valid in the 0.1-10 M {sub sun} range of microlens masses. We study the dependence of the estimate of alpha with r{sub s{sub 0}}, and find that alpha approx< 0.1 for r{sub s{sub 0}}approx<1.3x10{sup 16} cm. High values of alpha are possible only for source sizes much larger than commonly expected (r{sub s{sub 0}}>>2.6x10{sup 16} cm). Regarding the current controversy about Milky Way/LMC and M31 microlensing studies, our work supports the hypothesis of a very low content in MACHOS (Massive Compact Halo Objects). In fact, according to our study, quasar microlensing probably arises from the normal star populations of lens galaxies and there is no statistical evidence for MACHOS in the dark halos.

  3. On the Nature of the Compact Object in SS 433: Observational Evidence of X-ray Photon Index Saturation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Titarchuk, Lev

    2010-10-01

    We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a "blackbody-like (BB)" component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high-temperature BB" bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent & Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M_{{bh}}≳ 2 solar masses, using the scaling method using BHC GX 339 - 4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig & Gies, who find that Mx = (4.3 ± 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433.

  4. ON THE NATURE OF THE COMPACT OBJECT IN SS 433: OBSERVATIONAL EVIDENCE OF X-RAY PHOTON INDEX SATURATION

    SciTech Connect

    Seifina, Elena

    2010-10-10

    We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a 'blackbody-like (BB)' component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the 'high-temperature BB' bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M{sub bh{approx}}>2 solar masses, using the scaling method using BHC GX 339 - 4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig and Gies, who find that M{sub x} = (4.3 {+-} 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433.

  5. On the Nature of the Compact Object in SS 433. Observational Evidence of X-Ray Photon Index Saturation

    NASA Technical Reports Server (NTRS)

    Seifina, Elena; Titarchuk, Lev

    2010-01-01

    We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.

  6. Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; Hughes, Scott A.

    2009-03-01

    Increasing the sensitivity of a gravitational-wave (GW) detector improves our ability to measure the characteristics of detected sources. It also increases the number of weak signals that contribute to the data. Because GW detectors have nearly all-sky sensitivity, they can be subject to a confusion limit: Many sources which cannot be distinguished may be measured simultaneously, defining a stochastic noise floor to the sensitivity. For GW detectors operating at present and for their planned upgrades, the projected event rate is sufficiently low that we are far from the confusion-limited regime. However, some detectors currently under discussion may have large enough reach to binary inspiral that they enter the confusion-limited regime. In this paper, we examine the binary inspiral confusion limit for terrestrial detectors. We consider a broad range of inspiral rates in the literature, several planned advanced gravitational-wave detectors, and the highly advanced “Einstein telescope” design. Though most advanced detectors will not be impacted by this limit, the Einstein telescope with a very low-frequency “seismic wall” may be subject to confusion noise. At a minimum, careful data analysis will be require to separate signals which will appear confused. This result should be borne in mind when designing highly advanced future instruments.

  7. On the Nature of Compact Object in SS~433. An Observational Evidence of Black Hole Mass in SS 433

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev

    We present an analysis of X-ray spectral properties observed from black hole candidate (BHC) binary SS 433. We analyze RXTE data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 demonstrates a X-ray spectral transition from low hard state to intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptoniza-tion (BMC)" component and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature of "blackbody-like (BB)" bump which color temperature is in the range of 4-5 keV in 24 IS spectra during radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to support the presence of gravitationally redshifted annihila-tion lines in this source. We also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, greater than 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of BH mass in SS 433 is consistent with the recent BH mass measurement by Hillwig Gies who find that BH mass about 4.3 solar masses. It is the smallest BH mass up to now found among all BHC sources where BH masses have been estimated so far. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BHCs, is the strongest observational evidence of the presence of BH in SS 433.

  8. Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.

    1978-01-01

    Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.

  9. Exploring the Environs of Compact Symmetric Objects in the Nuclei of Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Taylor, G. B.; Xu, W.; Readhead, A. C. S.; Pearson, T. J.

    1994-12-01

    Two large Caltech--Jodrell Bank VLBI surveys at 5 GHz have recently been completed (CJ1 -- Xu et al. 1994, ApJS, submitted; CJ2 -- Taylor et al. 1994, ApJS, in press; Henstock et al. 1994, ApJS, submitted). Together with the Pearson--Readhead survey (1988, ApJ, 328, 114) these provide ~ 1 mas resolution images for a flux limited sample of 321 sources. One of the most interesting findings of these surveys was the discovery of three confirmed compact symmetric objects (CSOs) and forty additional candidate CSOs. These are compact (size ~ 100 pc) sources with emission on both sides of the central engine that is thought to be free of beaming effects. To account for their small sizes the CSOs must be either young or severely confined by a dense neutral medium. If these objects are young (ages ~ 3000 yrs) and growing at rates typical of equally luminous, but 1000 times larger, radio galaxies like Cygnus A then they must be a common phase in the evolution of galaxies, or perhaps a recurrent one. Alternatively, if the CSOs are strongly confined and longer lived then the large amount of material required for their confinement should have several observational consequences -- large amounts of neutral and molecular gas, high induced Faraday rotations, and possibly severe reddening and distortions of the starlight from the host galaxy. In an effort to discriminate between the above models we have performed deep infrared imaging of a number of CSOs and CSO candidates. We also report on high-dynamic range imaging with the VLA to look for large Faraday rotation measures, or for extended components that might be the result of a previous active phase. We have also observed one nearby CSO candidate in CO 1-0 with the Owens Valley millimeter array to search for molecular gas.

  10. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  11. TRANSITS AND LENSING BY COMPACT OBJECTS IN THE KEPLER FIELD: DISRUPTED STARS ORBITING BLUE STRAGGLERS

    SciTech Connect

    Di Stefano, R.

    2011-05-15

    Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover {approx}1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of 'anti-transits' - i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.

  12. Hawaii 167: A compact absorption-line object at z = 2.35

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Songaila, A.; Hu, E. M.; Egami, E.; Huang, J.-S.; Pickles, A. J.; Ridgway, S. E.; Wainscoat, R. J.; Weymann, R. J.

    1994-01-01

    During the course of the Hawaii K-band (2.1 micrometer) survey we have detected a compact object, Hawaii 167, lying at a redshift of 2.33, in which are seen both low- and high-ionization absorption lines. In the near-infrared we see broad H alpha emission at a redshift of 2.35 but do not detect the other Balmer lines, (O II) lambda 3727, or (O III) lambda 5007. The absence of strong Mg II or C IV emission in the rest ultraviolet suggests that, at these wavelengths, we may be seeing a poststarburst galaxy rather than a quasar. Indeed, this class of object may be common enough to represent a major episode of galaxy formation, possibly the formation of the spheroids. However, Q0059-2735, the most extreme member of the class of Mg II absorbing broad absorption line quasars, is very similar to the present object, and there may be an evolutionary sequence or some other close connection between Hawaii 167 and the broad absorption line quasars.

  13. New code for equilibriums and quasiequilibrium initial data of compact objects. III. Axisymmetric and triaxial rotating stars

    NASA Astrophysics Data System (ADS)

    Uryū, Kōji; Tsokaros, Antonios; Galeazzi, Filippo; Hotta, Hideya; Sugimura, Misa; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-02-01

    We introduce new code for stationary and axisymmetric equilibriums, as well as for triaxial quasiequilibrium initial data, of single rotating relativistic stars. The new code is developed as a part of our versatile initial data code for compact objects, Compact Object CALculator (cocal). In computing strong gravitational fields, the waveless formulation is incorporated into the cocal code on top of the previously developed Isenberg-Wilson-Mathews formulation (conformally flat thin-sandwich formulation). Also introduced is a new differential rotation law that contains two parameters to control an angular velocity profile and a transition from uniform to differential rotation. We present convergence tests and solution sequences for both uniformly and differentially rotating equilibriums of stationary axisymmetric compact stars, as well as for quasiequilibrium initial data of uniformly rotating triaxial (nonaxisymmetric) compact stars. We also show comparisons of uniformly rotating axisymmetric solutions computed with three different codes: cocal, lorene, and the RNS code.

  14. Near-Infrared Colors of the Binary Kuiper Belt Object 1998 WW31

    NASA Astrophysics Data System (ADS)

    Takato, Naruhisa; Fuse, Tetsuharu; Gaessler, Wolfgang; Goto, Miwa; Kanzawa, Tomio; Kobayashi, Naoto; Minowa, Yosuke; Oya, Shin; Pyo, Tae-Soo; Saint-Jacque, D.; Takami, Hideki; Terada, Hiroshi; Hayano, Yutaka; Iye, Masanori; Kamata, Yukiko; Tokunaga, A. T.

    2003-06-01

    We have measured near-infrared colors of the binary Kuiper Belt object (KBO) 1998 WW31 using the Subaru Telescope with adaptive optics. The satellite was detected near its perigee and apogee (0.18'' and 1.2'' apart from the primary). The primary and the satellite have similar H-K colors, while the satellite is redder than the primary in J-H. Combined with the R band magnitude previously published by Veillet et al., 2002, the color of the primary is consistent with that of optically red KBOs. The satellite's R-, J-, H-colors suggest the presence of ~1 μm absorption band due to rock-forming minerals. If the surface of the satellite is mainly composed by olivine, the satellite's albedo is higher value than the canonically assumed value of 4%.

  15. SETI implications of gravitational assist via chaotic trajectories of binary objects

    NASA Astrophysics Data System (ADS)

    Breeden, J. L.

    2014-01-01

    Extrapolating from the technique of gravitational assist via chaotic trajectories of binary objects, this paper considers how such techniques might be used in other systems. We examine which types of systems are the best candidates for harvesting gravitational energy for payload ejection. We also consider what signatures might be present in either the asteroid orbits or radiation of the central body if extraterrestrial intelligences were to use such techniques about these candidate systems. The simulation studies show that current technology cannot approach the sensitivity needed to detect either of these signals. Instead, we provide these results as guidance to studies in coming decades on patterns that may indicate the use of an asteroid ejection system.

  16. NuSTAR and XMM-Newton Observations of 1E1743.1-2843: Indications of a Neutron Star LMXB Nature of the Compact Object

    NASA Astrophysics Data System (ADS)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; Krivonos, Roman A.; Rahoui, Farid; Stern, Daniel; Tomsick, John A.; Zhang, Shuo; Zhang, William W.

    2016-05-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with {kT}∼ 1.8 {keV} emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with {{kT}}e∼ 4.6 {keV}. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 mHz–49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a {K}α line from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density ({N}{{H}}∼ 1.6× {10}23 {{cm}}-2).

  17. A hot compact dust disk around a massive young stellar object.

    PubMed

    Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo

    2010-07-15

    Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system. PMID:20631793

  18. Difficulties in explaining the cosmic photon excess with compact composite object dark matter

    NASA Astrophysics Data System (ADS)

    Cumberbatch, Daniel T.; Starkman, Glenn D.; Silk, Joseph

    2008-03-01

    It has been suggested that dark matter particles are strongly interacting, composite, macroscopically large objects made of well known light quarks (or antiquarks). In doing so it is argued that these compact composite objects (CCOs) provide natural explanations of observed data, such as the 511 keV line from the bulge of our galaxy observed by INTEGRAL, and the excess of diffuse gamma rays in the 1 20 MeV band observed by COMPTEL. Here we argue that the atmospheres of positrons that surround CCOs composed of di-antiquark pairs in the favored color-flavor-locked superconducting state are sufficiently dense as to place stringent limits on the penetration depth of interstellar electrons incident upon them, resulting in an extreme suppression of previously estimated rates of positronium formation, and hence in the flux of 511 keV photons resulting from their subsequent decays. The associated rate of direct electron-positron annihilations, which yield the MeV photons postulated to explain the 1 20 MeV photon excess, is also suppressed. We also discuss how even if a fraction of positrons somehow penetrated the surface of the CCOs, the extremely strong electric fields generated from the bulk antiquark matter would result in the destruction of positronium atoms long before they decay.

  19. Constraining the propagation speed of gravitational waves with compact binaries at cosmological distances

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi

    2016-06-01

    When testing gravity in a model-independent way, one of the crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity, the propagation speed could deviate from the speed of light due to the modification of gravity or spacetime structure at a quantum level. Previously, we proposed a method to measure the GW speed by directly comparing the arrival times between a GW and a photon from the binary merger of neutron stars or a neutron star and black hole, assuming that it is associated with a short gamma-ray burst. The sensitivity is limited by the intrinsic time delay between a GW and a photon at the source. In this paper, we extend the method to distinguish the intrinsic time delay from the true signal caused by anomalous GW speed with multiple events at cosmological distances, considering the redshift distribution of GW sources, redshift-dependent GW propagation speed, and the statistics of intrinsic time delays. We show that an advanced GW detector such as the Einstein Telescope will be able to robustly constrain the GW propagation speed at a precision of ˜10-16 . We also discuss the optimal statistic to measure the GW speed by performing numerical simulations.

  20. Compact Stellar Binary Assembly in the First Nuclear Star Clusters and r-process Synthesis in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ramirez-Ruiz, Enrico; Trenti, Michele; MacLeod, Morgan; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  1. Accreting neutron stars in highly compact binary systems and the nature of 3U 1626-67

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Avni, Y.; Rappaport, S.

    1978-01-01

    We discuss the existence of pulsing X-ray sources that consist of neutron stars in highly compact binary systems (orbital periods not more than Od3), undergoing accretion from low-mass late-type dwarf or degenerate-dwarf companions. An appropriate mass transfer rate can be driven by the decay of the orbit due to gravitational radiation, a self-excited wind, and/or the evolution of the companion. Such a system may result from the evolution of a cataclysmic variable, wherein a degenerate dwarf collapses to form a neutron star after accreting sufficient mass to exceed the Chandrasekhar limit. We apply this model to the 7s7 X-ray pulsar 3U 1626-67, and demonstrate that it can explain the apparent lack of Doppler shifts in the X-ray pulsations from this source. The model may also account for other observed properties of the source, including (1) the apparent faintness and large ultraviolet excess of the optical counterpart, (2) the lack of X-ray eclipses, and (3) an approximately 1000 s quasi-periodic oscillation in the source intensity that was recently observed with the SAS 3 satellite.

  2. Stability of coorbital objects around the Pluto-Charon binary

    NASA Astrophysics Data System (ADS)

    Amarante, A.; Hamilton, D. P.

    2015-12-01

    The Pluto-Charon binary system is dynamical interesting with its retinue of four small moons. The system is relatively full with few remaining stable locations evenly-spaced for additional moons on uninclined, circular orbits; most of these are Trojan (Tadpole/Horseshoe) orbits (Pires et al. 2011; Porter and Stern 2015). In this work, we study the coorbital region of each moon with long time integrations taking into account the gravitational effects of the satellites Charon, Styx, Nix, Kerberos and Hydra. We numerically simulate a sample of 10,000 test particles initially located randomly around each moon's orbit (Figure). All test particles start on nearly circular and uninclined orbits and are followed for 5000 years. The results of our numerical simulations show stable coorbital objects - both Tadpoles and Horseshoes - for each of the small moons (Table). Horseshoe orbits are most common at all moons, although Hydra also has a sizeable population of Tadpole orbits. We also find interesting cases where the orbits switch from L4 Tadpoles to Horseshoes and even to L5 Tadpoles. These transitioning orbits comprise less than 1% of coorbital objects at all moons, and are most common at Styx. We have also investigated eccentric and inclined orbits and will report on our findings.

  3. Von Zeipel's theorem for a magnetized circular flow around a compact object

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Pugliese, D.

    2015-04-01

    We analyze a class of physical properties, forming the content of the so-called von Zeipel theorem, which characterizes stationary, axisymmetric, non-selfgravitating perfect fluids in circular motion in the gravitational field of a compact object. We consider the extension of the theorem to the magnetohydrodynamic regime, under the assumption of an infinitely conductive fluid, both in the Newtonian and in the relativistic framework. When the magnetic field is toroidal, the conditions required by the theorem are equivalent to integrability conditions, as it is the case for purely hydrodynamic flows. When the magnetic field is poloidal, the analysis for the relativistic regime is substantially different with respect to the Newtonian case and additional constraints, in the form of PDEs, must be imposed on the magnetic field in order to guarantee that the angular velocity depends only on the specific angular momentum . In order to deduce such physical constraints, it is crucial to adopt special coordinates, which are adapted to the surfaces. The physical significance of these results is briefly discussed.

  4. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit

    SciTech Connect

    Han Wenbiao

    2010-10-15

    The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.

  5. HARD X-RAY FLUX UPPER LIMITS OF CENTRAL COMPACT OBJECTS IN SUPERNOVA REMNANTS

    SciTech Connect

    Erdeve, I.; Kalemci, E.; Alpar, M. A.

    2009-05-10

    We searched for hard X-ray (20-300 keV) emission from nine central compact objects (CCOs) 1E 1207.4-5209, 1WGA J1713-3949, J082157.5-430017, J085201.4-461753, J160103.1-513353, J1613483-5055, J181852.0-150213, J185238.6+004020, and J232327.9+584843 with the International Gamma-Ray Astrophysics Laboratory observatory. We applied spectral imaging analysis and did not detect any of the sources with luminosity upper limits in the range of 10{sup 33}-10{sup 34} erg s{sup -1} in the 20-75 keV band. For nearby CCOs (less than 4 kpc), the upper-limit luminosities are an order of magnitude lower than the measured persistent hard X-ray luminosities of anomalous X-ray pulsars. This may indicate that the CCOs are low magnetic field systems with fallback disks around them.

  6. VLBA OBSERVATIONS OF H I IN THE ARCHETYPE COMPACT SYMMETRIC OBJECT B2352+495

    SciTech Connect

    Araya, E. D.; Rodriguez, C.; Pihlstroem, Y.; Taylor, G. B.; Tremblay, S.; Vermeulen, R. C.

    2010-01-15

    B2352+495 is a prototypical example of a compact symmetric object. It has a double radio lobe symmetrically located with respect to a central flat-spectrum radio core (the location of the active galactic nucleus) and has a physical extent of less than 200 pc. In this work, we report Very Long Baseline Array observation of 21 cm H I absorption toward B2352+495 to investigate the properties of this remarkable radio source, in particular, to explore whether the radio emission can be confined by circumnuclear material (frustration scenario) or whether the source is likely to be young. We confirmed the two H I absorption features previously detected toward B2352+495-a broad line nearly centered at the systemic velocity of the galaxy and a narrow redshifted component. The atomic gas from the broad absorption component is likely associated with circumnuclear material, consistent with the current paradigm of clumpy H I distribution in toroidal structures around supermassive black holes.

  7. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    SciTech Connect

    Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.

    2014-09-10

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.

  8. WHAT IS ON TAP? THE ROLE OF SPIN IN COMPACT OBJECTS AND RELATIVISTIC JETS

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gueltekin, Kayhan; Walton, Dominic J.; Fabian, Andrew C.; Reynolds, Christopher S.; Nandra, Kirpaul

    2013-07-10

    We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes 3 different Seyfert samples with a total of 37 unique Seyferts, as well as 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with simple Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with more relativistically blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3{sigma} confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3{sigma} confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4{sigma} and 4.1{sigma} confidence level, respectively) between radio luminosity per bolometric luminosity and spin, as well as radio luminosity corrected for the fundamental plane (i.e., log ({nu}L{sub R}/L{sub Bol}{sup 0.67}/M{sub BH}{sup 0.78})) and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e., bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the

  9. Quasars in the Time Domain: Supermassive Black Hole Binaries and Extreme Objects

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Djorgovski, Stanislav G.; Stern, Daniel; Drake, Andrew J.; Mahabal, Ashish A.; Glikman, Eilat

    2016-01-01

    Quasar variability can offer insights into the physics of AGN, as it is driven by the variations in the accretion rate, changes in obscuration, and/or instabilities and propagation effects of the relativistic jets. Large synoptic sky surveys such as CRTS (crts.caltech.edu) offer new possibilities in this domain.We use the data set of CRTS light curves of ~335,000 known, spectroscopically confirmed quasars. They have up to a few hundred data points each, with baselines of up to 10 years. This is an unprecedented data set for the studies of quasar variability.We have previously identified a characteristic time scale of stochastic quasar variability, ~54 days (restframe), which anticorrelates with luminosity and black hole mass. While the origin of this phenomenon is not yet understood, it may lead to new insights into the physics of AGN accretion disks and quasars in general. While most quasars show such a characteristic time scale and trends, a subset exhibit a time scale that is significantly different than expected given their physical parameters. We have also found a number of other objects that show extreme variability (in RMS amplitude, or other measures). For a number of these objects we have now detected significant spectroscopic changes that correlate with the photometric variability. We will describe some of the more interesting cases.An even more interesting is the recent detection of periodically variable quasars, which are interpreted as a signature of close (milliparsec scale) supermassive black hole binaries (SMBH) en route to a merger. This population may offer new insights into the assembly of SMBH and their physics in the gravitational wave regime. We have initiate a spectroscopic monitoring program of these objects, and have already detected some spectroscopic changes for some of them. We will describe these results and their possible interpretations.

  10. Constraints on the winds of hot subdwarf stars from X-ray observations of two sdB binaries with compact companions: CD -30° 11223 and PG 1232-136

    NASA Astrophysics Data System (ADS)

    Mereghetti, S.; La Palombara, N.; Esposito, P.; Gastaldello, F.; Tiengo, A.; Heber, U.; Geier, S.; Wilms, J.

    2014-07-01

    Little observational data are available on the weak stellar winds of hot subdwarf stars of B spectral type (sdB). Close binary systems composed of an sdB star and a compact object (white dwarf, neutron star or black hole) could be detected as accretion-powered X-ray sources. The study of their X-ray emission can probe the properties of line-driven winds of sdB stars that cannot be derived directly from spectroscopy because of the low luminosity of these stars. Here we report on the first sensitive X-ray observations of two sdB binaries with compact companions. CD -30° 11223 is the sdB binary with the shortest known orbital period (1.2 h) and its companion is certainly a white dwarf. PG 1232-136 is an sdB binary considered the best candidate to host a black hole companion. We observed these stars with XMM-Newton in 2013 August for 50 ks and in 2009 July for 36 ks, respectively. None of them was detected and we derived luminosity upper limits of ˜1.5 × 1029 erg s-1 for CD -30° 11223 and ˜5 × 1029 erg s-1 for PG 1232-136. The corresponding mass-loss rate for PG 1232-136 is poorly constrained, owing to the unknown efficiency for black hole accretion. On the other hand, in the case of CD -30° 11223 we could derive, under reasonable assumptions, an upper limit of ˜3 × 10-13 M⊙ yr-1 on the wind mass-loss rate from the sdB star. This is one of the few observational constraints on the weak winds expected in this class of low-mass hot stars. We also report the results on the X-ray emission from a cluster of galaxies serendipitously discovered in the field of CD -30° 11223.

  11. 1RXS J180408.9-342058: An ultra compact X-ray binary candidate with a transient jet

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; D'Avanzo, P.; Campana, S.; Goldoni, P.; Masetti, N.; Muñoz-Darias, T.; Patiño-Álvarez, V.; Chavushyan, V.

    2016-03-01

    Aims: We present a detailed near-infrared/optical/UV study of the transient low-mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, which is aimed at determining the nature of its companion star. Methods: We obtained three optical spectra (R ~ 1000) at the 2.1 m San Pedro Mártir Observatory telescope (México). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source using the EFOSC2 instrument mounted on the NTT. Results: The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are not observed either. We marginally detect the He II 4686 Å emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. Conclusions: The lack of hydrogen and He I emission lines in the spectrum implies that the companion is likely not a main-sequence star. Driven by the tentative detection of the He II 4686 Å emission line, we suggest that the system could harbour a helium white dwarf. If this is the case, 1RXS J180408.9-342058 would be an ultra-compact X-ray binary. By combining an estimate of the mass accretion rate together with evolutionary tracks for a He white dwarf, we obtain a tentative orbital period of ~40 min. We also built the NIR-optical-UV spectral energy distribution (SED) of the source at two different epochs. One SED was gathered when the source was in the soft X-ray state and this SED is consistent with the presence of a single thermal component. The second SED, obtained when the source was in the hard X-ray state, shows a thermal component along with a tail in the NIR, which likely indicates the presence of a (transient) jet. Based on observations made with

  12. Adaptive binary material classification of an unknown object using polarimetric images degraded by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Mu J.; Hyde, Milo W.

    2012-10-01

    An improved binary material-classification algorithm using passive polarimetric imagery degraded by atmospheric turbulence is presented. The technique implements a modified version of an existing polarimetric blind-deconvolution algorithm in order to remove atmospheric distortion and correctly classify the unknown object. The classification decision, dielectric or metal in this case, is based on degree of linear polarization (DoLP) estimates provided by the blind-deconvolution algorithm augmented by two DoLP priors - one statistically modeling the polarization behavior of metals and the other statistically modeling the polarization behavior of dielectrics. The DoLP estimate which maximizes the log-likelihood function determines the image pixel's classification. The method presented here significantly improves upon a similar published polarimetric classification method by adaptively updating the DoLP priors as more information becomes available about the scene. This new adaptive method significantly extends the range of validity of the existing polarimetric classification technique to near-normal collection geometries where most polarimetric material classifiers perform poorly. In this paper, brief reviews of the polarimetric blind-deconvolution algorithm and the functional forms of the DoLP priors are provided. Also provided is the methodology for making the algorithm adaptive including three techniques for updating the DoLP priors using in-progress DoLP estimates. Lastly, the proposed technique is experimentally validated by comparing classification results of two dielectric and metallic samples obtained using the new method to those obtained using the existing technique.

  13. A Low Density for Binary Kuiper Belt Object (26308) 1998 SM165

    NASA Astrophysics Data System (ADS)

    Spencer, John R.; Stansberry, J. A.; Grundy, W. M.; Noll, K. S.

    2006-09-01

    The densities of Kuiper Belt objects provide valuable clues to their composition, internal structure, and origin. To extend our limited knowledge of KBO densities, we have been attempting to obtain radiometric diameters for binary KBOs, which have masses determined from the satellite orbits, using the MIPS mid-IR imager on the Spitzer Space Telescope. Due to higher than expected KBO albedos, and MIPS's lower than expected 70 µm sensitivity, our 2006 campaign concentrated on long exposures on a single target, (26308) 1998 SM165, one of the brightest and warmest known KBO binaries. 7.5 hour integration times at both 24 and 70 µm yielded monochromatic fluxes of 0.11 ± 0.01 mJy at 23.7 microns and 6.1 ± 1.1 mJy at 71.4 microns. From these we derive a relatively model-independent diameter of 287 ± 36 km for the primary and 96 ± 12 km for the satellite, assuming similar albedos. The derived V geometric albedo (using HV = 6.13, Romanishin and Tegler 2006 Icarus 179 523) is 0.07 ± 0.02. The system mass from HST (Margot et al. 2004, DPS 36, 08.03) then yields a system density of 0.51 +0.29 -0.14 g cm-3, comparable to that for KBO (47171) 1999 TC36 (Stansberry et al. 2006, Ap. J. 643, 556). This density is also comparable to that of the similarly-sized planetary satellites Amalthea (D=200 km, ρ=0.86) and Hyperion (D=250 km, ρ=0.6), but much lower than the density of Phoebe (D=200 km, ρ=1.63), and suggests both high porosity and a dominantly water ice composition for this KBO, despite its low albedo and red color. Supporting visible-wavelength lightcurve observations obtained at Lowell Observatory also yielded a revised rotation rate of 8.40 ± 0.05 hours for 1998 SM165.

  14. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  15. New constraints on the cooling of the central compact object in CAS A

    SciTech Connect

    Posselt, B.; Pavlov, G. G.; Suleimanov, V.; Kargaltsev, O.

    2013-12-20

    To examine the previously claimed fast cooling of the Central Compact Object (CCO) in the Cas A supernova remnant (SNR), we analyzed two Chandra observations of this CCO, taken in a setup minimizing instrumental spectral distortions. We fit the two CCO X-ray spectra from 2006 and 2012 with hydrogen and carbon neutron star atmosphere models. The temperature and flux changes in the 5.5 yr between the two epochs depend on the adopted constraints on the fitting parameters and the uncertainties of the effective area calibrations. If we allow a change of the equivalent emitting region size, R {sub Em}, the effective temperature remains essentially the same. If R {sub Em} is held constant, the best-fit temperature change is negative, but its statistical significance ranges from 0.8σ to 2.5σ, depending on the model. If we assume that the optical depth of the ACIS filter contaminant in 2012 was ±10% different from its default calibration value, the significance of the temperature drop becomes 0.8σ-3.1σ, for the carbon atmospheres with constant R {sub Em}. Thus, we do not see a statistically significant temperature drop in our data, but the involved uncertainties are too large to firmly exclude the previously reported fast cooling. Our analysis indicate a decrease of 4%-6% (1.9σ-2.9σ significance) for the absorbed flux in the energy range 0.6-6 keV between 2006 and 2012, most prominent in the ≈1.4-1.8 keV energy range. It could be caused by unaccounted changes of the detector response or contributions from unresolved SNR material along the line of sight to the CCO.

  16. Testing general relativity with compact coalescing binaries: comparing exact and predictive methods to compute the Bayes factor

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Grover, Katherine; Mandel, Ilya; Vecchio, Alberto

    2014-10-01

    The second generation of gravitational-wave detectors is scheduled to start operations in 2015. Gravitational-wave signatures of compact binary coalescences could be used to accurately test the strong-field dynamical predictions of general relativity (GR). Computationally expensive data analysis pipelines, including TIGER (test infrastructure for general relativity), have been developed to carry out such tests. As a means to cheaply assess whether a particular deviation from GR can be detected, Cornish et al (2011 Phys. Rev. D 84 062003) and Vallisneri (2012 Phys. Rev. D 86 082001) recently proposed an approximate scheme to compute the Bayes factor between a GR gravitational-wave model and a model representing a class of alternative theories of gravity parametrized by one additional parameter. This approximate scheme is based on only two easy-to-compute quantities: the signal-to-noise ratio (SNR) of the signal and the fitting factor (FF) between the signal and the manifold of possible waveforms within GR. In this work, we compare the prediction from the approximate formula against an exact numerical calculation of the Bayes factor using the lalinference library. We find that, using frequency-domain waveforms, the approximate scheme predicts exact results with good accuracy, providing the correct scaling with the SNR at a FF value of 0.992 and the correct scaling with the FF at a SNR of 20, down to a FF of ˜ 0.9. We extend the framework for the approximate calculation of the Bayes factor, which significantly increases its range of validity, at least to FFs of ˜ 0.7 or higher.

  17. Does accretion flow variability drives internal shocks in the compact jet of the black hole binary GX 339-4?

    NASA Astrophysics Data System (ADS)

    Drappeau, Samia

    Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with the compact jet. We assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are then very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. In this talk, I present an internal shock jet model where the PSD of the jet Lorentz factor fluctuations are taken identical to the observed X-ray PSD of GX 339-4. This model successfully reproduces the radio to infrared SED of the source at the time of the observation as well as the strong mid-infrared spectral variability. Our study confirms previous findings and contributes additional evidence that suggests jet physics and properties of the accretion flow in the vicinity of a compact object are deeply connected.

  18. HST observations of the nebula around the central compact object in the Vela Jr. supernova remnant

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; de Luca, A.; Pellizzoni, A.

    2009-12-01

    Context: A handful of young (a few thousand years) supernova remnants (SNRs) host point-like X-ray sources, dubbed central compact objects (CCOs), which are thought to be radio-silent isolated neutron stars formed by the supernova explosion. So far, no CCO has been firmly detected at other wavelengths. However, ground-based observation in the Hα band detected a nebula around CXO J085201.4-461753, the CCO in the Vela Jr. SNR. The nebula has also been detected in deep R-band observations performed with the Very Large Telescope (VLT). Interestingly, both its extension and its flux in the R band are consistent with those measured in Hα, suggesting that the nebula spectrum is dominated by line emission, possibly produced by a velocity-driven bow-shock in the interstellar medium (ISM) or by its photo-ionisation from the neutron star. Aims: The aim of this work is to resolve the morphology of the Hα nebula around the CCO to verify the proposed interpretations. Methods: We performed high-resolution imaging observations of the nebula with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST) through the 656N filter, almost exactly centred on the rest wavelength of the Hα line. Results: Surprisingly enough, we did not detect the nebula in our WFPC2 image down to a 3 σ flux limit of ~3 × 10-15 erg cm-2 s-1. This limit is a factor of 10 fainter than the nebula flux measured in the discovery ground-based observations which were, however, performed with redder and broader Hα filters. Conclusions: The non-detection of the nebula in the narrower and bluer WFPC2 656N filter suggests that the peak of the emission might actually be at longer wavelengths. One possibility, compatible with the bow-shock scenario only, is that the Hα line is red-shifted by ~10-60 Å due to the neutron star motion with a radial velocity 450 ⪉ Vr ⪉ 2700 km s-1. The other possibility is that the nebula is a knot of [NII] emission (λ = 6583.6 Å) unrelated to CXO J085201

  19. Understanding compact object formation and natal kicks. IV. The case of IC 10 X-1

    SciTech Connect

    Wong, Tsing-Wai; Valsecchi, Francesca; Ansari, Asna; Kalogera, Vassiliki; Fragos, Tassos; McClintock, Jeffrey; Glebbeek, Evert E-mail: francesca@u.northwestern.edu E-mail: tfragos@cfa.harvard.edu E-mail: ansari@ldeo.columbia.edu

    2014-08-01

    The extragalactic X-ray binary IC 10 X-1 has attracted attention as it is possibly the host of the most massive stellar-mass black-hole (BH) known to date. Here we consider all available observational constraints and construct its evolutionary history up to the instant just before the formation of the BH. Our analysis accounts for the simplest possible history, which includes three evolutionary phases: binary orbital dynamics at core collapse, common envelope (CE) evolution, and evolution of the BH-helium star binary progenitor of the observed system. We derive the complete set of constraints on the progenitor system at various evolutionary stages. Specifically, right before the core collapse event, we find the mass of the BH immediate progenitor to be ≳ 31 M{sub ☉} (at 95% of confidence, same hereafter). The magnitude of the natal kick imparted to the BH is constrained to be ≲ 130 km s{sup –1}. Furthermore, we find that the 'enthalpy' formalism recently suggested by Ivanova and Chaichenets is able to explain the existence of IC 10 X-1 without the need to invoke unreasonably high CE efficiencies. With this physically motivated formalism, we find that the CE efficiency required to explain the system is in the range of ≅ 0.6-1.

  20. Polarimetric and spectroscopic optical observations of the ultra-compact X-ray binary 4U 0614+091

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; Mainetti, D.; D'Avanzo, P.; Campana, S.; Covino, S.; Russell, D. M.; Shahbaz, T.

    2014-12-01

    Aims: We present a polarimetric and spectroscopic study of the persistent ultra-compact X-ray binary 4U 0614+091 aimed at searching for the emission of a relativistic particle jet and at unveiling the orbital period Porb of the system. Methods: We obtained r-band polarimetric observations with the Telescopio Nazionale Galileo (TNG) equipped with the PAOLO polarimeter and with the Nordic Optical Telescope (NOT) equipped with the ALFOSC instrument, covering ~2 h and ~0.5 h observations, respectively. We carried out low resolution spectroscopy of the system using the ESO Very Large Telescope equipped with FORS1 for ~1.5 h (16 spectra covering the range 4300-8000 Å). Results: The polarimetric analysis performed starting from the TNG dataset revealed a polarisation degree in the r-band of 3% ± 1%. From the NOT dataset, due to the lower signal-to-noise ratio, we could obtain only a 3σ upper limit of 3.4%. From the joining of a spectroscopic and photometric analysis, through the study of the equivalent width variations of the CII 7240 Å line and the r-band light curve, we could find a hint of a ~45 min periodicity. Conclusions: A polarisation degree P of ~3% in the r-band is consistent with the emission of a relativistic particle jet, which is supposed to emit intrinsically linearly polarised synchrotron radiation. Since no variations of P with time have been detected, and the accretion disc of the system does not contain ionised hydrogen, scattering by free electrons in the accretion disc has been rejected. The period of ~45 min obtained through the analysis of the system light curve and of the equivalent width variations of the selected spectral line is probably linked to the presence of a hot spot or a superhump in the accretion disc, and lead to an orbital period ≳1 h for the binary system. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto

  1. Searching for gravitational-waves from compact binary coalescences while dealing with challenges of real data and simulated waveforms

    NASA Astrophysics Data System (ADS)

    Dayanga, Waduthanthree Thilina

    Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of

  2. A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    NASA Astrophysics Data System (ADS)

    Bose, Sukanta; Dayanga, Thilina; Ghosh, Shaon; Talukder, Dipongkar

    2011-07-01

    We describe a hierarchical data analysis pipeline for coherently searching for gravitational-wave signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. This search assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed 'blind'. The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise. More importantly, it allows for the computation of a suite of alternative multi-detector coherent search statistics and signal-based discriminators that can improve the performance of CBC searches in real data, which can be both non-stationary and non-Gaussian. Also, unlike the coincident multi-detector search statistics that have been employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. Since the computation of coherent statistics entails searching in the sky, it is more expensive than that of the coincident statistics that do not require it. To reduce computational costs, the first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. Here, we compare the performances of this hierarchical pipeline with and without the second (or coherent) stage in Gaussian noise. Although introducing hierarchy can be expected to cause some degradation in the detection efficiency compared to that of a single-stage coherent pipeline, nevertheless it improves the computational speed of the search considerably. The two main results of this work are as follows: (1) the performance of the hierarchical coherent pipeline on Gaussian data

  3. Anti-magnetars: Revealing the Pulsar Properties of Central Compact Objects in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric

    This proposal is to fund the analysis of large data sets that we were awarded in XMM- Newton AO9 to search for the pulsation periods and measure the spin-down rates of Central Compact Objects (CCOs) in supernova remnants (SNRs). These observations include a Large Program (350 ks) to search for the pulsar in Cas A, and a multi-epoch timing program (200 ks total) to measure the spin-down rate and dipole magnetic field strength of the newly discovered 0.112 s PSR J0821-4300 in Puppis A. These observations are motivated by growing evidence that the class of CCOs, which are detected only in X-rays and are the least conspicuous of young neutron stars, are characterized by weak dipole magnetic fields and relatively long initial spin periods. As such, they may comprise a large fraction of neutron star births. From upper limits that we established on their spin-down rates, as well as one measurement of P-dot in a CCO, we developed the "anti-magnetar" model, which describes CCOs as pulsars with even weaker magnetic fields (B_s = 1.e10-1.e11 G) than ordinary young pulsars. The approved observations will provide strong confirmation of this model if the expected slow spin-down rate of PSR J0821-4300 is measured, and if similar spin properties are discovered from the Cas A CCO. The remaining mystery of CCOs is what maintains their small, hot regions of surface thermal X-ray emission. Spin-down power is insufficient; otherwise, only the effects of strong (B_s > 1.e13 G) magnetic fields are thought able to enforce nonuniform surface temperature, in apparent contradiction to the anti-magnetar hypothesis. We will apply a detailed ray-tracing code to model the energy-dependent light curves and phase-resolved spectra of PSR J0821-430 and other CCOs in order to determine the geometry of their surface hot spots with respect to the rotation axis and viewing direction. Evidence for cyclotron resonance lines in the spectra will also be modeled as a function of rotation phase, which will

  4. Real-time imaging of moving living objects using a compact terahertz scanner

    NASA Astrophysics Data System (ADS)

    Han, Sang-Pil; Kim, Namje; Lee, Won-Hui; Lee, Eui Su; Ko, Hyunsung; Lee, Il-Min; Moon, Kiwon; Lee, Dong Hun; Park, Kyung Hyun

    2016-02-01

    In this study, we design a compact terahertz (THz) reflection scanner with a scan rate of 20 frames/s. This scanner is based on a benzocyclobutene-embedded InGaAs Schottky barrier diode detector having a maximum responsivity of 300 V/W at 250 GHz and a minimum noise equivalent power of 38 pW/\\sqrt{\\text{Hz}} . With this scanner, details such as sharp head and tail and wrinkled segments in a moving caterpillar are observed. The thin and thick parts of the moving caterpillar that are presented in light gray and dark gray, respectively, on the gray scale are also well distinguished.

  5. A STATE TRANSITION OF THE LUMINOUS X-RAY BINARY IN THE LOW-METALLICITY BLUE COMPACT DWARF GALAXY I Zw 18

    SciTech Connect

    Kaaret, Philip; Feng Hua

    2013-06-10

    We present a measurement of the X-ray spectrum of the luminous X-ray binary in I Zw 18, the blue compact dwarf galaxy with the lowest known metallicity. We find the highest flux yet observed, corresponding to an intrinsic luminosity near 1 Multiplication-Sign 10{sup 40} erg s{sup -1} establishing it as an ultraluminous X-ray source (ULX). The energy spectrum is dominated by disk emission with a weak or absent Compton component and there is no significant timing noise; both are indicative of the thermal state of stellar-mass black hole X-ray binaries and inconsistent with the Compton-dominated state typical of most ULX spectra. A previous measurement of the X-ray spectrum shows a harder spectrum that is well described by a power law. Thus, the binary appears to exhibit spectral states similar to those observed from stellar-mass black hole binaries. If the hard state occurs in the range of luminosities found for the hard state in stellar-mass black hole binaries, then the black hole mass must be at least 85 M{sub Sun }. Spectral fitting of the thermal state shows that disk luminosities for which thin disk models are expected to be valid are produced only for relatively high disk inclinations, {approx}> 60 Degree-Sign , and rapid black hole spins. We find a{sub *} > 0.98 and M > 154 M{sub Sun} for a disk inclination of 60 Degree-Sign . Higher inclinations produce higher masses and somewhat lower spins.

  6. A search for substellar objects orbiting the sdB eclipsing binary HS 0705+6700

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Shi, G.; Zola, S.; Koziel-Wierzbowska, D.; Winiarski, M.; Szymanski, T.; Ogloza, W.; Li, L.-J.; Zhu, L.-Y.; Liu, L.; He, J.-J.; Liao, W.-P.; Zhao, E.-G.; Wang, J.-J.; Zhang, J.; Jiang, L.-Q.

    2013-12-01

    By using 78 newly determined timings of light minima together with those collected from the literature, we analysed the changes in the observed minus calculated (O-C) diagram in HS 0705+6700, a short-period (2.3 h) eclipsing binary that consists of a very hot subdwarf B-type (sdB) star and a very cool fully convective red dwarf. We confirmed the cyclic variation in the O-C and refined the parameters of the circumbinary brown dwarf (reported to orbit the binary system in 2009) by analysing the changes for the light travel time effect that arises from the gravitational influence of the third body. Our results indicate the lower mass limit of the third body to be M3 sin i' = 33.7(±1.6) MJup. This companion would be a brown dwarf if its orbital inclination is larger than 27.7° and it is orbiting the central eclipsing binary with an eccentricity e ˜ 0.2 at a separation of about 3.7(±0.1) au.

  7. Formation and Evolution of Binary Planetary Nebula Nuclei and Related Objects

    NASA Astrophysics Data System (ADS)

    Iben, Icko, Jr.; Tutukov, Alexander V.

    1993-11-01

    A study is made of the evolution of close binaries in which the primary first fills its Roche lobe after the exhaustion of helium at its center and before the onset of thermal pulses. Initial masses are in the range 3-6 M0. Also examined is the evolution of a 1 Msun model which fills its Roche lobe on the first giant branch when the mass of its helium degenerate core reaches 0.4 M0. In all cases, a common envelope scenario is assumed, and mass is removed from the model primary on a timescale shorter than the initial thermal timescale of the envelope of the primary until the model contracts within a final Roche lobe of predetermined size. After the removal of the common envelope, systems are very close binaries in which the evolved remnant has either a carbon-oxygen (CO) core and a helium-burning shell (progenitor of mass 2.3-8 Msun) or a helium core and a hydrogen-burning shell (progenitor of mass 1-2.3 Msun). The more massive remnants fill their Roche lobes for an extended period, transferring first hydrogen-rich material at a rate ˜10-8±1 Msun yr-1 for up to 106 yr, and then helium at a rate ˜10-6±1 Msun yr-1 for (1-4) × 105 yr. As much as ˜0.4 Msun of nearly pure helium can be transferred to an accretor. A possible real analog of the hydrogen-transferring models is U Sco, although, in many instances, a hydrogen-transferring episode may be bypassed or considerably shortened if the hot remnant blows a strong enough wind. Possible observational analogs of helium transferring models are bright ultrasoft X-ray sources like CAL 83 and CAL 87 in the Large Magellanic Cloud and some classes of supernova precursors. Our models help to explain the number and properties of hot helium OB subdwarfs. A method for estimating initial orbital periods of binary planetary nebula nuclei is introduced and used to infer the initial characteristics of binary systems which have produced close binary central stars, precataclysmic variables, and related systems. Using existing

  8. Lightman-Eardley instabilities and accretion disk thickening. [for compact astronomical objects

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.

    1979-01-01

    After reviewing the role of Compton scattering in accretion disks around black holes, it is discussed whether Lightman-Eardley (LE) secular instabilities can trigger and maintain Pringle-Rees (PR) thermal instabilities. The radiative-transfer-equation and equation-of-state criteria for LE stability in alpha-viscosity-law disk models and dynamic viscosity criteria for more general situations is derived. On the basis of these considerations the LE instability is insufficient for inducing PR instabilities and hot thick inner regions important in accretion-disk models of compact hard X-ray sources. The density thinning due to radial velocity gradients in the accretion flow is suggested as a more likely and satisfactory mechanism.

  9. Dynamical K Edge and Line Variations in the X-ray Spectrum of the Ultra-compact Binary 4U 0614+091

    NASA Astrophysics Data System (ADS)

    Schulz, N. S.; Nowak, M. A.; Chakrabarty, D.; Canizares, C. R.

    2010-12-01

    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ks with the high-energy transmission gratings on board the Chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0 × 1036 erg s-1 and 3.5 × 1036 erg s-1. Continuum variations are present at all times and spectra can be fit well with a power-law component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. Once further resolved, the Ne K edge region appears variable in terms of optical depths and morphology. The edge vicinity reveals an average velocity smear of ~3500 km s-1 implying a characteristic radius of the order of <109 cm consistent with an ultra-compact binary nature. The variability proves that the excess is intrinsic to the source. The data seem to indicate excess column densities of up to several 1018 cm-2. However, there are some serious problems with an Ne I interpretation in ultra-compact disks and we need to consider alternative interpretations, which include a variable O VIII ionization edge, as likely candidates. We test such possibilities with existing observations. The prominent soft emission line complex near the O VIII Lyα position appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination consistent with the observed high dynamics near the Ne K edge. The emissions appear consistent with an ionized disk with ionization parameters of the order of 104 at radii of a few 107 cm. The line wavelengths with respect to O VIII Lyα are found variably blueshifted indicating more complex inner disk dynamics.

  10. Reconstruction of binary geological images using analytical edge and object models

    NASA Astrophysics Data System (ADS)

    Abdollahifard, Mohammad J.; Ahmadi, Sadegh

    2016-04-01

    Reconstruction of fields using partial measurements is of vital importance in different applications in geosciences. Solving such an ill-posed problem requires a well-chosen model. In recent years, training images (TI) are widely employed as strong prior models for solving these problems. However, in the absence of enough evidence it is difficult to find an adequate TI which is capable of describing the field behavior properly. In this paper a very simple and general model is introduced which is applicable to a fairly wide range of binary images without any modifications. The model is motivated by the fact that nearly all binary images are composed of simple linear edges in micro-scale. The analytic essence of this model allows us to formulate the template matching problem as a convex optimization problem having efficient and fast solutions. The model has the potential to incorporate the qualitative and quantitative information provided by geologists. The image reconstruction problem is also formulated as an optimization problem and solved using an iterative greedy approach. The proposed method is capable of recovering the image unknown values with accuracies about 90% given samples representing as few as 2% of the original image.

  11. Topics of LIGO physics: Template banks for the inspiral of precessing, compact binaries, and design of the signal-recycling cavity for advanced LIGO

    NASA Astrophysics Data System (ADS)

    Pan, Yi

    This thesis deals with the detection of gravitational-wave signals from the inspiral of precessing, compact binaries using interferometric gravitational- wave detectors (e.g., LIGO), and the design of the signal-recycling cavity for Advanced LIGO (the second generation LIGO). The detection of complicated signals from the inspiral of precessing binaries using the standard matched filter technique requires a computational cost far exceeding what is available with current technology. Alessandra Buonanno, Yanbei Chen, and Michele Vallisneri (BCV) proposed the use of detection template families (DTFs)---phenomenological templates capable of mimicking inspiral waveforms while having simpler functional forms. In Chapter 2 (in collaboration with BCV, and Hideyuki Tagoshi), a BCV2 DTF suggested by BCV is studied. We show a good signal-matching performance of this DTF, propose a template-placement strategy, and estimate that the computational cost required by this DTF is feasible. We also propose a BCV2P DTF to estimate binary parameters. In Chapters 3 and 4 (in collaboration with BCV), I investigate a physical template family (PTF) suggested by BCV. This PTF uses the most accurate known waveforms for inspiraling, precessing binaries with one spinning component, formulated using a new precessing convention to reduce computational cost. PTF has the obvious advantages of a perfect signal snatching, a lower false-alarm rate, and direct estimates of binary parameters. We show how this PTF can be used to detect inspiral waveforms from general precessing binaries. The second part of this thesis concerns a potential problem in the current design of the signal-recycling cavity (SRC) for Advanced LIGO: The SRC is nearly degenerate. In Chapter 5, I show with a numerical simulation that if the current design is used, there will be a serious constraint on the magnitude of mirror deformations, in order to keep the reduction of the signal-to-noise ratio below a few percent. This

  12. TRANSITION FROM REGULAR TO CHAOTIC CIRCULATION IN MAGNETIZED CORONAE NEAR COMPACT OBJECTS

    SciTech Connect

    Kopacek, O.; Karas, V.; Kovar, J.; StuchlIk, Z.

    2010-10-20

    Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field. We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness. To characterize the motion, we construct the recurrence plots (RPs) and we compare them with Poincare surfaces of section. We describe the RPs in terms of the recurrence quantification analysis, which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently and provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black hole spin in setting the chaos is more complicated than initially thought.

  13. A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

    NASA Astrophysics Data System (ADS)

    Marocco, F.; Jones, H. R. A.; Day-Jones, A. C.; Pinfield, D. J.; Lucas, P. W.; Burningham, B.; Zhang, Z. H.; Smart, R. L.; Gomes, J. I.; Smith, L.

    2015-06-01

    We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from the United Kingdom Deep Infrared Sky Survey. Using the YJHK photometry from the Large Area Survey and the red-optical photometry from the Sloan Digital Sky Survey we selected a sample of 262 brown dwarf candidates and we have followed-up 196 of them using the echelle spectrograph X-shooter on the Very Large Telescope. The large wavelength coverage (0.30-2.48 μm) and moderate resolution (R ˜ 5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low-gravity M dwarfs. Using a spectral indices-based technique, we identified 27 unresolved binary candidates, for which we have determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity of our targets, and we determined the distribution of the sample, which is centred at -1.7 ± 1.2 km s-1 with a dispersion of 31.5 km s-1. Using our results, we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85 ± 0.55) × 10-3 to (1.00 ± 0.64) × 10-3 objects per cubic parsec in the L4-L6.5 range, (0.73 ± 0.47) × 10-3 to (0.85 ± 0.55) × 10-3 objects per cubic parsec in the L7-T0.5 range, and (0.74 ± 0.48) × 10-3 to (0.88 ± 0.56) × 10-3 objects per cubic parsec in the T1-T4.5 range. We notice that there seems to be an excess of objects in the L-T transition with respect to the late-T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L-T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following

  14. Stable Levitation and Alignment of Compact Objects by Casimir Spring Forces

    SciTech Connect

    Rahi, Sahand Jamal; Zaheer, Saad

    2010-02-19

    We investigate a stable Casimir force configuration consisting of an object contained inside a spherical or spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center of the cavity and the dependence of the energy on the relative orientations of the inner object and the cavity walls are computed. We find that the stability of the force equilibrium--unlike the direction of the torque--can be predicted based on the sign of the force between two slabs of the same material.

  15. Segmentation, modeling and classification of the compact objects in a pile

    NASA Technical Reports Server (NTRS)

    Gupta, Alok; Funka-Lea, Gareth; Wohn, Kwangyoen

    1990-01-01

    The problem of interpreting dense range images obtained from the scene of a heap of man-made objects is discussed. A range image interpretation system consisting of segmentation, modeling, verification, and classification procedures is described. First, the range image is segmented into regions and reasoning is done about the physical support of these regions. Second, for each region several possible three-dimensional interpretations are made based on various scenarios of the objects physical support. Finally each interpretation is tested against the data for its consistency. The superquadric model is selected as the three-dimensional shape descriptor, plus tapering deformations along the major axis. Experimental results obtained from some complex range images of mail pieces are reported to demonstrate the soundness and the robustness of our approach.

  16. Advanced LIGO's ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections

    NASA Astrophysics Data System (ADS)

    Wade, Madeline; Creighton, Jolien D. E.; Ochsner, Evan; Nielsen, Alex B.

    2013-10-01

    We study the ability of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem. The cosmic censorship conjecture, which is believed to be true in the theory of general relativity, limits the spin-to-mass-squared ratio of a Kerr black hole, χ≡j/m2≤1. The no-hair theorem, which is also believed to be true in the theory of general relativity, suggests a particular value for the tidal Love number of a nonrotating black hole (k2=0). Using the Fisher matrix formalism, we examine the measurability of the spin and tidal deformability of compact binary systems involving at least one putative black hole. Using parameter measurement errors and correlations obtained from the Fisher matrix, we determine the smallest detectable violation of bounds implied by the cosmic censorship conjecture and the no-hair theorem. We examine the effect of excluding unphysical areas of parameter space when determining the smallest detectable apparent violations, and we examine the effect of different post-Newtonian corrections to the amplitude of the compact binary coalescence gravitational waveform, as given in Arun et al. [Phys. Rev. D 79, 104023 (2009)]. In addition, we perform a brief study of how the recently calculated 3.0 pN and 3.5 pN spin-orbit corrections to the phase [Marsat et al., Classical Quantum Gravity 30, 055007 (2013)] affect spin and mass parameter measurability. We find that physical priors on the symmetric mass ratio and higher harmonics in the gravitational waveform could significantly affect the ability of aLIGO to investigate cosmic censorship and the no-hair theorem for certain systems.

  17. Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    NASA Astrophysics Data System (ADS)

    Collins, Nathan A.; Hughes, Scott A.

    2004-06-01

    Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured

  18. TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Del Pozzo, W.; Li, T. G. F.; Van Den Broeck, C.; Veitch, J.; Vitale, S.

    2014-04-01

    The direct detection of gravitational waves with upcoming second-generation gravitational wave observatories such as Advanced LIGO and Advanced Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We have developed a data analysis pipeline called TIGER (test infrastructure for general relativity), which uses signals from compact binary coalescences to perform a model-independent test of GR. In this paper we focus on signals from coalescing binary neutron stars, for which sufficiently accurate waveform models are already available which can be generated fast enough on a computer that they can be used in Bayesian inference. By performing numerical experiments in stationary, Gaussian noise, we show that for such systems, TIGER is robust against a number of unmodeled fundamental, astrophysical, and instrumental effects, such as differences between waveform approximants, a limited number of post-Newtonian phase contributions being known, the effects of neutron star tidal deformability on the orbital motion, neutron star spins, and instrumental calibration errors.

  19. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  20. Discovery of new objects in the Orion nebula on HST images - Shocks, compact sources, and protoplanetary disks

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.; Wen, Zheng; Hu, Xihai

    1993-01-01

    We have reduced and analyzed a set of narrow-band HST images of a portion of M42 south of the Trapezium. Many new emission-line sources were found, some quite long but so narrow that they are not seen on ground-based images. These include thin shells which are high-ionization shocks. The structure around Orion HH 3 is resolved into multiple components. Slit spectroscopy data establish the high expansion velocities of all these regions. The other objects seen are compact sources. Although some had been detected in VLA surveys and several had been seen from the ground optically, the new images show previously undetected structure and clearly establish that most are protoplanetary disks, which are neutral disks surrounding low-mass pre-main-sequence stars and are ionized from the outside by Theta sup 1 C and Theta sup 2 A Ori.

  1. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  2. AN ULTRA-LOW-MASS AND SMALL-RADIUS COMPACT OBJECT IN 4U 1746-37?

    SciTech Connect

    Li, Zhaosheng; Qu, Zhijie; Guo, Yanjun; Xu, Renxin; Chen, Li; Qu, Jinlu

    2015-01-01

    Photospheric radius expansion (PRE) bursts have already been used to constrain the masses and radii of neutron stars. RXTE observed three PRE bursts in 4U 1746-37, all with low touchdown fluxes. We discuss here the possibility of a low-mass neutron star in 4U 1746-37 because the Eddington luminosity depends on stellar mass. With typical values of hydrogen mass fraction and color correction factor, a Monte Carlo simulation was applied to constrain the mass and radius of a neutron star in 4U 1746-37. 4U 1746-37 has a high inclination angle. Two geometric effects, the reflection of the far-side accretion disk and the obscuration of the near-side accretion disk, have also been included in the mass and radius constraints of 4U 1746-37. If the reflection of the far-side accretion disk is accounted for, a low-mass compact object (mass of 0.41 ± 0.14 M {sub ☉} and radius of 8.73 ± 1.54 km at 68% confidence) exists in 4U 1746-37. If another effect operated, 4U 1746-37 may contain an ultra-low-mass and small-radius object (M = 0.21 ± 0.06 M {sub ☉}, R = 6.26 ± 0.99 km at 68% confidence). Combining all possibilities, the mass of 4U 1746-37 is 0.41{sub −0.30}{sup +0.70} M{sub ⊙} at 99.7% confidence. For such low-mass neutron stars, it could be reproduced by a self-bound compact star, i.e., a quark star or quark-cluster star.

  3. DIRECT IMAGING OF A COMPACT MOLECULAR OUTFLOW FROM A VERY LOW LUMINOSITY OBJECT: L1521F-IRS

    SciTech Connect

    Takahashi, Satoko; Ohashi, Nagayoshi; Bourke, Tyler L.

    2013-09-01

    Studying the physical conditions of very low luminosity objects (VeLLOs; L{sub bol} < 0.1 L{sub Sun }) is important for understanding the earliest evolutionary stage of protostars and brown dwarfs. We report interferometric observations of the VeLLO L1521F-IRS, in {sup 12}CO (2-1) line emission and the 1.3 mm continuum emission, using the Submillimeter Array. With the {sup 12}CO (2-1) high-resolution observations, we have spatially resolved a compact but poorly collimated molecular outflow associated with L1521F-IRS for the first time. The blueshifted and redshifted lobes are aligned along the east and west side of L1521F-IRS with a lobe size of Almost-Equal-To 1000 AU. The estimated outflow mass, maximum outflow velocity, and outflow force are (9.0-80) Multiplication-Sign 10{sup -4} M{sub Sun }, 7.2 km s{sup -1}, and (7.4-66) Multiplication-Sign 10{sup -7} M{sub Sun} km s{sup -1} yr{sup -1}, respectively. The estimated outflow parameters such as size, mass, and momentum rate are similar to values derived for other VeLLOs, and are located at the lower end of values compared to previously studied outflows associated with low- to high-mass star-forming regions. Low-velocity less collimated (1.5 km s{sup -1}/1200 AU) and higher-velocity compact (4.0 km s{sup -1}/920 AU) outflow components are suggested by the data. These velocity structures are not consistent with those expected in the jet-driven or wind-driven outflow models, perhaps suggesting a remnant outflow from the first hydrostatic core as well as an undeveloped outflow from the protostar. Detection of an infrared source and compact millimeter continuum emission suggests the presence of the protostar, while its low bolometric luminosity (0.034-0.07 L{sub Sun }) and small outflow suggests that L1521F is in the earliest protostellar stage (<10{sup 4} yr) and contains a substellar mass object. The bolometric (or internal) luminosity of L1521F-IRS suggests that the current mass accretion rate is an order of

  4. Hydrodynamic, Atomic Kinetic, and Monte Carlo Radiation Transfer Models of the X-ray Spectra of Compact Binaries

    SciTech Connect

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-02-08

    We describe the results of an effort, funded by the Lawrence Livermore National Laboratory Directed Research and Development Program, to model, using FLASH time-dependent adaptive-mesh hydrodynamic simulations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport, the radiatively-driven photoionized wind and accretion flow of high-mass X-ray binaries (HMXBs). In this final report, we describe the purpose, approach, and technical accomplishments of this effort, including maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of the X-ray emission lines of the well-studied HMXB Vela X-1.

  5. Topics of LIGO physics: Quantum noise in advanced interferometers and template banks for compact-binary inspirals

    NASA Astrophysics Data System (ADS)

    Chen, Yanbei

    2003-12-01

    This thesis deals with the planning for advanced interferometeric gravitational-wave detectors, as well as the detection of inspiral waves using first-generation interferometers. In Chapters 2 4 (in collaboration with Alessandra Buonanno), the signal recycling interferometer proposed for LIGO-II is studied in the two-photon formalism. This study reveals the optical spring effect, which allows the interferometer to beat the standard quantum limit, while in the same time introduces a dynamical instability. A classical control system is designed to suppress this instability. In Chapter 5 (in collaboration with Alessandra Buonanno and Nergis Mavalvala), the quantum noise in heterodyne readout schemes for advanced interferometers is studied. In Chapter 6 (in collaboration with Patricia Purdue), a QND Speed-Meter interferometer with Michelson topology is proposed, analyzed and shown to be a promising candidate for third-generation interferometers (LIGO-III or EURO). This design requires adding a kilometer-scale cavity into the interferometer. In Chapter 7, Sagnac interferometers are analyzed and shown to exhibit a similar broadband QND performance without the need of additional cavity—as expected since these interferometers are sensitive only to time-dependent mirror displacement, and are automatic speed meters. In Chapter 8 (in collaboration with Alessandra Buonanno and Michele Vallisneri), the Post-Newtonian (PN) breakdown at late-stage inspirals of non-spinning binary black holes (with 5 M⊙ < m1, m2 < 20 M⊙ ) is studied. We propose the use of Detection Template Families (DTFs)—extensions of ordinary PN templates that can mimic all different PN waveforms and hence are plausible to catch the real waveform, yet do not provide straightforward parameter estimation. In Chapter 9 (in collaboration with Alessandra Buonanno and Michele Vallisneri), binaries carrying spins are studied using an adiabatic PN model. Based on features of the precession dynamics, we

  6. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  7. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  8. Three-dimensional spectroscopy of local luminous compact blue galaxies: kinematic maps of a sample of 22 objects

    NASA Astrophysics Data System (ADS)

    Pérez-Gallego, J.; Guzmán, R.; Castillo-Morales, A.; Gallego, J.; Castander, F. J.; Garland, C. A.; Gruel, N.; Pisano, D. J.; Zamorano, J.

    2011-12-01

    We use three-dimensional optical spectroscopy observations of a sample of 22 local luminous compact blue galaxies (LCBGs) to create kinematic maps. By means of these, we classify the kinematics of these galaxies into three different classes: rotating disc (RD), perturbed rotation (PR) and complex kinematics (CK). We find 48 per cent are RDs, 28 per cent are PRs and 24 per cent are CKs. RDs show rotational velocities that range between ˜50 and ˜200 km s-1, and dynamical masses that range between ˜1 × 109 and ˜3 × 1010 M⊙. We also address the following two fundamental questions through the study of the kinematic maps: (i) What processes are triggering the current starburst in LCBGs? We search our maps of the galaxy velocity fields for signatures of recent interactions and close companions that may be responsible for the enhanced star formation in our sample. We find that 5 per cent of objects show evidence of a recent major merger, 10 per cent of a minor merger and 45 per cent of a companion. This argues in favour of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. (ii) What processes may eventually quench the current starbust in LCBGs? Velocity and velocity width maps, together with emission line ratio maps, can reveal signatures of active galactic nuclei (AGNs) activity or supernova (SN)-driven galactic winds that could halt the current burst. We find only 5 per cent of objects with clear evidence of AGN activity and 27 per cent with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. Finally, from our analysis, we find that the velocity widths of RDs, rather than accounting exclusively for the rotational nature of these objects, may account as well for other kinematic components and may not be good tracers of their dynamical masses.

  9. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  10. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  11. On the Dynamics of Ultra Compact X-Ray Binaries: 4U 1850-087, 4U 0513-40, and M15 X-2

    NASA Astrophysics Data System (ADS)

    Prodan, Snezana; Murray, Norman

    2015-01-01

    In this work, we extend our dynamical study of ultra compact X-ray binaries (UCXB) 4U 1820-30 from Prodan & Murray to three more UCXBs in globular clusters: 4U 1850-087, 4U 0513-40, and M15 X-2. These three UCXBs have orbital periods <~ 20 minutes. Two of them, 4U 1850-087 and 4U 0513-40, have suspected luminosity variations of the order of ~1 yr. There is insufficient observational data to make any statements regarding the long periodicity in the light curve of M15 X-2 at this point. The properties of these three systems are quite similar to 4U 1820-30, which prompt us to model their dynamics in the same manner. As in the case of 4U 1820-30, we interpret the suspected long periods as the period of small oscillations around a stable fixed point in the Kozai resonance. We provide a lower limit on the tidal dissipation factor Q, which is in agreement with results obtained for the case of 4U 1820-30.

  12. ON THE DYNAMICS OF ULTRA COMPACT X-RAY BINARIES: 4U 1850-087, 4U 0513-40, AND M15 X-2

    SciTech Connect

    Prodan, Snezana; Murray, Norman

    2015-01-10

    In this work, we extend our dynamical study of ultra compact X-ray binaries (UCXB) 4U 1820-30 from Prodan and Murray to three more UCXBs in globular clusters: 4U 1850-087, 4U 0513-40, and M15 X-2. These three UCXBs have orbital periods ≲ 20 minutes. Two of them, 4U 1850-087 and 4U 0513-40, have suspected luminosity variations of the order of ∼1 yr. There is insufficient observational data to make any statements regarding the long periodicity in the light curve of M15 X-2 at this point. The properties of these three systems are quite similar to 4U 1820-30, which prompt us to model their dynamics in the same manner. As in the case of 4U 1820-30, we interpret the suspected long periods as the period of small oscillations around a stable fixed point in the Kozai resonance. We provide a lower limit on the tidal dissipation factor Q, which is in agreement with results obtained for the case of 4U 1820-30.

  13. AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

    SciTech Connect

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; Soria, R.; Slaven-Blair, T.; Curran, P. A.; O'Brien, K.; Sivakoff, G. R.; Lewis, F.; Markoff, S.; Altamirano, D.; Homan, J.; Rupen, M. P.; Dhawan, V.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Gallo, E.; and others

    2013-05-10

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from {approx}10{sup 11} to {approx}4 Multiplication-Sign 10{sup 13} Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  14. An Evolving Compact Jet in the Black Hole X-Ray Binary Maxi J1836-194

    NASA Technical Reports Server (NTRS)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; Altanirano, D.; Curran, P. A.; Rupen, M. P.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Dhawan, V.; Fender, R. P.; Gallo, E.; Gandhi, P.; Heinz, S.; Koerding, E. G.; Krimm, H. A.; Maitra, D.

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from approx 10(exp 11) to approx 4 × 10(exp 13) Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  15. DYNAMICAL EVIDENCE FOR A MAGNETOCENTRIFUGAL WIND FROM A 20 M{sub Sun} BINARY YOUNG STELLAR OBJECT

    SciTech Connect

    Greenhill, L. J.; Goddi, C.; Humphreys, E. M. L.; Chandler, C. J.; Matthews, L. D.

    2013-06-20

    In Orion BN/KL, proper motions of {lambda}7 mm vibrationally excited SiO masers trace the rotation of a nearly edge-on disk and a bipolar wide-angle outflow 10-100 AU from radio source I, a binary young stellar object of {approx}20 M{sub Sun }. Here we map ground-state {lambda}7 mm SiO emission with the Very Large Array and track proper motions over 9 yr. The innermost and strongest emission lies in two extended arcs bracketing Source I. The proper motions trace a northeast-southwest bipolar outflow 100-1000 AU from Source I with a median three-dimensional motion of {approx}18 km s{sup -1}. An overlying distribution of {lambda}1.3 cm H{sub 2}O masers betrays similar flow characteristics. Gas dynamics and emission morphology traced by the masers suggest the presence of a magnetocentrifugal disk wind. Reinforcing evidence lies in the colinearity of the flow, apparent rotation across the flow parallel to the disk rotation, and recollimation that narrows the flow opening angle {approx}120 AU downstream. The arcs of ground-state SiO emission may mark the transition point to a shocked super-Alfvenic outflow.

  16. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  17. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  18. Non-thermal Radiation from Collisions of Compact Objects with Intermediate-scale Jets in Active Galaxies

    NASA Astrophysics Data System (ADS)

    Bednarek, W.; Banasiński, P.

    2015-07-01

    Massive black holes in active galaxies are immersed in huge concentrations of late-type stars in the galactic bulges and also early-type massive stars in the nuclear stellar clusters, which are additionally surrounded by quasi-spherical halos on a scale of several kpc that contain from a few hundred up to several thousand globular clusters (GCs). It is expected that significant numbers of red giant stars, massive stars, and also GCs can move through the jet expelled from the central engine of the active galaxy. We consider collisions of stars from the galactic bulge, nuclear cluster, and GCs with the jet plasma. As a result of such collisions, multiple shocks are expected to appear in the jet around these compact objects. Therefore, the plasma in the kpc-scale jet can be significantly disturbed. We show that particles can be accelerated on these shocks up to multi-TeV energies. TeV leptons emit synchrotron radiation, extending up to X-ray energies, and also comptonize radiation produced in a stellar cluster and also the microwave background radiation to TeV γ-ray energies. We show that such non-thermal radiation is likely to be detectable from the intermediate-scale jets of nearby active galaxies for a reasonable number of stars and GCs immersed within the jet. As an example, we calculate the expected non-thermal emission in X-ray and gamma-ray energies from the nearby radio galaxy Cen A, from which steady gamma-ray emission with a complex spectrum has recently been reported by Fermi and the HESS Observatories.

  19. EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS

    SciTech Connect

    Barnes, Jennifer; Kasen, Daniel

    2013-09-20

    The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses {approx}10{sup -3}-10{sup -1} M{sub Sun} and velocities {approx}0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T {approx} 2500 K). We further consider the case in which a second mass outflow, composed of {sup 56}Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to {sup 56}Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

  20. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  1. Soft X-Ray Extended Emissions of Short Gamma-Ray Bursts as Electromagnetic Counterparts of Compact Binary Mergers: Possible Origin and Detectability

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Kashiyama, Kazumi; Nakauchi, Daisuke; Suwa, Yudai; Sakamoto, Takanori; Kawai, Nobuyuki

    2014-11-01

    We investigate the possible origin of extended emissions (EEs) of short gamma-ray bursts with an isotropic energy of ~1050-51 erg and a duration of a few 10 s to ~100 s, based on a compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass ~0.1 M ⊙ around BHs formed after the mergers and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to >~ 1052 erg can be extracted with an observed timescale of >~ 30(1 + z) s with a relatively small disk viscosity parameter of α < 0.01. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass M ~ 10-(2-4) M ⊙, and forms a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in the soft X-ray band (1-10 keV) for M ~ 10-2 M ⊙, possibly in NS-NS mergers, and in the BAT band (15-150 keV) for M ~ 10-4 M ⊙, possibly in NS-BH mergers. In the former case, such soft EEs can provide a good chance of ˜ 6 yr-1 (Δ Ω softEE/4π) (R}GW/40 yr-1) for simultaneous detections of the gravitational waves with a ~0.°1 angular resolution by soft X-ray survey facilities like the Wide-Field MAXI. Here, ΔΩsoftEE is the beaming factor of the soft EEs and R}GW is the NS-NS merger rate detectable by the advanced LIGO, the advanced Virgo, and KAGRA.

  2. X-ray diagnostics of chemical composition of the accretion disc and donor star in ultra-compact X-ray binaries

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Gilfanov, Marat; Bildsten, Lars

    2013-06-01

    Non-solar composition of the donor star in ultra-compact X-ray binaries (UCXBs) may have a pronounced effect on the fluorescent lines appearing in their spectra due to reprocessing of primary radiation by the accretion disc and the white dwarf surface. We show that the most dramatic and easily observable consequence of the anomalous C/O abundance is the significant, by more than an order of magnitude, attenuation of the Kα line of iron. It is caused by screening of the presence of iron by oxygen - in the C/O-dominated material the main interaction process for an E ≈ 7 keV photon is absorption by oxygen rather than by iron, contrary to the solar composition case. Ionization of oxygen at high mass accretion rates adds a luminosity dependence to this behaviour - the iron line is significantly suppressed only at low luminosity, log (LX) ≲ 37-37.5, and should recover its nominal strength at higher luminosity. The increase of the equivalent width of the Kα lines of carbon and oxygen, on the other hand, saturates at rather moderate values. Screening by He is less important, due to its low ionization threshold and because in the accretion disc it is mostly ionized. Consequently, in the case of the He-rich donor, the iron line strength remains close to its nominal value, determined by the iron abundance in the accretion disc. This opens the possibility of constraining the nature of donor stars in UCXBs by means of X-ray spectroscopy with moderate energy resolution.

  3. Confusion background from compact binaries

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; Hughes, Scott A.

    2010-05-01

    Double neutron stars are one of the most promizing sources for terrestrial gravitational wave interferometers. For actual interferometers and their planned upgrades, the probability of having a signal present in the data is small, but as the sensitivity improves, the detection rate increases and the waveforms may start to overlap, creating a confusion background, ultimately limiting the capabilities of future detectors. The third generation Einstein Telescope, with an horizon of z > 1 and very low frequency "seismic wall" may be affected by such confusion noise. At a minimum, careful data analysis will be require to separate signals which will appear confused. This result should be borne in mind when designing highly advanced future instruments.

  4. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  5. mJIVE-20: A survey for compact mJy radio objects with the very long baseline array

    SciTech Connect

    Deller, A. T.; Middelberg, E.

    2014-01-01

    We present the description and early results of the mJy Imaging VLBA Exploration at 20 cm (mJIVE-20). mJIVE-20 is a large project on the Very Long Baseline Array which is systematically inspecting a large sample of mJy radio sources, pre-selected from the Faint Images of the Radio Sky at Twenty cm (FIRST) survey made with the Very Large Array, to identify any compact emission that may be present. The survey is being undertaken using filler time on the VLBA, which utilizes short segments scheduled in bad weather and/or with a reduced number of antennas, during which no highly rated science projects can be scheduled. The newly available multifield capability of the VLBA makes it possible for us to inspect of the order of 100 sources per hour of observing time with a 6.75σ detection sensitivity of approximately 1 mJy beam{sup –1}. The results of the mJIVE-20 survey are made publicly available as soon as the data are calibrated. After 18 months of observing, over 20,000 FIRST sources have been inspected, with 4336 very long baseline interferometry detections. These initial results suggest that within the range 1-200 mJy, fainter sources are somewhat more likely to be dominated by a very compact component than brighter sources. Over half of all arcsecond-scale mJy radio sources contain a compact component, although the fraction of sources that are dominated by milliarcsecond scale structure (where the majority of the arcsecond scale flux is recovered in the mJIVE-20 image) is smaller at around 30%-35%, increasing toward lower flux densities. Significant differences are seen depending on the optical classification of the source. Radio sources with a stellar/point-like counterpart in the Sloan Digital Sky Survey (SDSS) are more likely to be detected overall, but this detection likelihood appears to be independent of the arcsecond-scale radio flux density. The trend toward higher radio compactness for fainter sources is confined to sources that are not detected in SDSS

  6. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  7. Soft X-ray extended emissions of short gamma-ray bursts as electromagnetic counterparts of compact binary mergers: possible origin and detectability

    SciTech Connect

    Nakamura, Takashi; Nakauchi, Daisuke; Kashiyama, Kazumi; Suwa, Yudai; Sakamoto, Takanori; Kawai, Nobuyuki

    2014-11-20

    We investigate the possible origin of extended emissions (EEs) of short gamma-ray bursts with an isotropic energy of ∼10{sup 50-51} erg and a duration of a few 10 s to ∼100 s, based on a compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass ∼0.1 M {sub ☉} around BHs formed after the mergers and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to ≳ 10{sup 52} erg can be extracted with an observed timescale of ≳ 30(1 + z) s with a relatively small disk viscosity parameter of α < 0.01. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass M ∼ 10{sup –(2-4)} M {sub ☉}, and forms a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in the soft X-ray band (1-10 keV) for M ∼ 10{sup –2} M {sub ☉}, possibly in NS-NS mergers, and in the BAT band (15-150 keV) for M ∼ 10{sup –4} M {sub ☉}, possibly in NS-BH mergers. In the former case, such soft EEs can provide a good chance of ∼6 yr{sup −1} (ΔΩ{sub softEE}/4π) (R{sub GW}/40 yr{sup −1}) for simultaneous detections of the gravitational waves with a ∼0.°1 angular resolution by soft X-ray survey facilities like the Wide-Field MAXI. Here, ΔΩ{sub softEE} is the beaming factor of the soft EEs and R{sub GW} is the NS-NS merger rate detectable by the advanced LIGO, the advanced Virgo, and KAGRA.

  8. Circinus X-1: a Laboratory for Studying the Accretion Phenomenon in Compact Binary X-Ray Sources. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Robinson-Saba, J. L.

    1983-01-01

    Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.

  9. Planets in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.

    2011-03-01

    Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the

  10. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    SciTech Connect

    Bogdanov, Slavko; Esposito, Paolo; Crawford III, Fronefield; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  11. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    SciTech Connect

    Takahashi, Ryuichi; Asada, Hideki

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  12. Dark matter mini-halo around the compact objects: the formation, evolution and possible contribution to the cosmic ray electrons/positrons

    SciTech Connect

    Yang, Rui-Zhi; Fan, Yi-Zhong; Chang, Jin; Waldman, Roni E-mail: yzfan@pmo.ac.cn E-mail: chang@pmo.ac.cn

    2012-01-01

    Dark matter particles may be captured by a star and then thermalized in the star's core. At the end of its life a massive star collapses suddenly and a compact object is formed. The dark matter particles redistribute accordingly. In the inelastic dark matter model, an extended dense dark matter mini-halo surrounding the neutron star may be formed. Such mini-halos may be common in the Galaxy. The electron/positron flux resulting in the annihilation of dark matter particles, however, is unable to give rise to observable signal unless a nascent mini-halo is within a distance ∼ a few 0.1 pc from the Earth.

  13. Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Haster, Carl-Johan; Wang, Zhilu; Berry, Christopher P. L.; Stevenson, Simon; Veitch, John; Mandel, Ilya

    2016-04-01

    Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of ≳100 solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass-ratio coalescences. We find that we can identify an IMBH with a mass above 100 M⊙ with 95 per cent confidence provided the massive body exceeds 130 M⊙. For source masses above ˜200 M⊙, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sensitivity is particularly important for massive sources, since sensitivity to the inspiral phase is critical for measuring the mass of the stellar-mass companion. We show that we can accurately infer source parameters for cosmologically redshifted signals by applying appropriate corrections. We investigate the impact of uncertainty in the model gravitational waveforms and conclude that our main results are likely robust to systematics.

  14. New code for quasiequilibrium initial data of binary neutron stars: Corotating, irrotational, and slowly spinning systems

    NASA Astrophysics Data System (ADS)

    Tsokaros, Antonios; UryÅ«, Kōji; Rezzolla, Luciano

    2015-05-01

    We present the extension of our cocal—Compact Object CALculator—code to compute general-relativistic initial data for binary compact-star systems. In particular, we construct quasiequilibrium initial data for equal-mass binaries with spins that are either aligned or antialigned with the orbital angular momentum. The Isenberg-Wilson-Mathews formalism is adopted and the constraint equations are solved using the representation formula with a suitable choice of a Green's function. We validate the new code with solutions for equal-mass binaries and explore its capabilities for a wide range of compactnesses, from a white dwarf binary with compactness ˜1 0-4, up to a highly relativistic neutron-star binary with compactness ˜0.22 . We also present a comparison with corotating and irrotational quasiequilibrium sequences from the spectral code lorene [Taniguchi and Gourgoulhon, Phys. Rev. D 66, 104019 (2002)] and with different compactness, showing that the results from the two codes agree to a precision of the order of 0.05%. Finally, we present equilibria for spinning configurations with a nuclear-physics equation of state in a piecewise polytropic representation.

  15. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value

    NASA Astrophysics Data System (ADS)

    Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.

    1999-11-01

    The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.

  16. Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D-4 compact dimensions

    NASA Astrophysics Data System (ADS)

    Sahabandu, C.; Suranyi, P.; Vaz, C.; Wijewardhana, L. C.

    2006-02-01

    We investigate the thermodynamics of static black objects such as black holes, black strings and their generalizations to D dimensions (“black branes”) in a gravitational theory containing the four-dimensional Gauss-Bonnet term in the action, with D-4 dimensions compactified torus. The entropies of black holes and black branes are compared to obtain information on the stability of these objects and to find their phase diagrams. We demonstrate the existence of a critical mass, which depends on the scale of the compactified dimensions, below which the black hole entropy dominates over the entropy of the black membrane.

  17. First Detection in Gamma-Rays of a Young Radio Galaxy: Fermi-LAT Observations of the Compact Symmetric Object PKS 1718-649

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Sobolewska, M.; Loh, A.; Corbel, S.; Ostorero, L.; Stawarz, Ł.

    2016-04-01

    We report the γ-ray detection of a young radio galaxy, PKS 1718-649, belonging to the class of compact symmetric objects (CSOs), with the Large Area Telescope (LAT) on board the Fermi satellite. The third Fermi Gamma-ray LAT catalog (3FGL) includes an unassociated γ-ray source, 3FGL J1728.0-6446, located close to PKS 1718-649. Using the latest Pass 8 calibration, we confirm that the best-fit 1σ position of the γ-ray source is compatible with the radio location of PKS 1718-649. Cross-matching of the γ-ray source position with the positions of blazar sources from several catalogs yields negative results. Thus, we conclude that PKS 1718-649 is the most likely counterpart to the unassociated LAT source. We obtain a detection test statistics TS ˜ 36 (>5σ) with a best-fit photon spectral index Γ = 2.9 ± 0.3 and a 0.1-100 GeV photon flux density F 0.1-100 GeV = (11.5 ± 0.3) × 10-9 ph cm-2 s-1. We argue that the linear size (˜2 pc), the kinematic age (˜100 years), and the source distance (z = 0.014) make PKS 1718-649 an ideal candidate for γ-ray detection in the framework of the model proposing that the most compact and the youngest CSOs can efficiently produce GeV radiation via inverse-Compton scattering of the ambient photon fields by the radio lobe non-thermal electrons. Thus, our detection of the source in γ-rays establishes young radio galaxies as a distinct class of extragalactic high-energy emitters and yields a unique insight on the physical conditions in compact radio lobes interacting with the interstellar medium of the host galaxy.

  18. Eclipsing Binary B-Star Mass Determinations

    NASA Astrophysics Data System (ADS)

    Townsend, Amanda; Eikenberry, Stephen S.

    2016-01-01

    B-stars in binary pairs provide a laboratory for key astrophysical measurements of massive stars, including key insights for the formation of compact objects (neutron stars and black holes). In their paper, Martayan et al (2004) find 23 Be binary star pairs in NGC2004 in the Large Magellanic Cloud, five of which are both eclipsing and spectroscopic binaries with archival data from VLT-Giraffe and photometric data from MACHO. By using the Wilson eclipsing binary code (e.g., Wilson, 1971), we can determine preliminary stellar masses of the binary components. We present the first results from this analysis. This study also serves as proof-of-concept for future observations with the Photonic Synthesis Telescope Array (Eikenberry et al., in prep) that we are currently building for low-cost, precision spectroscopic observations. With higher resolution and dedicated time for observations, we can follow-up observations of these Be stars as well as Be/X-ray binaries, for improved mass measurements of neutron stars and black holes and better constraints on their origin/formation.

  19. New binary systems: beaming binaries

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Weingrill, J.; Mazeh, T.; Ribas, I.

    2011-11-01

    Exoplanet missions such as COROT and Kepler are providing precise photometric follow-up data of new kinds of variable stars undetected till now. Beaming binaries are among these objects. On these binary systems, the orbital motion of their components is fast enough to produce a detectable modulation on the received flux due to relativistic effects (Zucker et al. 2007). The great advantage of these systems is that it is possible to reconstruct the radial velocity curve of the system from this photometric modulation and thus, orbital parameters such as the mass ratio and the semi-major axis can be estimated from photometry without the necessity of spectroscopic follow-up. In this poster, we briefly introduce the analysis of this kind of binary systems and in particular, the eclipsing cases.

  20. An Improved Catalog of Halo Wide Binary Candidates

    NASA Astrophysics Data System (ADS)

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé & Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio & Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ~ a -1 (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  1. An improved catalog of halo wide binary candidates

    SciTech Connect

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  2. Spectral formation in black hole and neutron star binaries: theory vs observations

    NASA Astrophysics Data System (ADS)

    Gilfanov, Marat

    2016-07-01

    I will discuss spectral formation in X-ray binaries with particular emphasis on the dichotomy between black holes and neutron stars. Predictions of theoretical models will be confronted with observations of compact X-ray sources in the Milky Way and beyond. I will discuss how the difference in the nature of the compact object leads to observable differences between accreting neutron stars and black holes and how accretion regimes change across the mass accretion rate range. This will be illustrated with observations of X-ray binaries in the Milky Way and external galaxies, the latter providing us with a unique possibility to explore accretion at its extremities.

  3. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    SciTech Connect

    Baruteau, C.; Lin, D. N. C.; Cuadra, J. E-mail: lin@ucolick.org

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  4. Black Hole - Neutron Star Binary Simulations at Georgia Tech

    NASA Astrophysics Data System (ADS)

    Haas, Roland

    2009-05-01

    Mixed compact object binaries consisting of a black hole and a neutron star are expected to be not only one of the primary sources of gravitational radiation to be observed by interferometric detectors but also the central engine of short gamma-ray bursts. We report on the status of our effort at Georgia Tech to model these mixed binary systems using the moving puncture method. The results are obtained with an enhanced version our vacuum MayaKranc code coupled to the hydrodynamics Whisky code. We present preliminary results of gravitational waveforms and the disruption of the neutron star for simple polytropic equations of state.

  5. Spectral shifts near compact objects

    NASA Astrophysics Data System (ADS)

    Lake, K.; Myra, E.

    1981-10-01

    It is shown that radiation emitted from material freely falling toward a black hole or neutron star cannot be blue shifted as recently claimed by Cohen and Struble (1980). The relativistic corrections to the classical apparent limb angle are given explicitly for spherical sources in collapse.

  6. X-ray binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1988-01-01

    X-ray and optical studies of compact binaries and globular clusters are reviewed. Topics covered include, the formation of compact binaries by three-body interactions and by tidal capture, studies of the 11 minute binary in NGC 6624 and the 8.5 hour binary in M 15 (AC211), and an evolutionary model for compact binary formation. Optical searches for X-ray binaries in globular clusters are examined including CCD surveys and studies of NGC 6712. In addition, globular clusters with central cusps in their surface brightness profiles, questions concerning the blue color of binaries, diffuse line emission from CVs, and the possibility that X-ray burst sources in the galactic bulge were formed by tidal capture in globular clusters which have since been disrupted are discussed.

  7. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  8. Modeling the X-rays from the central compact object PSR J1852+0040 in Kesteven 79: Evidence for a strongly magnetized neutron star

    SciTech Connect

    Bogdanov, Slavko

    2014-08-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star (NS), a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a 'pencil plus fan' beam emission pattern, which is characteristic of ≳ 10{sup 12} G NS atmospheres, much greater than the ∼10{sup 10} G external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields (≳ 10{sup 14} G) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied high-temperature contrast across the stellar surface. This lends further observational evidence in support of the 'hidden' strong magnetic field scenario, in which CCOs possess submerged magnetic fields that are substantially stronger than the external dipole field, presumably due to burial by fallback of supernova ejecta. I also conduct phase-resolved X-ray spectroscopy and find no evidence for prominent spin-phase-dependent absorption features that could be produced by cyclotron absorption/scattering.

  9. A compact quasi 3D threshold voltage modeling and performance analysis of a novel linearly graded binary metal alloy quadruple gate MOSFET for subdued short channel effects

    NASA Astrophysics Data System (ADS)

    Sarkhel, Saheli; Sarkar, Subir Kumar

    2015-06-01

    In the present era of low power devices, to keep pace with the aggressive scaling demands, the concept of surrounding gate MOS geometry is gradually being popular among the researchers for enhancing the performance of nanoscale MOSFETs due to the inherent benefit of the gate-all-around geometry compared to the conventional planar structures. In this research endeavour, we have, for the first time, incorporated the novel theory of work function engineering of a binary metal alloy gate with continuous horizontal variation of mole fraction in a fully depleted quadruple gate MOSFET, thereby proposing a new structure namely Work Function Engineered Gate Quadruple Gate MOSFET (WFEG QG MOSFET). A detailed analytical modeling of this novel WFEG QG MOS structure has been formulated to present a quasi 3D threshold voltage model based on 3D scaling equation instead of the tedious solution of 3D Poisson's equation. The device short channel effects have been included by calculating the natural length of the proposed QG device using the effective number of gate (ENG) concept. An overall comparative performance analysis of the WFEG QG MOS and normal QG MOSFET has been done to establish the superiority of the proposed WFEG structure over its QG equivalent in terms of reduced Short Channel Effects (SCEs), Drain Induced Barrier Lowering (DIBL) and Threshold Voltage Roll Off (TVRO). The results of our analytical modeling are found to be in good agreement with the simulation results, thereby establishing the accuracy of our modeling.

  10. Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Medvedev, M. V.; Loeb, A.

    2013-04-01

    Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.

  11. Adaptive Mesh Refinement Simulations of Relativistic Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, M.; Lehner, L.; Olabarrieta, I.; Tohline, J. E.; Liebling, S. L.; Rahman, T.; Hirschman, E.; Neilsen, D.

    2006-09-01

    We present recent results from our efforts to evolve relativistic binaries composed of compact objects. We simultaneously solve the general relativistic hydrodynamics equations to evolve the material components of the binary and Einstein's equations to evolve the space-time. These two codes are coupled through an adaptive mesh refinement driver (had). One of the ultimate goals of this project is to address the merger of a neutron star and black hole and assess the possible observational signature of such systems as gamma ray bursts. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.

  12. The neutron star in HESS J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.

    2015-01-01

    Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is

  13. Period Evolution of Double White Dwarf Binaries Under the Influence of Gravitational Wave Emissions

    NASA Astrophysics Data System (ADS)

    Martens, Kylee; Benacquista, Matt; Belczynski, Chris

    2016-03-01

    Compact objects, such as Double White Dwarf (DWD) binaries, are the most populous producers of gravitational waves (GW) at low frequencies. The gravitational radiation (GR) emitted from the Galactic DWD binary population will create an unresolvable signal known as the confusion noise-limit (CNL) in the space-based evolved Laser Interferometer Space Antenna (eLISA). It is predicted that many thousand DWD binary signals will rise above the CNL and create resolvable GW signals. In previous work, Heather Johnson, from the University of Texas-Austin, produced ~61 million DWD systems using the binary population features in the StarTrack population synthesis code created by Chris Belczynski. We have created an evolutionary code that continues the period evolution of the DWD binaries under the effects of GR. Our present model only accounts for detached binary systems, but we are working on incorporating more features. Current period evolution models often extrapolate data based on smaller binary populations, however our model will utilize ~61 million binary systems in order to avoid inaccuracies.We then use two standard cylindrical density distributions to populate a galaxy with the evolved systems. We also discuss correlations between the progenitor binaries and the eLISA sources.

  14. Formation and Evolution of Binary Systems Containing Collapsed Stars

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  15. Classifying X-Ray Binaries: A Probabilistic Approach

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Dil Vrtilek, Saeqa; Bornn, Luke

    2015-08-01

    In X-ray binary star systems consisting of a compact object that accretes material from an orbiting secondary star, there is no straightforward means to decide whether the compact object is a black hole or a neutron star. To assist in this process, we develop a Bayesian statistical model that makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a three-dimensional coordinate system derived from X-ray spectral data where the first coordinate is the ratio of counts in the mid- to low-energy band (color 1), the second coordinate is the ratio of counts in the high- to low-energy band (color 2), and the third coordinate is the sum of counts in all three bands. We use this model to estimate the probabilities of an X-ray binary system containing a black hole, non-pulsing neutron star, or pulsing neutron star. In particular, we utilize a latent variable model in which the latent variables follow a Gaussian process prior distribution, and hence we are able to induce the spatial correlation which we believe exists between systems of the same type. The utility of this approach is demonstrated by the accurate prediction of system types using Rossi X-ray Timing Explorer All Sky Monitor data, but it is not flawless. In particular, non-pulsing neutron systems containing “bursters” that are close to the boundary demarcating systems containing black holes tend to be classified as black hole systems. As a byproduct of our analyses, we provide the astronomer with the public R code which can be used to predict the compact object type of XRBs given training data.

  16. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen

    2015-04-01

    It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.

  17. FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE

    SciTech Connect

    Nesvorny, David; Youdin, Andrew N.; Richardson, Derek C.

    2010-09-15

    A large fraction of {approx}100 km class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable masses and a wide separation of components. A favored model for their formation is that they were captured during the coagulation growth of bodies in the early KB. However, recent studies have suggested that large, {approx}>100 km objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here, we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW{sub 322} and multiples such as (47171) 1999 TC{sub 36}. Notably, the gravitational collapse is capable of producing {approx}100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses ({approx}80% have a secondary-over-primary radius ratio >0.7) and their separation ranges from {approx}1000 to {approx}100,000 km. The binary orbits have eccentricities from e = 0 to {approx}1, with the majority having e < 0.6. The binary orbit inclinations with respect to the initial angular momentum of the swarm range from i = 0 to {approx}90{sup 0}, with most cases having i < 50{sup 0}. The total binary mass represents a characteristic fraction of the collapsing swarm's total initial mass, M{sub tot}, suggesting M{sub tot} equivalent to that of a radius {approx}100-250 km compact object. Our binary formation mechanism also implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data. We discuss the applicability of our results to the Pluto-Charon, Orcus-Vanth, (617) Patroclus

  18. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  19. Very faint X-ray binaries with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Armas Padilla, M.

    2016-06-01

    A population of very faint X-ray binaries has been discovered in the last years thanks to the improvement in sensitivity and resolution of the new generations of X-ray missions. These systems show anomalously low luminosities, below 10^{36} ergs/sec, challenging our understanding of accretion physics and binary evolution models, and thereby opening new windows for both observational and theoretical work on accretion onto compact objects. XMM-Newton is playing a crucial role in the study of this dim family of objects thanks to its incomparable spectral capabilities at low luminosities. I will review the state-of-the-art of the field and present our XMM results in both black hole and neutron star objects. Finally, I will discuss the possibilities that the new generation of X-ray telescopes offer for this research line.

  20. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  1. Optical photometric monitoring of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Paredes-Fortuny, Xavier; Ribó, Marc; Fors, Octavi; Núñez, Jorge

    2012-12-01

    Four gamma-ray binaries, namely PSR B1259-63, HESS J0632+057, HD 215227 and LS I +61 303, contain compact objects orbiting around massive Be stars. The nature of the compact object is only known in the case of PSR B1259-63, but the other systems could also contain young non-accreting pulsars with relativistic winds. Around periastron passage the compact objects should produce significant changes in the structure of the Be discs due to gravitational forces and eventually by ram pressure from the putative pulsar wind. Indeed, variability in the Ha emission line has been detected in all these systems, and periodic variability in the optical photometry has been detected in two of them. However, there is lack of a systematic monitoring with accurate photometry, which could be used to constrain the shape of the disc during the periastron passage. This information is important to build accurate physical models to explain the broadband spectral energy distribution of these sources. Here we present an ongoing program to monitor the optical photometry of gamma-ray binaries and we show preliminary results for the case of HD 215227.

  2. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .

  3. Identification of 23 accreting binaries in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Torres, M. A. P.; Jonker, P. G.; Britt, C. T.; Johnson, C. B.; Hynes, R. I.; Greiss, S.; Steeghs, D.; Maccarone, T. J.; Özel, F.; Bassa, C.; Nelemans, G.

    2014-05-01

    We present the identification of optical counterparts to 23 GBS X-ray sources. All sources are classified as accreting binaries according to the emission-line characteristics inferred from medium-resolution spectroscopy. To distinguish accreting binaries from chromospherically active objects, we develop criteria based on Hα and He I λλ5786, 6678 emission-line properties available in the literature. The spectroscopic properties and photometric variability of each object is discussed and a classification is given where possible. At least 12 of the 23 systems show an accretion-dominated optical spectrum and another 6 show stellar absorption features in addition to emission lines indicating that they are probably accreting binaries in quiescence or in a low accretion rate state. Two sources are confirmed to be eclipsing: CX207 and CX794. CX207 is likely a magnetic cataclysmic variable (CV), while CX794 is a nova-like CV in the period gap. Finally, the large broadening (2100 km s-1 FWHM) of the Hα emission lines in CX446 and CX1004 suggests that they are also high-inclination or even eclipsing systems. Whether the compact object is a white dwarf in an eclipsing CV, a neutron star or a black hole in a high-inclination low-mass X-ray binary remains to be established.

  4. Binaries across the spectrum - the case for simultaneous multi-wavelength studies

    NASA Astrophysics Data System (ADS)

    Middleton, M.

    2016-06-01

    Accreting binary systems harbouring a compact-object radiate across many orders of magnitude in frequency due to their various physical structures and processes (jet/outflow, inward accretion flow + secondary star). Typical observations of their broad-band SEDs provides valuable insights into the time-averaged energetics, however, *time-resolved* studies are potentially even more powerful as binary systems vary on relatively short timescales and we are provided a means by which to study how the physical structures interact. I will review some of the progress made in studying such systems using time-resolved analyses and discuss the future requirements for simultaneous multi-wavelength observations.

  5. Variance in binary stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  6. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  7. Longterm lightcurves of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Clarkson, William

    The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE

  8. Second Einstein Telescope mock data and science challenge: Low frequency binary neutron star data analysis

    NASA Astrophysics Data System (ADS)

    Meacher, Duncan; Cannon, Kipp; Hanna, Chad; Regimbau, Tania; Sathyaprakash, B. S.

    2016-01-01

    The Einstein Telescope is a conceived third-generation gravitational-wave detector that is envisioned to be an order of magnitude more sensitive than advanced LIGO, Virgo, and Kagra, which would be able to detect gravitational-wave signals from the coalescence of compact objects with waveforms starting as low as 1 Hz. With this level of sensitivity, we expect to detect sources at cosmological distances. In this paper we introduce an improved method for the generation of mock data and analyze it with a new low-latency compact binary search pipeline called gstlal. We present the results from this analysis with a focus on low-frequency analysis of binary neutron stars. Despite compact binary coalescence signals lasting hours in the Einstein Telescope sensitivity band when starting at 5 Hz, we show that we are able to discern various overlapping signals from one another. We also determine the detection efficiency for each of the analysis runs conducted and show a proof of concept method for estimating the number signals as a function of redshift. Finally, we show that our ability to recover the signal parameters has improved by an order of magnitude when compared to the results of the first mock data and science challenge. For binary neutron stars we are able to recover the total mass and chirp mass to within 0.5% and 0.05%, respectively.

  9. Design of refractive/diffractive objective for head-mounted night vision goggle

    NASA Astrophysics Data System (ADS)

    Zhao, Qiu-Ling; Wang, Zhao-Qi; Fu, Ru-Lian; Sun, Qiang; Lu, Zhen-Wu

    A refractive/diffractive objective for head-mounted night vision goggle was designed. This objective consists of six elements, including one binary surface and two hyperboloids. It has a 40[degree sign] field of view, a 1.25 f-number, and a 18 mm image diameter, with a compact structure and a light weight. All optical specifications reach proposed designing targets. Besides, we considered fabrication issues about special surfaces of the system.

  10. Planetary Dynamics and Evolution in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai; Kratter, K.; Kenyon, S.

    2011-09-01

    Exo-planets typically form in protoplanetary disks left over from the formation of their host star. We discuss additional evolutionary routes which may may exist in old evolved binary systems. Stellar evolution in binaries could lead to the formation of symbiotic stars, where mass is lost from one star and (partially) transferred to its binary companion, forming an accretion disk. Planetary orbits around the mass losing star can expand and destabilize, and may result in chaotic evolution. Possible outcomes include exchange of the planet to the companion star, ejection, collision, or tidal capture by one of the binary components. We show that the conditions in the newly formed accretion disk could be very similar to protoplanetary disks. Planets around the accreting companion may interact with the disk, leading to (re)growth and (re)migration of the planets. The disk may also provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing planets and/or planetesimals may serve as seeds for the formation of the second generation planets. Such systems should be found in white dwarf binary systems, and may show various unique observational signatures. Most notably, second generation planets could form in environments which are unfavorable for first generation planets. The phase space available for these planets could be forbidden (unstable) to first generation planets in the pre-evolved progenitor binaries. Planets may also form in double compact object binaries and in metal poor environments. Observations of exo-planets in such unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems (Gl 86, HD 27442 and observed circumbinary planet candidates). A second generation origin for these systems could explain their unique configurations.

  11. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  12. The Search for Trojan Binaries

    NASA Astrophysics Data System (ADS)

    Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.

    2007-10-01

    We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.

  13. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  14. Constraints on Inspiralling Binaries from First LWA Data

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Joanna; Gough, J.; Cutchin, S. E.; Kavic, M.; Simonetti, J. H.; Akukwe, B.; Bear, B.; Tsai, J.; Kassim, N. E.

    2014-01-01

    The merger of a binary neutron star pair is expected to generate a strong transient radio signal. This emission will be strongest at low-frequencies and will disperse as it transverses the interstellar medium, arriving at Earth after coincidentally emitted gravitational or (higher frequency) electromagnetic signals. The rate of compact object merger events is poorly constrained by observations. The first station of Long Wavelength Array (LWA-1) telescope is a low-frequency radio telescope located near Socorro, NM, which is sensitive to a frequency range of 10-88 MHz. I will discuss the sensitivity of LWA-1 to transient radio emission from binary neutron star mergers and a limit set by LWA-1 observations to constrain the rate of such merger events.

  15. Spectroscopic observations of the symbiotic binary RW Hydrae

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Fernandez-Castro, Telmo

    1987-01-01

    Ultraviolet/optical spectrophotometry and infrared photometry show that the symbiotic binary RW Hya is comprised of an M giant (with L of about 1000 solar luminosities) and a compact object (with L of about 200 solar luminosities) which resembles the central star of a planetary nebula. The luminosity of the hot component is produced by a nuclear shell source which is replenished by the wind of the red giant at a rate of about 10 to the -8th solar mass/yr. Results indicate that the binary is surrounded by an H II region (of radius of about 10 AU) which gives rise to the observed emission lines and radio emission. The He(2+) and O(2+) regions are found to be confined to the immediate vicinity of the hot component.

  16. Superluminal Jets and Other Properties of Black Holes Binaries

    NASA Technical Reports Server (NTRS)

    Harmon, Alan

    1997-01-01

    Discoveries in the past few years of radio jets in Galactic black hole candidates have provided a link between active galactic nuclei (AGNS) and the compact stars in binary systems. The availability of binary systems relatively close by is an opportunity to learn about the jet production mechanism on a timescale a million times shorter than that of an AGN. Evidence is clearly seen of correlated high energy X-ray and gamma ray emission to radio emission from jets, linking the accretion and jet production mechanisms. objects such as GRS 1915+105, GRO J1655-40 and Cyg X-3 show striking properties which distinguish them from other black hole candidates. Our theoretical understanding of these systems is still in the formative stages. I review some of the most recent multiwavelength data and point out questions raised by these observations.

  17. Survival of planets around shrinking stellar binaries

    NASA Astrophysics Data System (ADS)

    Munoz, Diego Jose; Lai, Dong

    2015-12-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. We present new results (PNAS 112, 30, p 9264) on the orbital evolution of planets around binaries undergoing orbital decay by this "LK+tide" mechanism. From secular and N-body calculations, we show how planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Either outcome can explain these planets' elusiveness to detection. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer specific predictions as to what their orbital configurations should be like.

  18. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  19. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  20. The SDSS spectroscopic catalogue of white dwarf-main-sequence binaries: new identifications from DR 9-12

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Ren, J. J.; Parsons, S. G.; Gänsicke, B. T.; Schreiber, M. R.; García-Berro, E.; Liu, X.-W.; Koester, D.

    2016-06-01

    We present an updated version of the spectroscopic catalogue of white dwarf-main-sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 938 WDMS binaries within the data releases (DR) 9-12 of SDSS plus 40 objects from DR 1-8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the Na I λλ 8183.27, 8194.81 absorption doublet and H α emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to display RV variations, 62 of which are new. The RV data are sufficient enough to estimate the orbital periods of three close binaries.

  1. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  2. Measuring the Kerr spin parameter of a non-Kerr compact object with the continuum-fitting and the iron line methods

    SciTech Connect

    Bambi, Cosimo

    2013-08-01

    Under the assumption that astrophysical black hole candidates are the Kerr black holes of general relativity, the continuum-fitting method and the analysis of the Kα iron line are today the only available techniques capable of providing a relatively reliable estimate of the spin parameter of these objects. If we relax the Kerr black hole hypothesis and we try to test the nature of black hole candidates, we find that there is a strong correlation between the measurement of the spin and possible deviations from the Kerr solution. The properties of the radiation emitted in a Kerr spacetime with spin parameter a{sub *} are indeed very similar, and practically indistinguishable, from the ones of the radiation emitted around a non-Kerr object with different spin. In this paper, I address the question whether measuring the Kerr spin with both the continuum-fitting method and the Kα iron line analysis of the same object can be used to claim the Kerr nature of the black hole candidate in the case of consistent results. In this work, I consider two non-Kerr metrics and it seems that the answer does depend on the specific background. The two techniques may either provide a very similar result (the case of the Bardeen metric) or show a discrepancy (Johannsen-Psaltis background)

  3. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  4. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  5. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  6. Can very compact and very massive neutron stars both exist?

    NASA Astrophysics Data System (ADS)

    Drago, Alessandro; Lavagno, Andrea; Pagliara, Giuseppe

    2014-02-01

    The existence of neutron stars with masses of ˜2M⊙ requires a stiff equation of state at high densities. On the other hand, the necessary appearance also at high densities of new degrees of freedom, such as hyperons and Δ resonances, can lead to a strong softening of the equation of state with resulting maximum masses of ˜1.5M⊙ and radii smaller than ˜10 km. Hints for the existence of compact stellar objects with very small radii have been found in recent statistical analyses of quiescent low-mass X-ray binaries in globular clusters. We propose an interpretation of these two apparently contradicting measurements, large masses and small radii, in terms of two separate families of compact stars: hadronic stars, whose equation of state is soft, can be very compact, while quark stars, whose equation of state is stiff, can be very massive. In this respect an early appearance of Δ resonances is crucial to guarantee the stability of the branch of hadronic stars. Our proposal could be tested by measurements of radii with an error of ˜1 km, which is within reach of the planned Large Observatory for X-ray Timing satellite, and it would be further strengthened by the discovery of compact stars heavier than ˜2M⊙.

  7. Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Pravec, P.

    2006-06-01

    There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.

  8. Numerical study of the properties of compact stars

    NASA Astrophysics Data System (ADS)

    Negreiros, Rodrigo Picanco

    2009-10-01

    Compact stars are formed in catastrophic astrophysical events such as supernova explosions and binary stellar collisions. These objects permanently harbor compressed ultra-dense nuclear matter in their interiors. This key feature, together with the ongoing progress in observational astrophysics, make compact stars superb astrophysical laboratories for a wide range of intriguing physicals studies. Several such studies are performed in this thesis. The first activity concerns the widely unknown nuclear equation of state and the core composition of compact stars. Particular attention is paid to the possible presence of hyperons in the cores of neutron stars as well as to stars made of unconfined up, down and strange quarks (strange quark stars). The effects of ultra-strong electric fields on the surfaces of the latter is explored. The second activity aims at investigating the structure and stability of rapidly rotating compact stars. Special attention is paid to the maximal stable rotational frequencies of rotating compact stars. The third activity focuses on the thermal evolution of compact stars, driven by neutrino emission from their cores and by photon emission from the surfaces. It is show that the thermal behavior depends very strongly on the stellar core composition. Moreover, it is found that the thermal evolution of neutron stars is significantly different to that of strange quark stars. The studies performed in this thesis are key for our understanding of the thermal evolution of isolated rotating neutron stars, anomalous X-ray pulsars and soft gamma repeaters, and provide most valuable information about the phase diagram of isospin-asymmetric ultra-dense nuclear matter which can not be probed in high-energy collision experiments.

  9. Variable Doppler shifts of the thermal wind absorption lines in low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Madej, O. K.; Jonker, P. G.; Díaz Trigo, M.; Miškovičová, I.

    2014-02-01

    In this paper, we address the general applicability of the method pioneered by Zhang, Liao & Yao in which the motion of the compact object can be tracked using wind X-ray absorption lines. We present the velocity measurements of the thermal wind lines observed in the X-ray spectrum of a few low-mass X-ray binaries: GX 13+1, H 1743-322, GRO J1655-40 and GRS 1915+105. We find that the variability in the velocity of the wind lines in about all of the sources is larger than conceivable radial velocity variations of the compact object. GX 13+1 provides a potential exception, although it would require the red giant star to be massive with a mass of ≈5-6 M⊙. We conclude that the variability of the source luminosity occurring on a time-scale of days/months can affect the outflow properties making it difficult to track the orbital motion of the compact object using current observations. Given the intrinsic variability of the outflows we suggest that low-mass X-ray binaries showing stable coronae instead of an outflow (e.g. 4U 1254-69, MXB 1659-29, 4U 1624-49) could be more suitable targets for tracking the orbital motion of the compact object.

  10. Science of Compact X- and Gamma-ray Sources: MAXI and GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2008-01-01

    MAXI and GLAST will be surveying the sky simultaneously. Compact objects that may show variability will be excellent targets for coordinated multiwavelength studies. Gamma-ray bursts (and afterglows), pulsars, high-mass X-ray binaries, microquasars, and active galactic nuclei are all objects whose X- and gamma-ray relationship can be explored by such observations. Of particular interest will be variable unidentified gamma-ray sources, whose contemporaneous observations by MAXI may prove decisive in identifying the source of the high-energy emission.

  11. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  12. The origin of the hard X-ray tail in neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  13. Koronis binaries and the role of families in binary frequency

    NASA Astrophysics Data System (ADS)

    Merline, W. J.; Tamblyn, P. M.; Nesvorny, D.; Durda, D. D.; Chapman, C. R.; Dumas, C.; Owen, W. M.; Storrs, A. D.; Close, L. M.; Menard, F.

    2005-08-01

    Our ground-based adaptive optics observations of many larger Koronis members show no binaries, while our HST survey of smaller Koronis members (say smaller than 10 km) shows a surprising 20% binary fraction. Admittedly, this is from small-number statistics, but we nonetheless calculate a 99% confidence that the binary fraction is different from the 2% we observe among the larger (over 20km) main belt asteroids as a whole. In addition, we estimate that among the two young families (Karin and Veritas) that we surveyed for binaries in our HST Cy 13 program, the binary fraction appears to be less than 5%. These young families both have significantly smaller progenitors than the Koronis family. We have speculated that progenitor size may be a more important factor than age in determination of binary frequency. But here we suggest an alternative idea, that the binary fraction may be more related to what part of the family's size distribution is sampled. Our HST program targeted objects of the same physical sizes, but was clearly sampling further down the size distribution (to smaller sizes, relative to the largest remnant) in the Koronis sample than was the case for Karin and Veritas, which we sampled mostly at the larger sizes, relatively. Our SPH collision models are estimating the typical size-frequency distributions to be expected from catastrophic and non-catastrophic impact events. But they are also appear to be showing that the largest fragments from a collision are less likely to form binaries (as co-orbiting ejecta pairs) than are the smaller fragments. Thus, it might be expected that we would have found fewer binaries among Karin and Veritas than among the Koronis sample. In fact, models of the Karin breakup show binary formation to be unlikely in the size range measured. It some might be tempted to tie the small end of the main-belt binary population to the binaries seen among the NEAs (also small and also showing about 20% fraction), given the 20% fraction

  14. Extreme horizontal branch stars - Puzzling objects dominating the UV-light in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Geier, Stephan

    2015-08-01

    Extreme horizontal branch stars (also known as hot subdwarf stars, sdO/Bs) are located at the bluest extension of the horizontal branch in the HR-diagram. They burn helium in their cores and are the sources of the UV-excess in elliptical galaxies and other old stellar populations. However, the formation of those stars is still unclear. SdO/B stars in the field show a high binary fraction and are likely formed via binary interactions with low-mass stars, substellar objects or compact stellar remnants. Similar objects in globular clusters on the other hand have a significantly lower binary fraction and might therefore be formed in a different way. I will review the state-of-the-art and confront theories of sdO/B formation with most recent observational evidence.

  15. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  16. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  17. Observations and Models of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume

    1998-06-01

    This PhD thesis presents X-ray observations of the nearby galaxy M33 and an X-ray irradiated accretion disk model. X-ray observations of nearby galaxies allow direct access to the underlying high energy populations, amongst which are X-ray binaries where a compact object (black hole, neutron star) accretes matter from its normal star companion. I present a catalogue and a variability analysis of the sources in M33 detected by the X-ray satellite ROSAT. I discuss X-7 which is shown to be an X-ray binary pulsar. Some 70% of the X-ray flux from M33 comes from the nucleus source X-8. I show that the luminosity from this object is modulated on a 106 day period. Additional observations obtained with the Hubble Space Telescope show a bright stellar-like UV source in the center of the nucleus. These observations significantly constrain models of the bright (Lx~1e39 ergs/s) nucleus source which we believe to be a 10 solar mass black hole X-ray binary. Illumination of the accretion disk surrounding the compact object plays a crucial role in such a system. An accretion disk is thermally and viscously unstable around the hydrogen ionisation temperature. This instability is thought to power the outbursts of dwarf novae and soft X-ray transients. I present a numerical code that can follow the evolution of the instability in a disk with high precision. This model is modified to account for illumination. Contrary to observations of low mass X-ray binaries, illumination by a point source does not modify the properties of a planar disk. However, if the illumination source is not in the disk plane, as is the case for instance if the disk is warped or if the source is above the disk, illumination can stabilise the disk. It is concluded that the physical processes and the geometry of illumination in low mass X-ray binaries is still ill-understood.

  18. Radiatively driven plasma jets around compact objects

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Chakrabarti, Sandip K.

    2002-06-01

    Matter accreting on to black holes may develop shocks due to the centrifugal barrier. Some of the inflowing matter in the post-shock flow is deflected along the axis in the form of jets. Post-shock flow which behaves like a Compton cloud has `hot' electrons emitting high-energy photons. We study the effect of these `hot' photons on the outflowing matter. Radiation from this region could accelerate the outflowing matter, but radiation pressure should also slow it down. We show that the radiation drag restricts the flow from attaining a very high velocity. We introduce the concept of an `equilibrium velocity' (veq~0.5c), which sets the upper limit of the terminal velocity achieved by a cold plasma due to radiation deposition force in the absence of gravity. If the injection energy is Ein, then we find that the terminal velocity v∞ satisfies a relation v2<~veq2+2Ein.

  19. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  20. Unsolved Problems in the Evolution of Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Webbink, R. F.

    2006-06-01

    Common envelope evolution is essential to the formation of short-period binaries with compact components. Conditions for its onset, and estimates of its outcome are summarized. However, applied to the well-known binaries V471 Tauri and T Coronae Borealis, these conditions lead to serious inconsistencies with their observed properties.

  1. Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Boshkayev, Kuantay; Rueda, Jorge; Muccino, Marco

    2015-06-01

    We consider the kilohertz quasi-periodic oscillations of low-mass X-ray binaries within the Hartle-Thorne spacetime. We show that the interpretation of the epicyclic frequencies of this spacetime with the observed kilohertz quasi-periodic oscillations, within the Relativistic Precession Model, allows us to extract the total mass M, angular momentum J, and quadrupole moment Q of the compact object in a low-mass X-ray binary. We exemplify this fact by analyzing the data of the Z-source GX 5-1. We show that the extracted multipole structure of the compact component of this source deviates from the one expected from a Kerr black hole and instead it points to a neutron star explanation.

  2. BDB: The Binary Star Database

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O.; Kaygorodov, P.; Kovaleva, D.; Malkov, O.

    2014-05-01

    Description of the Binary star DataBase (BDB, http://bdb.inasan.ru), the world's principal database of binary and multiple systems of all observational types, is presented in the paper. BDB contains data on physical and positional parameters of 100,000 components of 40,000 systems of multiplicity 2 to 20, belonging to various observational types: visual, spectroscopic, eclipsing, etc. Information on these types of binaries is obtained from heterogeneous sources of data - astronomical and. Organization of the information is based on the careful cross-identification of the objects. BDB can be queried by star identifier, coordinates, and other parameters.

  3. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  4. Circumstellar discs in X/γ-ray binaries: first results from the Echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Zamanov, R.; Stoyanov, K.; Martí, J.

    2016-01-01

    Here we report our first spectral observations of Be/X-ray and γ-ray binaries obtained with the new Echelle spectrograph of the National Astronomical Observatory Rozhen. For four objects (LSI+61°303, γ Cas, MWC 148, 4U 2206+54), we report the parameters and estimate the sizes of their circumstellar discs using different emission lines (Hα, Hβ, Hγ, HeI and FeII). For MWC 148, we find that the compact object goes deeply through the disc. The flank inflections of H&alpha& can be connected with inner ring formed at the periastron passage or radiation transfer effects. We point out an intriguing similarity between the optical emission lines of the γ-ray binary MWC 148 and the well known Be star γ Cas.

  5. Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee; Koo, Jae-Rim; Lee, Chung-UK

    2016-07-01

    We examined light curves of 1138 stars brighter than 18.0 mag in the I band and less than a mean magnitude error of 0.1 mag in the V band from the Optical Gravitational Lensing Experiment (OGLE)-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the Small Magellanic Cloud (SMC) were increased by a factor of about 3.0 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO (MAssive Compact Halo Objects) and OGLE photometric data base. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12-897 yr. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems presented here are based on homogeneous data and have been analysed in the same way, they are suitable for further statistical analysis.

  6. Be stars with white dwarf companions: a new single degenerate binary channel to type Ia supernovae explosions

    NASA Astrophysics Data System (ADS)

    Orio, Marina; Luna, Gerardo; Zemko, Polina; Kotulla, Ralf; Gallagher, Jay; Harbeck, Daniel

    2016-07-01

    A handful of supersoft X-ray sources in the Magellanic Clouds that could not be identified with transient nova outbursts turned out to be mainly massive close binaries. 6 years ago we suggested that several such sources may exist in M31, because we found that a certain fraction of supersoft sources was located in star forming regions. Following that discovery, we clearly identified a Be binary in M31, and are currently collecting data for another candidate in that galaxy. Work is in progress to assess whether the compact object companion really is a hydrogen burning white dwarf (the alternative being a massive stellar-mass black hole). If we can demonstrate that Be+white dwarf interacting close binaries are common, and that hydrogen is often ignited on the white dwarf in these systems, we have discovered a new promising channel towards the explosion of supernovae of type Ia in star forming regions, without invoking double degenerate systems.

  7. X-ray emission mechanism for the gamma-ray binary LS 5039

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    2012-07-01

    We address an unsolved issue in the model of the gamma-ray binary LS 5039, which consists of an O star and a compact object not yet identified. In previous studies, the X-ray emission observed with Suzaku has been assumed to be due to the synchrotron emission from high energy electrons, and the inverse Compton (IC) emission from low energy electrons has been neglected. However, this IC emission can affect the X-ray emission. In this study, we calculate the IC emission from low energy electrons (γ < 10^4) accelerated near the compact object, including those created by the radiative cooling. We find that the IC emission of the low energy electrons can be responsible for the Suzaku band if the minimum Lorentz factor of injected electrons γ_{min} is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if γ_{min} varies in proportion to the Fermi flux.

  8. Jets in black-hole and neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  9. Coding Long Contour Shapes of Binary Objects

    NASA Astrophysics Data System (ADS)

    Sánchez-Cruz, Hermilo; Rodríguez-Díaz, Mario A.

    This is an extension of the paper appeared in [15]. This time, we compare four methods: Arithmetic coding applied to 3OT chain code (Arith-3OT), Arithmetic coding applied to DFCCE (Arith-DFCCE), Huffman coding applied to DFCCE chain code (Huff-DFCCE), and, to measure the efficiency of the chain codes, we propose to compare the methods with JBIG, which constitutes an international standard. In the aim to look for a suitable and better representation of contour shapes, our probes suggest that a sound method to represent contour shapes is 3OT, because Arithmetic coding applied to it gives the best results regarding JBIG, independently of the perimeter of the contour shapes.

  10. Short gamma-ray burst formation rate from BATSE data using E{sub p} -L{sub p} correlation and the minimum gravitational-wave event rate of a coalescing compact binary

    SciTech Connect

    Yonetoku, Daisuke; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro E-mail: takashi@tap.scphys.kyoto-u.ac.jp

    2014-07-01

    Using 72 short gamma-ray bursts (SGRBs) with well determined spectral data observed by BATSE, we determine their redshift and luminosity by applying the E{sub p} -L{sub p} correlation for SGRBs found by Tsutsui et al. For 53 SGRBs with an observed flux brighter than 4 × 10{sup –6} erg cm{sup –2} s{sup –1}, the cumulative redshift distribution up to z = 1 agrees well with that of 22 Swift SGRBs. This suggests that the redshift determination by the E{sub p} -L{sub p} correlation for SGRBs works well. The minimum event rate at z = 0 is estimated as R{sub on−axis}{sup min}=6.3{sub −3.9}{sup +3.1}× 10{sup −10} events Mpc{sup −3} yr{sup −1}, so that the minimum beaming angle is 0.°6-7.°8 assuming a merging rate of 10{sup –7}- 4 × 10{sup –6} events Mpc{sup –3} yr{sup –1} suggested from the binary pulsar data. Interestingly, this angle is consistent with that for SGRB 130603B of ∼4°-8°. On the other hand, if we assume a beaming angle of ∼6° suggested from four SGRBs with the observed beaming angle value, then the minimum event rate including off-axis SGRBs is estimated as R{sub all}{sup min}=1.15{sub −0.66}{sup +0.56} × 10{sup −7} events Mpc{sup −3} yr{sup −1}. If SGRBs are induced by the coalescence of binary neutron stars (NSs) and/or black holes (BHs), then this event rate leads to a minimum gravitational-wave detection rate of 3.8{sub −2.2}{sup +1.8} (146{sub −83}{sup +71}) events yr{sup −1} for an NS-NS (NS-BH) binary, respectively, by a worldwide network with KAGRA, advanced-LIGO, advanced-VIRGO, and GEO.

  11. Interpretation of the UBV RcIc light variations of the symbiotic binary BF Cyg during its 2006-2014 optical outburst

    NASA Astrophysics Data System (ADS)

    Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.

    2016-02-01

    It is supposed that the variations of the depth of the orbital photometric minimum of the eclipsing symbiotic binary BF Cyg during its last eruption after 2006 is due to appearance of an accretion disc-like envelope which collimates the stellar wind of the outbursting compact object. The calculated U BV RcIc fluxes of the uneclipsed part of the envelope are in agreement with the observed residual of the depths of the first and second orbital minima.

  12. A POSSIBLE SIGNATURE OF LENSE-THIRRING PRECESSION IN DIPPING AND ECLIPSING NEUTRON-STAR LOW-MASS X-RAY BINARIES

    SciTech Connect

    Homan, Jeroen

    2012-12-01

    Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-star systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.

  13. Binary-binary collisions involving main-sequence stars, white dwarfs and neutron stars in globular clusters

    SciTech Connect

    Leonard, P.J.T.; Davies, M.B.

    1993-12-31

    We consider collisions between dynamically-evolved primordial binaries consisting of main-sequence stars, white dwarfs and neutron stars in globular clusters. In our four-body binary-binary scattering experiments, we allow stars to ``stick`` if they pass close enough to each other, which leads to the formation of a wide variety of exotic objects. Most of these objects have binary companions. Also, relatively clean exchange interactions can produce binaries containing neutron stars that eventually receive material from their companions. Such systems will be observable as X-ray binaries.

  14. Close binary stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Margon, Bruce

    1991-01-01

    Although close binary stars are thought theoretically to play a major role in globular cluster dynamics, virtually no non-degenerate close binaries are known in clusters. We review the status of observations in this area, and report on two new programs which are finally yielding candidate systems suitable for further study. One of the objects, a close eclipsing system in omega Cen, is also a big straggler, thus finally proving firm evidence that globular cluster blue stragglers really are binary stars.

  15. Survival of Planets Around Shrinking Stellar Binaries: A New Population of Misaligned Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2015-08-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via tidal dissipation mediated by Lidov-Kozai oscillations in orbital eccentricity induced by a distant tertiary companion. We explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may be ejected from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.Reference: D. Munoz and D. Lai 2015, submitted

  16. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  17. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716

  18. GBS-discovered quiescent X-ray binaries: XMM eclipse duration and VLT spectra

    NASA Astrophysics Data System (ADS)

    Jonker, Peter

    2013-10-01

    We propose to use XMM to observe eclipsing probable quiescent low-mass X-ray binaries selected from the Galactic Bulge Survey. The XMM data are crucial to determine the eclipsing duration, one cannot do this as accurately from optical light curves as from X-ray light curves as the X-ray emission region is small compared to the mass donor star. Using the XMM eclipse duration and the VLT spectroscopy we can determine virtually model independent masses of the compact objects. Furthermore, we may select different mass ratio systems favoring low-mass black holes.

  19. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  20. Unraveling the high-energy emission components of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Zabalza, V.; Bosch-Ramon, V.; Aharonian, F.; Khangulyan, D.

    2013-03-01

    Context. The high and very high energy spectrum of gamma-ray binaries has become a challenge for all theoretical explanations since the detection of powerful, persistent GeV emission from LS 5039 and LS I +61 303 by Fermi/LAT. The spectral cutoff at a few GeV indicates that the GeV component and the fainter, hard TeV emission above 100 GeV are not directly related. Aims: We explore the possible origins of these two emission components in the framework of a young, non-accreting pulsar orbiting the massive star, and initiating the non-thermal emission through the interaction of the stellar and pulsar winds. Methods: The pulsar/stellar wind interaction in a compact-orbit binary gives rise to two potential locations for particle acceleration: the shocks at the head-on collision of the winds and the termination shock caused by Coriolis forces on scales larger than the binary separation. We explore the suitability of these two locations to host the GeV and TeV emitters, respectively, through the study of their non-thermal emission along the orbit. We focus on the application of this model to LS 5039 given its well-determined stellar wind with respect to other gamma-ray binaries. Results: The application of the proposed model to LS 5039 indicates that these two potential emitter locations provide the necessary conditions for reproduction of the two-component high-energy gamma-ray spectrum of LS 5039. In addition, the ambient postshock conditions required at each of the locations are consistent with recent hydrodynamical simulations. Conclusions: The scenario based on the interaction of the stellar and pulsar winds is compatible with the GeV and TeV emission observed from gamma-ray binaries with unknown compact objects, such as LS 5039 and LS I +61 303.

  1. The end of the MACHO era, revisited: New limits on MACHO masses from halo wide binaries

    SciTech Connect

    Monroy-Rodríguez, Miguel A.; Allen, Christine

    2014-08-01

    In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen and Monroy-Rodríguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widest binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M{sub ☉}. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M{sub ☉}. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliable—albeit smallest—sample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M{sub ☉}. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M{sub ☉}, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.

  2. Compact multiframe blind deconvolution.

    PubMed

    Hope, Douglas A; Jefferies, Stuart M

    2011-03-15

    We describe a multiframe blind deconvolution (MFBD) algorithm that uses spectral ratios (the ratio of the Fourier spectra of two data frames) to model the inherent temporal signatures encoded by the observed images. In addition, by focusing on the separation of the object spectrum and system transfer functions only at spatial frequencies where the measured signal is above the noise level, we significantly reduce the number of unknowns to be determined. This "compact" MFBD yields high-quality restorations in a much shorter time than is achieved with MFBD algorithms that do not model the temporal signatures; it may also provide higher-fidelity solutions. PMID:21403711

  3. Determining Reliability of Existing Gravitational Waveforms in Parameter Estimation for Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Bustos, Cesar; Sandeen, Ben; Chennakesavalu, Shriram; Littenberg, Tyson; Farr, Ben; Kalogera, Vassiliki

    2016-01-01

    Gravitational Waves (GWs) were predicted by Einstein's Theory of General Relativity as ripples in space-time that propagate outward from a source. Strong GW sources consist of compact binary systems such as Binary Neutron Stars (BNS) or Binary Black Holes (BBHs) that experience orbital shrinkage (inspiral) and eventual merger. Indirect evidence for the existence of GWs has been obtained through radio pulsar studies in BNS systems. A study of BBHs and other compact objects has limitations in the electromagnetic spectrum, therefore direct detections of GWs will open a new window into their nature. The effort targeting direct GWs detection is anchored on the development of a detector known as Advanced LIGO (Laser Interferometer Gravitational Wave Observation). Although detecting GW sources represents an anticipated breakthrough in physics, making GW astrophysics a reality critically relies on our ability to determine and measure the physical parameters associated with GW sources. We use Markov Chain Monte Carlo (MCMC) simulations on high-performance computing clusters for parameter estimation on high dimensional spaces (GW sources - 15 parameters). The quality of GW parameter estimation greatly depends on having the best possible knowledge of the expected waveform. Unfortunately, BBH GW production is very complex and our best waveforms are not valid across the full parameter space. With large-scale simulations we examine quantitatively the limitations of these waveforms in terms of extracting the astrophysical properties of BBH GW sources. We find that current waveforms are inadequate for BBH of unequal masses and demonstrate that improved waveforms are critically needed.

  4. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .

  5. Stellar wind in state transitions of high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Čechura, J.; Hadrava, P.

    2015-03-01

    Aims: We have developed a new code for the three-dimensional time-dependent raditation hydrodynamic simulation of the stellar wind in interacting binaries to improve models of accretion in high-mass X-ray binaries and to quantitatively clarify the observed variability of these objects. We used the code to test the influence of various parameters on the structure and properties of circumstellar matter. Methods: Our code takes into account acceleration of the wind due to the Roche effective potential, Coriolis force, gas pressure, and (CAK-) radiative pressure in the lines and continuum of the supergiant radiation field that is modulated by its gravity darkening and by the photo-ionization caused by X-ray radiation from the compact companion. The parameters of Cygnus X-1 were used to test the properties of our model. Results: Both two- and three-dimensional numerical simulations show that the Coriolis force substantially influences the mass loss and consequently the accretion rate onto the compact companion. The gravitational field of the compact companion focuses the stellar wind, which leads to the formation of a curved cone-like gaseous tail behind the companion. The changes of X-ray photo-ionization of the wind material during X-ray spectral-state transitions significantly influence the wind structure and offer an explanation of the variability of Cygnus X-1 in optical observations (the Hα emission).

  6. The delay time distribution of massive double compact star mergers

    NASA Astrophysics Data System (ADS)

    Mennekens, N.; Vanbeveren, D.

    2016-05-01

    To investigate the temporal evolution of binary populations, in general, and double compact-star binaries and mergers, in particular, within a galactic evolution context, a very straightforward method is obviously to implement a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, the Brussels galactic chemical evolution code is the only one that fully and consistently accounts for the important effects of interacting binaries on the predictions of chemical evolution. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delay time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively in the past decade. In the present paper we present the DTD for merging double neutron-star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for producing r-process elements, and the DTDs can be used to study the galactic evolution of these elements with a code that does not explicitly account for binaries.

  7. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  8. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs. PMID:26684106

  9. 3D Models of Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.

    2015-12-01

    Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.

  10. Prospects for experimental research on black holes in binary systems

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1979-01-01

    Cygnus X-1, the single widely accepted example of a black hole in a binary system, is characterized by unusual X-ray properties. The X-ray spectrum of Cygnus X-1 is not cut off above 20 keV, as in most strong X-ray sources. Recent scintillation counter measurements reveal a power law spectrum extending from 40 to 200 keV with a photon spectral index of approximately 2.2. However, it is not clear that these and other X-ray properties of the system are related to the black-hole nature of Cygnus X-1. It is suggested that without a direct test to show that the mass of the compact object in other systems similar to Cygnus X-1 (Circinus X-1 and GX339-4) exceeds the limit of the neutron star mass, a better understanding of the accretion disk phenomenon must be achieved to demonstrate how the properties peculiar to these systems are related to the black hole nature of the compact object. Current accretion disk models are examined, including the alpha-accretion disk and two-temperature accretion disk models.

  11. Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reig, P.; Nersesian, A.; Zezas, A.; Gkouvelis, L.; Coe, M. J.

    2016-05-01

    profile variability (V/R ratio) timescales are shorter and the Hα equivalent widths are smaller in Be/X-ray binaries than in isolated Be stars; and vii) we provide new evidence that the disk in Be/X-ray binaries is, on average, denser than in classical Be stars. Conclusions: We carried out the most complete optical spectroscopic study of the global properties of high-mass X-ray binaries with the analysis of more than 1100 spectra from 20 sources. Our results provide further evidence for the truncation of the disk in Be/X-ray binaries. We conclude that the interaction between the compact object and the Be-type star works in two directions: the massive companion provides the source of matter for accretion, affecting the surroundings of the compact object, and the continuous revolution of the neutron star around the optical counterpart also produces the truncation of the Be star's equatorial disk. The reduced spectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A122

  12. On Poynting-flux-driven bubbles and shocks around merging neutron star binaries

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Loeb, Abraham

    2013-05-01

    Merging binaries of compact relativistic objects (neutron stars and black holes) are thought to be progenitors of short gamma-ray bursts and sources of gravitational waves, hence their study is of great importance for astrophysics. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux (e.g. magnetic-field-dominated outflows, relativistic leptonic winds, electromagnetic and plasma waves). The steady injection of energy by the binary forms a bubble (or a cavity) filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it and predict that such systems can be observed as radio sources a few hours before and after the merger. At much later times, the shock is expected to settle on to the Sedov-von Neumann-Taylor solution, thus resembling an explosion.

  13. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  14. Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Belczynski, K.

    2015-11-01

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor of 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.

  15. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  16. A Dynamic Construction Algorithm for the Compact Patricia Trie Using the Hierarchical Structure.

    ERIC Educational Resources Information Center

    Jung, Minsoo; Shishibori, Masami; Tanaka, Yasuhiro; Aoe, Jun-ichi

    2002-01-01

    Discussion of information retrieval focuses on the use of binary trees and how to compact it to use less memory and take less time. Explains retrieval algorithms and describes data structure and hierarchical structure. (LRW)

  17. Encounters between binaries and neutron stars

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1993-01-01

    We simulated encounters between a neutron star and primordial and tidal-capture binaries. In the case of encounters involving a tidal-capture binary, comprising a white dwarf and a main-sequence star, we find that most exchange encounters will produce a single merged object with the white dwarf and neutron star engulfed in a common envelope of gas donated by the main-sequence primary of the original binary. A small fraction of exchanges induce a merger of the white dwarf and main-sequence star, with this object being unbound to the neutron star, and the two objects having a large relative speed at infinity. For encounters involving a primordial binary, fewer encounters require the inclusion of hydrodynamical effects. Those involving collisions or close encounters tend to produce a binary comprised of the two merged stars (now forming one star) and the third star. The binaries produced typically have large enough separations to prevent the formation of a single merged object until subsequent stellar evolution of one of the components causes it to fill its Roche lobe. Clean exchanges produce binaries with large eccentricities; they are typically sufficiently wide to avoid circularization.

  18. Binaries and distances

    NASA Astrophysics Data System (ADS)

    Pourbaix, D.; Arenou, F.; Halbwachs, J.-L.; Siopis, C.

    2013-02-01

    Gaia's five-year observation baseline might naively lead to the expectation that it will be possible to fit the parallax of any sufficiently nearby object with the default five-parameter model (position at a reference epoch, parallax and proper motion). However, simulated Gaia observations of a `model Universe' composed of nearly 107 objects, 50% of which turn out to be multiple stars, show that the single-star hypothesis can severely affect parallax estimation and that more sophisticated models must be adopted. In principle, screening these spurious single-star solutions is rather straightforward, for example by evaluating the quality of the fits. However, the simulated Gaia observations also reveal that some seemingly acceptable single-star solutions can nonetheless lead to erroneous distances. These solutions turn out to be binaries with an orbital period close to one year. Without auxiliary (e.g., spectroscopic) data, they will remain unnoticed.

  19. Object Oriented Learning Objects

    ERIC Educational Resources Information Center

    Morris, Ed

    2005-01-01

    We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…

  20. High Mass X-ray Binaries in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy

    High Mass X-ray Binaries (HMXBs), in which a compact object, either black hole or neutron star, is accreting material from a young, massive donor star, often dominate the high-energy emission from nearby star-forming galaxies. These high mass pairs are believed to form in star clusters, where most massive star formation takes place, but to become displaced from their parent clusters either because they are dynamically ejected or because their parent cluster has dissolved. We have conducted a systematic study of the formation and evolution of bright HMXBs in eight nearby galaxies, by detecting HMXBs from their X-ray emission in Chandra X-ray Observatory observations, and identifying their parent clusters and donor stars in optical observations taken with the Hubble Space Telescope. We use the X-ray and optical properties of these systems to determine the ages of the binaries, whether the compact objects are black holes or neutron stars, and to constrain the masses of the donor stars.

  1. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and

  2. Characterizing spinning black hole binaries in eccentric orbits with LISA

    SciTech Connect

    Key, Joey Shapiro; Cornish, Neil J.

    2011-04-15

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spin precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.

  3. GIANT OUTBURSTS IN Be/X-RAY BINARIES

    SciTech Connect

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J.; Lubow, Stephen H.; Price, Daniel J.

    2014-08-01

    Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origins have remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using three-dimensional smoothed particle hydrodynamics simulations, we model the long-term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth which occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient; the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.

  4. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  5. Predicting binary merger event rates for advanced LIGO/Virgo

    NASA Astrophysics Data System (ADS)

    Holz, Daniel; Belczynski, Chris; O'Shaughnessy, Richard; Bulik, Tomek; LIGO Collaboration

    2016-03-01

    We discuss estimates of the rates of mergers of binary systems composed of neutron stars and/or stellar mass black holes. We use the StarTrack population synthesis code, and make predictions for the detection rate of compact binary coalescences with the advanced LIGO/Virgo gravitational wave detectors. Because these instruments are sensitive to massive (M > 20M⊙) stellar-mass binary black holes mergers out to high redshift (z > 1), we discuss the cosmological effects which must be taken into account when calculating LIGO detection rates, including a generalization of the calculation of the ``peanut factor'' and the sensitive time-volume.

  6. COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Dominik, Michal; Kalogera, Vicky; Holz, Daniel E.

    2012-04-10

    The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. A number of supernova engines have been proposed: neutrino- or oscillation-driven explosions enhanced by early (developing in 10-50 ms) and late-time (developing in 200 ms) convection as well as magnetic field engines (in black hole accretion disks or neutron stars). Using our current understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytic prescriptions for both single-star models (as a function of initial star mass) and for binary-star models-prescriptions for compact object masses for major population synthesis codes. These prescriptions have implications for a range of observations: X-ray binary populations, supernova explosion energies, and gravitational wave sources. We show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.

  7. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  8. AM CVn Stars: Structure and Evolution of Ultra-Short Period Interacting Binaries

    NASA Technical Reports Server (NTRS)

    Froning, Cynthia

    2005-01-01

    This is the final report of a FUSE program to study the physics of accretion and outflows in ultra-compact, helium dominated, disk-accreting binaries. With FUSE, we observed the AM CVn binary V803 Cen, which is one of only two AM CVn systems observed by FUSE to date. V803 Cen is a short-period interacting binary in which a hydrogen-deficient white dwarf transfers mass to another white dwarf via a hot, steady-state accretion disk. Unlike other cataclysmic variables (CVs), AM CVn stars have undergone double common envelope evolution (one for each white dwarf in the binary) and so probe an alternate route of evolution in binary stars. Our goals in this project were to investigate how the structure of the accretion disk and the link between the disk and wind outflows are affected by the absence of hydrogen in the system and by the compact size of the binary and the accretion disk.

  9. Proposed search for the detection of gravitational waves from eccentric binary black holes

    NASA Astrophysics Data System (ADS)

    Tiwari, V.; Klimenko, S.; Christensen, N.; Huerta, E. A.; Mohapatra, S. R. P.; Gopakumar, A.; Haney, M.; Ajith, P.; McWilliams, S. T.; Vedovato, G.; Drago, M.; Salemi, F.; Prodi, G. A.; Lazzaro, C.; Tiwari, S.; Mitselmakher, G.; Da Silva, F.

    2016-02-01

    Most compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasicircular orbits are suboptimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.

  10. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-04-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  11. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  12. Binary Stars in SBS Survey

    NASA Astrophysics Data System (ADS)

    Erastova, L. K.

    2016-06-01

    Thirty spectroscopic binary stars were found in the Second Byurakan Survey (SBS). They show composite spectra - WD(DA)+dM or dC (for example Liebert et al. 1994). They may have red color, if the radiation of the red star dominates, and blue one, if the blue star is brighter and have peculiar spectrum in our survey plate. We obtained slit spectra for most of such objects. But we often see the spectrum of one component, because our slit spectra did not cover all optical range. We examine by eye the slit spectra of all SBS stellar objects (˜700) in SDSS DR7, DR8 or DR9 independent on our observations. We confirmed or discovered the duplicity of 30 stars. Usually they are spectroscopic binaries, where one component is WD (DA) and the second one is a red star with or without emission. There also are other components combinations. Sometimes there are emission lines, probably, indicating variable ones.

  13. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  14. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  15. Population synthesis of Be/white dwarf binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Raguzova, N. V.

    2001-03-01

    Using the ``Scenario Machine'' (a numerical co-de that models the evolution of large ensembles of binary systems) we study the number and physical properties of binary Be stars with white dwarfs taking account of the compact object cooling and we discuss the ways of their formation. In our calculations we take into account the influence of tidal synchronization on the evolution of stars in a close binary. The synchronization time scale may be less than the life-time of a Be star on the main sequence after the first mass transfer. It has strong effects on the resulting number distribution of binary Be stars over orbital periods. In particular, it can explain the lack of short period Be binaries. According to our calculations the number of binary systems containing a Be star paired with a white dwarf in the Galaxy is very large - 70% of all Be stars formed as a result of binary evolution must have a white dwarf as a companion. Based on our calculations we conclude that the compact companion in these systems must have a high surface temperature. The number distribution over the surface temperature peaks at 2 104 K for all white dwarfs and at 4 104 K for white dwarfs paired with early-type Be stars (between B0 and B2). The registration of white dwarfs in such systems is hampered by the fact that the entire orbit of a white dwarf is embedded in the dense circumstellar envelope of the primary star (our calculations show that the majority of Be/WD systems have orbital periods less than one year) and all extreme-UV and soft X-ray photons of a compact companion are absorbed by the Be star envelope. The detection of a white dwarf is possible during the period when the Be star disc-like envelope is lacking by the detection of white dwarf extreme-UV and soft X-ray emission. This method of registration appears to be particularly promising for ``single'' early-type Be stars because in these systems the white dwarfs must have a very high surface temperature. However, the loss of

  16. Spherical hashing: binary code embedding with hyperspheres.

    PubMed

    Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui

    2015-11-01

    Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement. PMID:26440269

  17. Binary Star database BDB: datasets and services

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.; Kaygorodov, P. V.; Koravleva, D. A.; Oblak, E.; Debray, B.

    Description of the Binary star DataBase (BDB, http://bdb.inasan.ru), the world's principal database of binary and multiple systems of all observational types, is presented in the paper. BDB contains data on physical and positional parameters of 100,000 components of 40,000 systems of multiplicity 2 to 20, belonging to various observational types: visual, spectroscopic, eclipsing, etc. Information on these types of binaries is obtained from heterogeneous sources of data astronomical catalogues and surveys. Organization of the information is based on the careful cross-identification of the objects. BDB can be queried by star identifier, coordinates, and other paramete

  18. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  19. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  20. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  1. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  2. Compaction behavior of isomalt after roll compaction.

    PubMed

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  3. Compaction Behavior of Isomalt after Roll Compaction

    PubMed Central

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  4. Nonlinear Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the

  5. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    SciTech Connect

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' {approx}> 10-100 M{sub Circled-Plus} at orbital periods P Almost-Equal-To 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P {approx}< 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N Almost-Equal-To 10{sup 3}[P/10 days] for a solar-type star) and drives them as a single coherent unit with

  6. On Poynting-Flux-Driven Bubbles and Shocks Around Merging NS/Magnetar Binaries and Implications for SGRBs

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail; Loeb, A.

    2013-04-01

    Merging binaries of compact relativistic objects (neutron stars and black holes) are thought to be progenitors of short gamma-ray bursts and sources of gravitational waves, hence their study is of great importance for astrophysics. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux (e.g., magnetic-field-dominated outflows, relativistic leptonic winds, electromagnetic and plasma waves). The steady injection of energy by the binary forms a bubble (or a cavity) filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it and predict that such systems can be observed as radio sources a few hours before and after the merger. At much later times, the shock is expected to settle onto the Sedov-von Neumann-Taylor solution, thus resembling an explosion.

  7. Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-faint Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.

    2016-06-01

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M ⊙ as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M ⊙. Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M ⊙ and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M ⊙ window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10‑7 M ⊙ up to arbitrarily high masses.

  8. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  9. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    SciTech Connect

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos E-mail: skenyon@cfa.harvard.edu E-mail: alexg@nhn.ou.edu

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  10. Compact Bell inequalities for multipartite experiments

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Chun; Żukowski, Marek; Chen, Jing-Ling; Guo, Guang-Can

    2013-08-01

    A method for construction of multipartite Clauser-Horne-Shimony-Holt- (CHSH-) type Bell inequalities, for the case of local binary observables, is presented. The standard CHSH-type Bell inequalities can be obtained as special cases. An iterative method for deriving (N+1)-partite CHSH-type Bell inequalities from N-partite ones is derived. As an application, compact Bell inequalities for eight observers involving just four correlation functions are proposed. They require much less experimental effort than standard methods and thus are experimentally friendly in multiphoton experiments.

  11. A High-Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane; Matthews, K.; Kulkarni, S. R.

    2007-12-01

    While most astrophysical objects require many parameters in order to be fully described, black holes are unique in that only three parameters are required: mass, spin, and charge. Of these, mass and spin are enough to describe the black hole's gravitational field and event horizon location. Therefore, theory and observation may jointly pursue one or two quantities to uncover the progenitor star's history. Constraints on black hole mass exist for high mass X-ray binaries, such as Cygnus X-1, which is thought to consist of a 40 ± 10 solar mass O9.7Iab star and a 13.5-29 solar mass black hole (Ziolkowski 2005). While the constraints on the mass of the compact object are tight enough to declare that it is a black hole, they are sufficiently loose as to prohibit precise modeling of the progenitor star's mass. We have built an optical polarimeter for the Hale 5-m telescope at Mt. Palomar to provide an independent method for determining black hole mass. Degree of polarization will vary for an edge-on system, while position angle of net polarization will vary for a face-on system. Therefore, by monitoring the linear polarimetric variability of the binary, inclination can be estimated. Coupled with the known mass function of the binary from radial velocity work (Gies et al. 2003), inclination estimates constrain the mass of the black hole. Our polarimeter, POLISH (POLarimeter for Inclination Studies of High mass x-ray binaries), has achieved linear polarimetric precision of less than 10 parts per million on bright, unpolarized standard stars. We will also present results for polarized standard stars and Cygnus X-1 itself. This instrument has been funded by an endowment from the Moore Foundation.

  12. CSS Object Found in Galaxy Merger 1015+364 at 2.3 and 8.5 Hz

    NASA Astrophysics Data System (ADS)

    Porras, Antonio J.; Burke-Spolaor, Sarah; Other people involved

    2016-01-01

    We investigated the ongoing galaxy merger 1015+364 at 2.3 and 8.5 Hz with the Very Long Baseline Array to determine the state of evolution of the merger's resident supermassive black holes. During the merger of two massive galaxies, we expect that the two supermassive black holes will form a binary and eventually coalesce. In our observations we detected a highly compact radio source with an extent of 21.14 parsecs. For each of two detected radio components, we measured their flux density and spectral index. By looking at their spectra, we concluded our radio detection to be a Compact Steep-Spectrum object (CSS), indicating a young radio object less than a few thousand years in age. This result hints at a connection between the recent merger and the ignition of the central radio source.

  13. Projected Constraints on Scalarization with Gravitational Waves from Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Sampson, Laura; Yunes, Nicolas; Cornish, Neil; Ponce, Marcelo; Barausse, Enrico; Klein, Antoine; Palenzuela, Carlos; Lehner, Luis

    2015-04-01

    Certain scalar-tensor theories endow stars with scalar hair, sourced either by the star's own compactness, or by the companion's scalar charge, or by the orbital binding energy. Scalarized stars in binaries have different conservative dynamics than in General Relativity, and can excite a scalar mode in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than predicted in General Relativity, modifying the rate of decay of the orbital period. Scalar-tensor theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of compact binary inspirals are thus ideal probes of scalarization effects. In the work presented here, we analyze the types of constraints the gravitational wave measurements from the advanced LIGO detectors will be able to place on these types of scalar-tensor theories.

  14. The Low-mass Astrometric Binary LSR 1610-0040

    NASA Astrophysics Data System (ADS)

    Koren, Seth C.; Blake, Cullen H.; Dahn, Conard C.; Harris, Hugh C.

    2016-03-01

    Even though it was discovered more than a decade ago, LSR 1610-0040 remains an enigma. This object has a peculiar spectrum that exhibits some features typically found in L subdwarfs, and others common in the spectra of more massive M dwarf stars. It is also a binary system with a known astrometric orbital solution. Given the available data, it remains a challenge to reconcile the observed properties of the combined light of LSR 1610-0040AB with current theoretical models of low-mass stars and brown dwarfs. We present the results of a joint fit to both astrometric and radial velocity measurements of this unresolved, low-mass binary. We find that the photocentric orbit has a period P=633.0+/- 1.7 days, somewhat longer than previous results, eccentricity of e=0.42+/- 0.03, and we estimate that the semimajor axis of the orbit of the primary is {a}1≈ 0.32 {{AU}}, consistent with previous results. While a complete characterization of the system is limited by our small number of radial velocity measurements, we establish a likely primary mass range of 0.09-0.10 {M}⊙ from photometric and color-magnitude data. For a primary mass in this range, the secondary is constrained to be 0.06-0.075 {M}⊙ , making a negligible contribution to the total I-band luminosity. This effectively rules out the possibility of the secondary being a compact object such as an old, low-mass white dwarf. Based on our analysis, we predict a likely angular separation at apoapsis comparable to the resolution limits of current high-resolution imaging systems. Measuring the angular separation of the A and B components would finally enable a full, unambiguous solution for the masses of the components of this system.

  15. ACOUSTIC COMPACTION LAYER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

  16. Spectroscopic Subsystems in Nearby Wide Binaries

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2015-12-01

    Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5 m telescope to study short-period systems. The data reduction is described, and mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, and for some of them the orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binaries within 67 pc. It is found that 43 binaries contain at least one subsystem, and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods matches the simple prescription proposed by the author. The remaining 53 simple wide binaries with a median projected separation of 1300 AU have an RV difference distribution between their components that is not compatible with the thermal eccentricity distribution f (e) = 2e but rather matches the uniform eccentricity distribution.

  17. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.

  18. GAMMA-RAY ATTENUATION IN X-RAY BINARIES: AN APPLICATION TO LSI + 61{sup 0}303

    SciTech Connect

    Nunez, Paul D.; LeBohec, Stephan; Vincent, Stephane

    2011-04-20

    The X-ray binary LSI + 61{sup 0}303 consisting of a main-sequence Be star and a compact object has been detected in the TeV range with MAGIC and VERITAS, and showed a clear intensity modulation as a function of the orbital phase. We describe a gamma-ray attenuation model and apply it to this system. Our first result is that interaction of high energy photons with the background radiation produced by the main-sequence star alone does not account for the observed modulation. We then include interactions between very high energy radiation and matter and are able to constrain fundamental parameters of the system such as the mass of the compact object and the density of circumstellar matter around the Be star. In our analysis of the TeV data, we find that the compact object has mass M{sub 2} > 2.5 M{sub sun} at the 99% confidence level, implying it is most likely a black hole. However, we find a column density which conflicts with results from X-ray observations, suggesting that attenuation may not play an important role in the modulation.

  19. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  20. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  1. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  2. Inspiral-merger-ringdown models for spinning black-hole binaries at the interface between analytical and numerical relativity

    NASA Astrophysics Data System (ADS)

    Taracchini, Andrea

    The long-sought direct detection of gravitational waves may only be a few years away, as a new generation of interferometric experiments of unprecedented sensitivity will start operating in 2015. These experiments will look for gravitational waves with frequencies from 10 to about 1000 Hz, thus targeting astrophysical sources such as coalescing binaries of compact objects, core collapse supernovae, and spinning neutron stars, among others. The search strategy for gravitational waves emitted by compact-object binaries consists in filtering the output of the detectors with template waveforms that describe plausible signals, as predicted by general relativity, in order to increase the signal-to-noise ratio. In this work, we modeled these systems through the effective-one-body approach to the general-relativistic 2-body problem. This formalism rests on the idea that binary coalescence is universal across different mass ratios, from the test-particle limit to the equal-mass regime. It bridges the gap between post-Newtonian theory (valid in the slow-motion, weak-field limit) and black-hole perturbation theory (valid in the small mass-ratio limit, but not limited to slow motion). The project unfolded along two main avenues of inquiry, with the goal of developing faithful inspiral-merger-ringdown waveforms for generic spinning, stellar-mass black-hole binaries. On the one hand, we studied the motion and gravitational radiation of test masses orbiting Kerr black holes in perturbation theory, with the goal of extracting strong-field information that can be incorporated into effective-one-body models. On the other hand, we worked at the interface between analytical and numerical relativity by calibrating effective-one-body models against numerical solutions of Einstein's equations, and testing their accuracy when extrapolated to different regions of the parameter space. In the course of this project, we also studied conservative effects of the 2-body dynamics, namely the

  3. GRAVITATIONALLY FOCUSED DARK MATTER AROUND COMPACT STARS

    SciTech Connect

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable {gamma}-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  4. The shortest period field contact binary

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Pribulla, Theodor

    2008-08-01

    Photometric and spectroscopic results for the contact binary GSC 01387-00475 (ASAS 083128+1953.1) are presented. The existence of this binary with the orbital period of P = 0.2178 d strengthens the argument that the cut-off of the period distribution for contact binaries - until now defined by CC Comae - is very sharp. The only case of a still shorter period is known in a globular cluster where more compact contact configurations are in fact expected. While the spectroscopic orbit of GSC 01387-00475 is well defined, the low orbital inclination of the binary and the presence of a spectroscopic companion contributing about 1/3 of the total light conspire to reduce the photometric variability to ~=0.09mag. The photometric data are currently inadequate to identify the source of the small amplitude (0.02-0.03mag) intrinsic variability of the system. Based on the data obtained at the David Dunlap Observatory, University of Toronto and the All Sky Automated Survey. E-mail: rucinski@astro.utoronto.ca (SMR);pribulla@ta3.sk (TP) ‡ On leave from the Astronomical Institute of the Slovak Academy of Sciences, 05960 Tatranská Lomnica, The Slovak Republic

  5. Searching for gravitational waves from binary coalescence

    NASA Astrophysics Data System (ADS)

    Babak, S.; Biswas, R.; Brady, P. R.; Brown, D. A.; Cannon, K.; Capano, C. D.; Clayton, J. H.; Cokelaer, T.; Creighton, J. D. E.; Dent, T.; Dietz, A.; Fairhurst, S.; Fotopoulos, N.; González, G.; Hanna, C.; Harry, I. W.; Jones, G.; Keppel, D.; McKechan, D. J. A.; Pekowsky, L.; Privitera, S.; Robinson, C.; Rodriguez, A. C.; Sathyaprakash, B. S.; Sengupta, A. S.; Vallisneri, M.; Vaulin, R.; Weinstein, A. J.

    2013-01-01

    We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.

  6. GridRun: A lightweight packaging and execution environment forcompact, multi-architecture binaries

    SciTech Connect

    Shalf, John; Goodale, Tom

    2004-02-01

    GridRun offers a very simple set of tools for creating and executing multi-platform binary executables. These ''fat-binaries'' archive native machine code into compact packages that are typically a fraction the size of the original binary images they store, enabling efficient staging of executables for heterogeneous parallel jobs. GridRun interoperates with existing distributed job launchers/managers like Condor and the Globus GRAM to greatly simplify the logic required launching native binary applications in distributed heterogeneous environments.

  7. A newly discovered compact planetary nebula

    NASA Astrophysics Data System (ADS)

    Cappellaro, E.; Turatto, M.; Sabbadin, F.

    1989-07-01

    An H-alpha emission object is identified in a 103a-E + RG1 objective prism plate taken with the 92/67-cm Schmidt telescope of the Astronomical Observatory of Padua at Asiago (Italy). The object turns out to be a compact planetary nebula located at alpha(1950.0) = 18 h 4.3 min and delta(1950.0) = -8 deg 56.4 arcmin (classification code: 19 + 5 deg 1).

  8. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  9. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  10. Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion

    PubMed Central

    Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray

    2016-01-01

    The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852

  11. Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion.

    PubMed

    Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray

    2016-01-01

    The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852

  12. Compact baby Skyrmions

    SciTech Connect

    Adam, C.; Klimas, P.; Sanchez-Guillen, J.; Wereszczynski, A.

    2009-11-15

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.

  13. Spectroscopic Orbits for Kepler FOV Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Williams, Stephen J.; Guo, Zhao

    2013-02-01

    We are currently involved in a four year program of precise eclipsing binary photometry with the NASA Kepler Observatory. Our goal is to search for variations in minimum light timing for intermediate mass eclipsing binaries. Such periodic variations will reveal the reflex motion caused by any distant, low mass object that orbits the close binary. it Kepler's unprecedented accuracy and continuous observations provide a unique opportunity to detect the low mass companions that are predicted to result from the angular momentum of the natal cloud. The goal of this proposal is to obtain blue spectra of short period (0.9-6d) eclipsing binaries, derive radial velocities, and produce a double-lined spectroscopic orbit (as well as estimates of the stellar effective temperatures, gravities, and metallicities). Combined with the it Kepler light curve, we will determine very accurate masses and radii for the members of the close binary, which will yield the mass-inclination product M_3 sin i for any companions detected by light travel time or other effects. An extended sample of eclipsing binaries with longer periods (up to 50d) is now being investigated to test whether the presence of a tertiary companion declines with increasing period. We propose to obtain a single spectrum at quadrature for the brightest 48 stars in this expanded sample to characterize the effective temperatures and total mass contained in these systems.

  14. Tearing up a misaligned accretion disc with a binary companion

    NASA Astrophysics Data System (ADS)

    Doğan, Suzan; Nixon, Chris; King, Andrew; Price, Daniel J.

    2015-05-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.

  15. A New Eclipsing Binary Discovered in a Crowded Star Field

    NASA Astrophysics Data System (ADS)

    Larson, Jessica A.; Ranquist, E.; Hernandez, A.; Stoker, E.; Gaillard, C.

    2013-06-01

    Using the 0.9 meter telescope on West Mountain to follow-up possible transiting planets with ground based photometry, we discovered a previously unknown eclipsing binary system. This eclipsing binary is located in a crowded star field and so could not be reduced using photometry. In order to figure out which object in our field of view is the eclipsing binary, we learned how to use DAO phot. By using DAO phot we hope to be able to learn more about the individual stars that make up the binary system and their parameters.

  16. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-01

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced. PMID:27505830

  17. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  18. SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A

    SciTech Connect

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.; Forman, William R.; Jones, Christine; Murray, Stephen S.; Birkinshaw, Mark; Evans, Daniel A.; Jordan, Andres; Maccarone, Thomas J.; Croston, Judith H.; Brassington, Nicola J.; Hardcastle, Martin J.; Goodger, Joanna L.; Kainulainen, Jouni; Woodley, Kristin A.; Sivakoff, Gregory R.; Gilfanov, Marat; Sarazin, Craig L.; Voss, Rasmus [Department of Astrophysics and others

    2013-04-01

    We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant of a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.

  19. The extreme Kuiper Belt binary 2001 QW322.

    PubMed

    Petit, J-M; Kavelaars, J J; Gladman, B J; Margot, J L; Nicholson, P D; Jones, R L; Parker, J Wm; Ashby, M L N; Bagatin, A Campo; Benavidez, P; Coffey, J; Rousselot, P; Mousis, O; Taylor, P A

    2008-10-17

    The study of binary Kuiper Belt objects helps to probe the dynamic conditions present during planet formation in the solar system. We report on the mutual-orbit determination of 2001 QW322, a Kuiper Belt binary with a very large separation whose properties challenge binary-formation and -evolution theories. Six years of tracking indicate that the binary's mutual-orbit period is approximately 25 to 30 years, that the orbit pole is retrograde and inclined 50 degrees to 62 degrees from the ecliptic plane, and, most surprisingly, that the mutual orbital eccentricity is <0.4. The semimajor axis of 105,000 to 135,000 kilometers is 10 times that of other near-equal-mass binaries. Because this weakly bound binary is prone to orbital disruption by interlopers, its lifetime in its present state is probably less than 1 billion years. PMID:18927391

  20. Binary synchronous simulator

    NASA Technical Reports Server (NTRS)

    Rogers, J. R., III

    1980-01-01

    Flexible simulator for trouble-shooting data transmission system uses binary synchronous communications protocol to produce error-free transmission of data between two points. Protocol may be used to replace display generator or be directly fed to display generator.

  1. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  2. Binary pattern deflectometry.

    PubMed

    Butel, Guillaume P; Smith, Greg A; Burge, James H

    2014-02-10

    Deflectometry is widely used to accurately calculate the slopes of any specular reflective surface, ranging from car bodies to nanometer-level mirrors. This paper presents a new deflectometry technique using binary patterns of increasing frequency to retrieve the surface slopes. Binary Pattern Deflectometry allows almost instant, simple, and accurate slope retrieval, which is required for applications using mobile devices. The paper details the theory of this deflectometry method and the challenges of its implementation. Furthermore, the binary pattern method can also be combined with a classic phase-shifting method to eliminate the need of a complex unwrapping algorithm and retrieve the absolute phase, especially in cases like segmented optics, where spatial algorithms have difficulties. Finally, whether it is used as a stand-alone or combined with phase-shifting, the binary patterns can, within seconds, calculate the slopes of any specular reflective surface. PMID:24663273

  3. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  4. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  5. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  6. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), sy