Thermodynamics of magnetized binary compact objects
Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos
2010-11-15
Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.
Evolution of binaries with compact objects in globular clusters
NASA Astrophysics Data System (ADS)
Ivanova, Natalia
2016-02-01
Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries with neutron stars, and how mass-transferring binaries with a black hole and a white dwarf can be formed. We discuss as well one old unsolved puzzle and two new puzzles posed by recent observations: what descendants do ultra-compact X-ray binaries produce, how are very compact triples formed, and how can black hole low-mass X-ray binaries acquire non-degenerate companions?
Hans A. Bethe Prize: Mergers of Binary Compact Objects
NASA Astrophysics Data System (ADS)
Kalogera, Vassiliki
2016-03-01
The inspiral and eventual merger of two compact objects in binary systems are important in astrophysics across the electromagnetic spectrum and as potential gravitational-wave sources. In this talk I will select a few topics of current interest to highlight compact-object mergers, including in the context of multi-messenger astrophysics.
Evidence for a binary origin of a central compact object
NASA Astrophysics Data System (ADS)
Doroshenko, Victor; Pühlhofer, Gerd; Kavanagh, Patrick; Santangelo, Andrea; Suleimanov, Valery; Klochkov, Dmitry
2016-05-01
Central compact objects (CCOs) are thought to be young thermally emitting isolated neutron stars that were born during the preceding core-collapse supernova explosion. Here, we present evidence that at least in one case the CCO could have been formed within a binary system. We show that the highly reddened optical source IRAS 17287-3443, located 25 arcsec away from the CCO candidate XMMUJ173203.3-344518 and classified previously as a post asymptotic giant branch star, is indeed surrounded by a dust shell. This shell is heated by the central star to temperatures of ˜90 K and observed as extended infrared emission in 8-160 μm band. The dust temperature also increases in the vicinity of the CCO which implies that it likely resides within the shell. We estimate the total dust mass to be ˜0.4-1.5 M⊙ which significantly exceeds expected dust yields by normal stars and thus likely condensed from supernova ejecta. Taking into account that both the age of the supernova remnant and the duration of active mass-loss phase by the optical star are much shorter than the total lifetime of either object, the supernova and the onset of the active mass-loss phase of the companion have likely occurred approximately simultaneously. This is most easily explained if the evolution of both objects is interconnected. We conclude, therefore, that both stars were likely members of the same binary system disrupted by a supernova.
BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES
O'Shaughnessy, R.; Kalogera, V.; Belczynski, Krzysztof E-mail: vicky@northwestern.ed
2010-06-10
In this paper, we estimate binary compact object merger detection rates for LIGO, including the potentially significant contribution from binaries that are produced in elliptical galaxies near the epoch of peak star formation. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4 x 10{sup -3} Mpc{sup -3} Myr{sup -1} for binary black holes (BHs), 3 x 10{sup -2} Mpc{sup -3} Myr{sup -1} for binary neutron stars (NSs), and 10{sup -2} Mpc{sup -3} Myr{sup -1} for BH-NS binaries. We find that mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are likely dominated by the contribution from spiral galaxies. Limiting attention to elliptical-galaxy plus only those spiral-galaxy models that reproduce current observations of Galactic NS-NS, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (in practice as part of a network, to reduce its noise), corresponding to radii D {sub bns} of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M {sub sun} NSs of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9 x 10{sup -2}-0.46 and 25-400 yr{sup -1} (at 90% confidence level), respectively. We also find that the probability P {sub detect} of detecting one or more mergers with this single detector can be approximated by (1) P {sub detect} {approx_equal} 0.4 + 0.5 log(T/0.01 yr), assuming D {sub bns} = 197 Mpc and it operates for T yr, for T between 2 days and 0.1 yr, or by (2) P {sub detect} {approx_equal} 0.5 + 1.5 log(D {sub bns}/32 Mpc), for 1 yr of operation and for D {sub bns
Tidal torque induced by orbital decay in compact object binaries
NASA Astrophysics Data System (ADS)
Dall'Osso, Simone; Rossi, Elena M.
2013-01-01
As we observe in the moon-earth system, tidal interactions in binary systems can lead to angular momentum exchange. The presence of viscosity is generally regarded as the condition for such transfer to happen. In this paper, we show how the orbital evolution can cause a persistent torque between the binary components, even for inviscid bodies. This preferentially occurs at the final stage of coalescence of compact binaries, when the orbit shrinks successively by gravitational waves and plunging on a time-scale shorter than the viscous time-scale. The total orbital energy transferred to the secondary by this torque is ˜10-2 of its binding energy. We further show that this persistent torque induces a differentially rotating quadrupolar perturbation. Specializing to the case of a secondary neutron star, we find that this non-equilibrium state has an associated free energy of 1047-1048 erg, just prior to coalescence. This energy is likely stored in internal fluid motions, with a sizeable amount of differential rotation. By tapping this free energy reservoir, a pre-existing weak magnetic field could be amplified up to a strength of ≈1015 G. Such a dynamically driven tidal torque can thus recycle an old neutron star into a magnetar, with possible observational consequences at merger.
Maria Goeppert-Mayer Award Talk: Formation and Evolution of Compact Objects in Binary Systems
NASA Astrophysics Data System (ADS)
Kalogera, Vicky
2008-04-01
Ever since their discovery, first as X-ray sources and later as radio pulsars, binary stellar systems harboring neutron stars or black holes have been pivotal in our efforts to understand the formation and evolution of these most compact objects and the implications for gravitational wave searches. I will review some recent surprising results linking the formation of neutron stars and black holes. I will also discuss how studies of double compact objects can help uncover the origin of short gamma-ray bursts and assess the prospects for gravitational wave detections in the near future.
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free
NASA Astrophysics Data System (ADS)
Stevenson, Simon
2016-07-01
Advanced LIGO finished its first observing run (O1) at the begining of 2016, at a sensitivity ~3 times that of the initial LIGO detectors. This increased sensitivity makes the possibility of detecting gravitational-waves a realistic prospect over the next few years. One of the most promising sources for advanced gravitational-wave detectors is the merger of two compact objects; neutron stars or black holes. These objects are formed as the end point of the evolution of massive stars in close binaries. There remain many poorly understood processes in the lives of massive stars and the evolution of close binary systems. These processes include the distribution of kicks received by black holes at birth, the amount of angular momentum lost from a system during a mass transfer episode, and the common envelope event. One way of attempting to understand these processes is to attempt to constrain them observationally using eventual gravitational-wave observations of compact binary mergers. Here we present recent work on this front.
NASA Astrophysics Data System (ADS)
Tremblay, S. E.; Taylor, G. B.; Ortiz, A. A.; Tremblay, C. D.; Helmboldt, J. F.; Romani, R. W.
2016-06-01
We present multifrequency Very Long Baseline Array (VLBA) follow-up observations of VLBA Imaging and Polarimetry Survey sources identified as likely compact symmetric objects (CSOs) or supermassive binary black holes (SBBHs). We also present new spectroscopic redshifts for 11 sources observed with the Hobby-Eberly Telescope. While no new SBBHs can be confirmed from these observations, we have identified 24 CSOs in the sample, 15 of which are newly designated, and refuted 52 candidates leaving 33 unconfirmed candidates. This is the first large uniform sample of CSOs which can be used to elicit some of the general properties of these sources, including morphological evolution and environmental interaction. We have detected polarized emission from two of these CSOs the properties of which are consistent with active galactic nuclei unification schemes.
THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS
Fong, W.; Berger, E.
2013-10-10
We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets of ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)
NASA Astrophysics Data System (ADS)
Komossa, S.; Zensus, J. A.
2016-02-01
The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.
The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions
NASA Astrophysics Data System (ADS)
Rosswog, S.; Piran, T.; Nakar, E.
2013-04-01
We explore the multimessenger signatures of encounters between two neutron stars (ns2) and between a neutron star and a stellar mass black hole (nsbh). We focus on the differences between gravitational-wave-driven binary mergers and dynamical collisions that occur, for example, in globular clusters. Our discussion is based on Newtonian hydrodynamics simulations that incorporate a nuclear equation of state and a multiflavour neutrino treatment. For both types of encounters we compare the gravitational wave and neutrino emission properties. We also calculate the rates at which nearly unbound mass is delivered back to the central remnant in a ballistic-fallback-plus-viscous-disc model and we analyse the properties of the dynamically ejected matter. Last but not least we address the electromagnetic transients that accompany each type of encounter. We find that dynamical collisions are at least as promising as binary mergers for producing (short) gamma-ray bursts, but they also share the same possible caveats in terms of baryonic pollution. All encounter remnants produce peak neutrino luminosities of at least ˜1053 erg s-1, some of the collision cases exceed this value by more than an order of magnitude. The canonical ns2 merger case ejects more than 1 per cent of a solar mass of extremely neutron-rich (Ye ˜ 0.03) material, an amount that is consistent with double neutron star mergers being a major source of r-process in the galaxy. nsbh collisions eject very large amounts of matter (˜0.15 M⊙) which seriously constrains their admissible occurrence rates. The compact object collision rate (sum of ns2 and nsbh) must therefore be less, likely much less, than 10 per cent of the ns2 merger rate. The radioactively decaying ejecta produce optical-ultraviolet `macronova' which, for the canonical merger case, peak after ˜0.4 d with a luminosity of ˜5 × 1041 erg s-1. ns2 (nsbh) collisions reach up to two (four) times larger peak luminosities. The dynamic ejecta deposit a
NASA Astrophysics Data System (ADS)
Belczynski, Krzysztof; Kalogera, Vassiliki; Bulik, Tomasz
2002-06-01
A new generation of ground-based interferometric detectors for gravitational waves is currently under construction or has entered the commissioning phase (Laser Interferometer Gravitational-wave Observatory [LIGO], VIRGO, GEO600, TAMA300). The purpose of these detectors is to observe gravitational waves from astrophysical sources and help improve our understanding of the source origin and physical properties. In this paper we study the most promising candidate sources for these detectors: inspiraling double compact objects. We use population synthesis methods to calculate the properties and coalescence rates of compact object binaries: double neutron stars, black hole-neutron star systems, and double black holes. We also examine the formation channels available to double compact object binaries. We explicitly account for the evolution of low-mass helium stars and investigate the possibility of common-envelope evolution involving helium stars as well as two evolved stars. As a result we identify a significant number of new formation channels for double neutron stars, in particular, leading to populations with very distinct properties. We discuss the theoretical and observational implications of such populations, but we also note the need for hydrodynamical calculations to settle the question of whether such common-envelope evolution is possible. We also present and discuss the physical properties of compact object binaries and identify a number of robust, qualitative features as well as their origin. Using the calculated coalescence rates we compare our results to earlier studies and derive expected detection rates for LIGO. We find that our most optimistic estimate for the first LIGO detectors reach a couple of events per year and our most pessimistic estimate for advanced LIGO detectors exceed ~=10 events per year.
Precession-tracking coordinates for simulations of compact-object binaries
NASA Astrophysics Data System (ADS)
Ossokine, Serguei; Kidder, Lawrence E.; Pfeiffer, Harald P.
2013-10-01
Binary black hole simulations with black hole excision using spectral methods require a coordinate transformation into a corotating coordinate system where the black holes are essentially at rest. This paper presents and discusses two coordinate transformations that are applicable to precessing binary systems, one based on Euler angles, the other on quaternions. Both approaches are found to work well for binaries with moderate precession, i.e., for cases where the orientation of the orbital plane changes by ≪90°. For strong precession, performance of the Euler-angle parametrization deteriorates, eventually failing for a 90° change in orientation because of singularities in the parametrization (“gimbal lock”). In contrast, the quaternion representation is invariant under an overall rotation and handles any orientation of the orbital plane as well as the Euler-angle technique handles nonprecessing binaries.
Lai Dong
2012-09-20
The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.
A Statistical Approach to Identifying Compact Objects in X-ray Binaries
NASA Astrophysics Data System (ADS)
Vrtilek, Saeqa D.
2013-04-01
A standard approach towards statistical inferences in astronomy has been the application of Principal Components Analysis (PCA) to reduce dimensionality. However, for non-linear distributions this is not always an effective approach. A non-linear technique called ``diffusion maps" (Freema \\eta 2009; Richard \\eta 2009; Lee \\& Waterman 2010), a robust eigenmode-based framework, allows retention of the full ``connectivity" of the data points. Through this approach we define the highly non-linear geometry of X-ray binaries in a color-color-intensity diagram in an efficient and statistically sound manner providing a broadly applicable means of distinguishing between black holes and neutron stars in Galactic X-ray binaries.
On the mass of the compact object in the black hole binary A0620-00
NASA Technical Reports Server (NTRS)
Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.
1993-01-01
Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.
Prodan, Snezana; Antonini, Fabio; Perets, Hagai B. E-mail: antonini@cita.utoronto.ca
2015-02-01
Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.
Lincoln, C.W.
1990-01-01
The late-time evolution of binary systems of compact objects (neutron stars or black holes) is studied using the Damour-Derueele (post){sup 5/2}-Newtonian equations of motion with relativistic corrections of all orders up to and including radiation reaction. Using the method of close orbital elements from celestial mechanics, the author evolves the orbits to separations of r {approx} 2 m, where m is the total mass, at which point the (post){sup 5/2}-Newtonian approximation breaks down. With the orbits as input, he calculates the gravitational waveform and luminosity using a post-Newtonian formalism of Wagoner and Will. Results are obtained for systems containing various combinations of compact objects, for various values of the mass ratio m{sub 1}/m{sub 2}, and forg various initial values of the orbital eccentricity.
Shappee, Benjamin J.; Thompson, Todd A. E-mail: thompson@astronomy.ohio-state.edu
2013-03-20
Over a broad range of initial inclinations and eccentricities, an appreciable fraction of hierarchical triple star systems with similar masses are essentially unaffected by the Kozai-Lidov mechanism (KM) until the primary in the central binary evolves into a compact object. Once it does, it may be much less massive than the other components in the ternary, enabling the 'eccentric Kozai mechanism (EKM)': the mutual inclination between the inner and outer binaries can flip signs driving the inner binary to very high eccentricity, leading to a close binary or collision. We demonstrate this 'mass-loss-induced eccentric Kozai' (MIEK) mechanism by considering an example system and defining an ad hoc minimal separation between the inner two members at which tidal effects become important. For fixed initial masses and semimajor axes, but uniform distributions of eccentricity and cosine of the mutual inclination, {approx}10% of systems interact tidally or collide while the primary is on the main sequence (MS) due to the KM or EKM. Those affected by the EKM are not captured by earlier quadrupole-order secular calculations. We show that fully {approx}30% of systems interact tidally or collide for the first time as the primary swells to AU scales, mostly as a result of the KM. Finally, {approx}2% of systems interact tidally or collide for the first time after the primary sheds most of its mass and becomes a white dwarf (WD), mostly as a result of the MIEK mechanism. These findings motivate a more detailed study of mass loss in triple systems and the formation of close neutron star (NS)/WD-MS and NS/WD-NS/WD binaries without an initial common envelope phase.
Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi
2015-07-17
We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780
Winds from disks in compact binaries
Mauche, C.W.
1993-10-27
We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.
Gravity waves, chaos, and spinning compact binaries
Levin
2000-04-17
Spinning compact binaries are shown to be chaotic in the post-Newtonian expansion of the two-body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template. PMID:11019134
Accretion-powered Compact Binaries
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.
2003-12-01
Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H
Compact objects in Horndeski gravity
NASA Astrophysics Data System (ADS)
Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele
2016-04-01
Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.
TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS
Fuller, Jim; Lai Dong
2012-09-01
Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
Double compact objects. II. Cosmological merger rates
Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard
2013-12-10
The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the 'local' universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.
The origin of ultra-compact binaries
NASA Technical Reports Server (NTRS)
Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki
1987-01-01
The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.
Eccentric motion of spinning compact binaries
NASA Astrophysics Data System (ADS)
Tessmer, Manuel; Schäfer, Gerhard
2014-05-01
The equations of motion for spinning compact binaries on eccentric orbits are treated perturbatively in powers of a fractional mass-difference ordering parameter. The solution is valid through first order in the mass-difference parameter. A canonical point transformation removes the leading-order terms of the spin-orbit Hamiltonian which induce a wiggling precession of the orbital angular momentum around the conserved total angular momentum, a precession which disappears in the case of equal masses or one single spin. Action-angle variables are applied that make a canonical perturbation theory easily treatable.
Spinning compact binary dynamics and chameleon orbits
NASA Astrophysics Data System (ADS)
Gergely, László Árpád; Keresztes, Zoltán
2015-01-01
We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.
Bhalerao, Varun B.; Harrison, Fiona A.; Van Kerkwijk, Marten H.
2012-09-20
We present optical spectroscopic measurements of the eclipsing high-mass X-ray binary (HMXB) XMMU J013236.7+303228 in M 33. Based on spectra taken at multiple epochs of the 1.73 day binary orbital period we determine physical as well as orbital parameters for the donor star. We find the donor to be a B1.5IV subgiant with effective temperature T = 22, 000-23, 000 K. From the luminosity, temperature, and known distance to M 33 we derive a radius of R 8.9 {+-} 0.5 R{sub Sun }. From the radial-velocity measurements, we determine a velocity semi-amplitude of K{sub opt} = 63 {+-} 12 km s{sup -1}. Using the physical properties of the B star determined from the optical spectrum, we estimate the star's mass to be M{sub opt} = 11 {+-} 1 M{sub Sun }. Based on the X-ray spectrum, the compact companion is likely a neutron star, although no pulsations have yet been detected. Using the spectroscopically derived B star mass we find the neutron star companion mass to be M{sub X} = 2.0 {+-} 0.4 M{sub Sun }, consistent with the neutron star mass in the HMXB Vela X-1, but heavier than the canonical value of 1.4 M{sub Sun} found for many millisecond pulsars. We attempt to use as an additional constraint that the B star radius inferred from temperature, flux, and distance should equate to the Roche radius, since the system accretes by Roche lobe overflow. This leads to substantially larger masses, but by trying to apply the technique to known systems, we find that the masses are consistently overestimated. Attempting to account for that in our uncertainties, we derive M{sub X} = 2.2{sup +0.8}{sub -0.6} M{sub Sun} and M{sub opt} = 13 {+-} 4 M{sub Sun }. We conclude that precise constraints require detailed modeling of the shape of the Roche surface.
Probing the Environment of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hanke, Manfred
2011-04-01
X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since
Recognition of compact astrophysical objects
NASA Technical Reports Server (NTRS)
Ogelman, H. (Editor); Rothschild, R. (Editor)
1977-01-01
NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.
Gravitational Radiation from Compact Binary Pulsars
NASA Astrophysics Data System (ADS)
Antoniadis, John
An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems—if modeled properly—provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have allowed for a series of precise mass measurements is such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.
Accretion Disk Outflows from Compact Object Mergers
NASA Astrophysics Data System (ADS)
Metzger, Brian
Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed
ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES
Kaplan, David L.; Bildsten, Lars; Steinfadt, Justin D. R. E-mail: bildsten@kitp.ucsb.edu
2012-10-10
The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.
Composite gravitational-wave detection of compact binary coalescence
Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.
2011-04-15
The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.
Studies of compact objects with Einstein - Review and prospects
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1990-01-01
X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.
DOUBLE COMPACT OBJECTS AS LOW-FREQUENCY GRAVITATIONAL WAVE SOURCES
Belczynski, Krzysztof; Bulik, Tomasz; Benacquista, Matthew
2010-12-10
We study the Galactic field population of double compact objects (DCOs; NS-NS, BH-NS, BH-BH binaries) to investigate the number (if any) of these systems that can potentially be detected with the Laser Interferometer Space Antenna (LISA) at low gravitational wave frequencies. We calculate the Galactic numbers and physical properties of these binaries and show their relative contributions from the disk, bulge, and halo. Although the Galaxy hosts {approx}10{sup 5} DCO binaries emitting low-frequency gravitational waves, only a handful of these objects in the disk will be detectable with LISA, but none from the halo or bulge. This is because the bulk of these binaries are NS-NS systems with high eccentricities and long orbital periods (weeks/months) causing inefficient signal accumulation (a small number of signal bursts at periastron passage in one year of LISA observations) and rendering them undetectable in the majority of these cases. We adopt two evolutionary models that differ in their treatment of the common envelope (CE) phase that is a major (and still mostly unknown) process in the formation of close DCOs. Depending on the evolutionary model adopted, our calculations indicate the likely detection of about four NS-NS binaries and two BH-BH systems (model A; likely survival of progenitors through CE) or only a couple of NS-NS binaries (model B; suppression of the DCO formation due to CE mergers).
Antonini, Fabio; Perets, Hagai B.
2012-09-20
The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that {approx}0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e {approx}> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.
Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico
2014-03-20
The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a {sup 2/7}. Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.
Status of searches for compact binaries in aLIGO with PyCBC
NASA Astrophysics Data System (ADS)
Biwer, Christopher
2016-03-01
Advanced LIGO began its first observing in September 2015. Gravitational waves from binary neutron stars, binary black holes and neutron star-black hole binaries are an important science goal for Advanced LIGO. The PyCBC search uses match filtering to correlate LIGO data with a bank of templates to search for transient gravitational-wave from compact object binaries with a total mass between 2 and 100 solar masses with spin. In this talk, we describe results of the PyCBC search during the first aLIGO observing run. LIGO.
Evolution of binary stars in multiple-population globular clusters - II. Compact binaries
NASA Astrophysics Data System (ADS)
Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale
2016-04-01
We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.
The evolution of highly compact binary stellar systems in globular clusters
NASA Technical Reports Server (NTRS)
Krolik, J. H.; Meiksin, A.; Joss, P. C.
1984-01-01
A highly compact binary represents a system which is composed of a collapsed object (degenerate dwarf, neutron star, or black hole) in orbit with a low-mass (equal to or less than 0.5 solar mass) secondary star. Matter may be transferred from the secondary to the collapsed star due to the decay of the orbit resulting from the emission of gravitational radiation. The present investigation has the objective to study quantitatively the evolution of highly compact binaries in globular cluster cores, subject to the interplay of gravitational radiation and collisions with field stars. The investigation is exploratory in nature. The numerical methods employed are based on the techniques developed by Rappaport et al. (1982). It is found that occasional close encounters with field stars strongly dominate the evolution of highly compact binaries in dense globular cluster cores. Attention is given to the applicability of the findings to observations of X-ray sources and cataclysmic variables.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
Compact binary hashing for music retrieval
NASA Astrophysics Data System (ADS)
Seo, Jin S.
2014-03-01
With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.
First law of mechanics for compact binaries on eccentric orbits
NASA Astrophysics Data System (ADS)
Le Tiec, Alexandre
2015-10-01
Using the canonical Arnowitt-Deser-Misner Hamiltonian formalism, a "first law of mechanics" is established for binary systems of point masses moving along generic stable bound (eccentric) orbits. This relationship is checked to hold within the post-Newtonian approximation to general relativity, up to third order. Several applications are discussed, including the use of gravitational self-force results to inform post-Newtonian theory and the effective one-body model for eccentric-orbit compact binaries.
Towards realistic simulations of non-vacuum compact binaries
NASA Astrophysics Data System (ADS)
Neilsen, David; Anderson, Matthew; Draper, Christian; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Miguel, Megevand; Motl, Patrick; Palenzuela, Carlos
2011-04-01
Binary mergers in non-vacuum spacetimes often display complex dynamics that are sensitive to the physical phenomena included in the model, and which may affect the gravitational wave signature from the system. For example, magnetic fields, cooling mechanisms, and equations of state influence the merger and post-merger evolution of compact binaries. Thus, these effects should be included in computational models that connect with astrophysical observations. In this talk we present results of neutron star evolutions with a finite-temperature equation of state in the context of binary mergers, and we also consider effects of other relevant physical phenomena.
Tidal deformations of a spinning compact object
NASA Astrophysics Data System (ADS)
Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria
2015-07-01
The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.
Expected Bounds on Compact Binary Coalescence Rates from LIGO Observations
NASA Astrophysics Data System (ADS)
Sampson, Laura; LIGO Scientific Collaboration Collaboration
2016-03-01
The Advanced LIGO detectors have recently completed their first observing run, with a sensitive spacetime volume over 27 times larger than the initial LIGO configuration. In this talk we will examine the expected bounds on compact binary coalescence rates from O1 observations, and discuss the corresponding impact on astrophysical models.
Hadžović, Ervina; Betz, Gabriele; Hadžidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans
2011-09-15
Roller compaction is a dry granulation method which results in tablets with inferior tensile strength comparing to direct compaction. The effect of roller compaction on compressibility and compactibility of tablets prepared from Theophylline anhydrate powder, Theophylline anhydrate fine powder and Theophylline monohydrate was investigated by measuring tensile strength of tablets as well as calculating compressibility and compactibility parameters by Leuenberger equation. The tablets under the same conditions were prepared by direct compaction and roller compaction. The binary mixtures of Theophylline anhydrate powder, Theophylline anhydrate fine powder, Theophylline monohydrate and microcrystalline cellulose were prepared in order to determine the optimal ratio of active material and excipients which delivers a sufficient mechanical strength of tablets. Tensile strength of MCC tablets and compactibility parameters calculated by Leuenberger equation after roller compaction was significantly decreased, while THAP, THAFP and THMO tablets showed only a minor reduction in compactibility and compressibility. Adding MCC to a mixture with Theophylline showed that the right choice and ratio of excipients can enable a sufficient mechanical strength of the tablets after roller compaction. PMID:21704142
COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS
Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide
2013-01-10
In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.
Compact Binary Progenitors of Short Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide
2013-01-01
In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.
NASA Astrophysics Data System (ADS)
Ajith, P.; Fotopoulos, N.; Privitera, S.; Neunzert, A.; Mazumder, N.; Weinstein, A. J.
2014-04-01
We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (nonprecessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semianalytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m2≲12M⊙) binaries, this template bank achieves effective fitting factors ˜0.92- 0.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black-hole neutron-star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black holes (neutron stars) are uniformly distributed between 0-0.98 [0-0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is ˜20%-52%, as compared to a search using a nonspinning bank.
Fast large-scale object retrieval with binary quantization
NASA Astrophysics Data System (ADS)
Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi
2015-11-01
The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, R. N.
2015-05-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar- tensor theories. The waveforms are constructed using a standard GR method known as “direct integration of the relaxed Einstein equations,” appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity. In another, mixed black hole- neutron star systems, all differences from GR can be characterized by only a single parameter.
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, Ryan
2014-03-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as ``Direct Integration of the Relaxed Einstein equations,'' appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, mixed black hole-neutron star systems, all differences from GR can be characterized by only a single parameter. In another, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity.
MACHO (MAssive Compact Halo Objects) Data
The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)
Recent developments in the tidal deformability of spinning compact objects
NASA Astrophysics Data System (ADS)
Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria
2016-04-01
We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.
The lack of large compact symmetric objects
NASA Astrophysics Data System (ADS)
Augusto, P.
2009-02-01
In recent years, `baby' (< 103 yr) and `young' (103-105 yr) radio galaxies have been found and classified, although their numbers are still small (tens). Also, they have many different names, depending on the type of survey and scientific context in which they were found: compact steep spectrum sources (CSS), giga-Hertz peaked spectrum sources (GPS) and compact-medium symmetric objects (C-MSO). The latter have the radio galaxy structure more obvious and correspond to the `babies' (CSOs; < 1 kpc) and `young' (MSOs; 1-15 kpc) radio galaxies. The log-size distribution of CSOs shows a sharp drop at 0.3 kpc. This trend continues through flat-spectrum MSOs (over the full 1-15 kpc size range). In order to find out if this lack of large CSOs and flat-spectrum MSOs is due to poor sampling (lack of surveys that probe efficiently the 0.3-15 kpc size range) and/or has physical meaning (e.g. if the lobes of CSOs expand as they grow and age, they might become CSSs, `disappearing' from the flat-spectrum MSO statistics), we have built a sample of 157 flat-spectrum radio sources with structure on ˜0.3-15 kpc scales. We are using new, archived and published data to produce and inspect hundreds of multi-frequency multi-instrument maps and models. We have already found 13 new secure CSO/MSOs. We expect to uncover ˜30-40 new CSOs and MSOs, most on the 0.3-15 kpc size range, when our project is complete.
Merging compact binaries in hierarchical triple systems: Resonant excitation of binary eccentricity
NASA Astrophysics Data System (ADS)
Liu, Bin; Lai, Dong; Yuan, Ye-Fei
2015-12-01
We study the secular dynamics of compact binaries (consisting of white dwarfs, neutron stars or black holes) with tertiary companions in hierarchical triple systems. As the inner binary (with initially negligible eccentricity) undergoes orbital decay due to gravitational radiation, its eccentricity can be excited by gravitational forcing from the tertiary. This excitation occurs when the triple system passes through an "apsidal precession resonance," when the precession rate of the inner binary, driven by the gravitational perturbation of the external companion and general relativity, matches the precession rate of the outer binary. The eccentricity excitation requires the outer companion to be on an eccentric orbit, with the mutual inclination between the inner and outer orbits less than ˜40 ° . Gravitational wave (GW) signals from the inner binary can be significantly modified as the system evolves through the apsidal precession resonance. For some system parameters (e.g., a white dwarf binary with a brown dwarf tertiary), the resonance can happen when the binary emits GWs in the 10-4-10-1 Hz range (the sensitivity band of LISA).
NASA Astrophysics Data System (ADS)
Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen
2015-09-01
The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such as supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.
The evolution of highly compact binary stellar systems
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.; Webbink, R. F.
1982-01-01
A new theoretical treatment of the evolution of highly compact binary systems is presented. The evolution is calculated until almost the entire mass of the secondary has been transferred to the primary or lost from the system. It is assumed that gravitational radiation from the system is the cause of mass transfer. It is found that the structure of the mass-losing star can be approximated by an n = 3/2 polytrope, and as a result a relatively large number of different cases can be explored and some general conclusions drawn. An explanation is found for the existence of a cutoff in the orbital period distribution among the cataclysmic variables and light is shed upon the possible generic relationships among cataclysmic variables, the low-mass X-ray binaries, and the spectrally soft transient X-ray sources.
The dynamic ejecta of compact object mergers and eccentric collisions.
Rosswog, Stephan
2013-06-13
Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium. PMID:23630377
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-07-20
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M{sub sun}, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M{sub sun} and 14.4 M{sub sun}. Our favored estimate, based on a 9.0 kpc distance estimate, is {approx}10 M{sub sun}, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.
Large-margin Learning of Compact Binary Image Encodings.
Paisitkriangkrai, Sakrapee; Shen, Chunhua; Van den Hengel, Anton
2014-07-16
The use of high-dimensional features has become a normal practice in many computer vision applications. The large dimension of these features is a limiting factor upon the number of data points which may be effectively stored and processed, however. We address this problem by developing a novel approach to learning a compact binary encoding, which exploits both pair-wise proximity and class-label information on training data set. Exploiting this extra information allows the development of encodings which, although compact, outperform the original high-dimensional features in terms of final classification or retrieval performance. The method is general, in that it is applicable to both non-parametric and parametric learning methods. This generality means that the embedded features are suitable for a wide variety of computer vision tasks, such as image classification and content-based image retrieval. Experimental results demonstrate that the new compact descriptor achieves an accuracy comparable to, and in some cases better than, the visual descriptor in the original space despite being significantly more compact. Moreover, any convex loss function and convex regularization penalty (e.g., `p norm with p 1) can be incorporated into the framework, which provides future flexibility. PMID:25051551
Fast and accurate inference on gravitational waves from precessing compact binaries
NASA Astrophysics Data System (ADS)
Smith, Rory; Field, Scott E.; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia
2016-08-01
Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments, we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced-order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper, we construct the first reduced-order models of gravitational-wave signals that include the effects of spin precession, inspiral, merger, and ringdown in compact object binaries and that are valid for component masses describing binary neutron star, binary black hole, and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2." Our ROM enables the use of a fast reduced-order quadrature (ROQ) integration rule which allows us to approximate Bayesian probability density functions at a greatly reduced computational cost. We find that the ROQ rule can be used to speed-up inference by factors as high as 300 without introducing systematic bias. This corresponds to a reduction in computational time from around half a year to half a day for the longest duration and lowest mass signals. The ROM and ROQ rules are available with the main inference library of the LIGO Scientific Collaboration, LALInference.
Compact Binary Mergers as Multimessenger Sources of Gravitational Waves
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
2015-04-01
On the centennial anniversary of Einstein's theory of general relativity, we are on the verge of directly detecting one of its most remarkable predictions - gravitational waves (GWs). The inspiral and merger of compact binaries - binaries with black hole, neutron star or white dwarf companions - are among the most promising sources of GWs. Many of these sources are likely to generate observable electromagnetic (EM) and/or neutrino counterparts to the GWs, constituting a major advance in multimessenger astronomy. By way of illustration, we describe recent magnetohydrodynamic simulations in general relativity (GRMHD) that show how black hole-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short-hard gamma-ray bursts. We also discuss other recent GRMHD simulations that show how an inspiraling, supermassive binary black hole in a galaxy core stirs and accretes magnetized plasma that orbits the holes in a circumbinary disk. This process can generate ``precursor'' and ``aftermath'' EM radiation with respect to the peak GW emission at merger. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grant PHY-1300903 and NASA Grant NNX13AH44G at the University of Illinois at Urbana-Champaign.
NASA Astrophysics Data System (ADS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.; Del Pozzo, W.; Feroz, F.; Gair, J.; Haster, C.-J.; Kalogera, V.; Littenberg, T.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Rodriguez, C.; Röver, C.; Sidery, T.; Smith, R.; Van Der Sluys, M.; Vecchio, A.; Vousden, W.; Wade, L.
2015-02-01
The Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star-black hole binary and a binary black hole, where we show a cross comparison of results obtained using three independent sampling algorithms. These systems were analyzed with nonspinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analyzing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.
Targeted coherent search for gravitational waves from compact binary coalescences
Harry, I. W.; Fairhurst, S.
2011-04-15
We introduce a method for conducting a targeted, coherent search for compact binary coalescences. The search is tailored to be used as a follow-up to electromagnetic transients such as gamma-ray bursts. We derive the coherent search statistic for Gaussian detector noise and discuss the benefits of a coherent, multidetector search over coincidence methods. To mitigate the effects of nonstationary data, we introduce a number of signal consistency tests, including the null signal-to-noise ratio, amplitude consistency, and several {chi}{sup 2} tests. We demonstrate the search performance on Gaussian noise and on data from LIGO's fourth science run and verify that the signal consistency tests are capable of removing the majority of noise transients, giving the search an efficiency comparable to that achieved in Gaussian noise.
A massive pulsar in a compact relativistic binary.
Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G
2013-04-26
Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling. PMID:23620056
Sparse representations of gravitational waves from precessing compact binaries.
Blackman, Jonathan; Szilagyi, Bela; Galley, Chad R; Tiglio, Manuel
2014-07-11
Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges. PMID:25062160
Effective one body description of tidal effects in inspiralling compact binaries
Damour, Thibault; Nagar, Alessandro
2010-04-15
The late part of the gravitational wave signal of binary neutron-star (or black-hole-neutron-star) inspirals can in principle yield crucial information on the nuclear equation of state via its dependence on relativistic tidal parameters. In the hope of analytically describing the gravitational wave phasing during the late inspiral (essentially up to merger) we propose an extension of the effective one body (EOB) formalism which includes tidal effects. We compare the prediction of this tidal-EOB formalism to recently computed nonconformally flat quasiequilibrium circular sequences of binary neutron-star systems. Our analysis suggests the importance of higher-order (post-Newtonian) corrections to tidal effects, even beyond the first post-Newtonian order, and their tendency to significantly increase the 'effective tidal polarizability' of neutron stars. We propose to use the EOB description up to the moment where the tidally deformed compact objects formally enter 'into contact'. We compare the EOB predictions to some recently advocated, nonresummed, post-Newtonian based ('Taylor-T4') description of the phasing of inspiralling systems. This comparison shows the strong sensitivity of the late-inspiral phasing to the choice of the analytical model. A sufficiently accurate numerical-relativity - 'calibrated' EOB model might, however, give us a reliable analytical description of the late inspiral of compact binaries (and might also help in predicting the conditions necessary for the generation of short gamma-ray bursts).
Effective one body description of tidal effects in inspiralling compact binaries
NASA Astrophysics Data System (ADS)
Damour, Thibault; Nagar, Alessandro
2010-04-01
The late part of the gravitational wave signal of binary neutron-star (or black-hole-neutron-star) inspirals can in principle yield crucial information on the nuclear equation of state via its dependence on relativistic tidal parameters. In the hope of analytically describing the gravitational wave phasing during the late inspiral (essentially up to merger) we propose an extension of the effective one body (EOB) formalism which includes tidal effects. We compare the prediction of this tidal-EOB formalism to recently computed nonconformally flat quasiequilibrium circular sequences of binary neutron-star systems. Our analysis suggests the importance of higher-order (post-Newtonian) corrections to tidal effects, even beyond the first post-Newtonian order, and their tendency to significantly increase the “effective tidal polarizability” of neutron stars. We propose to use the EOB description up to the moment where the tidally deformed compact objects formally enter “into contact.” We compare the EOB predictions to some recently advocated, nonresummed, post-Newtonian based (“Taylor-T4”) description of the phasing of inspiralling systems. This comparison shows the strong sensitivity of the late-inspiral phasing to the choice of the analytical model. A sufficiently accurate numerical-relativity-“calibrated” EOB model might, however, give us a reliable analytical description of the late inspiral of compact binaries (and might also help in predicting the conditions necessary for the generation of short gamma-ray bursts).
Lee, William H.; Ramirez-Ruiz, Enrico; Van de Ven, Glenn E-mail: enrico@ucolick.or
2010-09-01
We present a detailed assessment of the various dynamical pathways leading to the coalescence of compact objects in globular clusters (GCs) and Short Gamma-ray Burst (SGRB) production. We consider primordial binaries, dynamically formed binaries (through tidal two-body and three-body exchange interactions), and direct impacts of compact objects (WD/NS/BH). Here, we show that if the primordial binary fraction is small, close encounters dominate the production rate of coalescing compact systems. We find that the two dominant channels are the interaction of field neutron stars (NSs) with dynamically formed binaries and two-body encounters. Under such conditions, we estimate the redshift distribution and host galaxy demographics of SGRB progenitors, and find that GCs can provide a significant contribution to the overall observed rate. Regarding the newly identified channel of close stellar encounters involving WD/NS/BH, we have carried out precise modeling of the hydrodynamical evolution, giving us a detailed description of the resulting merged system. Our calculations show that there is in principle no problem in accounting for the global energy budget of a typical SGRB. The particulars of each encounter, however, are variable in several aspects and can lead to interesting diversity. First and most importantly, the characteristics of the encounter are highly dependent on the impact parameter. This is in contrast to the merger scenario, where the masses of the compact objects dictate a typical length and luminosity scale for SGRB activity. Second, the nature of the compact star itself can produce very different outcomes. Finally, the presence of tidal tails in which material will fall back onto the central object at a later time is a robust feature of the present set of calculations. The mass involved in these structures is considerably larger than for binary mergers. It is thus possible to account generically in this scenario for a prompt episode of energy release, as
Exploring the Physics of Compact Objects with Gravitational-Wave Astronomy
NASA Astrophysics Data System (ADS)
Brown, Duncan
2016-03-01
The Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) has recently completed its first observing run. Future observations of gravitational waves by LIGO will open a new field in astronomy. The gravitational waves radiated by binaries containing neutron stars and/or black holes contain information about strong field gravity and the properties of dense matter. In this talk I will discuss the nuclear and gravitational physics that can be learned from the observation of compact-object mergers
Substellar objects around the sdB eclipsing Binaries
NASA Astrophysics Data System (ADS)
Zhu, Liying; Qian, Shengbang; Liao, Wenping; Zhao, Ergang; Li, Linjia
2016-07-01
The sdB-type eclipsing binary consists a very hot subdwarf B (sdB) type primary and a low mass secondary with short period. They are detached binaries and show very narrow eclipse profiles, which benefits the determination of the precise eclipse times. With the precise times of light minimum, we can detected small mass objects around them by analyzing the observed-calculated (O-C) curve based on the light time effect. For searching the substellar objects orbiting around the binaries, we have monitored sdB-type eclipsing binaries for decades. A group of brown dwarfs and planets have been detected since then. In the present paper, we focus on the target NSVS07826147, which may be another exoplanet host candidate among the group of the sdB-type eclipsing binaries.
Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems
NASA Astrophysics Data System (ADS)
Le Tiec, Alexandre; Barausse, Enrico; Buonanno, Alessandra
2012-03-01
Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular momentum J of two nonspinning compact objects moving on circular orbits with frequency Ω, at leading order beyond the test-particle approximation. By minimizing E(Ω) we recover the exact frequency shift of the Schwarzschild innermost stable circular orbit induced by the conservative piece of the gravitational self-force. Comparing our results for the coordinate-invariant relation E(J) to those recently obtained from numerical simulations of comparable-mass nonspinning black-hole binaries, we find a remarkably good agreement, even in the strong-field regime. Our findings confirm that the domain of validity of perturbative calculations may extend well beyond the extreme mass-ratio limit.
NASA Astrophysics Data System (ADS)
Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.
2015-04-01
We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian (PN) order. We further extend these results for compact binaries in quasielliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current-type multipole moments, we compute the spin-weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasielliptical orbits.
Cold dark matter as compact composite objects
NASA Astrophysics Data System (ADS)
Zhitnitsky, Ariel
2006-08-01
Dark matter (DM) being the vital ingredient in the cosmos, still remains a mystery. The standard assumption is that the collisionless cold dark matter (CCDM) particles are represented by some weakly interacting fundamental fields which cannot be associated with any standard quarks or leptons. However, recent analyses of structure on galactic and subgalactic scales have suggested discrepancies and stimulated numerous alternative proposals including, e.g. self-interacting dark matter, self-annihilating dark matter, decaying dark matter, to name just a few. We propose the alternative to the standard assumption about the nature of DM particles (which are typically assumed to be weakly interacting fundamental pointlike particles, yet to be discovered). Our proposal is based on the idea that DM particles are strongly interacting composite macroscopically large objects which made of well-known light quarks (or even antiquarks). The required weakness of the DM particle interactions is guaranteed by a small geometrical factor γ˜(area)/(volume)˜B-1/3≪1 of the composite objects with a large baryon charge B≫1, rather than by a weak coupling constant of a new field. We argue that the interaction between hadronic matter and composite dark objects does not spoil the desired properties of the latter as cold matter. We also argue that such a scenario does not contradict to the current observational data. Rather, it has natural explanations of many observed data, such as ΩDM/ΩB˜1 or 511 KeV line from the bulge of our galaxy. We also suggest that composite dark matter may modify the dynamics of structure formation in the central overdense regions of galaxies. We also present a number of other cosmological/astrophysical observations which indirectly support the novel concept of DM nature.
Octupolar invariants for compact binaries on quasicircular orbits
NASA Astrophysics Data System (ADS)
Nolan, Patrick; Kavanagh, Chris; Dolan, Sam R.; Ottewill, Adrian C.; Warburton, Niels; Wardell, Barry
2015-12-01
We extend the gravitational self-force methodology to identify and compute new O (μ ) tidal invariants for a compact body of mass μ on a quasicircular orbit about a black hole of mass M ≫μ . In the octupolar sector we find seven new degrees of freedom, made up of 3 +3 conservative/dissipative `electric' invariants and 3 +1 `magnetic' invariants, satisfying 1 +1 and 1 +0 trace conditions. We express the new invariants for equatorial circular orbits on Kerr spacetime in terms of the regularized metric perturbation and its derivatives; and we evaluate the expressions in the Schwarzschild case. We employ both Lorenz gauge and Regge-Wheeler gauge numerical codes, and the functional series method of Mano, Suzuki and Takasugi. We present (i) highly-accurate numerical data and (ii) high-order analytical post-Newtonian expansions. We demonstrate consistency between numerical and analytical results, and prior work. We explore the application of these invariants in effective one-body models and binary black hole initial-data formulations.
KEPLER OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS
Rowe, Jason F.; Borucki, William J.; Koch, David; Lissauer, Jack J.; Howell, Steve B.; Basri, Gibor; Marcy, Geoff; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; Jenkins, Jon; Cochran, William D.; Dunham, Edward; Dupree, Andrea K.; Latham, David W.; Sasselov, Dimitar; Fortney, Jonathan J.; Gautier, Thomas N.; Monet, David G.
2010-04-20
Kepler photometry has revealed two unusual transiting companions: one orbiting an early A-star and the other orbiting a late B-star. In both cases, the occultation of the companion is deeper than the transit. The occultation and transit with follow-up optical spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a companion in a 5.2 day orbit with a radius of 0.08 R {sub sun} and a 10,000 K late B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a radius of 0.2 R {sub sun}. We infer a temperature of 12,250 K for KOI-74b and 13,500 K for KOI-81b. We present 43 days of high duty cycle, 30 minute cadence photometry, with models demonstrating the intriguing properties of these objects, and speculate on their nature.
Gravitational-wave radiation from double compact objects with eLISA in the Galaxy
NASA Astrophysics Data System (ADS)
Liu, Jinzhong; Zhang, Yu
2014-03-01
The phase of inspiral of double compact objects (DCOs: NS + WD, NS + NS, BH + NS, and BH + BH binaries) in the disk field population of the Galaxy provides a potential source in the frequency range from 10-4 to 0.1 Hz, which can be detected by the European New Gravitational Observatory (NGO: eLISA is derived from the previous LISA proposal) project. In this frequency range, much stronger gravitational wave (GW) radiation can be obtained from DCO sources because they possess more mass than other compact binaries (e.g., close double white dwarfs). In this study, we aim to calculate the gravitational wave signals from the resolvable DCO sources in the Galaxy using a binary population synthesis approach, and determine physical properties of these binaries using Monte Carlo simulations. Combining the sensitivity curve of the eLISA detector and a confusion-limited noise floor of close double white dwarfs, we find that only a handful of DCO sources can be detected by the eLISA detector. The detectable number of DCO sources reaches 160; in the context of low-frequency eLISA observations we find that the number of NS + WD, NS + NS, BH + NS, and BH + BH objects are 132, 16, 3, and 6, respectively.
The binary Kuiper-belt object 1998 WW31.
Veillet, Christian; Parker, Joel Wm; Griffin, Ian; Marsden, Brian; Doressoundiram, Alain; Buie, Marc; Tholen, David J; Connelley, Michael; Holman, Matthew J
2002-04-18
The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects. PMID:11961547
Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order
NASA Astrophysics Data System (ADS)
Moore, Blake; Favata, Marc; Arun, K. G.; Mishra, Chandra Kant
2016-06-01
Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but non-negligible orbital eccentricities when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101 (2014)]. Gravitational-wave search templates typically rely on the quasicircular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. Damour, Gopakumar, Iyer, and others have developed an elegant but complex quasi-Keplerian formalism for describing the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here, we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit, the nonperiodic contribution to the gravitational-wave phasing can be expressed explicitly as simple functions of frequency or time, with little additional complexity beyond the well-known formulas for circular binaries. These eccentric phase corrections are computed to 3PN order and to leading order in the eccentricity for the standard PN approximants. For a variety of systems, these eccentricity corrections cause significant corrections to the number of gravitational-wave cycles that sweep through a detector's frequency band. This is evaluated using several measures, including a modification of the useful cycles. By comparing to numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up to e0≲0.1 for comparable-mass systems, where e0 is the eccentricity when the source enters the detector band. We also evaluate the role of periodic terms that enter the phasing and discuss how they can be incorporated into some of
Status and Future of Deep Searches for Compact Binary Mergers
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey; LIGO Scientific Collaboration
2016-06-01
Deep offline searches for gravitational waves from binary black hole, binary neutron star, and neutron star- black hole mergers were conducted during the first Advanced LIGO observing run, and recently Advanced LIGO announced the first detection of gravitational waves from a binary black hole merger. We discuss the recent results, the methodology of the high latency searches, along with improvements for the upcoming observing runs.
Arun, K. G.; Iyer, Bala R.; Qusailah, Moh'd S. S.
2008-03-15
The instantaneous contributions to the third post-Newtonian (3PN) gravitational wave luminosity from the inspiral phase of a binary system of compact objects moving in a quasi-elliptical orbit is computed using the multipolar post-Minkowskian wave generation formalism. The necessary inputs for this calculation include the 3PN accurate mass quadrupole moment for general orbits and the mass octupole and current quadrupole moments at 2PN. Using the recently obtained 3PN quasi-Keplerian representation of elliptical orbits, the flux is averaged over the binary's orbit. Supplementing this by the important hereditary contributions arising from tails, tails of tails, and tails-squared terms calculated in a previous paper, the complete 3PN energy flux is obtained. The final result presented in this paper would be needed for the construction of ready-to-use templates for binaries moving on noncircular orbits, a plausible class of sources not only for the space-based detectors like LISA but also for the ground-based ones.
Reliability of complete gravitational waveform models for compact binary coalescences
NASA Astrophysics Data System (ADS)
Ohme, Frank; Hannam, Mark; Husa, Sascha
2011-09-01
Accurate knowledge of the gravitational-wave (GW) signal from inspiraling compact binaries is essential to detect these signatures in the data from GW interferometers. With recent advances in post-Newtonian (PN) theory and numerical relativity (NR) it has become possible to construct inspiral-merger-ringdown waveforms by combining both descriptions into one complete hybrid signal. While addressing the reliability of such waveforms in different points of the physical parameter space, previous studies have identified the PN contribution as the dominant source of error, which can be reduced by incorporating longer NR simulations. In this paper we overcome the two outstanding issues that make it difficult to determine the minimum simulation length necessary to produce suitably accurate hybrids for GW astronomy applications: (1) the relevant criteria for a GW search is the mismatch between the true waveform and a set of model waveforms, optimized over all waveforms in the model, but for discrete hybrids this optimization was not yet possible. (2) these calculations typically require that numerical waveforms already exist, while we develop an algorithm to estimate hybrid mismatch errors without numerical data, which enables us to estimate the necessary NR waveform length before performing the simulation. Our procedure relies on combining supposedly equivalent PN models at highest available order with common data in the NR regime, and their difference serves as a measure of the uncertainty assumed in each waveform. Contrary to some earlier studies, we estimate that ˜10 NR orbits before merger should allow for the construction of waveform families that are accurate enough for detection in a broad range of parameters, only excluding highly spinning, unequal-mass systems. Nonspinning systems, even with high mass-ratio (q≳20) are well modeled for astrophysically reasonable component masses. In addition, the parameter bias is only of the order of 1% for total mass and
Orbits and Physical Properties of Four Binary Transneptunian Objects
NASA Astrophysics Data System (ADS)
Grundy, William
2014-10-01
Intriguing patterns are evident in both the orbits of transneptunian objects and in their observable external characteristics (colors, spectral features, etc.). Bulk physical properties are needed to make sense of the observations and to exploit them to constrain conditions in the protoplanetary disk where these objects formed. The key to obtaining bulk properties of transneptunian objects is that a sizeable proportion of them are binaries. Binary mutual orbits provide dynamical masses that can in turn be used to compute bulk densities. A statistical sample of binary orbits offers powerful constraints on formation mechanisms as well as subsequent evolution. This proposal seeks to continue a multi-year campaign to obtain orbits for as large of a sample of binary transneptunian objects as possible. We seek to make efficient use of HST by targeting four systems where we can obtain a dramatic improvement in orbital knowledge from relatively few, strategically timed visits, and where the secondary is too faint for reliable detection with ground-based near-IR adaptive optics techniques.
What Are the Compact Central Objects in Supernova Remnants?
NASA Astrophysics Data System (ADS)
Graber, James
2002-04-01
Recent Chandra observations of the compact central objects in supernova remnants have shown puzzling results that do not seem to be consistent with either black holes or neutron stars. (See e.g. Pavlov, Sanwal, Garmire and Zavlin, astro-ph-0112322.) In particular, the inferred effective emitting surface is too small to be the entire surface of a neutron star, but too bright to be a black hole. We discuss the possibility that these compact objects might be red holes instead of black holes or neutron stars. Red holes, which occur in alternate theories of gravity, naturally predict both the greater brightness of the emissions and the smaller effective size of the emitting surface from a collapsed object of the appropriate mass.
NASA Astrophysics Data System (ADS)
Capano, Collin; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Modeled searches for gravitational waves from compact binary coalescence (CBC) use a ``bank'' of template waveforms to search the wide range of parameters that binaries may have. Recent advances in waveform modeling and template placement techniques have opened up the possibility to efficiently search for systems with non-precessing spin, using waveforms that model the inspiral, merger, and ringdown of coalescing binaries. I discuss how these advances were combined to produce the template bank used to search for CBCs in the first observing run of Advanced LIGO. This bank covered the full range of plausible masses and non-precessing spins of binary neutron stars, stellar-mass binary black holes, and binaries consisting of a neutron star and a stellar-mass black hole.
Classification of compact binaries: an X-ray analog to the HR diagram
NASA Astrophysics Data System (ADS)
Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke
2016-06-01
X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.
Modeling and detecting gravitational waves from compact stellar objects
NASA Astrophysics Data System (ADS)
Vallisneri, Michele
In the next few years, the first detections of gravity- wave signals using Earth-based interferometric detectors will begin to provide precious new information about the structure, dynamics, and evolution of compact bodies, such as neutron stars and black holes, both isolated and in binary systems. The intrinsic weakness of gravity-wave signals requires a proactive approach to modeling the prospective sources and anticipating the shape of the signals that we seek to detect. Full-blown 3-D numerical simulations of the sources are playing and will play an important role in planning the gravity-wave data-analysis effort. This thesis explores the interplay between numerical source modeling and data analysis, looking closely at three case studies. (1)I evaluate the prospects for extracting equation-of-state information from neutron-star tidal disruption in neutron-star-black- hole binaries with LIGO-II, and I estimate that the observation of disrupting systems at distances that yield about one event per year should allow the determination of the neutron-star radius to about 15%, which compares favorably to the currently available electromagnetic determinations. (2)In collaboration with Lee Lindblom and Joel Tohline, I perform numerical simulations of the nonlinear dynamics of the r-mode instability in young, rapidly spinning neutron stars, and I find evidence that nonlinear couplings to other modes will not pose a significant limitation to the growth of the r-mode amplitude. (3)In collaboration with Alessandra Buonanno and Yanbei Chen, I study the problem of detecting gravity waves from solar-mass black-hole - black-hole binaries with LIGO-I, and I construct two families of detection templates that address the inadequacy of standard post-Newtonian theory to predict reliable waveforms for these systems.
Gravitational effects of condensate dark matter on compact stellar objects
Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com
2012-10-01
We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.
Compact binary mergers as the origin of r-process elements in the Galactic halo
Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos
2014-05-02
Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ∼ −3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ⊙} and 2 × 10{sup 8}M{sub ⊙}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ≤ −3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ∼ −1.5 for [Fe/H] < −3) are explained by the contribution from the short-lived (∼ 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
NASA Astrophysics Data System (ADS)
Blanchet, Luc
2014-02-01
To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (eLISA, etc.), inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins), and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.
Holographic equations of state and astrophysical compact objects
NASA Astrophysics Data System (ADS)
Kim, Youngman; Lee, Chang-Hwan; Shin, Ik Jae; Wan, Mew-Bing
2011-10-01
We solve the Tolman-Oppenheimer-Volkoff equation using an equation of state (EoS) calculated in holographic QCD. The aim is to use compact astrophysical objects like neutron stars as an indicator to test holographic equations of state. We first try an EoS from a dense D4/D8/D8 model. In this case, however, we could not find a stable compact star, a star satisfying pressure-zero condition with a radius R, p( R) = 0, within a reasonable value of the radius. This means that the EoS from the D4/D8/D8 model may not support any stable compact stars or may support one whose radius is very large. This might be due to a deficit of attractive force from a scalar field or two-pion exchange in the D4/D8/D8 model. Then, we consider D4/D6 type models with different number of quark flavors, N f = 1 , 2 , 3. Though the mass and radius of a holographic star is larger than those of normal neutron stars, the D4/D6 type EoS renders a stable compact star.
Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Coughlin, M.; Meyers, P.; Thrane, E.; Luo, J.; Christensen, N.
2015-03-01
Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. While most binaries are expected to possess circular orbits, some may be eccentric, for example, if they are formed through dynamical capture. Eccentric orbits can create difficulty for matched filtering searches due to the challenges of creating effective template banks to detect these signals. In previous work, we showed how seedless clustering can be used to detect low-mass (Mtotal≤10 M⊙) compact binary coalescences for both spinning and eccentric systems, assuming a circular post-Newtonian expansion. Here, we describe a parametrization that is designed to maximize sensitivity to low-eccentricity (0 ≤ɛ ≤0.6 ) systems, derived from the analytic equations. We show that this parametrization provides a robust and computationally efficient method for detecting eccentric low-mass compact binaries. Based on these results, we conclude that advanced detectors will have a chance of detecting eccentric binaries if optimistic models prove true. However, a null observation is unlikely to firmly rule out models of eccentric binary populations.
Detection, classification, and tracking of compact objects in video imagery
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.; Nebrich, Mark A.
2012-06-01
A video data conditioner (VDC) for automated full-motion video (FMV) detection, classification, and tracking is described. VDC extends our multi-stage image data conditioner (IDC) to video. Key features include robust detection of compact objects in motion imagery, coarse classification of all detections, and tracking of fixed and moving objects. An implementation of the detection and tracking components of the VDC on an Apple iPhone is discussed. Preliminary tracking results of naval ships captured during the Phoenix Express 2009 Photo Exercise are presented.
Compact objects from gravitational collapse: an analytical toy model
NASA Astrophysics Data System (ADS)
Malafarina, Daniele; Joshi, Pankaj S.
2015-12-01
We develop here a procedure to obtain regular static configurations resulting from dynamical gravitational collapse of a massive matter cloud in general relativity. Under certain general physical assumptions for the collapsing cloud, we find the class of dynamical models that lead to an equilibrium configuration. To illustrate this, we provide a class of perfect fluid collapse models that lead to a static constant density object as limit. We suggest that similar models might possibly constitute the basis for the description of formation of compact objects in nature.
NASA Astrophysics Data System (ADS)
Margon, B.; Beck-Winchatz, B.; Homer, L.; Pooley, D.; Bassa, C. G.; Anderson, S. F.; Lewin, W. H. G.; Verbunt, F.; Kong, A. K. H.; Plotkin, R. M.
2010-12-01
Highly sensitive and precise X-ray imaging from Chandra, combined with the superb spatial resolution of HST optical images, dramatically enhances our empirical understanding of compact binaries such as cataclysmic variables and low mass X-ray binaries, their progeny, and other stellar X-ray source populations deep into the cores of globular clusters. Our Chandra X-ray images of the globular cluster NGC 362 reveal 100 X-ray sources, the bulk of which are likely cluster members. Using HST color-magnitude and color-color diagrams, we quantitatively consider the optical content of the NGC 362 Chandra X-ray error circles, especially to assess and identify the compact binary population in this condensed-core globular cluster. Despite residual significant crowding in both X-rays and optical, we identify an excess population of Hα-emitting objects that is statistically associated with the Chandra X-ray sources. The X-ray and optical characteristics suggest that these are mainly cataclysmic variables, but we also identify a candidate quiescent low mass X-ray binary. A potentially interesting and largely unanticipated use of observations such as these may be to help constrain the macroscopic dynamic state of globular clusters.
High-resolution x-ray imaging of a globular cluster core: compact binaries in 47Tuc.
Grindlay, J E; Heinke, C; Edmonds, P D; Murray, S S
2001-06-22
We have obtained high-resolution (approximately 1") deep x-ray images of the globular cluster 47Tucanae (NGC 104) with the Chandra X-ray Observatory to study the population of compact binaries in the high stellar density core. A 70-kilosecond exposure of the cluster reveals a centrally concentrated population of faint (Lx approximately 10(30-33) ergs per second) x-ray sources, with at least 108 located within the central 2' x 2.5' and greater, similar half with Lx approximately 10(30.5) ergs per second. All 15 millisecond pulsars (MSPs) recently located precisely by radio observations are identified, though 2 are unresolved by Chandra. The x-ray spectral and temporal characteristics, as well as initial optical identifications with the Hubble Space Telescope, suggest that greater, similar50 percent are MSPs, about 30 percent are accreting white dwarfs, about 15 percent are main-sequence binaries in flare outbursts, and only two to three are quiescent low-mass x-ray binaries containing neutron stars, the conventional progenitors of MSPs. An upper limit of about 470 times the mass of the sun is derived for the mass of an accreting central black hole in the cluster. These observations provide the first x-ray "color-magnitude" diagram for a globular cluster and census of its compact object and binary population. PMID:11358997
Binaries in a medium of fast low-mass objects
NASA Astrophysics Data System (ADS)
Gould, Andrew
1991-09-01
The effect of dynamical friction on binaries in a medium of fast low-mass objects is determined. Results are obtained for an arbitrary particle distribution and for any value of Eb/m(sigma squared). Heggie's Law is confirmed and made more precise. The error in the calculation of Hills (1990) is traced to the very specialized and atypical choice of phase space for performing numerical simulations. The efforts of Bekenstein and Zamir (1990) are traced to inconsistencies in their use of the Vlasov equation. It is found that both the hardening and softening terms are generated by the action of objects with speeds relative to the binary center of mass which are greater than the orbital speed. For binaries at rest with respect to isotropic distribution, this contradicts a standard result, namely, that the viscous effect of fast objects vanishes identically. This paradox is resolved by deriving a more accurate dynamical friction formula. It is shown that a term which is usually dropped is in fact the dominant one.
Searching for Spectroscopic Binaries within Transition Disk Objects
NASA Astrophysics Data System (ADS)
Kohn, Saul A.; Shkolnik, Evgenya L.; Weinberger, Alycia J.; Carlberg, Joleen K.; Llama, Joe
2016-03-01
Transition disks (TDs) are intermediate stage circumstellar disks characterized by an inner gap within the disk structure. To test whether these gaps may have been formed by closely orbiting, previously undetected stellar companions, we collected high-resolution optical spectra of 31 TD objects to search for spectroscopic binaries (SBs). Twenty-four of these objects are in Ophiuchus and seven are within the Coronet, Corona Australis, and Chameleon I star-forming regions. We measured radial velocities for multiple epochs, obtaining a median precision of 400 ms-1. We identified double-lined SB SSTc2d J163154.7-250324 in Ophiuchus, which we determined to be composed of a K7(±0.5) and a K9(±0.5) star, with orbital limits of a < 0.6 au and P < 150 days. This results in an SB fraction of {0.04}-0.03+0.12 in Ophiuchus, which is consistent with other spectroscopic surveys of non-TD objects in the region. This similarity suggests that TDs are not preferentially sculpted by the presence of close binaries and that planet formation around close binaries may take place over similar timescales to that around single stars. This paper is based on data gathered with the 6.5 m Clay Telescope located at Las Campanas Observatory, Chile.
Spectral calculation through outflows around compact objects and its hydrodynamic simulation
NASA Astrophysics Data System (ADS)
Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro; Ohsuga, Ken; Nakagawa, Yujin; Nomura, Mariko
Compact objects such as black holes and neutron starts are shining by converting the gravitational energy via mass accretion. Recent theoretical studies predict that outflows tend to accompany the mass accretion process and affect X-ray spectra. In fact, ``blue-shifted'' metal absorption lines have been observed from active galactic nuclei and X-ray binaries, indicating that the absorbers are moving toward us, namely the outflows do exist. In order to constrain physical conditions and geometries around the compact objects, we need to compare the observed X-ray spectra and theoretically expected signatures caused by the outflows. For the observational side, we will use the micro calorimeter with the unprecedented spectral resolution of E/DeltaE˜1000 on-board Astro-H (in 2015 launch), which is the ONLY detector that can observe the detailed line profiles containing information of the outflows. The radiation-hydrodynamic simulation is needed to interpret the Astro-H spectra. We construct the spectral model by the following two theoretical steps: We first determine the density and velocity profiles of the outflows around the compact object by a hydrodynamic simulation. We then calculate X-ray spectra through such outflows, by using the spectral synthesis code ``Cloudy''. We present the results of the simulated profiles and the calculated spectra.
Discussion of AN Advanced LIGO Low-Latency Search for Compact Binary Gravitational Waves
NASA Astrophysics Data System (ADS)
Messick, Cody; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Advanced ligo completed its first observing run in january, marking the beginning of a new era in gravitational wave astronomy. Low-latency pipelines searched for gravitational waves from compact binary mergers during the observing run, uploading candidate events to a database within seconds. In my presentation, we will report on the low-latency gstlal-inspiral advanced ligo search.
Template banks to search for compact binaries with spinning components in gravitational wave data
Van Den Broeck, Chris; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Brown, Duncan A.; Tagoshi, Hideyuki; Takahashi, Hirotaka
2009-07-15
Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary's orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67, 104025 (2003)]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.
Object tracking on mobile devices using binary descriptors
NASA Astrophysics Data System (ADS)
Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton
2015-03-01
With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.
Compact real-time image processor for moving object tracking
NASA Astrophysics Data System (ADS)
Kinoshita, Noboru
1996-03-01
Latency time and hardware compactness are two important problems of real-time image processors for moving object tracking. We have developed a compact self-contained real-time image processor that is implemented on a single double-height VME board. The processor can execute major processing steps for moving object tacking during a single video field time. These steps are preprocessing, binarizing, labeling, feature extraction, and feature evaluation. We can obtain sorted feature vectors simultaneously when image data is read out from a sensor. Here a feature vector represents areas, centroid, and maximum intensity of each connected region in a binarized image. Some conventional image processors can execute the above steps individually in real-time and thread some steps in a pixel pipeline manner. However it is difficult to integrate feature extraction and feature evaluation in a pixel pipeline path. For real-time execution of all steps we focused on new architecture particularly for the latter three steps. To minimize the hardware we have developed three ASICs: labeler, feature accumulator, and sorter. To make our processor self-contained and scalable, it has an on- board micro processor, a digital video bus interface, and an RS232C port, and it is VME compatible in bus interface and mechanical dimension.
Electromagnetic field and cylindrical compact objects in modified gravity
NASA Astrophysics Data System (ADS)
Yousaf, Z.; Bhatti, M. Zaeem ul Haq
2016-05-01
In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.
Inspiral waveforms for spinning compact binaries in a new precessing convention
NASA Astrophysics Data System (ADS)
Gupta, Anuradha; Gopakumar, Achamveedu
2016-05-01
It is customary to use a precessing convention, based on Newtonian orbital angular momentum L N, to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a postNewtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum L, to evolve the L N-based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use L to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual L N-based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between inspiral waveforms that employ L and L N-based precessing conventions. We found that the match estimates are smaller than the optimal value, namely 0.97, for a non-negligible fraction of unequal mass spinning compact binaries.
Arun, K. G.; Iyer, Bala R.; Qusailah, Moh'd S. S.
2008-03-15
The far-zone flux of energy contains hereditary (tail) contributions that depend on the entire past history of the source. Using the multipolar post-Minkowskian wave generation formalism, we propose and implement a semianalytical method in the frequency domain to compute these contributions from the inspiral phase of a binary system of compact objects moving in quasi-elliptical orbits up to third post-Newtonian (3PN) order. The method explicitly uses the quasi-Keplerian representation of elliptical orbits at 1PN order and exploits the doubly periodic nature of the motion to average the 3PN fluxes over the binary's orbit. Together with the instantaneous (nontail) contributions evaluated in a companion paper, it provides crucial inputs for the construction of ready-to-use templates for compact binaries moving on quasi-elliptic orbits, an interesting class of sources for the ground-based gravitational-wave detectors such as LIGO and Virgo, as well as space-based detectors like LISA.
Compact Binary Merger Rates: Comparison with LIGO/Virgo Upper Limits
NASA Astrophysics Data System (ADS)
Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; O'Shaughnessy, Richard; Bulik, Tomasz; Berti, Emanuele; Fryer, Christopher; Dominik, Michal
2016-03-01
We compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH-BH systems, indicating that a modest increase in observational sensitivity (by a factor of ˜2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH-BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z ≃ 2 with templates including inspiral, merger, and ringdown. Normal stars (\\lt 150 {M}⊙ ) can produce such mergers with total redshifted mass up to {M}{{tot,z}}≃ 400 {M}⊙ . (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH-BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS-NS, BH-NS, BH-BH) with advanced detectors. Numerous massive BH-BH merger detections will indicate small (if any) natal kicks for massive BHs.
Compact binary merger rates: Comparison with LIGO/Virgo upper limits
Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; O'Shaugnessy, Richard; Bulik, Tomasz; Berti, Emanuele; Fryer, Christopher Lee; Dominik, Michal
2016-03-03
Here, we compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH–BH systems, indicating that a modest increase in observational sensitivity (by a factor of ~2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH–BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z sime 2 with templates including inspiral, merger, and ringdown. Normal stars (more » $$\\lt 150\\;{M}_{\\odot }$$) can produce such mergers with total redshifted mass up to $${M}_{{\\rm{tot,z}}}\\simeq 400\\;{M}_{\\odot }$$. (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH–BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS–NS, BH–NS, BH–BH) with advanced detectors. Numerous massive BH–BH merger detections will indicate small (if any) natal kicks for massive BHs.« less
Blanchet, Luc; Damour, Thibault; Esposito-Farèse, Gilles; Iyer, Bala R
2004-08-27
The gravitational radiation from point particle binaries is computed at the third post-Newtonian (3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are consistently determined by means of dimensional regularization, and proved to have the values xi=-9871/9240, kappa=0, and zeta=-7/33. These results complete the derivation of the general relativistic prediction for compact binary inspiral up to 3.5PN order, and should be of use for searching and deciphering the signals in the current network of gravitational wave detectors. PMID:15447090
Tidal invariants for compact binaries on quasi-circular orbits
NASA Astrophysics Data System (ADS)
Warburton, Niels; Dolan, Sam; Nolan, Patrick; Ottewill, Adrian; Wardell, Barry
2015-04-01
We extend the gravitational self-force approach to encompass `self-interaction' tidal effects for a compact body of mass μ on a quasi-circular orbit around a black hole of mass M >> μ . Specifically, we define and calculate at O(μ) (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at O(μ) . We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body probl
Tidal invariants for compact binaries on quasicircular orbits
NASA Astrophysics Data System (ADS)
Dolan, Sam R.; Nolan, Patrick; Ottewill, Adrian C.; Warburton, Niels; Wardell, Barry
2015-01-01
We extend the gravitational self-force approach to encompass "self-interaction" tidal effects for a compact body of mass μ on a quasicircular orbit around a black hole of mass M ≫μ . Specifically, we define and calculate at O (μ ) (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at O (μ ) . We present accurate numerical results for the Schwarzschild case for orbital radii up to the light ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body problem that are invaluable in the ongoing search for gravitational waves.
Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects
NASA Astrophysics Data System (ADS)
Kamble, Atish; Kaplan, David L. A.
2013-01-01
Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.
Study of Compact Binaries in the Extreme Globular Cluster Terzan 5
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan
1997-07-01
Stellar collisions and interactions in dense star clusters are fundamental to the evolution of globular clusters and galactic nuclei. The highest stellar collision rate suspected in the Galaxy is in the obscured bulge globular, Terzan 5. We shall identify compact binaries formed, and ejected, in this cluster with Paschen alpha {F187N} vs. continuum {F187W or F190N} imaging to identify emission line objects and CVs. By centering NIC1 on the bright eclipsing {1.8h} millisecond pulsar 32" from the cluster center, we shall also conduct a sensitive search for its counterpart and both constrain the pulsar spin up and cluster gravitational potential, while the highest resolution NIC1 field surveys the cluster core. Scaling from our successful H Alpha vs. R {WFPC1} and followup FOS programs in NGC 6397, we expect at least 30 emission line CVs in the cluster core. Ter 5 is both more massive and much more metal rich, enabling constraints on WD and NS production vs. original IMF of the cluster. This cluster can only be studied in the near-IR, and HST resolution is essential given its extreme crowding.
Super-spinning compact objects generated by thick accretion disks
Li, Zilong; Bambi, Cosimo E-mail: bambi@fudan.edu.cn
2013-03-01
If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.
Searching for spectroscopic binaries within transition disk objects
NASA Astrophysics Data System (ADS)
Kohn, Saul; Shkolnik, E.; Weinberger, A. J.; Carlberg, J. K.
2014-01-01
We have searched for spectroscopic binaries (SB) among 30 pre-main sequence stars that are reported to host transition disks (TD). Twenty-three of these objects are in the star-forming region rho-Ophiuchus and seven are among Coronet, Corona Australis and Chameleon I. We set out to determine whether these disks are truly disks in transition due to some mechanism such as planet formation, or are circumbinary disks. Radial velocities were measured for all targets from high-resolution optical spectra obtained over a two year baseline with the MIKE spectrograph on the 6.5-m Clay Telescope. Only one double-lined SB was found in Ophiuchus. We were sensitive to companions between 0.5 and 25 AU from the primary, complementing earlier high-resolution imaging surveys for stellar companions. We find a deficiency in the binary fraction of Ophiuchus TD stars compared to other SB surveys of that region (4% versus 12-70% quoted in the literature), and we explore possible causes related to disk dispersal mechanisms. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST-1004107.
Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing
Yamamoto, Kazuhiro
2005-05-15
A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.
TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE
Cannon, Kipp; Cariou, Romain; Chapman, Adrian; Fotopoulos, Nickolas; Privitera, Stephen; Searle, Antony; Singer, Leo; Weinstein, Alan; Crispin-Ortuzar, Mireia; Frei, Melissa; Hanna, Chad; Kara, Erin; Keppel, Drew; Liao, Laura
2012-04-01
Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from CBC. We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.
NASA Astrophysics Data System (ADS)
Del Pozzo, Walter; LIGO Collaboration; Virgo Collaboration
2016-03-01
Gravitational waves from compact binary systems provide access to the hitherto unexplored non-linear regime of Einstein's theory of general relativity. The Advanced LIGO first observing run successfully achieved a sensitivity a few times better than the initial generation of interferometers in the hundred hertz frequency band. In this talk, I will describe the methods devised to verify the predictions of general relativity in the Advanced Detector era. on behalf of the LIGO and Virgo collaboration.
NASA Astrophysics Data System (ADS)
Sokolov, V. V.
2015-06-01
There are two new observational facts: the mass spectrum of neutron stars and black hole candidates (or collapsars) shows an evident absence of compact objects with masses within the interval from 2 M⊙ (with a peak for neutron stars about 1.4 M⊙) to about 6 M⊙, and in close binary stellar systems with a low-massive (about 0.6 M⊙) optical companion the most probable mass value (the peak in the masses distribution of black hole candidates) is close to 7 M⊙. The problem of the compact objects discrete mass spectra demands some solution both in the context of the supernovae and gamma-ray bursts relation, and in connection with the core-collapse supernovae explosion mechanism itself. In the totally non-metric scalar-tensor model of gravitational interaction (in a modified or extended Feynman field approach to gravitation) the total mass of a compact relativistic object with extremely strong gravitational field (an analog of black holes in General Relativity) is approximately equal to 6.7 M⊙ with radius of a region filled with a matter (quark-gluon plasma) ≈ 10 km. Polarized emission of long gamma-ray bursts, a black-body component in their spectrum and other observed properties could be explained by the direct manifestation of a surface of these collapsars.
Stability of coorbital objects around the Pluto-Charon binary
NASA Astrophysics Data System (ADS)
Amarante Luiz, Andre; Hamilton, Douglas P.
2015-11-01
The Pluto-Charon binary system is dynamical interesting with its unusual retinue of four small moons. The system is relatively full with few remaining stable locations for additional moons on uninclined, circular orbits; most of these are Trojan (Tadpole/Horseshoe) orbits (Pires et al. 2011; Porter and Stern 2015).In this work, we study the coorbital region of each moon with long time integrations taking into account the gravitational effects of the satellites Charon, Styx, Nix, Kerberos and Hydra. We numerically simulate a sample of 10,000 test particles initially located randomly around each moon's orbit. All test particles start on nearly circular and uninclined orbits and are followed for 5,000 years. The results of our numerical simulations show stable coorbital objects - both Tadpoles and Horseshoes - for each of the small moons. Horseshoe orbits are most common at all moons, although Hydra also has a sizeable population of Tadpole orbits. We also find interesting cases where the orbits switch from L4 Tadpoles to Horseshoes and even to L5 Tadpoles. These transitioning orbits comprise less than 1% of coorbital objects at all moons, and are most common at Styx. We have also tested two different models for the system: i) Pluto and Charon as independent bodies. ii) A single central body with the combined mass of Pluto-Charon and an effective J2 coefficient. Preliminary results show only minor differences between the two models indicating that the binary does not have a strong effect on coorbital motion. We have also investigated eccentric and inclined orbits and will report on our findings.
Hot Collionsal Plasma Emissions in the Ultra-compact Binary Pulsar 4U 1626-67
NASA Astrophysics Data System (ADS)
Schulz, Norbert S.; Chakrabarty, Deepto; Marshall, Herman
2016-07-01
4U 1626-67 is an ultra-compact binary pulsar with a pulse period of 7.7 sec and an orbital period of 40 min. Its X-ray spectrum varies distinctively before and after torque reversal episodes. 4U 1626-67 is a peculiar ultra-compact binary in that it not only truncates its accretion disk at the magnetospheric radius, but also emits Ne and O Doppler X-ray lines, The nature of these lines have remained quite mysterious but we can now show that these lines originate from a coronal type plasma with temperatures up to 10 Million degrees located at the magnetospheric radius. The disk line fits constrain the source distance to about 5 kpc. We also observe consistent variations in the disk lines before and after torque reversal. The observed disk lines constrain the angle of inclination to 38 degrees, which is is significantly larger than previously assumed. We discuss these findings in the context of accreting X-ray binaries and binary pulsar properties.
Jia, Kun; Li, X.-D.
2014-08-20
Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.
Initial data for high-compactness black hole-neutron star binaries
NASA Astrophysics Data System (ADS)
Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-05-01
For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.
Detecting compact galactic binaries using a hybrid swarm-based algorithm
NASA Astrophysics Data System (ADS)
Bouffanais, Yann; Porter, Edward K.
2016-03-01
Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources and the extraction of the signal parameters in a noisy environment are real challenges for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work, we present the first application of a swarm-based algorithm combining Particle Swarm Optimization and Differential Evolution. These algorithms have been shown to converge faster to global solutions on complicated likelihood surfaces than other stochastic methods. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1-mHz search bandwidth. This interesting problem gave the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low-frequency source, as well as the verification binary RXJ 0806.3 +1527 , we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources and recover the true parameters within a 99% credible interval.
Thermo-Rotational Instability in Plasma Disks Around Compact Objects*
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2008-04-01
Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)
Electromagnetic Powers Of Merging And Collapsing Compact Objects
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2011-09-01
Understanding possible EM signatures of the merging and collapsing compact object is important for identifying possible sources of LIGO & LISA signals. We estimate the electromagnetic powers that can be produced as a precursor to the merger, as a prompt emission during the collapse of a NS and at the spin-down stage of the resulting Kerr BH. In particular, we find exact non-linear time-dependent structure of magnetospheres of spinning and collapsing NSs in Schwarzschild geometry. Based on this solution, we argue that the collapse of a NS into the BH happens smoothly, without natural formation of current sheets or other dissipative structures on the open field lines and, thus, does not allow the magnetic field to become disconnected from the star and escape to infinity. Thus, as long as an isolated Kerr BH can produce plasma and currents, it does not lose its open magnetic field lines, its magnetospheric structure evolved towards a split monopole and the BH spins down electromagnetically (the closed field lines get absorbed by the hole). The "no hair theorem", which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the BH. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the BH engine forever.
Template banks to search for compact binaries with spinning components in gravitational wave data
NASA Astrophysics Data System (ADS)
van den Broeck, Chris; Brown, Duncan A.; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Tagoshi, Hideyuki; Takahashi, Hirotaka
2009-07-01
Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary’s orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. DPRVDAQ0556-2821 67, 104025 (2003)10.1103/PhysRevD.67.104025]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.
Numerical simulations of axisymmetric hydrodynamical Bondi-Hoyle accretion on to a compact object
NASA Astrophysics Data System (ADS)
El Mellah, I.; Casse, F.
2015-12-01
Bondi-Hoyle accretion configurations occur as soon as a gravitating body is immersed in an ambient medium with a supersonic relative velocity. From wind-accreting X-ray binaries to runaway neutron stars, such a regime has been witnessed many times and is believed to account for shock formation, the properties of which can be only marginally derived analytically. In this paper, we present the first results of the numerical characterization of the stationary flow structure of Bondi-Hoyle accretion on to a compact object, from the large-scale accretion radius down to the vicinity of the compact body. For different Mach numbers, we study the associated bow shock. It turns out that those simulations confirm the analytical prediction by Foglizzo & Ruffert concerning the topology of the inner sonic surface with an adiabatic index of 5/3. They also enable us to derive the related mass accretion rates, the position and the temperature of the bow shock, as function of the flow parameters, along with the transverse density and temperature profiles in the wake.
Gentis, Nicolaos D; Betz, Gabriele
2012-02-01
The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. PMID:22081488
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-15
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model the gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.
NASA Astrophysics Data System (ADS)
Haris, K.; Pai, Archana
2016-05-01
In this article, we revisit the coherent gravitational wave search problem of compact binary coalescences with multidetector network consisting of advanced interferometers like LIGO-Virgo. Based on the loss of the optimal multidetector signal-to-noise ratio (SNR), we construct a hybrid statistic as a best of maximum-likelihood-ratio (MLR) statistic tuned for face-on and face-off binaries. The statistical properties of the hybrid statistic is studied. The performance of this hybrid statistic is compared with that of the coherent MLR statistic for generic inclination angles. Owing to the single synthetic data stream, the hybrid statistic gives few false alarms compared to the multidetector MLR statistic and small fractional loss in the optimum SNR for a large range of binary inclinations. We demonstrate that, for a LIGO-Virgo network and binary inclination ɛ <7 0 ° and ɛ >11 0 ° , the hybrid statistic captures more than 98% of the network optimum matched filter SNR with a low false alarm rate. The Monte Carlo exercise with two distributions of incoming inclination angles—namely, U [cos ɛ ] and a more realistic distribution proposed by B. F. Schutz [Classical Quantum Gravity 28, 125023 (2011)]—are performed with the hybrid statistic and give approximately 5% and 7% higher detection probabilities, respectively, compared to the two stream multidetector MLR statistic for a fixed false alarm probability of 1 0-5.
NASA Astrophysics Data System (ADS)
Cokelaer, T.
2007-11-01
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Padé resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Cokelaer, T.
2007-11-15
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Pade resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO)
DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS
Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela
2014-07-20
Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.
Schäfer, Gerhard
2014-01-14
The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.
Electromagnetic power of merging and collapsing compact objects
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2011-06-01
Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever
NASA Astrophysics Data System (ADS)
Raymond, Vivien
2012-05-01
Gravitational waves are on the verge of opening a brand new window on the Universe. However, gravitational wave astronomy comes with very unique challenges in data analysis and signal processing in order to lead to new discoveries in astrophysics. Among the sources of gravitational waves, inspiraling binary systems of compact objects, neutron stars and/or black holes in the mass range 1Msun--100Msun stand out as likely to be detected and relatively easy to model. The detection of a gravitational wave event is challenging and will be a rewarding achievement by itself. After such a detection, measurement of source properties holds major promise for improving our astrophysical understanding and requires reliable methods for parameter estimation and model selection. This is a complicated problem, because of the large number of parameters (15 for spinning compact objects in a quasi-circular orbit) and the degeneracies between them, the significant amount of structure in the parameter space, and the particularities of the detector noise. This work presents the development of a parameter-estimation and model-selection algorithm, based on Bayesian statistical theory and using Markov chain Monte Carlo methods for ground-based gravitational-wave detectors (LIGO and Virgo). This method started from existing non-spinning and single spin stand-alone analysis codes and was developed into a method able to tackle the complexity of fully spinning systems, and infer all spinning parameters of a compact binary. Not only are spinning parameters believed to be astrophysically significant, but this work has shown that not including them in the analysis can lead to biases in parameter recovery. This work made it possible to answer several scientific questions involving parameter estimation of inspiraling spinning compact objects, which are addressed in the chapters of this dissertation.
Topics in the Detection of Gravitational Waves from Compact Binary Inspirals
NASA Astrophysics Data System (ADS)
Kapadia, Shasvath Jagat
Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Ghosh, Pranab
2008-06-01
We continue the exploration that we began in Paper I of using the Boltzmann scheme to study the evolution of compact binary populations of globular clusters, introducing in this paper our method of handling the stochasticity inherent in the dynamical processes of binary formation, destruction, and hardening in globular clusters. We describe these stochastic processes as "Wiener processes," whereupon the Boltzmann equation becomes a stochastic partial differential equation, the solution of which involves the use of "Itō calculus" (this use being the first, to our knowledge, in this subject), in addition to ordinary calculus. As in Paper I, we focus on the evolution of (1) the number of X-ray binaries NXB in globular clusters and (2) the orbital period distribution of these binaries. We show that, although the details of the fluctuations in the above quantities differ from one "realization" to another of the stochastic processes, the general trends follow those found in the continuous-limit study of Paper I, and the average result over many such realizations is very close to the continuous-limit result. We investigate the dependence of NXB found by these calculations on two essential globular cluster properties, namely, the star-star and star-binary encounter rate parameters Γ and γ, for which we coined the name "Verbunt parameters" in Paper I. We compare our computed results with those from Chandra observations of Galactic globular clusters, showing that the expected scalings of NXB with the Verbunt parameters are in good agreement with those observed. We indicate additional features that can be incorporated into the scheme in the future, as well as how more elaborate problems can be tackled.
NASA Astrophysics Data System (ADS)
Lang, Ryan N.
2014-04-01
We derive the tensor gravitational waveform generated by a binary of nonspinning compact objects (black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate to second post-Newtonian order beyond the leading order quadrupole approximation. We use the direct integration of the relaxed Einstein equations formalism, appropriately adapted to scalar-tensor theories, along with previous results for the equations of motion in these theories. The self-gravity of the compact objects is treated with an approach developed by Eardley. The scalar field causes deviations from the general relativistic waveform that depend only on a small number of parameters. Among the effects of the scalar field are new hereditary terms which depend on the past history of the source. One of these, a dipole-dipole coupling, produces a zero-frequency "gravitational-wave memory" equivalent to the Christodoulou memory of general relativity. In the special case of two black holes, the waveform reduces to the general relativistic waveform. For a mixed (black hole-neutron star) system, the waveform is identical to that of Einstein's theory to first post-Newtonian order, with deviations at higher order depending only on a single parameter. The behavior in these cases matches that found for the equations of motion.
Binary asteroids in the near-Earth object population.
Margot, J L; Nolan, M C; Benner, L A M; Ostro, S J; Jurgens, R F; Giorgini, J D; Slade, M A; Campbell, D B
2002-05-24
Radar images of near-Earth asteroid 2000 DP107 show that it is composed of an approximately 800-meter-diameter primary and an approximately 300-meter-diameter secondary revolving around their common center of mass. The orbital period of 1.755 +/- 0.007 days and semimajor axis of 2620 +/- 160 meters constrain the total mass of the system to 4.6 +/- 0.5 x 10(11) kilograms and the bulk density of the primary to 1.7 +/- 1.1 grams per cubic centimeter. This system and other binary near-Earth asteroids have spheroidal primaries spinning near the breakup point for strengthless bodies, suggesting that the binaries formed by spin-up and fission, probably as a result of tidal disruption during close planetary encounters. About 16% of near-Earth asteroids larger than 200 meters in diameter may be binary systems. PMID:11951001
NASA Astrophysics Data System (ADS)
Ghosh, A.; Chakrabarti, Sandip K.
2016-09-01
Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of
Evolution of photon and particle spectra in compact, luminous objects
NASA Technical Reports Server (NTRS)
Eilek, Jean A.; Caroff, Lawrence J.; Noerdlinger, Peter D.
1988-01-01
The physics of high energy photons and particles (especially electrons and positrons) in the compact, high-energy-density of galactic nuclei and quasars was investigated. A numerical code was developed which follows the nonlinear spectral evolution of a pair/photon plasma, due to two-body scattering and interaction process, in an unmagnetized system. The code was applied both to static plasmas and to relativistic expanding winds.
NASA Astrophysics Data System (ADS)
Owen, Benjamin J.; Sathyaprakash, B. S.
1999-07-01
We estimate the number of templates, computational power, and storage required for a one-step matched filtering search for gravitational waves from inspiraling compact binaries. Our estimates for the one-step search strategy should serve as benchmarks for the evaluation of more sophisticated strategies such as hierarchical searches. We use a discrete family of two-parameter wave form templates based on the second post-Newtonian approximation for binaries composed of nonspinning compact bodies in circular orbits. We present estimates for all of the large- and mid-scale interferometers now under construction: LIGO (three configurations), VIRGO, GEO600, and TAMA. To search for binaries with components more massive than mmin=0.2Msolar while losing no more than 10% of events due to coarseness of template spacing, the initial LIGO interferometers will require about 1.0×1011 flops (floating point operations per second) for data analysis to keep up with data acquisition. This is several times higher than estimated in previous work by Owen, in part because of the improved family of templates and in part because we use more realistic (higher) sampling rates. Enhanced LIGO, GEO600, and TAMA will require computational power similar to initial LIGO. Advanced LIGO will require 7.8×1011 flops, and VIRGO will require 4.8×1012 flops to take full advantage of its broad target noise spectrum. If the templates are stored rather than generated as needed, storage requirements range from 1.5×1011 real numbers for TAMA to 6.2×1014 for VIRGO. The computational power required scales roughly as m-8/3min and the storage as m-13/3min. Since these scalings are perturbed by the curvature of the parameter space at second post-Newtonian order, we also provide estimates for a search with mmin=1Msolar. Finally, we sketch and discuss an algorithm for placing the templates in the parameter space.
DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES
Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard
2012-11-01
The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{sup )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.
UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. III. THE CASE OF CYGNUS X-1
Wong, Tsing-Wai; Valsecchi, Francesca; Kalogera, Vassiliki; Fragos, Tassos E-mail: francesca@u.northwestern.edu E-mail: tfragos@cfa.harvard.edu
2012-03-10
In recent years, accurate observational constraints have become available for an increasing number of Galactic X-ray binaries (XRBs). Together with proper-motion measurements, we could reconstruct the full evolutionary history of XRBs back to the time of compact object formation. In this paper, we present the first study of the persistent X-ray source Cygnus X-1 that takes into account all available observational constraints. Our analysis accounts for three evolutionary phases: orbital evolution and motion through the Galactic potential after the formation of a black hole (BH), and binary orbital dynamics at the time of core collapse. We find that the mass of the BH immediate progenitor is 15.0-20.0 M{sub Sun }, and at the time of core collapse, the BH has potentially received a small kick velocity of {<=}77 km s{sup -1} at 95% confidence. If the BH progenitor mass is less than {approx}17 M{sub Sun }, a non-zero natal kick velocity is required to explain the currently observed properties of Cygnus X-1. Since the BH has only accreted mass from its companion's stellar wind, the negligible amount of accreted mass does not explain the observationally inferred BH spin of a{sub *} > 0.95, and the origin of this extreme BH spin must be connected to the BH formation itself. Right after the BH formation, we find that the BH companion is a 19.8-22.6 M{sub Sun} main-sequence star, orbiting the BH at a period of 4.7-5.2 days. Furthermore, recent observations show that the BH companion is currently super-synchronized. This super-synchronism indicates that the strength of tides exerted on the BH companion should be weaker by a factor of at least two compared to the usually adopted strength.
Favata, Marc
2009-07-15
The Christodoulou memory is a nonlinear contribution to the gravitational-wave field that is sourced by the gravitational-wave stress-energy tensor. For quasicircular, inspiralling binaries, the Christodoulou memory produces a growing, nonoscillatory change in the gravitational-wave 'plus' polarization, resulting in the permanent displacement of a pair of freely-falling test masses after the wave has passed. In addition to its nonoscillatory behavior, the Christodoulou memory is interesting because even though it originates from 2.5 post-Newtonian (PN) order multipole interactions, it affects the waveform at leading (Newtonian/quadrupole) order. The memory is also potentially detectable in binary black-hole mergers. While the oscillatory pieces of the gravitational-wave polarizations for quasicircular, inspiralling compact binaries have been computed to 3PN order, the memory contribution to the polarizations has only been calculated to leading order (the next-to-leading order 0.5PN term has previously been shown to vanish). Here the calculation of the memory for quasicircular, inspiralling binaries is extended to 3PN order. While the angular dependence of the memory remains qualitatively unchanged, the PN correction terms tend to reduce the memory's magnitude. Explicit expressions are given for the memory contributions to the plus polarization and the spin-weighted spherical-harmonic modes of the metric and curvature perturbations. Combined with the recent results of Blanchet et al.[Classical Quantum Gravity 25, 165003 (2008)], this completes the waveform polarizations to 3PN order. This paper also discusses: (i) the difficulties in extracting the memory from numerical relativity simulations, (ii) other nonoscillatory effects that enter the waveform polarizations at high PN orders, and (iii) issues concerning the observability of the memory in gravitational-wave detectors.
Busignies, V; Leclerc, B; Porion, P; Evesque, P; Couarraze, G; Tchoreloff, P
2006-08-01
Three pharmaceutical excipients (microcrystalline cellulose, lactose, anhydrous calcium phosphate) and their binary mixtures were compacted to form compacts of various mean porosities. Some mechanical properties (Young's modulus, tensile strength and Brinell hardness) were studied on these compacts. The mechanical properties of the binary mixtures were not proportional to the mixture composition expressed in mass. More, for all the properties, a negative deviation was always observed from this linear relationship. In reference to a composition percolation phenomenon, critical mass fractions were detected from the graph mechanical property vs. mass composition of a mixture. The results obtained with Brinell hardness differed from the results of the Young's modulus and the tensile strength, i.e. the most plastic material in the binary mixture controlled the mixture behaviour. Secondly, a predictive model based on a statistical approach was proposed for the Young's modulus and the tensile strength. The validity of this model was verified on experimental data, and an interaction parameter used to characterize the affinity of the two compounds was calculated. Finally, the X-ray tomography technique was applied to the compacts of cellulose/phosphate mixtures to obtain cross-sections images of the compacts. The analysis of the cross-sections images allowed explaining the no linear relationship of the different mechanical properties results observed on these binary mixtures. PMID:16750353
Mitra, S.; Dhurandhar, S.V.; Finn, L.S.
2005-11-15
Inspiraling compact-object binary systems are promising gravitational wave sources for ground and space-based detectors. The time-dependent signature of these sources is a well-characterized function of a relatively small number of parameters; thus, the favored analysis technique makes use of matched filtering and maximum likelihood methods. As the parameters that characterize the source model vary, so do the templates against which the detector data are compared in the matched filter. For small variations in the parameters, the filter responses are closely correlated. Current analysis methodology samples a bank of filters whose parameter values are chosen so that the correlation between successive samples from successive filters in the bank is 97%. Correspondingly, the additional information available with each successive template evaluation is, in a real sense, only 3% of that already provided by the nearby templates. The reason for such a dense coverage of parameter space is to minimize the chance that a real signal, near the detection threshold, will be missed by the parameter space sampling. Here we investigate the use of Chebyshev interpolation for reducing the number of templates that must be evaluated to obtain the same analysis sensitivity. Additionally, rather than focus on the 'loss' of signal-to-noise associated with the finite number of filters in the template bank, we evaluate the receiver operating characteristic (ROC) as a measure of the effectiveness of an analysis technique. The ROC relates the false alarm probability to the false dismissal probability of an analysis, which are the quantities that bear most directly on the effectiveness of an analysis scheme. As a demonstration, we compare the present 'dense sampling' analysis methodology with the 'interpolation' methodology using Chebyshev polynomials, restricted to one dimension of the multidimensional analysis problem by plotting the ROC curves. We find that the interpolated search can be
Compact objects at the heart of outflows in large and small systems
NASA Astrophysics Data System (ADS)
Sell, Paul Harrison
2013-12-01
This thesis focuses on studying and assessing high-energy feedback generated by both stellar mass and supermassive compact objects. From these two perspectives, I help bridge the gap in understanding how jets and winds can transform their much larger environments in thousands to millions of years, astronomically short timescales. I have acquired X-ray and optical data that aim to elucidate the role these objects play in powering parsec-scale shockwaves in the ISM and in driving kiloparsec-scale outflows in galaxies. I present Chandra X-ray imaging, Hubble Space Telescope imaging, and WIYN Hydra multi-object optical spectroscopic observations. The data reveal the morphologies of the systems and constrain on a range of interesting parameters: power, outflow velocity, density, accretion efficiency, and timescale. My analysis provides perspective on the importance of black holes, both large and small, and neutron stars for driving outflows into the interstellar and intergalactic medium. On kiloparsec scales, I explore the nature of what appear to be merging or recently merging post-starburst galaxies with very high-velocity winds. This work is part of a multiwavelength effort to characterize the niche these galaxies fill in the larger scheme of galaxy evolution. My focus is on the accretion activity of the coalescing supermassive black holes in their cores. This work leads us to compare the relative importance of a massive starburst to the supermassive black holes in the cores of the galaxies. On parsec scales, I present case studies of two prominent microquasars, Galactic X-ray binaries with jets, Circinus X-1 and Cygnus X-1. In the case of Circinus X-1, I present very deep follow-up observations of parsec-scale shock plumes driven by a powerful, bipolar jet. In the case of Cygnus X-1, I present follow-up observations to probe a recently discovered outflow near the binary. I calculate robust, physically motivated limits on the total power needed to drive the outflows
Efficiently enclosing the compact binary parameter space by singular-value decomposition
Cannon, Kipp; Hanna, Chad; Keppel, Drew
2011-10-15
Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.
NASA Astrophysics Data System (ADS)
Adams, T.; Buskulic, D.; Germain, V.; Guidi, G. M.; Marion, F.; Montani, M.; Mours, B.; Piergiovanni, F.; Wang, G.
2016-09-01
The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring.
Parameter estimation for compact binary inspirals with a simple noise realization
NASA Astrophysics Data System (ADS)
Kim, Jeongcho; Kim, Chunglee; Lee, Hyung Won
2016-05-01
In the context of parameter estimation of gravitational waves (GWs), detector noise is assumed to be Gaussian and stationary. In reality, many electric glitches, which are neither Gaussian nor stationary, were observed and reported in publications by the LSC-Virgo collabotation. Proper noise reduction is important in GW data analysis, as these glitches would limit, if not downgrade, the quality of parameter estimation. In this work, we investigate the accuracy of results obtained by Markov Chain Monte Carlo (MCMC) parameter estimation for compact binary inspirals with the LIGO-Virgo network when non-Gaussian, stationary noise is remained in data of each interferometer. Spiky, delta function-like glitches, which are stationary, do not affect correlations between parameters. However, most likely values of chirp mass and distance seem to be shifted by the specific frequencies and amplitudes of glitches.
NASA Astrophysics Data System (ADS)
Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu
2016-03-01
Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-09-01
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M⊙-25M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
Strange Stars : An interesting member of the compact object family
Bagchi, Manjari; Ray, Subharthi; Dey, Jishnu; Dey, Mira
2008-01-10
We have studied strange star properties both at zero temperature and at finite temperatures and searched signatures of strange stars in gamma-ray, x-ray and radio astronomy. We have a set of Equations of State (EoS) for strange quark matter (SQM) and solving the TOV equations, we get the structure of strange stars. The maximum mass for a strange star decreases with the increase of temperature, because at high temperatures, the EoS become softer. One important aspect of strange star is that, surface tension depends on the size and structure of the star and is significantly larger than the conventional values. Moment of inertia is another important parameter for compact stars as by comparing theoretical values with observed estimate, it is possible to constrain the dense matter Equation of State. We hope that this approach will help us to decide whether the members of the double pulsar system PSR J0737-3039 are neutron stars or strange stars.
Baumgarte, Thomas; Brady, Patrick R.; Creighton, Jolien D E; Lehner, Luis; Pretorius, Frans; DeVoe, Ricky
2008-04-15
Activities in data analysis and numerical simulation of gravitational waves have to date largely proceeded independently. In this work we study how waveforms obtained from numerical simulations could be effectively used within the data analysis effort to search for gravitational waves from black hole binaries. To this end we analyze the cross-correlation between different numerical waveforms weighted by the detector's noise. This allow us to propose measures to quantify the accuracy of numerical waveforms for the purpose of data analysis, study how sensitive the analysis is to errors in the waveforms, and propose a way to efficiently encode the waveform's information for its use as a member of the template bank. We estimate that {approx}100 templates (and {approx}10 simulations with different mass ratios) are needed to detect waves from nonspinning binary black holes with total masses in the range 100M{sub {center_dot}}{<=}M{<=}400M{sub {center_dot}} using initial LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors in numerical waveform extraction and provide order of magnitude estimates for the computational cost of simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what information from near-future numerical simulations of compact binary systems would be most useful for enhancing the detectability of such events with contemporary gravitational-wave detectors and emphasize the role of numerical simulations for the interpretation of eventual gravitational-wave observations.
The Fate of Fallback Matter around Newly Born Compact Objects
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Duffell, Paul; Cantiello, Matteo; MacFadyen, Andrew I.
2014-02-01
The presence of fallback disks around young neutron stars (NSs) has been invoked over the years to explain a large variety of phenomena. Here we perform a numerical investigation of the formation of such disks during a supernova (SN) explosion, considering both NS and black hole (BH) remnants. Using the public code MESA, we compute the angular momentum distribution of the pre-SN material, for stars with initial masses M in the range 13-40 M ⊙, initial surface rotational velocities v surf between 25% and 75% of the critical velocity, and for metallicities Z of 1%, 10%, and 100% of the solar value. These pre-SN models are exploded with energies E varying between 1050-3 × 1052 erg, and the amount of fallback material is computed. We find that, if magnetic torques play an important role in angular momentum transport, then fallback disks around NSs, even for low-metallicity main-sequence stars, are not an outcome of SN explosions. Formation of such disks around young NSs can only happen under the condition of negligible magnetic torques and a fine-tuned explosion energy. For those stars that leave behind BH remnants, disk formation is ubiquitous if magnetic fields do not play a strong role; however, unlike the NS case, even with strong magnetic coupling in the interior, a disk can form in a large region of the Z, M, v surf, E parameter space. Together with the compact, hyperaccreting fallback disks widely discussed in the literature, we identify regions in the above parameter space that lead to extended, long-lived disks around BHs. We find that the physical conditions in these disks may be conducive to planet formation, hence leading to the possible existence of planets orbiting BHs.
Compact and extended objects from self-interacting phantom fields
NASA Astrophysics Data System (ADS)
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John
2016-07-01
In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.
Extremely red compact radio sources - The empty field objects
NASA Technical Reports Server (NTRS)
Beichman, C. A.; Neugebauer, G.; Soifer, B. T.; Matthews, K.; Wootten, H. A.; Pravdo, S. H.
1981-01-01
Radiation of 10 microns has been detected from 1413+135, one of the very red objects discovered by Rieke, Lebofsky, and Kinman (1979) at near-infrared wavelengths. The spectrum of this object flattens at wavelengths longer than 2.2 microns. Upper limits are also given for the 10-micron emission from 2255+14, 0026+34, and 0406+121. Photometry between 1.25 and 2.2 microns confirms the variability of 1413+135, 2255+41, and 0406+121. Five percent resolution spectra of 1413+135 and 0406+121 between 1.5 and 2.4 microns show no emission or absorption lines. The spectral data rule out the possibility that 1413+135 is a quasar with normal line strengths and a redshift less than 1.3 and greater than 4. The lack of features of the 1.5-2.4-micron spectra, the rapid variability, and the overall shape of the radio, infrared, and X-ray energy distributions are consistent with a BL Lac nature for these objects.
Magnetar-like Activity from the Central Compact Object in the SNR RCW103
NASA Astrophysics Data System (ADS)
Rea, N.; Borghese, A.; Esposito, P.; Coti Zelati, F.; Bachetti, M.; Israel, G. L.; De Luca, A.
2016-09-01
The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the “anti-magnetar” scenario for other CCOs.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Ceron, E. Amador; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Camp, J. B.; Cannizzo, J.
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
Psaltis, Dimitrios; Johannsen, Tim
2012-01-20
We describe a new numerical algorithm for ray tracing in the external spacetimes of spinning compact objects characterized by arbitrary quadrupole moments. Such spacetimes describe non-Kerr vacuum solutions that can be used to test the no-hair theorem in conjunction with observations of accreting black holes. They are also appropriate for neutron stars with spin frequencies in the {approx_equal} 300-600 Hz range, which are typical of the bursting sources in low-mass X-ray binaries. We use our algorithm to show that allowing for the quadrupole moment of the spacetime to take arbitrary values leads to observable effects in the profiles of relativistic broadened fluorescent iron lines from geometrically thin accretion disks.
NASA Astrophysics Data System (ADS)
Mandel, Ilya; Berry, Christopher P. L.; Ohme, Frank; Fairhurst, Stephen; Farr, Will M.
2014-08-01
Gravitational-wave (GW) astronomy seeks to extract information about astrophysical systems from the GW signals they emit. For coalescing compact-binary sources this requires accurate model templates for the inspiral and, potentially, the subsequent merger and ringdown. Models with frequency-domain waveforms that terminate abruptly in the sensitive band of the detector are often used for parameter-estimation studies. We show that the abrupt waveform termination contains significant information that affects parameter-estimation accuracy. If the sharp cutoff is not physically motivated, this extra information can lead to misleadingly good accuracy claims. We also show that using waveforms with a cutoff as templates to recover complete signals can lead to biases in parameter estimates. We evaluate when the information content in the cutoff is likely to be important in both cases. We also point out that the standard Fisher matrix formalism, frequently employed for approximately predicting parameter-estimation accuracy, cannot properly incorporate an abrupt cutoff that is present in both signals and templates; this observation explains some previously unexpected results found in the literature. These effects emphasize the importance of using complete waveforms with accurate merger and ringdown phases for parameter estimation.
Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation
NASA Astrophysics Data System (ADS)
Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain
2016-04-01
The Fokker action governing the motion of compact binary systems without spins is derived in harmonic coordinates at the fourth post-Newtonian approximation (4PN) of general relativity. Dimensional regularization is used for treating the local ultraviolet (UV) divergences associated with point particles, followed by a renormalization of the poles into a redefinition of the trajectories of the point masses. Effects at the 4PN order associated with wave tails propagating at infinity are included consistently at the level of the action. A finite part procedure based on analytic continuation deals with the infrared (IR) divergencies at spatial infinity, which are shown to be fully consistent with the presence of near-zone tails. Our end result at 4PN order is Lorentz invariant and has the correct self-force limit for the energy of circular orbits. However, we find that it differs from the recently published result derived within the ADM Hamiltonian formulation of general relativity [T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014), 10.1103/PhysRevD.89.064058]. More work is needed to understand this discrepancy.
Radio flares of compact binary mergers: the effect of non-trivial outflow geometry
NASA Astrophysics Data System (ADS)
Margalit, Ben; Piran, Tsvi
2015-10-01
The next generation gravitational waves (GW) detectors are most sensitive to GW emitted by compact (neutron star/black hole) binary mergers. If one of those is a neutron star the merger will also emit electromagnetic radiation via three possible channels: gamma-ray bursts and their (possibly orphan) afterglows, Li-Paczynski Macronovae and radio flares. This accompanying electromagnetic radiation is vitally important in confirming the GW detections. It could also reveal a wealth of information regarding the merger and will open a window towards multimessenger astronomy. Identifying and characterizing these counterparts is therefore of utmost importance. In this work, we explore late time radio flares emitted by the dynamically ejected outflows. We build upon previous work and consider the effect of the outflow's non-trivial geometry. Using an approximate method, we estimate the radio light-curves for several ejected matter distributions obtained in numerical simulations. Our method provides an upper limit to the effect of non-sphericity. Together with the spherical estimates, the resulting light curves bound the actual signal. We find that while non-spherical geometries can in principle lead to an enhanced emission, in most cases they result in an increase in the time-scale compared with a corresponding spherical configuration. This would weaken somewhat these signals and might decrease the detection prospects.
Thompson, Todd A.
2011-11-10
White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t{sub H}), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t{sub merge} < t{sub H}. In principle, Chandrasekhar-mass binaries with P {approx} 300 days can merge in {approx}< t{sub H} if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t{sub merge} {approx}< t{sub H} is yet larger. In contrast, P {approx}< 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.
NASA Astrophysics Data System (ADS)
Thompson, Todd A.
2011-11-01
White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge < t H. In principle, Chandrasekhar-mass binaries with P ~ 300 days can merge in <~ t H if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge <~ t H is yet larger. In contrast, P <~ 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.
NASA Astrophysics Data System (ADS)
de Ugarte Postigo, A.; Thöne, C. C.; Rowlinson, A.; García-Benito, R.; Levan, A. J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sánchez-Ramírez, R.; Melandri, A.; D'Avanzo, P.; Oates, S.; D'Elia, V.; De Pasquale, M.; Krühler, T.; van der Horst, A. J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S. D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J. P. U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O. E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Vestergaard, M.; Wijers, R. A. M. J.
2014-03-01
Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-likesignature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims: Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods: Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results: From these spectra we determine the redshift of the burst to be z = 0.3565 ± 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of AV = 0.86 ± 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), NHX/AV is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions: The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary. Appendices are available in electronic form at http://www.aanda.org
GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes
NASA Astrophysics Data System (ADS)
Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.
2016-08-01
In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.
Ruling out chaos in comparable mass compact binary systems with one body spinning
NASA Astrophysics Data System (ADS)
Wu, Xin; Huang, Guoqing
2015-09-01
Levin (2006, Phys. Rev. D, 74, 124027) has given two contrary claims on the chaotic behaviour of a system in which only one body of comparable mass binaries spins and spin effects are restricted to the leading order spin-orbit couplings. Chaos in one set of second post-Newtonian (2PN) harmonic coordinate Lagrangian equations of motion was allowed via the fractal basin boundary method. However, in another set of 2PN Arnowitt-Deser-Misner (ADM) Hamiltonian equations of motion no chaos was confirmed with the aid of parametric solutions. Is there chaos for conservative PN Lagrangian and Hamiltonian approaches to the dynamics of comparable mass binaries when only one object spins? This is still an open question. A paper on canonical, conjugate spin variables (Wu and Xie, 2010, Phys. Rev. D, 81, 084045) has directly shown that these Hamiltonian approaches are integrable and non-chaotic regardless of PN orders and spin effects. In this sense, what we are required to answer is only the question of whether the Lagrangian approaches allow chaos. As recently confirmed by Wu et al. (2015, Phys. Rev. D, 91, 024042), in ADM coordinates, any one of these Lagrangian approaches at a certain order generally has an analytical mathematical equivalent Hamiltonian at an infinite order from an analytical point of view or at a certain high enough finite order from a numerical point of view. The Hamiltonian is completely canonical and has four integrals of the total energy and total angular momentum in an eight-dimensional phase space, and therefore it is typically integrable. We use this to show the absence of chaos in the Lagrangian. On the other hand, we use the method of fast Lyapunov exponents to revisit the 2PN harmonic coordinate Lagrangian dynamics with the leading-order spin-orbit coupling of one body spinning. It is found that the fractal method is not sufficient to support chaos in unstable merging binaries, even if the radiation reaction is turned off. In summary, neither the
NASA Astrophysics Data System (ADS)
Sun, Baosan; Cao, Zhoujian; Wang, Yan; Yeh, Hsien-Chi
2015-08-01
Inspiraling compact binaries have been identified as one of the most promising sources for gravitational-wave detection. These binaries are always expected to have been circularized by the gravitational radiation when they enter the detector's frequency band. However, recent studies indicate that some binaries may still possess a significant eccentricity. In light of the enhanced post-circular waveform model for eccentric binaries in the frequency domain, we do a systematic study of the possible signal-to-noise ratio loss if one uses quasicircular waveform templates to analyze the eccentric signal, and revisit the problem of parameter estimation of gravitational-wave chirp signals from eccentric compact binaries. We confirm previous results from other researchers that the resulting signal-to-noise ratio loss becomes larger than 5% for eccentricity bigger than 0.1 and the resulting parameter estimation bias is more than 0.1%. We study the parameter estimation accuracy for such a waveform with different initial eccentricities from 0.1 to 0.4 by using the Fisher matrix method. As expected, the eccentricity improves the parameter estimation accuracy significantly by breaking degeneracies between different parameters. Particularly, we find that the eccentricity errors improve by 2 orders of magnitude from 10-2 to 10-4 when eccentricity grows from 0.1 to 0.4, and the estimated errors of the chirp mass are about 10-3 for a binary black hole using the Advanced LIGO detector. For the Einstein Telescope detector, the estimated accuracy of parameters will be 2 orders of magnitude higher.
A Study on the Evolution of Compact Star Binaries and Stellar X-ray Sources
NASA Astrophysics Data System (ADS)
Xu, X. J.
2014-03-01
X-ray serves as one of the most important domains of discovery in astronomy. It could be used to study the properties as well as the formation and evolution of X-ray emitting objects. X-ray can also be used to constrain the formation and evolution history of galaxies in the universe. In this thesis, we discuss the properties of the X-ray point sources, especially those with white dwarfs as accretors. We focus on the evolution of these binaries and their progenitors, as well as the relation between these objects and their host environments with the numerical and observational methods. We further put constraints on the final product and the possible connection to the type Ia supernovae. Our main results are as follows: (1) We study the case in which the thermally unstable accretion disks occur in binaries, and apply to the evolution of GRO J1744-28 and type Ia supernovae. Our result shows that GRO J1744-28 could have evolved from a binary composed by a normal star and an ONeMg white dwarf and with the white dwarf as the accretor. During its evolution, the white dwarf experienced accretion from the X-ray irradiated unstable accretion disk, then accumulated mass by burning the accreted matter on its surface before it collapsed to a neutron star. The new formed neutron star then accreted from the companion again, and evolved to its present properties. We also apply the unstable disks to the binaries with C/O white dwarfs as accretors, and calculate the region of the initial companion masses and orbital periods which could lead to successful type Ia supernovae. The results suggest that the companion star of the progenitor system could have the initial mass as low as ≲ 1.5 M_{⊙}. (2) We study the λ parameter in the common envelope evolution. Our results show that the λ parameter varies for the stars with different initial masses. For the same star, λ also varies in different evolutional stages. At the end of their evolution, the stars with the approximate initial
NASA Astrophysics Data System (ADS)
Van Den Broeck, C.
2014-03-01
The second-generation interferometric gravitational wave detectors, currently under construction are expected to make their first detections within this decade. This will firmly establish gravitational wave physics as an empirical science, and will open up a new era in astrophysics, cosmology, and fundamental physics. Already with the first detections, we will be able to, among other things, establish the nature of short-hard gamma ray bursts, definitively confirm the existence of black holes, measure the Hubble constant in a completely independent way, and for the first time gain access to the genuinely strong-field dynamics of gravity. Hence, it is time to consider the longer-term future of this new field. The Einstein Telescope (ET) is a concrete conceptual proposal for a third-generation gravitational wave observatory, which will be ~ 10 times more sensitive in strain than the second-generation detectors. This will give access to sources at cosmological distances, with a correspondingly higher detection rate. We have given an overview of the science case for ET, with a focus on what can be learned from signals emitted by coalescing compact binaries. Third-generation observatories will allow us to map the coalescence rate out to redshifts z ~ 3, determine the mass functions of neutron stars and black holes, and perform precision measurements of the neutron star equation of state. ET will enable us to study the large-scale structure and evolution of the Universe without recourse to a cosmic distance ladder. Finally, we have discussed how it will allow for high-precision measurements of strong-field, dynamical gravity.
Derivation of local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries
NASA Astrophysics Data System (ADS)
Jaranowski, Piotr; Schäfer, Gerhard
2015-12-01
The paper gives full details of the computation within the canonical formalism of Arnowitt, Deser, and Misner of the local-in-time part of the fourth post-Newtonian, i.e. of power eight in one over speed of light, conservative Hamiltonian of spinless compact binary systems. The Hamiltonian depends only on the bodies' positions and momenta. Dirac delta distributions are taken as source functions. Their full control is furnished by dimensional continuation, by means of which the occurring ultraviolet (UV) divergences are uniquely regularized. The applied near-zone expansion of the time-symmetric Green function leads to infrared (IR) divergences. Their analytic regularization results in one single ambiguity parameter. Unique fixation of it was successfully performed in T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014) through far-zone matching. Technically as well as conceptually (backscatter binding energy), the level of the Lamb shift in quantum electrodynamics is reached. In a first run a computation of all terms is performed in three-dimensional space using analytic Riesz-Hadamard regularization techniques. Then divergences are treated locally (i.e., around particles' positions for UV and in the vicinity of spatial infinity for IR divergences) by means of combined dimensional and analytic regularization. Various evolved analytic expressions are presented for the first time. The breakdown of the Leibniz rule for distributional derivatives is addressed as well as the in general nondistributive law when regularizing value of products of functions evaluated at their singular point.
NASA Astrophysics Data System (ADS)
Farr, Benjamin
With the advanced-detector era of ground-based gravitational wave astronomy beginning in the next year, and with it the first detections of gravitational waves, it is critical that the LIGO-Virgo collaboration be prepared to make astronomical statements about the sources it could detect. The estimation of compact binary parameters from gravitational wave signals is a computationally expensive analysis that is highly susceptible to systematic biases due to the approximations that are necessary. To be prepared for the advanced-detector era these tools need to be efficient enough to follow up all interesting candidate signals, and also must be shown to provide estimates of parameters with systematic uncertainties smaller than the statistical uncertainties. This work focuses on the development of the parameter estimation tools used by the LIGO-Virgo collaboration, preparing them for the advanced-detector era. Work began with existing parameter estimation algorithms that would take several months to complete. Being so expensive, it was infeasible to conduct the systematic studies required to validate them. With techniques partly developed in this work analysis times are reduced to hours to days. With these advancements in place I conduct several systematic studies, both to assess the potential systematic biases in parameter estimates due to the use of approximate models for waveforms, and to make robust predictions for what constraints will be placed on gravitational-wave sources from detections in the early advanced-detector era. Lastly, I introduce a novel approach to parameter estimation that reduces the analysis time from hours to minutes, providing information at latencies low enough to guide the search for electromagnetic counterparts.
High-ionization accretion signatures in compact binary candidates from SOAR Telescope observations
NASA Astrophysics Data System (ADS)
Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F.; Silva, K. M. G.; Almeida, L. A.
2014-10-01
The increasing number of synoptic surveys made by small robotic telescopes, like the photometric Catalina Real-Time Transient Survey (CRTS - Drake et al., 2009, ApJ, 696, 870), represents a unique opportunity for the discovery of new variable objects and also to improve the samples of many classes of variables. Our goal in this work was the discovery of new polars, a subclass of magnetic Cataclysmic Variables (mCVs) with no accretion disk, and Close Binary Supersoft X-ray Sources (CBSS), strong candidates to Type Ia Supernova progenitors. Both are rare objects and probe interesting accretion scenarios. Finding spectral features associated to high-ionization mass accretion constrains the CBSS or magnetic CV nature for the candidates, expanding the hitherto small samples of these classes (specially CBSS) and allowing for detailed observational follow-up. We used the Goodman Spectrograph on SOAR 4.1 m Telescope to search for signatures of high-ionization mass accretion, as He II 468,6 nm emission line and inverted Balmer decrement, on 39 variable objects selected mostly from CRTS. In this sample we found 14 strong candidates to mCVs, 1 Nova in the final stages of eruption, 14 candidates to Dwarf Novae, 5 extragalactic sources (AGN), 1 object previously identified as a Black Hole Nova, 3 objects with pure absorption spectral features and 1 unidentified object with low S/N ratio. The mCVs candidates found in this work will be studied using time-resolved spectroscopic, polarimetric, and photometric observations in a follow-up project.
An accurate geometric distance to the compact binary SS Cygni vindicates accretion disc theory.
Miller-Jones, J C A; Sivakoff, G R; Knigge, C; Körding, E G; Templeton, M; Waagen, E O
2013-05-24
Dwarf novae are white dwarfs accreting matter from a nearby red dwarf companion. Their regular outbursts are explained by a thermal-viscous instability in the accretion disc, described by the disc instability model that has since been successfully extended to other accreting systems. However, the prototypical dwarf nova, SS Cygni, presents a major challenge to our understanding of accretion disc theory. At the distance of 159 ± 12 parsecs measured by the Hubble Space Telescope, it is too luminous to be undergoing the observed regular outbursts. Using very long baseline interferometric radio observations, we report an accurate, model-independent distance to SS Cygni that places the source substantially closer at 114 ± 2 parsecs. This reconciles the source behavior with our understanding of accretion disc theory in accreting compact objects. PMID:23704566
Bidirectional motion observed in the compact symmetric object 1946+708.
Taylor, G B; Vermeulen, R C; Pearson, T J
1995-01-01
We present the first direct measurements of bidirectional motions in an extragalactic radio jet. The radio source 1946+708 is a compact symmetric object with striking S-symmetry identified with a galaxy at a redshift of 0.101. From observations 2 years apart we have determined the velocities of four compact components in the jet, the fastest of which has an apparent velocity of 1.09 h-1c. By pairing up the components, assuming they were simultaneously ejected in opposite directions, we derive a 1 lower limit on the Hubble constant, H0 > 42 km.s-1.Mpc-1. PMID:11607603
Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Hotokezaka, Kenta; Piran, Tsvi; Paul, Michael
2015-12-01
The origin of heavy elements produced through rapid neutron capture (`r-process’) by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe; ref. ) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth’s deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretical and observational macronova/kilonova estimates.
Casimir potential of a compact object enclosed by a spherical cavity
Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.
2010-11-15
We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic spheres both outside and within one another.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Ceron, E. Amador; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Blackburn, L.; Camp, J. B.; Cannizzo, J.
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
Optical, X-ray and gamma-ray observations of compact objects in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, J. E.
1993-01-01
In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and Hubble Space Telescope (HST) as well as our balloon-borne hard x-ray telescope EXITE (Energetic X-ray Imaging Telescope Experiment) and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H-alpha images of two clusters with HST and found CV candiates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two 'dim source' fields in omega-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and low mass X-ray binaries (LMXBs) and the origin of hot gas in globulars.
Kidder, Lawrence E.
2008-02-15
The increasing sophistication and accuracy of numerical simulations of compact binaries (especially binary black holes) presents the opportunity to test the regime in which post-Newtonian (PN) predictions for the emitted gravitational waves are accurate. In order to confront numerical results with those of post-Newtonian theory, it is convenient to compare multipolar decompositions of the two waveforms. It is pointed out here that the individual modes can be computed to higher post-Newtonian order by examining the radiative multipole moments of the system, rather than by decomposing the 2.5PN polarization waveforms. In particular, the dominant (l=2, m={+-}2) mode can be computed to 3PN order. Individual modes are computed to as high a post-Newtonian order as possible given previous post-Newtonian results.
Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity
NASA Astrophysics Data System (ADS)
Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.
2015-05-01
We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.
A search for pulsations from the compact object of GRB 060218
NASA Astrophysics Data System (ADS)
Mirabal, N.; Gotthelf, E. V.
2010-02-01
Aims: A fraction of massive stars are expected to collapse into compact objects (accreting black holes or rapidly rotating neutron stars) that successfully produce gamma-ray bursts (GRBs). We examine the possibility of directly observing these gamma-ray burst compact objects (GCOs) using post-explosion observations of past and future GRB sites. Methods: We present a search for early pulsations from the nearby (z=0.0335) gamma-ray burst GRB 060218, which exhibited features possibly consistent with a rapidly spinning neutron star as its underlying GCO. We also consider alternative techniques that could potentially achieve a detection of GCOs either in the Local Volume or near the plane of our own Galaxy. Results: We report the non-detection of pulsations from the GCO of GRB 060218. In particular, fast fourier transform analysis applied to the light curve shows no significant power over the range of frequencies 0.78 mHz < f < 227 Hz with an upper limit on the pulsed fraction of ~2%. In addition, we present detection limits of current high-resolution archival X-ray images of galaxies within the Local Volume. The existing data could be harnessed to rule out the presence of any background contaminants at the GRB position of future nearby events. Conclusions: The null detection of pulsations from the GCO of GRB 060218 is most likely explained by the fact that the afterglow emission occurs near the head of the jet and should be far removed from the compact object. We also find that the comparison of pre- and post-explosion explosion images of future GRBs within the Local Volume, as well as the firm identification of a GCO within an ancient GRB remnant near the Galactic plane are extremely challenging with current GeV/TeV capabilities. Finally, we conclude that only under some very exceptional circumstances will it be possible to directly detect the compact object responsible for gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Dietrich, Tim; Moldenhauer, Niclas; Johnson-McDaniel, Nathan K.; Bernuzzi, Sebastiano; Markakis, Charalampos M.; Brügmann, Bernd; Tichy, Wolfgang
2015-12-01
Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasiequilibrium configurations and dynamical evolutions. In this article, we construct quasiequilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the sgrid code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity-reduced data; we present the possibility of computing data for significantly unequal-mass binaries with mass ratios q ≃2 ; and we create equal-mass binaries with individual compactness up to C ≃0.23 . As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a q =2.06 mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of ˜10-2M⊙ is transferred between the two stars. This amount of mass accretion corresponds to ˜1051 ergs of accretion energy. This configuration also ejects a large amount of material during merger (˜7.6 ×1 0-2M⊙), imparting a substantial kick to the remnant neutron star. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity-reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies. However, one also needs to reduce other errors in the waveforms, notably truncation errors, in order for the improvement due to
SUBARU AND GEMINI OBSERVATIONS OF SS 433: NEW CONSTRAINT ON THE MASS OF THE COMPACT OBJECT
Kubota, K.; Ueda, Y.; Fabrika, S.; Barsukova, E. A.; Sholukhova, O.; Medvedev, A.; Goranskij, V. P.
2010-02-01
We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 A. This region is selected to avoid 'strong' absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig and Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 +- 3.8 km s{sup -1} with a systemic velocity of 59.2 +- 2.5 km s{sup -1}. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M{sub O} = 12.4 +- 1.9 M{sub sun} and M{sub X} = 4.3 +- 0.6 M{sub sun}, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 +- 5 km s{sup -1} in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M{sub O} = 10.4{sup +2.3}{sub -1.9} M{sub sun} and M{sub X} = 2.5{sup +0.7}{sub -0.6} M{sub sun}. Our final constraint, 1.9 M{sub sun} <=M{sub X}<= 4.9 M{sub sun}, indicates that the compact object in SS 433 is most likely a
NASA Astrophysics Data System (ADS)
Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Sybilski, P.; Ratajczak, M.; Maehara, H.; Konacki, M.
2016-09-01
We present results of our spectroscopic observations of nine detached eclipsing binaries (DEBs), selected from the Kepler Eclipsing Binary Catalog, that only show one set of spectral lines. Radial velocities (RVs) were calculated from the high-resolution spectra obtained with the HIgh-Dispersion Echelle Spectrograph (HIDES) instrument, attached to the 1.88-m telescope at the Okayama Astrophysical Observatory, and from the public Apache Point Observatory Galactic Evolution Experiment archive. In our sample, we found five single-lined binaries, with one component dominating the spectrum. The orbital and light-curve solutions were found for four of them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. For the fifth case, we only update the orbital parameters, and estimate the properties of the unseen star. Two other systems show orbital motion with a period known from the eclipse timing variations (ETVs). For these we obtained parameters of outer orbits, by translating the ETVs to RVs of the centre of mass of the eclipsing binary, and combining with the RVs of the outer star. Of the two remaining ones, one is most likely a blend of a faint background DEB with a bright foreground star, which lines we see in the spectra, and the last case is possibly a quadruple bearing a sub-stellar mass object. Where possible, we compare our results with literature, especially with results from asteroseismology. We also report possible detections of solar-like oscillations in our RVs.
Micro-tidal Disruption Events by Stellar Compact Objects and the Production of Ultra-long GRBs
NASA Astrophysics Data System (ADS)
Perets, Hagai B.; Li, Zhuo; Lombardi, James C., Jr.; Milcarek, Stephen R., Jr.
2016-06-01
We explore full/partial tidal disruption events (TDEs) of stars/planets by stellar compact objects (black holes (BHs) or neutron stars (NSs)), which we term micro-TDEs. Disruption of a star/planet with mass M ⋆ may lead to the formation of a debris disk around the BH/NS. Efficient accretion of a fraction ({f}{acc}=0.1 of the debris may then give rise to bright, energetic, long (103–104 s), X-ray/gamma-ray flares, with total energies of up to ({f}{acc}/0.1)× {10}52 ({M}\\star /0.6 {M}ȯ ) erg, possibly resembling ultra-long gamma-ray bursts (GRBs)/X-ray flashes (XRFs). The energy of such flares depends on the poorly constrained accretion processes. Significantly fainter flares might be produced if most of the disk mass is blown away through strong outflows. We suggest three dynamical origins for such disruptions. In the first, a star/planet is tidally disrupted following a close random encounter with a BH/NS in a dense cluster. We estimate the BH (NS) micro-TDE rates from this scenario to be a few × {10}-6 (a few × {10}-7) {{{yr}}}-1 per Milky Way galaxy. Another scenario involves the interaction of wide companions due to perturbations by stars in the field, likely producing comparable but lower rates. Finally, a third scenario involves a BH/NS that gains a natal velocity kick at birth, leading to a close encounter with a binary companion and the tidal disruption of that companion. Such events could be associated with a supernova, or even with a preceding GRB/XRF event, and would likely occur hours to days after the prompt explosion; the rates of such events could be larger than those obtained from the other scenarios, depending on the preceding complex binary stellar evolution.
Multiwavelength observations of V479 Andromedae: a close compact binary with an identity crisis
NASA Astrophysics Data System (ADS)
González-Buitrago, D.; Tovmassian, G.; Zharikov, S.; Yungelson, L.; Miyaji, T.; Echevarría, J.; Aviles, A.; Valyavin, G.
2013-05-01
Aims: We conducted a multi-wavelength study to unveil the properties of the extremely long-period cataclysmic variable V479 And. Methods: We performed series of observations, including moderate to high spectral resolution optical spectrophotometry, X-ray observations with Swift, linear polarimetry, and near-IR photometry. Results: This binary system is a low-inclination ~17° system with a 0.594093(4) day orbital period. The absorption line complex in the spectra indicate a G8-K0 spectral type for the donor star, which has departed from the zero-age main sequence. This implies a distance to the object of about 4 kpc. The primary is probably a massive 1.1-1.4 M⊙ magnetic white dwarf, accreting matter at a rate Ṁ > 10-10 M⊙ yr-1. This rate can be achieved if the donor star fills its corresponding Roche lobe, but there is little observational evidence for a mass-transfer stream in this system. An alternative explanation is a stellar wind from the donor star, although such a high rate mass loss is not anticipated from a subgiant. If the strongly magnetic white dwarf in V479 And is confirmed by future observations, the system would be the polar with the longest observed orbital period. We also discuss the evolutionary state of V479 And. Photometry and reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A28
Numerical simulations of axisymmetric Bondi-Hoyle accretion onto a compact object
NASA Astrophysics Data System (ADS)
El Mellah, I.; Casse, F.
2015-12-01
Compact bodies which are not at rest compare to an homogeneous ambient environment are believed to undergo Bondi-Hoyle axisymmetric accretion as soon as their relative velocity reaches supersonic levels. Contrary to its spherical counterpart, B-H accretion presents flow structures difficult to analytically derive, hence the need for numerical investigations. The broad dynamics at stake when a tiny compact object engulfs surrounding material at a much larger scale has made numerical consistency a polemical issue as it has prevented both scales to be grasped for reasonable wind velocities. We designed a numerical setup which reconciliates the requirement for finite size accretor with steady states properties of the Bondi-Hoyle flow independent of the size of the inner boundary. The robustness of this setup is evaluated accordingly to predictions concerning the mass accretion rate evolution with the Mach number at infinity and the topology of the sonic surface as determined by te{Foglizzo1996}. It provides an estimation of the mass accretion rates and thus, of the expected X-ray luminosity for an idealized B-H configuration which might not be too far off for isolated compact objects like runaway neutron stars or hyper-luminous X-ray sources.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
NASA Astrophysics Data System (ADS)
Drappeau, S.; Malzac, J.; Belmont, R.; Gandhi, P.; Corbel, S.
2015-03-01
In recent years, compact jets have been playing a growing role in the understanding of accreting black hole engines. In the case of X-ray binary systems, compact jets are usually associated with the hard state phase of a source outburst. Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with its compact jet. In the model used in this study, we assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. Taking the PSD of the jet Lorentz factor fluctuations to be identical to the observed X-ray PSD, our study finds that the internal shock model successfully reproduces the radio to infrared SED of the source at the time of the observations as well as the reported strong mid-infrared spectral variability.
Fully-coherent all-sky search for gravitational-waves from compact binary coalescences
NASA Astrophysics Data System (ADS)
Macleod, D.; Harry, I. W.; Fairhurst, S.
2016-03-01
We introduce a fully coherent method for searching for gravitational wave signals generated by the merger of black hole and/or neutron star binaries. This extends the coherent analysis previously developed and used for targeted gravitational wave searches to an all-sky, all-time search. We apply the search to one month of data taken during the fifth science run of the LIGO detectors. We demonstrate an increase in sensitivity of 25% over the coincidence search, which is commensurate with expectations. Finally, we discuss prospects for implementing and running a coherent search for gravitational wave signals from binary coalescence in the advanced gravitational wave detector data.
The last three minutes - Issues in gravitational-wave measurements of coalescing compact binaries
NASA Technical Reports Server (NTRS)
Cutler, Curt; Apostolatos, Theocharis A.; Bildsten, Lars; Finn, Lee S.; Flanagan, Eanna E.; Kennefick, Daniel; Markovic, Dragoljub M.; Ori, Amos; Poisson, Eric; Sussman, Gerald J.
1993-01-01
Gravitational-wave interferometers are expected to monitor the last three minutes of inspiral and final coalescence of neutron star and black hole binaries at distances approaching cosmological, where the event rate may be many per year. Because the binary's accumulated orbital phase can be measured to a fractional accuracy much lower than 10 exp -3, and relativistic effects are large, the wave forms will be far more complex and carry more information than has been expected. Improved wave form modeling is needed as a foundation for extracting the waves' information, but is not necessary for wave detection.
NASA Astrophysics Data System (ADS)
Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain; Porter, Edward K.
2015-10-01
We investigate the dynamics of spinning binaries of compact objects at the next-to-leading order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN). Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric within the near zone, we derive the post-Newtonian equations of motion as well as the equations of spin precession. We find full equivalence with available results. We then focus on the far-zone field produced by those systems and obtain the previously unknown 3PN spin contributions to the gravitational-wave energy flux by means of the multipolar post-Minkowskian wave generation formalism. Our results are presented in the center-of-mass frame for generic orbits, before being further specialized to the case of spin-aligned, circular orbits. Based on the energy balance equation, we derive the orbital phase of the binary at the order 3PN including all conservative spin effects and briefly discuss the relevance of the new terms.
An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants
NASA Astrophysics Data System (ADS)
Safi-Harb, Samar
2015-08-01
Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.
Properties of long gamma-ray bursts from massive compact binaries.
Church, Ross P; Levan, Andrew J; Davies, Melvyn B; Kim, Chunglee
2013-06-13
We consider the implications of a model for long-duration gamma-ray bursts in which the progenitor is spun up in a close binary by tidal interactions with a massive black-hole companion. We investigate a sample of such binaries produced by a binary population synthesis, and show that the model predicts several common features in the accretion on to the newly formed black hole. In all cases, the accretion rate declines as approximately t(-5/3) until a break at a time of order 10(4) s. The accretion rate declines steeply thereafter. Subsequently, there is flaring activity, with the flare peaking between 10(4) and 10(5) s, the peak time being correlated with the flare energy. We show that these times are set by the semi-major axis of the binary, and hence the process of tidal spin-up; furthermore, they are consistent with flares seen in the X-ray light curves of some long gamma-ray bursts. PMID:23630369
A Central Compact Object in Kes 79: The hypercritical regime and neutrino expectation
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Fraija, N.
2016-08-01
We present magnetohydrodynamical simulations of a strong accretion onto magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the center of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called Central Compact Objects, which exhibits no evidence for a surrounding pulsar wind nebula. In this work we show that the submergence of the magnetic field during the hypercritical phase can explain such behavior for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733±364. In addition, we compute the flavor ratio on Earth for a progenitor model.
COMPACT OBJECT COALESCENCE RATE ESTIMATION FROM SHORT GAMMA-RAY BURST OBSERVATIONS
Petrillo, Carlo Enrico; Dietz, Alexander; Cavaglia, Marco
2013-04-20
Recent observational and theoretical results suggest that short-duration gamma-ray bursts (SGRBs) originate from the merger of compact binary systems of two neutron stars or a neutron star and a black hole. The observation of SGRBs with known redshifts allows astronomers to infer the merger rate of these systems in the local universe. We use data from the SWIFT satellite to estimate this rate to be in the range {approx}500-1500 Gpc{sup -3} yr{sup -1}. This result is consistent with earlier published results which were obtained through alternative approaches. We estimate the number of coincident observations of gravitational-wave signals with SGRBs in the advanced gravitational-wave detector era. By assuming that all SGRBs are created by neutron star-neutron star (neutron star-black hole) mergers, we estimate the expected rate of coincident observations to be in the range {approx_equal} 0.2-1 ({approx_equal} 1-3) yr{sup -1}.
Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun
Pokrovsky, Yu. E.
2015-12-15
The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.
First spectroscopy of a short-hard GRB: the environment of a compact object merger
NASA Astrophysics Data System (ADS)
de Ugarte Postigo, Antonio; Thöne, Christina C.; Rowllinson, Antonia; Benito, Rubén García; Levan, Andrew J.; Gorosabel, Javier; Goldoni, Paolo; Schulze, Steve
2015-03-01
Short gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigo et al. (2014).
THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS
Van Eyken, Julian C.; Ciardi, David R.; Akeson, Rachel L.; Beichman, Charles A.; Von Braun, Kaspar; Gelino, Dawn M.; Kane, Stephen R.; Plavchan, Peter; RamIrez, Solange V.; Rebull, Luisa M.; Stauffer, John R.; Hoard, D. W.; Howell, Steve B.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.
2011-08-15
The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3.{sup 0}5 x 2.{sup 0}3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 {+-} 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known
Subaru And Gemini Observations Of SS 433: New Constraint On The Mass Of The Compact Object
NASA Astrophysics Data System (ADS)
Kubota, K.; Ueda, Y.; Fabrika, S.; Medvedev, A.; Barsukova, E. A.; Sholukhova, O.; Goranskij, V. P.
2010-02-01
We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Å. This region is selected to avoid "strong" absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig & Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 ± 3.8 km s-1 with a systemic velocity of 59.2 ± 2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M O = 12.4 ± 1.9 M sun and M X = 4.3 ± 0.6 M sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 ± 5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M O = 10.4+2.3 -1.9 M sun and M X = 2.5+0.7 -0.6 M sun. Our final constraint, 1.9 M sun <=M X<= 4.9 M sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly
Time evolution of accreting magnetofluid around a compact object-Newtonian analysis
NASA Astrophysics Data System (ADS)
Habibi, Fahimeh; Shaghaghian, Mahboobeh; Pazhouhesh, Reza
2015-07-01
Time evolution of a thick disc with finite conductivity around a nonrotating compact object is presented. Along with the Maxwell equations and the Ohm's law, the Newtonian limit of the relativistic fluid equations governing the motion of a finitely conducting plasma is derived. The magnetofluid is considered to possess only the poloidal components of the electromagnetic field. Moreover, the shear viscous stress is neglected, as well as the self-gravity of the disc. In order to solve the equations, we have used a self-similar solution. The main features of this solution are as follows. The azimuthal velocity is somewhat increased from the Keplerian value in the equator plane to the super-Keplerian values at the surface of disc. Moreover, the radial velocity is obtained proportional to the meridional velocity. Magnetofluid does not have any nonzero component of the current density. Subsequently, the electromagnetic force is vanished and does not play any role in the force balance. While the pressure gradient maintains the disc structure in latitudinal direction, magnetofluid has no accretion on the central compact object. Analogously to the parameter α in the standard model, our calculations contain one parameter η0 which specifies the size of the electrical resistivity.
NASA Astrophysics Data System (ADS)
Tito, E. P.; Pavlov, V. I.
2016-07-01
We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.
Universal charge-radius relation for subatomic and astrophysical compact objects.
Madsen, Jes
2008-04-18
Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature. PMID:18518093
NASA Technical Reports Server (NTRS)
Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Roever, C.; Singer, L.; vanderSluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.
2014-01-01
The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.
Leurer, Klaus C; Brown, Colin
2008-04-01
This paper presents a model of acoustic wave propagation in unconsolidated marine sediment, including compaction, using a concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. Compressional- and shear-wave velocities and attenuation follow from a combination of Biot's model, used as the general framework, and two viscoelastic extensions resulting in complex grain and frame moduli, respectively. An effective-grain model accounts for the viscoelasticity arising from local fluid flow in expandable clay minerals in clay-bearing sediments. A viscoelastic-contact model describes local fluid flow at the grain contacts. Porosity, density, and the structural Biot parameters (permeability, pore size, structure factor) as a function of pressure follow from the binary model, so that the remaining input parameters to the acoustic model consist solely of the mass fractions and the known mechanical properties of each constituent (e.g., carbonates, sand, clay, and expandable clay) of the sediment, effective pressure, or depth, and the environmental parameters (water depth, salinity, temperature). Velocity and attenuation as a function of pressure from the model are in good agreement with data on coarse- and fine-grained unconsolidated marine sediments. PMID:18397002
Su, Wei-Hung; Kuo, Cho-Yo; Kao, Fu-Jen
2014-08-20
A fringe projection technique to trace the shape of a fast-moving object is proposed. A binary-encoded fringe pattern is illuminated by a strobe lamp and then projected onto the moving object at a sequence of time. Phases of the projected fringes obtained from the sequent measurements are extracted by the Fourier transform method. Unwrapping is then performed with reference to the binary-encoded fringe pattern. Even though the inspected object is colorful, fringe orders can be identified. A stream of profiles is therefore retrieved from the sequent unwrapped phases. This makes it possible to analyze physical properties of the dynamic objects. Advantages of the binary-encoded fringe pattern for phase unwrapping also include (1) reliable performance for colorful objects, spatially isolated objects, and surfaces with large depth discontinuities; (2) unwrapped errors only confined in a local area; and (3) low computation cost. PMID:25321097
MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES
Mediavilla, E.; Guerras, E.; Canovas, H.; Oscoz, A.; Falco, E.; Motta, V.; Jean, C.; Mosquera, A. M.
2009-12-01
We estimate the fraction of mass that is composed of compact objects in gravitational lens galaxies. This study is based on microlensing measurements (obtained from the literature) of a sample of 29 quasar image pairs seen through 20 lens galaxies. We determine the baseline for no microlensing magnification between two images from the ratios of emission line fluxes. Relative to this baseline, the ratio between the continua of the two images gives the difference in microlensing magnification. The histogram of observed microlensing events peaks close to no magnification and is concentrated below 0.6 mag, although two events of high magnification, DELTAm approx 1.5, are also present. We study the likelihood of the microlensing measurements using frequency distributions obtained from simulated microlensing magnification maps for different values of the fraction of mass in compact objects, alpha. The concentration of microlensing measurements close to DELTAm approx 0 can be explained only by simulations corresponding to very low values of alpha (10% or less). A maximum likelihood test yields alpha = 0.05{sup +0.09}{sub -0.03} (90% confidence interval) for a quasar continuum source of intrinsic size r{sub s{sub 0}}approx2.6x10{sup 15} cm. This estimate is valid in the 0.1-10 M {sub sun} range of microlens masses. We study the dependence of the estimate of alpha with r{sub s{sub 0}}, and find that alpha approx< 0.1 for r{sub s{sub 0}}approx<1.3x10{sup 16} cm. High values of alpha are possible only for source sizes much larger than commonly expected (r{sub s{sub 0}}>>2.6x10{sup 16} cm). Regarding the current controversy about Milky Way/LMC and M31 microlensing studies, our work supports the hypothesis of a very low content in MACHOS (Massive Compact Halo Objects). In fact, according to our study, quasar microlensing probably arises from the normal star populations of lens galaxies and there is no statistical evidence for MACHOS in the dark halos.
NASA Astrophysics Data System (ADS)
Seifina, Elena; Titarchuk, Lev
2010-10-01
We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a "blackbody-like (BB)" component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high-temperature BB" bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent & Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M_{{bh}}≳ 2 solar masses, using the scaling method using BHC GX 339 - 4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig & Gies, who find that Mx = (4.3 ± 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433.
Seifina, Elena
2010-10-10
We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a 'blackbody-like (BB)' component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the 'high-temperature BB' bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M{sub bh{approx}}>2 solar masses, using the scaling method using BHC GX 339 - 4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig and Gies, who find that M{sub x} = (4.3 {+-} 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433.
NASA Technical Reports Server (NTRS)
Seifina, Elena; Titarchuk, Lev
2010-01-01
We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.
NASA Astrophysics Data System (ADS)
Regimbau, T.; Hughes, Scott A.
2009-03-01
Increasing the sensitivity of a gravitational-wave (GW) detector improves our ability to measure the characteristics of detected sources. It also increases the number of weak signals that contribute to the data. Because GW detectors have nearly all-sky sensitivity, they can be subject to a confusion limit: Many sources which cannot be distinguished may be measured simultaneously, defining a stochastic noise floor to the sensitivity. For GW detectors operating at present and for their planned upgrades, the projected event rate is sufficiently low that we are far from the confusion-limited regime. However, some detectors currently under discussion may have large enough reach to binary inspiral that they enter the confusion-limited regime. In this paper, we examine the binary inspiral confusion limit for terrestrial detectors. We consider a broad range of inspiral rates in the literature, several planned advanced gravitational-wave detectors, and the highly advanced “Einstein telescope” design. Though most advanced detectors will not be impacted by this limit, the Einstein telescope with a very low-frequency “seismic wall” may be subject to confusion noise. At a minimum, careful data analysis will be require to separate signals which will appear confused. This result should be borne in mind when designing highly advanced future instruments.
On the Nature of Compact Object in SS~433. An Observational Evidence of Black Hole Mass in SS 433
NASA Astrophysics Data System (ADS)
Titarchuk, Lev
We present an analysis of X-ray spectral properties observed from black hole candidate (BHC) binary SS 433. We analyze RXTE data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 demonstrates a X-ray spectral transition from low hard state to intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptoniza-tion (BMC)" component and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature of "blackbody-like (BB)" bump which color temperature is in the range of 4-5 keV in 24 IS spectra during radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to support the presence of gravitationally redshifted annihila-tion lines in this source. We also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, greater than 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of BH mass in SS 433 is consistent with the recent BH mass measurement by Hillwig Gies who find that BH mass about 4.3 solar masses. It is the smallest BH mass up to now found among all BHC sources where BH masses have been estimated so far. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BHCs, is the strongest observational evidence of the presence of BH in SS 433.
Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes
NASA Technical Reports Server (NTRS)
Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.
1978-01-01
Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.
Exploring the Environs of Compact Symmetric Objects in the Nuclei of Galaxies and Quasars
NASA Astrophysics Data System (ADS)
Taylor, G. B.; Xu, W.; Readhead, A. C. S.; Pearson, T. J.
1994-12-01
Two large Caltech--Jodrell Bank VLBI surveys at 5 GHz have recently been completed (CJ1 -- Xu et al. 1994, ApJS, submitted; CJ2 -- Taylor et al. 1994, ApJS, in press; Henstock et al. 1994, ApJS, submitted). Together with the Pearson--Readhead survey (1988, ApJ, 328, 114) these provide ~ 1 mas resolution images for a flux limited sample of 321 sources. One of the most interesting findings of these surveys was the discovery of three confirmed compact symmetric objects (CSOs) and forty additional candidate CSOs. These are compact (size ~ 100 pc) sources with emission on both sides of the central engine that is thought to be free of beaming effects. To account for their small sizes the CSOs must be either young or severely confined by a dense neutral medium. If these objects are young (ages ~ 3000 yrs) and growing at rates typical of equally luminous, but 1000 times larger, radio galaxies like Cygnus A then they must be a common phase in the evolution of galaxies, or perhaps a recurrent one. Alternatively, if the CSOs are strongly confined and longer lived then the large amount of material required for their confinement should have several observational consequences -- large amounts of neutral and molecular gas, high induced Faraday rotations, and possibly severe reddening and distortions of the starlight from the host galaxy. In an effort to discriminate between the above models we have performed deep infrared imaging of a number of CSOs and CSO candidates. We also report on high-dynamic range imaging with the VLA to look for large Faraday rotation measures, or for extended components that might be the result of a previous active phase. We have also observed one nearby CSO candidate in CO 1-0 with the Owens Valley millimeter array to search for molecular gas.
SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR
Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.
2011-07-20
We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.
Di Stefano, R.
2011-05-15
Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover {approx}1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of 'anti-transits' - i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.
Hawaii 167: A compact absorption-line object at z = 2.35
NASA Technical Reports Server (NTRS)
Cowie, L. L.; Songaila, A.; Hu, E. M.; Egami, E.; Huang, J.-S.; Pickles, A. J.; Ridgway, S. E.; Wainscoat, R. J.; Weymann, R. J.
1994-01-01
During the course of the Hawaii K-band (2.1 micrometer) survey we have detected a compact object, Hawaii 167, lying at a redshift of 2.33, in which are seen both low- and high-ionization absorption lines. In the near-infrared we see broad H alpha emission at a redshift of 2.35 but do not detect the other Balmer lines, (O II) lambda 3727, or (O III) lambda 5007. The absence of strong Mg II or C IV emission in the rest ultraviolet suggests that, at these wavelengths, we may be seeing a poststarburst galaxy rather than a quasar. Indeed, this class of object may be common enough to represent a major episode of galaxy formation, possibly the formation of the spheroids. However, Q0059-2735, the most extreme member of the class of Mg II absorbing broad absorption line quasars, is very similar to the present object, and there may be an evolutionary sequence or some other close connection between Hawaii 167 and the broad absorption line quasars.
NASA Astrophysics Data System (ADS)
Uryū, Kōji; Tsokaros, Antonios; Galeazzi, Filippo; Hotta, Hideya; Sugimura, Misa; Taniguchi, Keisuke; Yoshida, Shin'ichirou
2016-02-01
We introduce new code for stationary and axisymmetric equilibriums, as well as for triaxial quasiequilibrium initial data, of single rotating relativistic stars. The new code is developed as a part of our versatile initial data code for compact objects, Compact Object CALculator (cocal). In computing strong gravitational fields, the waveless formulation is incorporated into the cocal code on top of the previously developed Isenberg-Wilson-Mathews formulation (conformally flat thin-sandwich formulation). Also introduced is a new differential rotation law that contains two parameters to control an angular velocity profile and a transition from uniform to differential rotation. We present convergence tests and solution sequences for both uniformly and differentially rotating equilibriums of stationary axisymmetric compact stars, as well as for quasiequilibrium initial data of uniformly rotating triaxial (nonaxisymmetric) compact stars. We also show comparisons of uniformly rotating axisymmetric solutions computed with three different codes: cocal, lorene, and the RNS code.
Near-Infrared Colors of the Binary Kuiper Belt Object 1998 WW31
NASA Astrophysics Data System (ADS)
Takato, Naruhisa; Fuse, Tetsuharu; Gaessler, Wolfgang; Goto, Miwa; Kanzawa, Tomio; Kobayashi, Naoto; Minowa, Yosuke; Oya, Shin; Pyo, Tae-Soo; Saint-Jacque, D.; Takami, Hideki; Terada, Hiroshi; Hayano, Yutaka; Iye, Masanori; Kamata, Yukiko; Tokunaga, A. T.
2003-06-01
We have measured near-infrared colors of the binary Kuiper Belt object (KBO) 1998 WW31 using the Subaru Telescope with adaptive optics. The satellite was detected near its perigee and apogee (0.18'' and 1.2'' apart from the primary). The primary and the satellite have similar H-K colors, while the satellite is redder than the primary in J-H. Combined with the R band magnitude previously published by Veillet et al., 2002, the color of the primary is consistent with that of optically red KBOs. The satellite's R-, J-, H-colors suggest the presence of ~1 μm absorption band due to rock-forming minerals. If the surface of the satellite is mainly composed by olivine, the satellite's albedo is higher value than the canonically assumed value of 4%.
SETI implications of gravitational assist via chaotic trajectories of binary objects
NASA Astrophysics Data System (ADS)
Breeden, J. L.
2014-01-01
Extrapolating from the technique of gravitational assist via chaotic trajectories of binary objects, this paper considers how such techniques might be used in other systems. We examine which types of systems are the best candidates for harvesting gravitational energy for payload ejection. We also consider what signatures might be present in either the asteroid orbits or radiation of the central body if extraterrestrial intelligences were to use such techniques about these candidate systems. The simulation studies show that current technology cannot approach the sensitivity needed to detect either of these signals. Instead, we provide these results as guidance to studies in coming decades on patterns that may indicate the use of an asteroid ejection system.
NASA Astrophysics Data System (ADS)
Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; Krivonos, Roman A.; Rahoui, Farid; Stern, Daniel; Tomsick, John A.; Zhang, Shuo; Zhang, William W.
2016-05-01
We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with {kT}∼ 1.8 {keV} emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with {{kT}}e∼ 4.6 {keV}. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 mHz–49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a {K}α line from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density ({N}{{H}}∼ 1.6× {10}23 {{cm}}-2).
Difficulties in explaining the cosmic photon excess with compact composite object dark matter
NASA Astrophysics Data System (ADS)
Cumberbatch, Daniel T.; Starkman, Glenn D.; Silk, Joseph
2008-03-01
It has been suggested that dark matter particles are strongly interacting, composite, macroscopically large objects made of well known light quarks (or antiquarks). In doing so it is argued that these compact composite objects (CCOs) provide natural explanations of observed data, such as the 511 keV line from the bulge of our galaxy observed by INTEGRAL, and the excess of diffuse gamma rays in the 1 20 MeV band observed by COMPTEL. Here we argue that the atmospheres of positrons that surround CCOs composed of di-antiquark pairs in the favored color-flavor-locked superconducting state are sufficiently dense as to place stringent limits on the penetration depth of interstellar electrons incident upon them, resulting in an extreme suppression of previously estimated rates of positronium formation, and hence in the flux of 511 keV photons resulting from their subsequent decays. The associated rate of direct electron-positron annihilations, which yield the MeV photons postulated to explain the 1 20 MeV photon excess, is also suppressed. We also discuss how even if a fraction of positrons somehow penetrated the surface of the CCOs, the extremely strong electric fields generated from the bulk antiquark matter would result in the destruction of positronium atoms long before they decay.
A hot compact dust disk around a massive young stellar object.
Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo
2010-07-15
Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system. PMID:20631793
NASA Astrophysics Data System (ADS)
Nishizawa, Atsushi
2016-06-01
When testing gravity in a model-independent way, one of the crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity, the propagation speed could deviate from the speed of light due to the modification of gravity or spacetime structure at a quantum level. Previously, we proposed a method to measure the GW speed by directly comparing the arrival times between a GW and a photon from the binary merger of neutron stars or a neutron star and black hole, assuming that it is associated with a short gamma-ray burst. The sensitivity is limited by the intrinsic time delay between a GW and a photon at the source. In this paper, we extend the method to distinguish the intrinsic time delay from the true signal caused by anomalous GW speed with multiple events at cosmological distances, considering the redshift distribution of GW sources, redshift-dependent GW propagation speed, and the statistics of intrinsic time delays. We show that an advanced GW detector such as the Einstein Telescope will be able to robustly constrain the GW propagation speed at a precision of ˜10-16 . We also discuss the optimal statistic to measure the GW speed by performing numerical simulations.
Accreting neutron stars in highly compact binary systems and the nature of 3U 1626-67
NASA Technical Reports Server (NTRS)
Joss, P. C.; Avni, Y.; Rappaport, S.
1978-01-01
We discuss the existence of pulsing X-ray sources that consist of neutron stars in highly compact binary systems (orbital periods not more than Od3), undergoing accretion from low-mass late-type dwarf or degenerate-dwarf companions. An appropriate mass transfer rate can be driven by the decay of the orbit due to gravitational radiation, a self-excited wind, and/or the evolution of the companion. Such a system may result from the evolution of a cataclysmic variable, wherein a degenerate dwarf collapses to form a neutron star after accreting sufficient mass to exceed the Chandrasekhar limit. We apply this model to the 7s7 X-ray pulsar 3U 1626-67, and demonstrate that it can explain the apparent lack of Doppler shifts in the X-ray pulsations from this source. The model may also account for other observed properties of the source, including (1) the apparent faintness and large ultraviolet excess of the optical counterpart, (2) the lack of X-ray eclipses, and (3) an approximately 1000 s quasi-periodic oscillation in the source intensity that was recently observed with the SAS 3 satellite.
NASA Astrophysics Data System (ADS)
Ramirez-Ruiz, Enrico; Trenti, Michele; MacLeod, Morgan; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.
2015-04-01
Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.
Stability of coorbital objects around the Pluto-Charon binary
NASA Astrophysics Data System (ADS)
Amarante, A.; Hamilton, D. P.
2015-12-01
The Pluto-Charon binary system is dynamical interesting with its retinue of four small moons. The system is relatively full with few remaining stable locations evenly-spaced for additional moons on uninclined, circular orbits; most of these are Trojan (Tadpole/Horseshoe) orbits (Pires et al. 2011; Porter and Stern 2015). In this work, we study the coorbital region of each moon with long time integrations taking into account the gravitational effects of the satellites Charon, Styx, Nix, Kerberos and Hydra. We numerically simulate a sample of 10,000 test particles initially located randomly around each moon's orbit (Figure). All test particles start on nearly circular and uninclined orbits and are followed for 5000 years. The results of our numerical simulations show stable coorbital objects - both Tadpoles and Horseshoes - for each of the small moons (Table). Horseshoe orbits are most common at all moons, although Hydra also has a sizeable population of Tadpole orbits. We also find interesting cases where the orbits switch from L4 Tadpoles to Horseshoes and even to L5 Tadpoles. These transitioning orbits comprise less than 1% of coorbital objects at all moons, and are most common at Styx. We have also investigated eccentric and inclined orbits and will report on our findings.
VLBA OBSERVATIONS OF H I IN THE ARCHETYPE COMPACT SYMMETRIC OBJECT B2352+495
Araya, E. D.; Rodriguez, C.; Pihlstroem, Y.; Taylor, G. B.; Tremblay, S.; Vermeulen, R. C.
2010-01-15
B2352+495 is a prototypical example of a compact symmetric object. It has a double radio lobe symmetrically located with respect to a central flat-spectrum radio core (the location of the active galactic nucleus) and has a physical extent of less than 200 pc. In this work, we report Very Long Baseline Array observation of 21 cm H I absorption toward B2352+495 to investigate the properties of this remarkable radio source, in particular, to explore whether the radio emission can be confined by circumnuclear material (frustration scenario) or whether the source is likely to be young. We confirmed the two H I absorption features previously detected toward B2352+495-a broad line nearly centered at the systemic velocity of the galaxy and a narrow redshifted component. The atomic gas from the broad absorption component is likely associated with circumnuclear material, consistent with the current paradigm of clumpy H I distribution in toroidal structures around supermassive black holes.
Von Zeipel's theorem for a magnetized circular flow around a compact object
NASA Astrophysics Data System (ADS)
Zanotti, O.; Pugliese, D.
2015-04-01
We analyze a class of physical properties, forming the content of the so-called von Zeipel theorem, which characterizes stationary, axisymmetric, non-selfgravitating perfect fluids in circular motion in the gravitational field of a compact object. We consider the extension of the theorem to the magnetohydrodynamic regime, under the assumption of an infinitely conductive fluid, both in the Newtonian and in the relativistic framework. When the magnetic field is toroidal, the conditions required by the theorem are equivalent to integrability conditions, as it is the case for purely hydrodynamic flows. When the magnetic field is poloidal, the analysis for the relativistic regime is substantially different with respect to the Newtonian case and additional constraints, in the form of PDEs, must be imposed on the magnetic field in order to guarantee that the angular velocity depends only on the specific angular momentum . In order to deduce such physical constraints, it is crucial to adopt special coordinates, which are adapted to the surfaces. The physical significance of these results is briefly discussed.
Han Wenbiao
2010-10-15
The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.
HARD X-RAY FLUX UPPER LIMITS OF CENTRAL COMPACT OBJECTS IN SUPERNOVA REMNANTS
Erdeve, I.; Kalemci, E.; Alpar, M. A.
2009-05-10
We searched for hard X-ray (20-300 keV) emission from nine central compact objects (CCOs) 1E 1207.4-5209, 1WGA J1713-3949, J082157.5-430017, J085201.4-461753, J160103.1-513353, J1613483-5055, J181852.0-150213, J185238.6+004020, and J232327.9+584843 with the International Gamma-Ray Astrophysics Laboratory observatory. We applied spectral imaging analysis and did not detect any of the sources with luminosity upper limits in the range of 10{sup 33}-10{sup 34} erg s{sup -1} in the 20-75 keV band. For nearby CCOs (less than 4 kpc), the upper-limit luminosities are an order of magnitude lower than the measured persistent hard X-ray luminosities of anomalous X-ray pulsars. This may indicate that the CCOs are low magnetic field systems with fallback disks around them.
Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.
2014-09-10
Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.
WHAT IS ON TAP? THE ROLE OF SPIN IN COMPACT OBJECTS AND RELATIVISTIC JETS
King, Ashley L.; Miller, Jon M.; Gueltekin, Kayhan; Walton, Dominic J.; Fabian, Andrew C.; Reynolds, Christopher S.; Nandra, Kirpaul
2013-07-10
We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes 3 different Seyfert samples with a total of 37 unique Seyferts, as well as 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with simple Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with more relativistically blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3{sigma} confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3{sigma} confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4{sigma} and 4.1{sigma} confidence level, respectively) between radio luminosity per bolometric luminosity and spin, as well as radio luminosity corrected for the fundamental plane (i.e., log ({nu}L{sub R}/L{sub Bol}{sup 0.67}/M{sub BH}{sup 0.78})) and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e., bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the
Quasars in the Time Domain: Supermassive Black Hole Binaries and Extreme Objects
NASA Astrophysics Data System (ADS)
Graham, Matthew; Djorgovski, Stanislav G.; Stern, Daniel; Drake, Andrew J.; Mahabal, Ashish A.; Glikman, Eilat
2016-01-01
Quasar variability can offer insights into the physics of AGN, as it is driven by the variations in the accretion rate, changes in obscuration, and/or instabilities and propagation effects of the relativistic jets. Large synoptic sky surveys such as CRTS (crts.caltech.edu) offer new possibilities in this domain.We use the data set of CRTS light curves of ~335,000 known, spectroscopically confirmed quasars. They have up to a few hundred data points each, with baselines of up to 10 years. This is an unprecedented data set for the studies of quasar variability.We have previously identified a characteristic time scale of stochastic quasar variability, ~54 days (restframe), which anticorrelates with luminosity and black hole mass. While the origin of this phenomenon is not yet understood, it may lead to new insights into the physics of AGN accretion disks and quasars in general. While most quasars show such a characteristic time scale and trends, a subset exhibit a time scale that is significantly different than expected given their physical parameters. We have also found a number of other objects that show extreme variability (in RMS amplitude, or other measures). For a number of these objects we have now detected significant spectroscopic changes that correlate with the photometric variability. We will describe some of the more interesting cases.An even more interesting is the recent detection of periodically variable quasars, which are interpreted as a signature of close (milliparsec scale) supermassive black hole binaries (SMBH) en route to a merger. This population may offer new insights into the assembly of SMBH and their physics in the gravitational wave regime. We have initiate a spectroscopic monitoring program of these objects, and have already detected some spectroscopic changes for some of them. We will describe these results and their possible interpretations.
NASA Astrophysics Data System (ADS)
Mereghetti, S.; La Palombara, N.; Esposito, P.; Gastaldello, F.; Tiengo, A.; Heber, U.; Geier, S.; Wilms, J.
2014-07-01
Little observational data are available on the weak stellar winds of hot subdwarf stars of B spectral type (sdB). Close binary systems composed of an sdB star and a compact object (white dwarf, neutron star or black hole) could be detected as accretion-powered X-ray sources. The study of their X-ray emission can probe the properties of line-driven winds of sdB stars that cannot be derived directly from spectroscopy because of the low luminosity of these stars. Here we report on the first sensitive X-ray observations of two sdB binaries with compact companions. CD -30° 11223 is the sdB binary with the shortest known orbital period (1.2 h) and its companion is certainly a white dwarf. PG 1232-136 is an sdB binary considered the best candidate to host a black hole companion. We observed these stars with XMM-Newton in 2013 August for 50 ks and in 2009 July for 36 ks, respectively. None of them was detected and we derived luminosity upper limits of ˜1.5 × 1029 erg s-1 for CD -30° 11223 and ˜5 × 1029 erg s-1 for PG 1232-136. The corresponding mass-loss rate for PG 1232-136 is poorly constrained, owing to the unknown efficiency for black hole accretion. On the other hand, in the case of CD -30° 11223 we could derive, under reasonable assumptions, an upper limit of ˜3 × 10-13 M⊙ yr-1 on the wind mass-loss rate from the sdB star. This is one of the few observational constraints on the weak winds expected in this class of low-mass hot stars. We also report the results on the X-ray emission from a cluster of galaxies serendipitously discovered in the field of CD -30° 11223.