Science.gov

Sample records for binary fluid cycle

  1. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF

  2. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  3. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  4. Modeling and analysis of advanced binary cycles

    SciTech Connect

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  5. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  6. Dynamics of phase separation of binary fluids

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Maritan, Amos; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The results of molecular-dynamics studies of surface-tension-dominated spinodal decomposition of initially well-mixed binary fluids in the absence and presence of gravity are presented. The growth exponent for the domain size and the decay exponent of the potential energy of interaction between the two species with time are found to be 0.6 +/- 0.1, inconsistent with scaling arguments based on dimensional analysis.

  7. Hydrodynamic 'memory' of binary fluid mixtures

    SciTech Connect

    Kalashnik, M. V.; Ingel, L. Kh.

    2006-07-15

    A theoretical analysis is presented of hydrostatic adjustment in a two-component fluid system, such as seawater stratified with respect to temperature and salinity. Both linear approximation and nonlinear problem are investigated. It is shown that scenarios of relaxation to a hydrostatically balanced state in binary fluid mixtures may substantially differ from hydrostatic adjustment in fluids that can be stratified only with respect to temperature. In particular, inviscid two-component fluids have 'memory': a horizontally nonuniform disturbance in the initial temperature or salinity distribution does not vanish even at the final stage, transforming into a persistent thermohaline 'trace.' Despite stability of density stratification and convective stability of the fluid system by all known criteria, an initial temperature disturbance may not decay and may even increase in amplitude. Moreover, its sign may change (depending on the relative contributions of temperature and salinity to stable background density stratification). Hydrostatic adjustment may involve development of discontinuous distributions from smooth initial temperature or concentration distributions. These properties of two-component fluids explain, in particular, the occurrence of persistent horizontally or vertically nonuniform temperature and salinity distributions in the ocean, including discontinuous ones.

  8. Organic rankine cycle fluid

    SciTech Connect

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  9. Nonequilibrium critical Casimir effect in binary fluids.

    PubMed

    Furukawa, Akira; Gambassi, Andrea; Dietrich, Siegfried; Tanaka, Hajime

    2013-08-01

    Colloids immersed in a critical binary liquid mixture are subject to critical Casimir forces (CCFs) because they confine its concentration fluctuations and influence the latter via effective surface fields. To date, CCFs have been primarily studied in thermodynamic equilibrium. However, due to the critical slowing down, the order parameter around a particle can easily be perturbed by any motion of the colloid or by solvent flow. This leads to significant but largely unexplored changes in the CCF. Here we study the drag force on a single colloidal particle moving in a near-critical fluid mixture and the relative motion of two colloids due to the CCF acting on them. In order to account for the kinetic couplings among the order parameter field, the solvent velocity field, and the particle motion, we use a fluid particle dynamics method. These studies extend the understanding of CCFs from thermal equilibrium to nonequilibrium processes, which are relevant to current experiments, and show the emergence of significant effects near the critical point. PMID:23952419

  10. Importance of the specific heat anomaly in the design of binary Rankine cycle power plants

    SciTech Connect

    Pope, W.L.; Doyle, P.A.; Fulton, R.L.; Silvester, L.F.

    1980-05-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of working fluids and turbine states for geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for specified source and sink conditions, turbine inlet states consistently lie adjacent to the working fluids' TPCT line for all resource temperatures, constraints, and cost and efficiency factors investigated.

  11. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  12. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan

    2016-08-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.

  13. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    SciTech Connect

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-12-12

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  14. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  15. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  16. Bubble-Turbulence Interaction in Binary Fluids

    NASA Astrophysics Data System (ADS)

    F, Battista; M, Froio; F, Picano; P, Gualtieri; M, Casciola C.

    2011-12-01

    Multiphase flows represent a central issue in many natural, biological and industrial fields. For instance, liquid jets vaporization, petroleum refining and boiling, emulsions in pharmaceutical applications, are all characterized by a disperse phase, such as solid particles or liquid bubbles, which evolve in a Newtonian carrier fluid. Features such as the global evaporation rates of liquid fuels in air or the homogeneity of the emulsions are controlled by the finest interaction details occurring between the two phases. In this paper we study the rising motion of a bubble induced by buoyancy in a viscous fluid. Usually this issue is tackled by tracking the bubble interface by means of sharp interface methods. However this approach requires "ad hoc" techniques to describe changes in the topological features of the deforming interface and to enforce the mass preservation. Here the problem is addressed by using a different philosophy based on a diffuse interface method, that allows a straightforward analysis of complex phenomena such as bubbles coalescence and break up without any numerical expedient. The model we adopt, funded on a solid thermodynamical and physical base, relies on the Cahn-Hilliard equation for the disperse phase, see Cahn & Hilliard (1958) and Elliott & Songmu (1986).

  17. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  18. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  19. Binary mixtures of simple fluids in structured slit micropores

    NASA Astrophysics Data System (ADS)

    Curry, J. E.; Cushman, John H.

    The grand canonical Monte Carlo method is used to study a binary mixture of Lennard-Jones atoms confined to an atomically structured slit micropore which is in thermodynamic equilibrium with its bulk phase counterpart. In one example, the mixture consists of atoms of two distinct sizes, but with the same minimum depth in potential energy. In another example a binary mixture of different size atoms is again considered, but in the latter case the larger atom has a deeper potential energy minimum. Three mechanisms are found which influence selective adsorption of a mixture species: (i) liquid-like fluid layering, (ii) inplane solid-like ordering and (iii) molecular sieving. The large atoms are completely eliminated from the pore when the wall separation is physically too small for the large atoms to fit, or when both species physically fit in the pore and the small component epitaxially aligns with the surface or freezes. Complete elimination of the small species is not observed. A significant excess of large atoms in the pore relative to the composition in the bulk phase is found only when the large atoms attain transverse order within the fluid layers. The adsorption of the large component is either enhanced or reduced depending on the relative magnitude of the potential energy well depth of the fluid and wall species.

  20. 2-D traveling-wave patterns in binary fluid convection

    SciTech Connect

    Surko, C.M.; Porta, A.L.

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  1. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  2. Finite-difference lattice-Boltzmann methods for binary fluids.

    PubMed

    Xu, Aiguo

    2005-06-01

    We investigate two-fluid Bhatnagar-Gross-Krook (BGK) kinetic methods for binary fluids. The developed theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich's theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which are especially useful when the total masses and/or local temperatures of the two components are greatly different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations. The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating (i) uniform relaxation processes, (ii) isothermal Couette flow, and (iii) diffusion behavior. PMID:16089910

  3. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  4. Two binary cycles of GX 301-2

    NASA Technical Reports Server (NTRS)

    Rothschild, Richard E.; Soong, Yang

    1987-01-01

    The slow X-ray pulsar, GX 301-2, has been observed throughout two full binary cycles of 41.5 days in the energy range 13-170 keV by the UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO 1. Increased intensity and variability was observed for about four days near periastron during the two binary cycles, which were separated by six months in 1978. The spectral shape was not observed to vary with binary phase, with the possible exception of a steepening of the continuum above 20 keV near superior conjunction in one of the two observing epochs. Evidence for a spectral line was found in the data at the 1-percent confidence level, but not confirmed in the remaining data. The temporal variability of GX 301-2 was not consistent with simple models of X-ray production by interaction of the stellar wind with the neutron star, implying that future modeling must include effects on wind density and speed caused by shocks in the wind, the X-ray flux from the neutron star, the gravitational influence of the neutron star, and possible mass accumulation near the neutron star.

  5. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  6. Small Scale Evaporation Kinetics of a Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Basdeo, Carl; Ye, Dezhuang; Kalonia, Devendra; Fan, Tai-Hsi; Mechanical Engineering Team; Pharmaceutical Sciences Collaboration

    2013-03-01

    Evaporation induces a concentrating effect in liquid mixtures. The transient process has significant influence on the dynamic behaviors of a complex fluid. To simultaneously investigate the fluid properties and small-scale evaporation kinetics during the transient process, the quartz crystal microbalance is applied to a binary mixture droplet of light alcohols including both a single volatile component (a fast evaporation followed by a slow evaporation) and a mixture of two volatile components with comparable evaporation rates. The density and viscosity stratification are evaluated by the shear wave, and the evaporation kinetics is measured by the resonant signature of the acoustic p-wave. The evaporation flux can be precisely determined by the resonant frequency spikes and the complex impedance. To predict the concentration field, the moving interface, and the precision evaporation kinetics of the mixture, a multiphase model is developed to interpret the complex impedance signals based on the underlying mass and momentum transport phenomena. The experimental method and theoretical model are developed for better characterizing and understanding of the drying process involving liquid mixtures of protein pharmaceuticals.

  7. Convection, evaporation, and condensation of binary fluids in confined geometries

    NASA Astrophysics Data System (ADS)

    Grigoriev, Roman; Qin, Tongran; Li, Yaofa; Chan, Benjamin; Yoda, Minami

    2011-11-01

    Phase change has a major effect on convection in liquid layers with a free surface. Significant latent heat generated at the free surface as a result of phase change can dramatically alter the interfacial temperature, inducing thermocapillary stresses. For binary fluids, differential evaporation leads to a variation in the concentration, and hence, induces solutocapillary stresses. This talk describes numerical and experimental studies of convection in alcohol-water mixtures due to a horizontal temperature gradient in the presence of phase change. Evaporation and condensation is known to be a notoriously difficult problem to model due to a poorly defined vapor transport problem which is strongly influenced by the presence/absence and flows of non-condensable gases (e.g., air). This issue is addressed by using a sealed cuvette heated at one end and cooled at the other. Both numerics and experiments show that, by adding or removing air from the cuvette, the direction of flow in a liquid layer covering the bottom of the cell can be reversed by emphasizing either thermocapillary or solutocapillary stresses. Supported by ONR.

  8. THE ROLE OF KOZAI CYCLES IN NEAR-EARTH BINARY ASTEROIDS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-03-15

    We investigate the Kozai mechanism in the context of near-Earth binaries and the Sun. The Kozai effect can lead to changes in eccentricity and inclination of the binary orbit, but it can be weakened or completely suppressed by other sources of pericenter precession, such as the oblateness of the primary body. Through numerical integrations including primary oblateness and three bodies (the two binary components and the Sun), we show that Kozai cycles cannot occur for the closely separated near-Earth binaries in our sample. We demonstrate that this is due to pericenter precession around the oblate primary, even for very small oblateness values. Since the majority of observed near-Earth binaries are not well separated, we predict that Kozai cycles do not play an important role in the orbital evolution of most near-Earth binaries. For a hypothetical wide binary modeled after 1998 ST27, the separation is large at 16 primary radii and so the orbital effects of primary oblateness are lessened. For this wide binary, we illustrate the possible excursions in eccentricity and inclination due to Kozai cycles as well as depict stable orientations for the binary's orbital plane. Unstable orientations lead to collisions between binary components, and we suggest that the Kozai effect acting in wide binaries may be a route to the formation of near-Earth contact binaries.

  9. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.

    PubMed

    Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K

    2006-11-01

    An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895

  10. Isomorphic Viscosity Equation of State for Binary Fluid Mixtures.

    PubMed

    Behnejad, Hassan; Cheshmpak, Hashem; Jamali, Asma

    2015-01-01

    The thermodynamic behavior of the simple binary mixtures in the vicinity of critical line has a universal character and can be mapped from pure components using the isomorphism hypothesis. Consequently, based upon the principle of isomorphism, critical phenomena and similarity between P-ρ-T and T-η-(viscosity)-P relationships, the viscosity model has been developed adopting two cubic, Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), equations of state (EsoS) for predicting the viscosity of the binary mixtures. This procedure has been applied to the methane-butane mixture and predicted its viscosity data. Reasonable agreement with the experimental data has been observed. In conclusion, we have shown that the isomorphism principle in conjunction with the mapped viscosity EoS suggests a reliable model for calculating the viscosity of mixture of hydrocarbons over a wide pressure range up to 35 MPa within the stated experimental errors. PMID:26680701

  11. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  12. A Triple Eclipsing System as a Test Case for Close Binary Formation through Kozai Cycles

    NASA Astrophysics Data System (ADS)

    Conroy, K. E.; Prša, A.; Stassun, K. G.

    2015-07-01

    Kozai cycles and tidal friction of a binary with a tertiary companion is one of the leading theories for the formation of close binary systems by tightening the orbit of the inner binary. According to simulations, such systems should evolve into tight inner binaries with eccentric tertiary companions on wide orbits, and importantly, predict the tertiary to have an orbital inclination misaligned relative to the plane of the inner binary, with an angle of misalignment that peaks strongly around 40 degrees. KIC 2835289 is a triple system comprising a ˜0.9-day inner binary and a tertiary on a ˜750-day orbit. The tertiary was identified through our eclipse timing variations and our finding of a tertiary eclipse event in the Kepler data. Here we show, using photodynamical modeling of the system, that the tertiary in this system is on an eccentric orbit inclined with respect to the inner binary, in agreement with theoretical prediction. KIC 2835289 is thus the first known triple system that directly attests to the key predictions of Kozai cycles and tidal friction as a mechanism to tighten binary star systems.

  13. Dixie Valley Binary Cycle Production Data 2013 YTD

    DOE Data Explorer

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  14. Diffuse interface method for a compressible binary fluid

    NASA Astrophysics Data System (ADS)

    Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh

    2016-01-01

    Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO2 + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO2 + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO2 the smaller the surface tension and the easier the drop deforms.

  15. Diffuse interface method for a compressible binary fluid.

    PubMed

    Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh

    2016-01-01

    Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO_{2} + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO_{2} + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO_{2} the smaller the surface tension and the easier the drop deforms. PMID:26871168

  16. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  17. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    SciTech Connect

    Mahmoud, Ahmad

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  18. Thermosolutal Convection in a Shallow Layer of a Binary Fluid

    SciTech Connect

    Alloui, Imene; Benmoussa, Hocine; Vasseur, Patrick

    2010-05-21

    This paper reports an analytical and numerical study of the combined Soret and thermosolutal effects on natural convection in a shallow rectangular cavity filled with a binary mixture. Neumann boundary conditions for temperature and concentration are applied to the horizontal walls of the enclosure, while the two vertical ones are assumed impermeable and insulated. For convection in an infinite layer, analytical solutions for the stream function, temperature and concentration fields are obtained using a parallel flow approximation in the core region of the cavity and an integral form of the energy and constituent equations. The critical Rayleigh numbers for the onset of supercritical and subcritical convection are predicted explicitly by the present model. Numerical solutions of the full governing equations are obtained for a wide range of the governing parameters. A good agreement is observed between the analytical model and the numerical simulations.

  19. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  20. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  1. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  2. IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY

    SciTech Connect

    Stephen M Bajorek; J. Schnelle

    2002-05-01

    This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All

  3. Design of a condenser-boiler for a binary mercury-organic Rankine cycle solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Cotton, Randy M.

    1987-05-01

    A theoretical design was performed for the condenser/boiler of a space-based solar dynamic power system. The base system is a binary Rankine cycle with mercury and toluene as the working fluids. System output is 75 KWe with a combined efficiency of 41.1%. Design goals were to develop the most reliable, mass efficient unit possible for delivery to a space station. The design sized the unit based on toluene properties and used a computer generated heat balance to thermodynamically match the two fluids. Molybdenum was chosen as the material due to mass effectiveness in heat transfer, strength, and resistance to mercury corrosion. The unit transferred 137.46 kilowatts of thermal power and can operate at varying mass flow rates. Effectiveness in heat transfer is 0.96 and mass performance is 0.016 kg/KWth transferred. The design depends on using only existing technologies and the results call for no new developments.

  4. Thermodynamic analysis of organic Rankine cycle using dry working fluids

    SciTech Connect

    Wang, S.K.; Hung, T.C.

    1998-12-31

    Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

  5. Undergraduate experiment in critical phenomena. II. The coexistence curve of a binary fluid mixture

    NASA Astrophysics Data System (ADS)

    Ngubane, S. B.; Jacobs, D. T.

    1986-06-01

    An undergraduate experiment is described that uses meniscus heights to determine the coexistence curve of a binary fluid mixture. The data can be obtained with a minimum of equipment and yield results that are easily interpreted by the theory also presented. Data taken on the binary liquid mixture methanol-isooctane are presented and analyzed. The critical temperature and composition were found to be (42.5±0.5) °C and (67.3±0.2)% by volume isooctane, respectively.

  6. Correlation and prediction of thermodynamic properties of binary mixtures from perturbed chain statistical associating fluid theory

    NASA Astrophysics Data System (ADS)

    Almasi, Mohammad

    2014-11-01

    Densities and viscosities for binary mixtures of Diethanolamine (DEA) + 2 alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15-323.15 K. From the density and viscosity data, values of various properties such as isobaric thermal expansibility, excess isobaric thermal expansibility, partial molar volumes, excess molar volumes and viscosity deviations were calculated. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the intermolecular interactions between the unlike molecules of the binary mixtures. The ability of the perturbed chain statistical associating fluid theory (PC-SAFT) to correlate accurately the volumetric behavior of the binary mixtures is demonstrated.

  7. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  8. Drag Coefficient of a Rigid Spherical Particle in a Near-Critical Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Fujitani, Youhei; Komura, Shigeyuki

    2013-08-01

    We calculate the drag coefficient of a rigid spherical particle in an incompressible binary fluid mixture. A weak preferential attraction is assumed between the particle surface and one of the fluid components, and the difference in the viscosity between the two components is neglected. Using the Gaussian free-energy functional and solving the hydrodynamic equation explicitly, we can show that the preferential attraction makes the drag coefficient larger as the bulk correlation length becomes longer. The dependence of the deviation from the Stokes law on the correlation length, when it is short, turns out to be much steeper than the previous estimates.

  9. Unifying binary fluid diffuse-interface models in the sharp-interface limit

    NASA Astrophysics Data System (ADS)

    Sibley, David; Nold, Andreas; Kalliadasis, Serafim

    2013-11-01

    Flows involving free boundaries occur widely in both nature and technological applications, existing at liquid-gas interfaces (e.g. between liquid water and water vapour) or between different immiscible fluids (e.g. oil and water, and termed a binary fluid). To understand the asymptotic behaviour near a contact line, a liquid-gas diffuse-interface model has been investigated recently. In contrast, here we investigate the behaviour between two ostensibly immiscible fluids, a binary fluid, using related models where the interface has a thin but finite thickness. Quantities such as the mass fraction of the two fluid components are modelled as varying smoothly but rapidly in the interfacial region. There has been a wide variety of models used for this situation, based on Cahn-Hilliard or Allen-Cahn theories coupled to hydrodynamic equations, and we consider the effect of these differences using matched asymptotic methods in the important sharp-interface limit, where the interface thickness goes to zero. Our aim is to understand which models represent better the classical hydrodynamic model and associated free-surface boundary conditions.

  10. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant

  11. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    SciTech Connect

    Delage-Santacreu, Stephanie; Galliero, Guillaume Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  12. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    NASA Astrophysics Data System (ADS)

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  13. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures.

    PubMed

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule. PMID:25956107

  14. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very

  15. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  16. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  17. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  18. Drag Coefficient of a Spherical Droplet Immersed in a Near-Critical Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei

    2014-02-01

    We consider a spherical liquid droplet immersed in a near-critical binary fluid mixture. A weak preferential attraction is assumed between the droplet and one of the two mixture components, and the difference in the viscosity is neglected between the mixture components. Using the Gaussian free-energy functional, we calculate the drag coefficient of a droplet. Whether it is increased or decreased by the preferential attraction turns out to depend on the bulk correlation length and the ratio of the viscosity of the surrounding mixture to that of the droplet.

  19. Traveling and standing waves in binary-fluid convection in finite geometries

    NASA Technical Reports Server (NTRS)

    Cross, M. C.

    1986-01-01

    The effect of finite geometry on the competition between traveling waves and standing waves in systems with a Hopf bifurcation to a state with spatial structure is considered in the linear and weakly nonlinear regimes. The spatial structure observed by Kolodner et al. (1986) in binary-fluid convection is explained in terms of the reflection of the linear traveling waves. The reflection coefficient is calculated, and is found to go to zero as the frequency of the waves becomes small. The pattern expected in a saturated nonlinear state is discussed.

  20. Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Shaikh, A. Y.

    2016-07-01

    A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.

  1. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    PubMed

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D; Sagi, Amir

    2014-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  2. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    PubMed Central

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  3. Physical and computational scaling issues in lattice Boltzmann simulations of binary fluid mixtures.

    PubMed

    Cates, M E; Desplat, J-C; Stansell, P; Wagner, A J; Stratford, K; Adhikari, R; Pagonabarraga, I

    2005-08-15

    We describe some scaling issues that arise when using lattice Boltzmann (LB) methods to simulate binary fluid mixtures--both in the presence and absence of colloidal particles. Two types of scaling problem arise: physical and computational. Physical scaling concerns how to relate simulation parameters to those of the real world. To do this effectively requires careful physics, because (in common with other methods) LB cannot fully resolve the hierarchy of length, energy and time-scales that arise in typical flows of complex fluids. Care is needed in deciding what physics to resolve and what to leave unresolved, particularly when colloidal particles are present in one or both of two fluid phases. This influences steering of simulation parameters such as fluid viscosity and interfacial tension. When the physics is anisotropic (for example, in systems under shear) careful adaptation of the geometry of the simulation box may be needed; an example of this, relating to our study of the effect of colloidal particles on the Rayleigh-Plateau instability of a fluid cylinder, is described. The second and closely related set of scaling issues are computational in nature: how do you scale-up simulations to very large lattice sizes? The problem is acute for systems undergoing shear flow. Here one requires a set of blockwise co-moving frames to the fluid, each connected to the next by a Lees-Edwards like boundary condition. These matching planes lead to small numerical errors whose cumulative effects can become severe; strategies for minimizing such effects are discussed. PMID:16099757

  4. Relaxation rate of the shape fluctuation of a fluid membrane immersed in a near-critical binary fluid mixture.

    PubMed

    Fujitani, Youhei

    2016-03-01

    We consider the two-time correlation of the shape fluctuation of a fluid membrane immersed in a near-critical binary fluid mixture. Usually one component of the mixture is preferably attracted by the membrane. Adsorption layers, where the preferred component is more concentrated, are generated on both sides of the membrane significantly because of the near-criticality. The resultant gradient of the local mass-density difference between the two components generates additional stress, including the osmotic pressure, to influence the membrane motion. Assuming the mixture to be in the homogeneous phase near, but not too close to, the demixing critical point, we use the Gaussian free-energy functional to calculate the relaxation rate for a wavelength much longer than the correlation length of the mixture. Our calculation supposes weak preferential attraction and weak dependence of the mixture viscosity on the mass-density difference, and is performed within the linear approximation with respect to the undulation amplitude. It is shown for small wave number that the additional stress makes the relaxation more rapid independently of whether the preferred component is more viscous or not and that the relaxation rate can be regarded as proportional to the wave number even for a tensionless membrane. This linear dependence comes from the balance between the frictional force due to the mixture viscosity and the restoring force of the adsorption layer. PMID:26993992

  5. Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. I - General theory and stationary stability results

    NASA Technical Reports Server (NTRS)

    Hardin, G. R.; Sani, R. L.; Henry, D.; Roux, B.

    1990-01-01

    The buoyancy-driven instability of a monocomponent or binary fluid completely contained in a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The Boussinesq approximation is used, and the resulting linear stability problem is solved using a Galerkin technique. The analysis considers fluid mixtures ranging from gases to liquid metals. The flow structure is found to depend strongly on both the cylinder aspect ratio and the magnitude of the Soret effect. The predicted stability limits are shown to agree closely with experimental observations.

  6. Binary Stars "Flare" With Predictable Cycles, Analysis of Radio Observations Reveals

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers have completed a 5-year campaign to monitor continuously radio flares from two groups of binary star systems. This survey is of special interest because it provides evidence that certain binary star systems have predictable activity cycles like our Sun. The survey, which ran from January 1995 to October 2000, was conducted with the National Science Foundation's (NSF) Green Bank Interferometer. The report was presented at the American Astronomical Society (AAS) meeting in Albuquerque, New Mexico, by Mercedes Richards of the University of Virginia, and her collaborators Elizabeth Waltman of the Naval Research Laboratory, and Frank Ghigo of the National Radio Astronomy Observatory (NRAO). "This long-term survey was critical to our understanding of the short- and long-term magnetic cycles of these intriguing star systems," said Richards. The survey focused on the binary star systems Beta Persei and V711 Tauri -- both are about 95 light-years from Earth. Beta Persei is the prototype of the "Algol" class of interacting binary stars. An Algol system contains a hot, blue, main sequence star, along with a cool, orange/red star that is more active than our Sun. V711 Tauri is an "RS Canum Venaticorum" binary, which contains two cool stars that behave like our Sun. "Our survey was the longest-running continuous radio flare survey of Algol or RS Canum Venaticorum binary star systems," said Richards. A flare is an enormous explosion on the surface of a star, which is accompanied by a release of magnetic energy. Flares can be detected over the full range of wavelengths from gamma rays to the radio. It is estimated that the energy release in a flare on the Sun is equivalent to a billion megatons of TNT. The strength of the magnetic field and the amount of activity it displays, like sunspots and flares, are directly related to the rotation or "spin" of the star. In Beta Persei and V711 Tauri, the cool star spins once every 3 days, compared to once every month in the

  7. Phase-field model of long-time glasslike relaxation in binary fluid mixtures.

    PubMed

    Benzi, R; Sbragaglia, M; Bernaschi, M; Succi, S

    2011-04-22

    We present a new phase-field model for binary fluids, exhibiting typical signatures of soft-glassy behavior, such as long-time relaxation, aging, and long-term dynamical arrest. The present model allows the cost of building an interface to vanish locally within the interface, while preserving positivity of the overall surface tension. A crucial consequence of this property, which we prove analytically, is the emergence of free-energy minimizing density configurations, hereafter named "compactons," to denote their property of being localized to a finite-size region of space and strictly zero elsewhere (no tails). Thanks to compactness, any arbitrary superposition of compactons still is a free-energy minimizer, which provides a direct link between the complexity of the free-energy landscape and the morphological complexity of configurational space. PMID:21599369

  8. Phase behavior in binary fluid mixtures with spherical and non-spherical interactions

    NASA Astrophysics Data System (ADS)

    Diaz-Herrera, Enrique; Ramirez-Santiago, Guillermo; Moreno-Razo, J. Antonio

    2006-03-01

    We have carried out extensive MD simulations to study the T vs. ρ phase diagram and the mix-demix transition in fluid binary mixtures with (1) Lennard-Jones, (2) Stock-Mayer and (3) Gay-Berne molecular interactions. This analysis is performed in terms of the miscibility parameter, α=ɛAB/ɛAA, with ɛAA=ɛBB. When the miscibility of the mixture is in the range 0<α<1, a continuous critical line of consolute points appears. This line interscts the LV coexistence curve at different positions depending on the value of α, yielding mainly three different topologies for the phase diagrams. We also carried out a detailed study of the interfacial properties as function of T and α.

  9. The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air

    NASA Astrophysics Data System (ADS)

    Kovalevskii, V. P.

    2011-09-01

    The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three loops with different pressure levels and equipped with a GTE-160 (V94.2) gas turbine unit, and with preheating of cycle air are analyzed by way of comparison in a wide range of initial steam pressures. The variation of the combined-cycle plant efficiency, stream wetness, conditional overall heating surface of the heat-recovery boiler, and other parameters is presented.

  10. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  11. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to examine cycle performance for Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using pure Refrigerants 12, 22 and 114 was theoretically carried out in the present paper. For the purpose of systematizing the heat pump cycle characteristics with pure refrigerants, the cycle analysis for Refrigerants 502, 13B1, 152a, 717 (NH3) and 290 (C3H8) was also examined. It became clear that the maximum coefficients of performance with various refrigerants were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  12. Steroid hormones in bovine oviductal fluid during the estrous cycle.

    PubMed

    Lamy, Julie; Liere, Philippe; Pianos, Antoine; Aprahamian, Fanny; Mermillod, Pascal; Saint-Dizier, Marie

    2016-10-01

    Ovarian steroid hormones are major regulators of the physiology of the oviduct and reproductive events occurring within the oviduct. To establish a whole steroid profiling of the bovine oviductal fluid (OF) during the estrous cycle, contralateral and ipsilateral (to the corpus luteum or preovulatory follicle) oviducts were classified into four stages of the estrous cycle (n = 18-27 cows per stage): postovulatory (Post-ov), mid-luteal (Mid-lut), late luteal (Late-lut), and preovulatory on the basis of the ovarian morphology and intrafollicular steroid concentrations. Steroids were extracted from pools of 150 to 200 μL OF (three to 10 cows per pool; three to four pools per "stage × side" group), purified, fractioned by high-performance liquid chromatography, and analyzed by gas chromatography coupled with tandem mass spectrometry. The concentrations of progesterone (P4) in ipsilateral OF increased from Post-ov (56.9 ± 13.4 ng/mL) to Mid-lut (120.3 ± 34.3 ng/mL), then decreased from Late-lut (76.7 ± 1.8 ng/mL) to Pre-ov (6.3 ± 1.7 ng/mL), and were four to 16 times higher than in contralateral OF. Most P4 metabolites followed similar patterns of variation. Concentrations of 17beta-estradiol (E2) were significantly higher at Pre-ov (290.5 ± 63.2 pg/mL) compared with all other stages (<118.3 pg/mL), with no difference regarding the side of ovulation. Concentrations of androstenedione displayed a pattern similar to that of E2, whereas other androgens, estrone, and corticoids did not vary between stages or sides. In conclusion, a highly concentrated and fluctuating hormonal environment was evidenced in the bovine OF. These results could be useful to improve media for IVF, embryo development, and culture of oviductal cells. PMID:27262884

  13. Segregation by size difference in binary suspensions of fluid droplets in channel flow.

    PubMed

    Makino, Masato; Sugihara-Seki, Masako

    2013-01-01

    In channel flow of multicomponent suspensions, segregation behavior of suspended components perpendicular to the flow direction is often observed, which is considered to be caused by the differential properties of the lateral migration depending on their shape, size, flexibility, and other characteristics. In the present study, we investigate the effect of size differences between suspended components on the segregation behavior, by a two-dimensional numerical simulation for binary dispersed suspensions of fluid droplets of two different sizes subjected to a plane Poiseuille channel flow. The small and large droplets are assumed to have equal surface tensions and equal viscosity ratios of internal to external fluids. The time evolutions of the lateral positions of large and small droplets relative to the channel centerline were computed by changing the area fraction of the small droplets in a mixture with a constant total area fraction. The large droplets are found to migrate closer to the channel centerline and the small droplets are found to migrate closer to the channel wall compared to the corresponding lateral positions in mono-dispersed suspensions at the same area fractions, although the mean lateral positions of the large and small droplets in mono-dispersed suspension are comparable. This segregation behavior as well as the margination of small droplets are enhanced when the size difference between large and small droplets is increased and the area fraction of large droplets is increased. These results may arise from higher tendencies for the large droplets to approach the channel centerline compared to the small droplets, which consequently expel small droplets from the central region toward the channel walls. PMID:23863280

  14. Onset of Convection Due to Surface Tension Variations in Multicomponent and Binary Fluid Layers

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    2000-01-01

    Under certain conditions, such as in thin liquid films or microgravity, surface tension variations along a free surface can induce convection. Convection onset due to surface tension variation is important to many terrestrial technological processes in addition to microgravity materials processing applications. Examples include coating, drying crystallization, solidification, liquid surface contamination, and containerless processing. In double-diffusive and multicomponent systems, the spatial variations of surface tension are associated with two or more stratifying agencies, respectively. For example, both temperature and species (concentration) gradients are associated with convection in the solidification of binary alloys or salt ponds. The direction of the two (or more) gradients has a profound effect on the nature of the flow at or slightly beyond the onset of convection. Our recent work at the NASA Lewis Research Center focused on characterizing surface-tension-induced onset of convection, often referred to as Marangoni-Benard convection. Exact solutions for the stationary neutral stability of multicomponent fluid layers with interfacial deformation were derived. These solutions also permit the computation of a boundary curve that separates the long and finite wavelength instabilities. Computing points along this boundary using the exact solution (when possible) is more efficient than the typical numerical approaches, such as finite difference or spectral methods. Above the curve, a long wavelength instability was predicted, suggesting that convection would occur principally through one large flow cell in the layer, whereas below the curve, finite wavelength instabilities occur which suggest multiple finite-sized circulation cells. For many common liquids with layer depths greater than 100 mm, finite wave instability is predicted under terrestrial conditions; however, with little exception, long wavelength instability is predicted in microgravity for the

  15. Bifurcation and Stability of the Traveling-Wave Convection in a Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Yahata, Hideo

    2002-08-01

    The Rayleigh-Bénard convection of a binary fluid mixture in a horizontal layer is considered for a moderate negative value of the separation ratio S for which the spatio-temporal structure of fully-developed periodic convection rolls is known to take either the stationary overturning convection (SOC) or the traveling-wave (TW) convection state depending on the values of the Rayleigh number. Numerical solutions for the SOC and the TW states are computed using the 2D MAC and the 2D spectral simulations of the governing equations of motion in the finite difference and the Galerkin form respectively. In addition to these, a method for finding their solutions as the steady-state problem of the Galerkin system using the Newton iterative method is presented and the computed results are compared with those obtained previously by others. Linear stability analysis of the linearized dynamical system shows that the transition between the SOC and TW states is involved by the real-mode instability.

  16. Control system for cheng dual-fluid cycle engine system

    SciTech Connect

    Cheng, D.Y.

    1987-07-21

    A dual-fluid heat engine is described which is operated to produce co-generated process steam having: a chamber; compressor means for introducing a first gaseous working fluid comprising air into the chamber, the compressor means having a predetermined pressure ratio (CPR); means for introducing a second liquid-vapor working fluid comprising water in the form of a vapor within the chamber at a defined water/air working fluid ratio (XMIX); means for heating the water vapor and air in the chamber at a defined specific heat input rate (SHIR); turbine means responsive to the mixture of the first and second working fluids for converting the energy associated with the mixture to mechanical energy, the temperature of the mixture entering the turbine means defining the turbine inlet temperature (TIT) and having a design maximum turbine inlet temperature (TITmax); counterflow heat exchanger means for transferring residual thermal energy from the exhausted mixture of first and second working fluids to the incoming working fluid water to thereby preheat the same to water vapor prior to its introduction within the chamber; means for diverting water vapor from the chamber, if desired, for co-generated process steam; and wherein the improvement comprises: means for operating the engine under partial load conditions such that when substantially no co-generated process steam is required. The engine control path follows a locus of peak efficiency points resulting in declining TIT as the load decreases, and such that XMIX and SHIR are selected so that for a given value of TIT, XMIX is at or near XMIX peak, where XMIX peak occurs when conditions are met simultaneously.

  17. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  18. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.

    PubMed

    Zu, Y Q; He, S

    2013-04-01

    A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods. PMID:23679542

  19. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts

    NASA Astrophysics Data System (ADS)

    Zu, Y. Q.; He, S.

    2013-04-01

    A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.

  20. Effective Viscosity of a Near-Critical Binary Fluid Mixture with Colloidal Particles Dispersed Dilutely under Weak Shear

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei

    2014-08-01

    We consider a spherical liquid droplet immersed in a near-critical binary fluid mixture whose components interact with the droplet slightly unequally. Assuming uniform viscosity of the mixture, we use the Gaussian free-energy functional to calculate the pressure and velocity fields occurring when a weak linear shear flow is imposed far from the droplet. These fields in the limit of infinite droplet viscosity give those for a rigid sphere. Using these fields, we calculate the effective viscosity emerging when identical droplets or rigid spheres are dilutely dispersed in the mixture.

  1. Onset of Soret-driven convection of binary fluid in square cavity heated from above at different gravity levels

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Zubova, Nadezhda

    The instability of incompressible viscous binary fluid with the Soret effect in square cavity heated from above is studied for different gravity levels. The no slip and zero mass flux conditions are imposed on all the boundaries. The horizontal boundaries are perfectly conductive, they are maintained at constant different temperatures and vertical boundaries are adiabatic. The calculations are performed for water - isopropanol mixture 90:10. Initial conditions correspond to the motionless state with uniform distribution of components and uniform temperature gradient directed upward. For binary fluid under consideration the separation parameter is negative therefore the Soret effect leads to the accumulation of heavy component in the upper part of cavity, moreover, the rate of accumulation is independent of the gravity level. The linear stability of the unsteady motionless state is studied numerically by solving linearized equations for small perturbations. To determine the time t* for the onset of instability, the criterion suggested in [1] is used. The dependence of t* on the gravity level is obtained. The work was done under financial support of Government of Perm Region, Russia (Contract C-26/212). 1. Shliomis M.I., Souhar M. Europhysics Letters. 2000. Vol. 49 (1), pp. 55-61.

  2. Copper and zinc concentrations in the uterine fluid and blood serum during the bovine estrous cycle.

    PubMed

    Alavi-Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Pak, Mozhgan; Alizadeh, Sajad; Abedizadeh, Roya; Khaki, Amir

    2012-01-01

    To investigate uterine and serum copper (Cu) and zinc (Zn) concentrations variation during the bovine estrus cycle , 232 blood and genital tract samples were collected from the abattoir in Urmia. The phase of the estrous cycle was determined by the examination of the ovaries and the uterine tonicity. Of the 46 samples selected for use in the study, 13 were pro-estrus, 10 estrus, 8 metestrus, and 15 diestrus. The uterus was incised and uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. The total mean (± SEM) Cu concentrations in serum and uterine fluid samples, determined by spectrophotometry, were 66.1± 6.5 and 171.3 ± 33.2µg dL(-1) respectively, which were significantly different, while total mean serum and uterine fluid Zn concentrations were 91.9 ± 5.4 and 291.6 ± 23.4 µg dL(-1), which also showed a significant difference. The mean serum Cu values in different phases of the estrous cycle were not significantly different, while uterine fluid Cu content in pro-estrus and diestrus were significantly higher than those in estrus and metestrus, and were also significantly higher than those of the serum samples. The mean Zn value of serum samples at different stages of the cycle was not significantly different. The mean Zn value of the uterine fluid samples was also not significantly different in different stages, but in pro-estrus, metestrus, and in diestrus they were highly significantly different from those of the serum. These results showed that Cu concentrations in the uterine fluid vary at different stages of the cycle and are higher than those in the blood serum, but, the uterine Zn content does not vary during the estrous cycle and is much higher than those in the serum, that seems to be due to the secretory action of the uterine mucosa. PMID:25610569

  3. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  4. Langevin equation with stochastic damping - Possible application to critical binary fluid

    NASA Technical Reports Server (NTRS)

    Jasnow, D.; Gerjuoy, E.

    1975-01-01

    We solve the familiar Langevin equation with stochastic damping to represent the motion of a Brownian particle in a fluctuating medium. A connection between the damping and the random driving forces is proposed which preserves quite generally the Einstein relation between the diffusion and mobility coefficients. We present an application to the case of a Brownian particle in a critical binary mixture.

  5. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri A.; Stagno, Vincenzo; Huang, Fang

    2014-12-01

    Supercritical aqueous fluids link subducting plates and the return of carbon to Earth's surface in the deep carbon cycle. The amount of carbon in the fluids and the identities of the dissolved carbon species are not known, which leaves the deep carbon budget poorly constrained. Traditional models, which assume that carbon exists in deep fluids as dissolved gas molecules, cannot predict the solubility and ionic speciation of carbon in its silicate rock environment. Recent advances enable these limitations to be overcome when evaluating the deep carbon cycle. Here we use the Deep Earth Water theoretical model to calculate carbon speciation and solubility in fluids under upper mantle conditions. We find that fluids in equilibrium with mantle peridotite minerals generally contain carbon in a dissolved gas molecule form. However, fluids in equilibrium with diamonds and eclogitic minerals in the subducting slab contain abundant dissolved organic and inorganic ionic carbon species. The high concentrations of dissolved carbon species provide a mechanism to transport large amounts of carbon out of the subduction zone, where the ionic carbon species may influence the oxidation state of the mantle wedge. Our results also identify novel mechanisms that can lead to diamond formation and the variability of carbon isotopic composition via precipitation of the dissolved organic carbon species in the subduction-zone fluids.

  6. Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Zhang, Jin; Chen, Zhiyou

    2012-06-01

    A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC's performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.

  7. Immiscible Hydrocarbon and Aqueous Fluids Under Subduction Zone Conditions and Implications for the Deep Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Huang, F.; Daniel, I.; Cardon, H.; Montagnac, G.; Sverjensky, D. A.

    2015-12-01

    Subducting slabs recycle rocks into the deep Earth releasing fluids which may cause partial melting and possible oxidation of the mantle wedge. Recent theoretical studies1 indicate that at pressures greater than about 3.0 GPa these fluids could contain high concentrations of organic and inorganic C-species with a wide range of C-oxidation states at equilibrium. If so, such fluids could play an important role in the deep carbon cycle, including the formation of diamond. However, direct experimental observations of the speciation in the fluids are needed. We studied 1.0 M aqueous Na-formate and 1.0 M Na-acetate solutions in the diamond anvil cell using Raman spectroscopy at 300 ºC and 3.0 GPa for up to 60 hours. Our preliminary results indicate that formate rapidly decomposed to bicarbonate/carbonate species and methane, with no detectable H2. Acetate decomposed much more slowly. Within the first two hours of heating, crystals of Na2CO3 precipitated in the fluid, and kept growing while immiscible droplets of hydrocarbon appeared and persisted throughout the experiments at elevated temperature and pressure. In the aqueous fluid, acetate and HCO3- were present during the first 6 hours, and then CO32- and acetate after 20 hours of heating. The final HCO3- /CO32- ratio was constant indicating a constant pH. This is the first in situ observation of persistent immiscible fluid hydrocarbons formed from an aqueous precursor at upper mantle pressures. Our results suggest that Earth's subduction zone fluids at high pressures might involve fluid hydrocarbon species as well as inorganic and organic aqueous C-species, which considerably broadens the picture of deep carbon sources, cycles and sinks. [1] Sverjensky et at. (2014), Nat. Geosci. 7, 909-913.

  8. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals

    PubMed Central

    Wood, Shona H.; Christian, Helen C.; Miedzinska, Katarzyna; Saer, Ben R.C.; Johnson, Mark; Paton, Bob; Yu, Le; McNeilly, Judith; Davis, Julian R.E.; McNeilly, Alan S.; Burt, David W.; Loudon, Andrew S.I.

    2015-01-01

    Summary Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3+) or short (CHGA+) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation. PMID:26412130

  9. Marking of Fluid Timed Events Graphs with Multipliers for a desired cycle time

    NASA Astrophysics Data System (ADS)

    Hamaci, S.; Labadi, K.

    2009-03-01

    We study fluid analogues of a subclass of petri nets, called Fluid Timed Event Graphs with Multipliers, which are a time extension of weighted T-Systems studied in the Petri Net literature. These event graphs can be studied in the algebraic structure called (min, +) algebra. In this paper we deal with the problem of allocating an initial marking in a Fluid Timed Event Graphs with Multipliers for a desired cycle time. for that, to calculate the marking of some places, we proceed by linearization of the mathematical model reflecting the behavior of a FGETM in order to obtain a model (min, +) linear. From the latter, we determine the marking which satisfiers the desired cycle time .

  10. Evaluation of Active Working Fluids for Brayton Cycles in Space Applications

    NASA Astrophysics Data System (ADS)

    Conklin, J. C.; Courville, G. E.; Scott, J. H.

    2004-02-01

    The main parameter of interest for space thermal power conversion to electricity is specific power, defined as the total electric power output per unit of system mass, rather than the cycle thermal efficiency. For a closed Brayton cycle, performance with two active working fluids, nitrogen tetroxide and aluminum chloride, is compared to that with an inert mixture of helium and xenon having a molecular mass of 40. A chemically active working fluid is defined here as a chemical compound that has a relatively high molecular weight at temperatures appropriate for the compressor inlet and dissociates to a lighter molecular weight fluid at typical turbine inlet temperatures. The active working fluids may have the advantage of a higher net turbomachinery work output and an advantageous enhancement of the heat transfer coefficient in the heat exchangers. The fundamental theory of the active working fluid concept is presented to demonstrate these potential advantages. Scoping calculations of the heat exchanger mass for a selected spacecraft application of 36.4 kW of electrical power output show that the nitrogen tetroxide active working fluid has an advantageous 7% to 30% lower mass-to-power ratio than that for the inert noble gas mixture, depending on the allowable turbine inlet temperature. The calculations for the aluminum chloride system suggest only a slight improvement in performance relative to the inert noble gas mixture.

  11. Comparison of Rankine-cycle power systems: effects of seven working fluids

    SciTech Connect

    Marciniak, T.J.; Krazinski, J.L.; Bratis, J.C.; Bushby, H.M.; Buyco, E.H.

    1981-06-01

    This study investigates the safety, health, technical, and economic issues surrounding the prime working-fluid candidates for industrial Rankine-cycle power systems in the range of 600 to 2400 kW. These fluids are water, methanol, 2-methyl pyridine/H/sub 2/O, Fluorinol 85, toluene, Freon R 11, and Freon R 113. Rankine-cycle power systems using water as a working fluid and boilers burning coal, refuse, oil, or gas - or driven by nuclear energy - have been the mainstay of power generation for about a century. Interest in energy conservation in the industrial sector is now encouraging the development of small Rankine power systems that use heat from a variety of waste streams. The temperature range of interest for industrial applications is from 500/sup 0/F to 1100/sup 0/F (260/sup 0/C to 593/sup 0/C) for gaseous streams and approximately 300/sup 0/F (149/sup 0/C) for condensing streams. At temperatures below about 700/sup 0/F (371/sup 0/C), steam systems become less efficient and too expensive to be used. However, other working fluids, usually organic compounds, can be economically attractive at the lower temperatures. This study shows that, at current and projected energy costs, Rankine-cycle power systems using any of the seven working fluids investigated here can exceed the minimum return on investment (ROI) criteria of most industries. The highest ROIs occur for those systems using a 300/sup 0/F (149/sup 0/C) condensing stream as the heat source. There appear to be no significant health or safety problems that would prevent the use of any of the candidate working fluids. The only limitation of an organic fluid is its maximum stability temperature, which may prevent its use with high-temperature waste-heat streams.

  12. Simulating left ventricular fluid-solid mechanics through the cardiac cycle under LVAD support

    NASA Astrophysics Data System (ADS)

    McCormick, M.; Nordsletten, D. A.; Kay, D.; Smith, N. P.

    2013-07-01

    In this study we have integrated novel modifications of the standard Newton-Raphson/line search algorithm and optimisation of the interpolation scheme at the fluid-solid boundary to enable the simulation of fluid-solid interaction within the cardiac left ventricle under the support of a left ventricular assist device (LVAD). The line search modification combined with Jacobian reuse produced close to an order of magnitude improvement in computational time across both test and whole heart simulations. Optimisation of element interpolation schemes on the fluid-solid boundary highlights the impact this choice can have on problem stability and demonstrates that, in contrast to linear fluid elements, higher order interpolation produces improved error reduction per degree of freedom. Incorporating these modifications enabled a full heart cycle under LVAD support to be modelled. Results from these simulations show that there is slower clearance of blood entering the chamber during early compared to late diastole under conditions of constant LVAD flow.

  13. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations.

    PubMed

    Denniston, Colin; Robbins, Mark O

    2006-12-01

    Molecular dynamics simulations are used to explore the flow behavior and diffusion of miscible fluids near solid surfaces. The solid produces deviations from bulk fluid behavior that decay over a distance of the order of the fluid correlation length. Atomistic results are mapped onto two types of continuum model: Mesoscopic models that follow this decay and conventional sharp interface boundary conditions for the stress and velocity. The atomistic results, and mesoscopic models derived from them, are consistent with the conventional Marangoni stress boundary condition. However, there are deviations from the conventional Navier boundary condition that states that the slip velocity between wall and fluid is proportional to the strain rate. A general slip boundary condition is derived from the mesoscopic model that contains additional terms associated with the Marangoni stress and diffusion, and is shown to describe the atomistic simulations. The additional terms lead to strong flows when there is a concentration gradient. The potential for using this effect to make a nanomotor or pump is evaluated. PMID:17166010

  14. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Smeraglia, Luca; Berra, Fabrizio; Billi, Andrea; Boschi, Chiara; Carminati, Eugenio; Doglioni, Carlo

    2016-09-01

    We examine the potentially-seismic right-lateral transtensional-extensional Tre Monti Fault (central Apennines, Italy) with structural and geochemical methods and develop a conceptual evolutionary model of extensional faulting with fluid involvement in shallow (≤3 km depth) faults in carbonate rocks. In the analysed fault zone, multiscale fault rock structures include injection veins, fluidized ultracataclasite layers, and crackle breccias, suggesting that the fault slipped seismically. We reconstructed the relative chronology of these structures through cross-cutting relationship and cathodoluminescence analyses. We then used C- and O-isotope data from different generations of fault-related mineralizations to show a shift from connate (marine-derived) to meteoric fluid circulation during exhumation from 3 to ≤1 km depths and concurrent fluid cooling from ∼68 to <30 °C. Between ∼3 km and ∼1 km depths, impermeable barriers within the sedimentary sequence created a semi-closed hydrological system, where prevalently connate fluids circulated within the fault zone at temperatures between 60° and 75 °C. During fault zone exhumation, at depths ≤1 km and temperatures <30 °C, the hydrological circulation became open and meteoric-derived fluids progressively infiltrated and circulated within the fault zone. The role of these fluids during syn-exhumation seismic cycles of the Tre Monti Fault has been substantially passive along the whole fault zone, the fluids being passively redistributed at hydrostatic pressure following co-seismic dilatancy. Only the principal fault has been characterized, locally and transiently, by fluid overpressures. The presence of low-permeability clayey layers in the sedimentary sequence contributed to control the type of fluids infiltrating into the fault zone and possibly their transient overpressures. These results can foster the comprehension of seismic faulting at shallow depths in carbonate rocks of other fold-thrust belts

  15. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  16. Static and dynamic critical behavior of a symmetrical binary fluid: a computer simulation.

    PubMed

    Das, Subir K; Horbach, Jürgen; Binder, Kurt; Fisher, Michael E; Sengers, Jan V

    2006-07-14

    A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination of semi-grand-canonical Monte Carlo (SGMC) and molecular dynamics (MD) methods near a liquid-liquid critical temperature T(c). Choosing equal chemical potentials for the two species, the SGMC switches identities (A-->B-->A) to generate well-equilibrated configurations of the system on the coexistence curve for TT(c). A finite-size scaling analysis of the concentration susceptibility above T(c) and of the order parameter below T(c) is performed, varying the number of particles from N=400 to 12 800. The data are fully compatible with the expected critical exponents of the three-dimensional Ising universality class. The equilibrium configurations from the SGMC runs are used as initial states for microcanonical MD runs, from which transport coefficients are extracted. Self-diffusion coefficients are obtained from the Einstein relation, while the interdiffusion coefficient and the shear viscosity are estimated from Green-Kubo expressions. As expected, the self-diffusion constant does not display a detectable critical anomaly. With appropriate finite-size scaling analysis, we show that the simulation data for the shear viscosity and the mutual diffusion constant are quite consistent both with the theoretically predicted behavior, including the critical exponents and amplitudes, and with the most accurate experimental evidence. PMID:16848591

  17. Evaporation dynamics of non-spherical sessile drops of pure fluids and binary mixtures

    NASA Astrophysics Data System (ADS)

    Saenz, Pedro J.; Matar, Omar K.; Sefiane, Khellil; Valluri, Prashant; Kim, Jungho

    2015-11-01

    The dynamics of pure axisymmetric volatile sessile droplets have been meticulously examined over the last four decades but remain poorly understood. Studies focusing on more realistic non-spherical configurations are virtually non-existent. The dynamics of the latter are examined in this investigation by means of experiments and numerical simulations. We show that the lifetime and bulk flow characteristics of these drops depend on their size and shape. The irregular geometries lead to the emergence preferential convection currents in the liquid as well as differential local evaporation rates noticeable along the contact line. Similarly, we inspect the thermocapillary stability of the flow, which results as the liquid volatility increases, and find that this is also affected by the non-uniform wettability along the triple line. The Marangoni-driven instabilities grow in an intricate spatio-temporal fashion leading to the emergence of different flow regimes. Finally, we also provide new insights into the evaporation process of binary-mixture drops. Memphis Multiphase (EPSRC EP/K003976/1) & ThermaPOWER (EU IRSES-PIRSES GA-2011-294905).

  18. Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator

    NASA Technical Reports Server (NTRS)

    Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio

    1996-01-01

    The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.

  19. Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids.

    PubMed

    Zhong, Xin; Duan, Fei

    2014-11-26

    The effects of ethanol component and nanoparticle concentration on evaporation dynamics of graphite-water nanofluid droplets have been studied experimentally. The results show that the formed deposition patterns vary greatly with an increase in ethanol concentration from 0 to 50 vol %. Nanoparticles have been observed to be carried to the droplet surface and form a large piece of aggregate. The volume evaporation rate on average increases as the ethanol concentration increases from 0 to 50 vol % in the binary mixture nanofluid droplets. The evaporation rate at the initial stage is more rapid than that at the late stage to dry, revealing a deviation from a linear fitting line, standing for a constant evaporation rate. The deviation is more intense with a higher ethanol concentration. The ethanol-induced smaller liquid-vapor surface tension leads to higher wettability of the nanofluid droplets. The graphite nanoparticles in ethanol-water droplets reinforce the pinning effect in the drying process, and the droplets with more ethanol demonstrate the depinning behavior only at the late stage. The addition of graphite nanoparticles in water enhances a droplet baseline spreading at the beginning of evaporation, a pinning effect during evaporation, and the evaporation rate. However, with a relatively high nanoparticle concentration, the enhancement is attenuated. PMID:25372453

  20. Flow of a binary mixture of linearly incompressible viscous fluids between two horizontal parallel plates

    SciTech Connect

    Massoudi, M.

    2008-01-01

    In this paper, we use the classical Mixture Theory and present exact solutions to the equations of motion for the steady flow of two linearly viscous fluids between two horizontal plates. We show that for a saturated mixture and under very special conditions, namely when the body forces are assumed negligible, the only interaction force is due to relative velocity (drag force), and if the two velocities are assumed to be related to each other in a linear fashion, then it is possible to integrate the coupled ordinary differential equations and obtain analytical expressions for the velocities and the volume fraction.

  1. Flow of a binary mixture of linearly incompressible viscous fluids between two horizontal parallel plates

    SciTech Connect

    Massoudi, Mehrdad

    2008-12-01

    In this paper, we use the classical Mixture Theory and present exact solutions to the equations of motion for the steady flow of two linearly viscous fluids between two horizontal plates. We show that for a saturated mixture and under very special conditions, namely when the body forces are assumed negligible, the only interaction force is due to relative velocity (drag force), and if the two velocities are assumed to be related to each other in a linear fashion, then it is possible to integrate the coupled ordinary differential equations and obtain analytical expressions for the velocities and the volume fraction.

  2. The active RS Canum Venaticorum binary II Pegasi. IV. The SPOT activity cycle

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Berdyugin, A. V.; Ilyin, I.; Tuominen, I.

    1999-10-01

    A total of 6 new surface images of II Peg obtained for the years 1997 and 1998 confirms the recently revealed permanent active longitude structure. The lower limit of the active longitudes' lifetime is now extended up to 25 years. A new ``flip-flop'' phenomenon, redefined as a switch of the activity between the active longitudes, has started in summer of 1998. It coincides reasonably well with the moment predicted from the activity cycle of the star. This confirms definitely the cyclic behaviour of the activity of II Peg we recently discovered. Therefore, we assign numbers to the cycles of 4.65 yr since the earliest photoelectric observations of II Peg and define the active longitudes as ``odd'' and ``even'' corresponding to odd and even numbers of cycles. With such a definition, in late 1998 the 7th cycle began and the ``odd'' active longitude became more active. From the analysis of the spot area evolution within the active longitudes we conclude that the activity cycle is developed as a rearrangement of the nearly constant amount of the spot area between the active longitudes. We discuss the ``flip-flop'' phenomenon as a tracer of stellar activity and the role of the unseen secondary in establishing the cycle. Based on observations collected at the Nordic Optical Telescope (NOT), La Palma, Spain; the 1.25m telescope of the Crimean Astrophysical Observatory, Ukraine; the Phoenix 10 robotic telescope, APT Observatory, Arizona, USA.}

  3. Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures

    NASA Astrophysics Data System (ADS)

    Ashton, Douglas J.; Liu, Jiwen; Luijten, Erik; Wilding, Nigel B.

    2010-11-01

    Highly size-asymmetrical fluid mixtures arise in a variety of physical contexts, notably in suspensions of colloidal particles to which much smaller particles have been added in the form of polymers or nanoparticles. Conventional schemes for simulating models of such systems are hamstrung by the difficulty of relaxing the large species in the presence of the small one. Here we describe how the rejection-free geometrical cluster algorithm of Liu and Luijten [J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004)] can be embedded within a restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid phase behavior of highly size-asymmetrical mixtures. After providing a detailed description of the algorithm, we summarize the bespoke analysis techniques of [Ashton et al., J. Chem. Phys. 132, 074111 (2010)] that permit accurate estimates of coexisting densities and critical-point parameters. We apply our methods to study the liquid-vapor phase diagram of a particular mixture of Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume fraction of small particles is increased in the range of 0%-5%, the critical temperature decreases by approximately 50%, while the critical density drops by some 30%. These trends imply that in our system, adding small particles decreases the net attraction between large particles, a situation that contrasts with hard-sphere mixtures where an attractive depletion force occurs.

  4. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  5. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul

    2016-06-01

    We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E (k ) , when the wave number k is large; this enhancement leads to dissipation reduction.

  6. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction.

    PubMed

    Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul

    2016-06-01

    We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E(k), when the wave number k is large; this enhancement leads to dissipation reduction. PMID:27415366

  7. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this

  8. Lattice Boltzmann method for binary fluids based on mass-conserving quasi-incompressible phase-field theory

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Guo, Zhaoli

    2016-04-01

    In this paper, a lattice Boltzmann equation (LBE) model is proposed for binary fluids based on a quasi-incompressible phase-field model [J. Shen et al., Commun. Comput. Phys. 13, 1045 (2013), 10.4208/cicp.300711.160212a]. Compared with the other incompressible LBE models based on the incompressible phase-field theory, the quasi-incompressible model conserves mass locally. A series of numerical simulations are performed to validate the proposed model, and comparisons with an incompressible LBE model [H. Liang et al., Phys. Rev. E 89, 053320 (2014), 10.1103/PhysRevE.89.053320] are also carried out. It is shown that the proposed model can track the interface accurately. As the stationary droplet and rising bubble problems, the quasi-incompressible LBE gives nearly the same predictions as the incompressible model, but the compressible effect in the present model plays a significant role in the phase separation problem. Therefore, in general cases the present mass-conserving model should be adopted.

  9. Fluid Chemistry Through an Eruption Cycle at Axial Seamount 1998-2011

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Chadwick, B.; Lilley, M. D.; Roe, K. K.; Lupton, J. E.; Dziak, R. P.; Walker, S. L.; Olson, E. J.; Evans, L. J.

    2011-12-01

    A primary goal for the NeMO seafloor observatory at Axial Seamount was to monitor and study a hydrothermal system through the cycle from one eruption to the next. With the January 1998 eruption and the April 2011 eruption discovered during Jason ROV operations in late July this year, that goal has now been accomplished. Based on observations and fluid temperature/chemistry measurements before and after both eruptions, there are common features leading up to and following the eruptions. Both eruptions at Axial originated in the SE corner of the caldera associated with the S Rift Zone. Isolated snowblower vents were found on new lava following both eruptions. Centimeter-thick orange hydrothermal mats formed rapidly on the new lava flows. There is some evidence that the fluids from ASHES vent field, located near the SW caldera wall, were hottest before the 1998 eruption. A second high-temperature vent field is located in the SE caldera just east of the recent lava flows. Lava flows came close to both high-temperature fields in 2011, but did not flow over any known chimneys. Recorded time series for several high-temperature vents show increasing temperatures from 2001 through 2010. Vent fluid chlorinity decreased at ASHES for 0.5 to 2 years following the 1998 eruption. As of 3.5 months after the 2011 eruption, ASHES fluid chlorinity did not change significantly. High gas contents reflect magma degassing throughout the entire history of fluid sampling at Axial. Spatial and temporal patterns of vent fluid chemistry will be presented.

  10. Initial results for supercritical cycle experiments using pure and mixed-hydrocarbon working fluids

    SciTech Connect

    Bliem, C.J.; Mines, G.L.

    1984-01-01

    The Heat Cycle Research Program, which is being conducted for the Department of Energy, has as its objective the development of the technology for effecting improved utilization of moderate temperature geothermal resources. Testing at the Heat Cycle Research Facility (HCRF) located at the DOE Geothermal Test Facility (GTF), East Mesa, California, is presently being conducted to meet this objective. Current testing involves a supercritical vaporization and countercurrent in-tube condensing system. The paper presents a brief description of the test facility and a discussion of the test program. Preliminary results on the performance of the supercritical heaters, countercurrent in-tube condenser, and turbine are given for both pure and mixed-hydrocarbon working fluids.

  11. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  12. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.; Robert, Francois; Poulsen, K. Howard

    1988-06-01

    Many mesothermal gold-quartz deposits are localized along high-angle reverse or reverse-oblique shear zones within greenstone belt terrains. Characteristically, these fault-hosted vein deposits exhibit a mixed "brittle-ductile" style of deformation (discrete shears and vein fractures as well as a schistose shear-zone fabric) developed under greenschist facies metamorphic conditions. Many of the vein systems are of considerable vertical extent (>2 km); they include steeply dipping fault veins (lenticular veins subparallel to the shear-zone schistosity) and, in some cases, associated flats (subhorizontal extensional veins). Textures of both vein sets record histories of incremental deposition. We infer that the vein sets developed near the roofs of active metamorphic/magmatic systems and represent the roots of brittle, high-angle reverse fault systems extending upward through the seismogenic regime. Friction theory and field relations suggest that the high-angle reverse faults acted as valves, promoting cyclic fluctuations in fluid pressure from supralithostatic to hydrostatic values. Because of their unfavorable orientation in the prevailing stress field, reactivation of the faults could only occur when fluid pressure exceeded the lithostatic load. Seismogenic fault failure then created fracture permeability within the rupture zone, allowing sudden draining of the geopressured reservoir at depth. Incremental opening of flats is attributed to the prefailure stage of supralithostatic fluid pressures; deposition within fault veins is attributed to the immediate postfailure discharge phase. Hydrothermal self-sealing leads to reaccumulation of fluid pressure and a repetition of the cycle. Mutual crosscutting relations between the two vein sets are a natural consequence of the cyclicity of the process. Abrupt fluid-pressure fluctuations from this fault-valve behavior of reverse faults seem likely to be integral to the mineralizing process at this

  13. The simulation of organic rankine cycle power plant with n-pentane working fluid

    NASA Astrophysics Data System (ADS)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  14. Ultraendurance cycling in a hot environment: thirst, fluid consumption, and water balance.

    PubMed

    Armstrong, Lawrence E; Johnson, Evan C; McKenzie, Amy L; Ellis, Lindsay A; Williamson, Keith H

    2015-04-01

    The purpose of this field investigation was to identify and clarify factors that may be used by strength and conditioning professionals to help athletes drink adequately but not excessively during endurance exercise. A universal method to accomplish this goal does not exist because the components of water balance (i.e., sweat rate, fluid consumed) are different for each athlete and endurance events differ greatly. Twenty-six male cyclists (mean ± SD; age, 41 ± 8 years; height, 177 ± 7 cm; body mass, 81.85 ± 8.95 kg) completed a summer 164-km road cycling event in 7.0 ± 2.1 hours (range, 4.5-10.4 hours). Thirst ratings, fluid consumed, indices of hydration status, and body water balance (ingested fluid volume - [urine excreted + sweat loss]) were the primary outcome variables. Measurements were taken before the event, at designated aid stations on the course (52, 97, and 136 km), and at the finish line. Body water balance during exercise was not significantly correlated with exercise time on the course, height, body mass, or body mass index. Thirst ratings were not significantly correlated with any variable. We also observed a wide range of total sweat losses (4.9-12.7 L) and total fluid intakes (2.1-10.5 L) during this ultraendurance event. Therefore, we recommend that strength and conditioning professionals develop an individualized drinking plan for each athlete, by calculating sweat rate (milliliter per hour) on the basis of body mass change (in kilograms), during field simulations of competition. PMID:25559907

  15. Organic rankine cycle coupled to a solar pond by direct-contact heat exchange - selection of a working fluid

    NASA Astrophysics Data System (ADS)

    Wright, J. D.

    1982-06-01

    Heat from a solar pond may be used to drive an organic Rankine cycle and produce electricity. Due to the inherent low efficiency of low temperature cycles, large amounts of heat must be transferred, and heat exchangers may account for up to 50% of the plant cost. Use of a direct contact boiler, in which the organic fluid is bubbled through a stream of pond brine, may reduce the plant cost by about 25%. The choice of a working fluid affects plant efficiency, turbine cost, and the loss rate of the organic fluid. Low vapor pressure fluids maximize cycle efficiency by minimizing pumping requirements, but require a larger turbine. Efficiency affects the size and cost of the entire plant and low pressure fluids are preferred. The saturated and halogenated hydrocarbons were evaluated for use as working fluids. It is found that the working fluid is best suited to this application, because of high efficiency, low solubility in the pond, and a reasonable turbine cost.

  16. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    NASA Technical Reports Server (NTRS)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  17. Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1979-01-01

    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

  18. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    SciTech Connect

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  19. Performance Analysis of the Absorption Refrigeration Cycle using TFE/NMP as a Working Fluid

    NASA Astrophysics Data System (ADS)

    Kato, Masashi; Tsujimori, Atsushi; Nakaguchi, Kentaro; Yabune, Hiroyuki; Akutsu, Toshinosuke; Nakao, Kazusige

    Performance analysis was made for the generator of the absorption refrigeration cycle using TFE/NMP as a working fluid. In this study the dynamic model was constructed. This model includes the heat and mass transfer characteristics in the generator and is able to predict the outlet concentration and the flow rate of the generated refrigerant vapor according to the change of the operating conditions of the absorption refrigeration cycle. The heat transfer in the generator was decided giving the heat transfer coefficient with temperature difference between the heat transfer wall of the generator and the solution. And the mass transfer was decided giving the over-all mass transfer coefficient between the solution bulk flow and the generated refrigerant bubbles. In this study the change of the concentration and the flow rate of the generated refrigerant vapor was mainly calculated when the strong solution flow rate, the generator wall temperature and the generation pressure were dynamically increased in incremental steps. And in starting and stopping the system, the effect of the generative heat transfer coefficient, over-all mass transfer coefficient and the strong solution flow rate were investigated.

  20. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.

    PubMed

    Liu, Yong-jie; Cui, Shi-ming; He, Chao; Li, Jiu-kai; Wang, Qing-yuan

    2014-01-01

    Ti-6Al-4V implants that function as artificial joints are usually subjected to long-term cyclic loading. To study long-term fatigue behaviors of implant Ti-6Al-4V in vitro and in vivo conditions exceeding 107 cycles, constant stress amplitude fatigue experiments were carried out at ultrasonic frequency (20 kHz) with two different surface conditions (ground and polished) in ambient air and in a simulated body fluid. The initiation mechanisms of fatigue cracks were investigated with scanning electron microscopy. Improvement of fatigue strength is pronounced for polished specimens below 106 cycles in ambient air since fatigue cracks are initiated from surfaces of specimens. While the cycles exceed 106, surface conditions have no effect on fatigue behaviors because the defects located within the specimens become favorable sites for crack initiation. The endurance limit at 108 cycles of polished Ti-6Al-4V specimens decreases by 7% if it is cycled in simulated body fluid instead of ambient air. Fracture surfaces show that fatigue failure is initiated from surfaces in simulated body fluid. Surface improvement has a beneficial effect on fatigue behaviors of Ti-6Al-4V at high stress amplitudes. The fatigue properties of Ti-6Al-4V deteriorate and the mean endurance limits decrease significantly in simulated body fluid. PMID:24211906

  1. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  2. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  3. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOEpatents

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

  4. Calcium and magnesium concentrations in uterine fluid and blood serum during the estrous cycle in the bovine

    PubMed Central

    Alavi-Shoushtari, Sayed Mortaza; Asri-Rezaie, Siamak; Abedizadeh, Roya; Khaki, Amir; Pak, Mozhgan; Alizadeh, Sajad

    2012-01-01

    To investigate uterine and serum Ca++ and Mg++ variations during the estrous cycle in the bovine, 66 genital tracts and blood samples were collected from Urmia abattoir, Urmia, Iran. The phase of the estrous cycle was determined by examination of the structures present on ovaries and uterine tonicity. Of the collected samples, 17 were pro-estrus, 12 estrus, 14 metestrus and 23 diestrus. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. The mean ± SEM concentration of serum Ca++ in pro-estrus, estrus, metestrus and diestrus was 5.77 ± 0.69, 8.87 ± 1.83, 10.95 ± 1.52, 11.09 ± 1.08 mg dL-1, and the mean concentration of uterine fluid Ca++ was 4.40 ± 0.72, 3.15 ± 0.67, 5.89 ± 0.88, 8.63 ± 0.97 mg dL-1, respectively. The mean concentration of serum Mg++ in pro-estrus, estrus, metestrus and diestrus was 3.53 ± 0.30, 4.20 ± 0.52, 3.49 ± 0.38, 3.39 ± 0.29 mg dL-1, and mean concentration of uterine fluid Mg++ was 5.27 ± 0.42, 4.92 ± 0.60, 5.56 ± 0.30, 5.88 ± 0.36 mg dL-1, respectively. The serum and uterine fluid Ca++ in pro-estrus were significantly different from those of the metestrus and diestrus. In all stages of estrous cycle the mean concentration of serum Ca++ was higher than that in the uterine fluid. The difference between serum and uterine fluid Ca++ in estrus, metestrus and diestrus was significant. There was no significant difference between serum Mg++ content nor was it different from uterine fluid Mg++ content at any stages of estrous cycle. In all stages of estrous cycle the uterine fluid Mg++ was higher than that of the serum. These results suggest that during the estrous cycle in the cow, Ca++ is passively secreted in uterine fluids and is mostly dependent on blood serum Ca++ variations but Mg++ is secreted independently and does not follow variations in the serum concentrations. PMID:25653760

  5. Calcium and magnesium concentrations in uterine fluid and blood serum during the estrous cycle in the bovine.

    PubMed

    Alavi-Shoushtari, Sayed Mortaza; Asri-Rezaie, Siamak; Abedizadeh, Roya; Khaki, Amir; Pak, Mozhgan; Alizadeh, Sajad

    2012-01-01

    To investigate uterine and serum Ca(++) and Mg(++) variations during the estrous cycle in the bovine, 66 genital tracts and blood samples were collected from Urmia abattoir, Urmia, Iran. The phase of the estrous cycle was determined by examination of the structures present on ovaries and uterine tonicity. Of the collected samples, 17 were pro-estrus, 12 estrus, 14 metestrus and 23 diestrus. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. The mean ± SEM concentration of serum Ca(++) in pro-estrus, estrus, metestrus and diestrus was 5.77 ± 0.69, 8.87 ± 1.83, 10.95 ± 1.52, 11.09 ± 1.08 mg dL(-1), and the mean concentration of uterine fluid Ca(++) was 4.40 ± 0.72, 3.15 ± 0.67, 5.89 ± 0.88, 8.63 ± 0.97 mg dL(-1), respectively. The mean concentration of serum Mg(++) in pro-estrus, estrus, metestrus and diestrus was 3.53 ± 0.30, 4.20 ± 0.52, 3.49 ± 0.38, 3.39 ± 0.29 mg dL(-1), and mean concentration of uterine fluid Mg(++) was 5.27 ± 0.42, 4.92 ± 0.60, 5.56 ± 0.30, 5.88 ± 0.36 mg dL(-1), respectively. The serum and uterine fluid Ca(++) in pro-estrus were significantly different from those of the metestrus and diestrus. In all stages of estrous cycle the mean concentration of serum Ca(++) was higher than that in the uterine fluid. The difference between serum and uterine fluid Ca(++) in estrus, metestrus and diestrus was significant. There was no significant difference between serum Mg(++) content nor was it different from uterine fluid Mg(++) content at any stages of estrous cycle. In all stages of estrous cycle the uterine fluid Mg(++) was higher than that of the serum. These results suggest that during the estrous cycle in the cow, Ca(++) is passively secreted in uterine fluids and is mostly dependent on blood serum Ca(++) variations but Mg(++) is secreted independently and does not follow variations in the serum concentrations. PMID:25653760

  6. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  7. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids.

    PubMed

    Camacho, Alfredo; Lee, James K W; Hensen, Bastiaan J; Braun, Jean

    2005-06-30

    Collision tectonics and the associated transformation of continental crust to high-pressure rocks (eclogites) are generally well-understood processes, but important contradictions remain between tectonothermal models and petrological-isotopic data obtained from such rocks. Here we use 40Ar-39Ar data coupled with a thermal model to constrain the time-integrated duration of an orogenic cycle (the burial and exhumation of a particular segment of the crust) to be less than 13 Myr. We also determine the total duration of associated metamorphic events to be approximately 20 kyr, and of individual heat pulses experienced by the rocks to be as short as 10 years. Such short timescales are indicative of rapid tectonic processes associated with catastrophic deformation events (earthquakes). Such events triggered transient heat advection by hot fluid along deformation (shear) zones, which cut relatively cool and dry subducted crust. In contrast to current thermal models that assume thermal equilibrium and invoke high ambient temperatures in the thickened crust, our non-steady-state cold-crust model satisfactorily explains several otherwise contradictory geological observations. PMID:15988516

  8. Polar wander caused by the Quaternary glacial cycles and fluid Love number

    NASA Astrophysics Data System (ADS)

    Nakada, Masao

    2002-06-01

    Perturbations of the Earth's rotation caused by the Quaternary glacial cycles provide an important constraint on the viscosity of the deep mantle because they represent a long-wavelength response of the Earth to surface load redistribution. The predicted present-day polar wander speed (PWS) is, however, sensitive to both the lower mantle viscosity ( ηlm), the density jump at 670 km depth, and the lithospheric thickness and viscosity (e.g., Sabadini and Peltier, Geophys. J. R. Astron. Soc. 66 (1981) 553-578; Yuen et al., J. Geophys. Res. 87 (1982) 10745-10762; Peltier and Wu, Geophys. Res. Lett. 10 (1983) 181-184; Wu and Peltier, Geophys, J. R. Astron. Soc. 76 (1984) 753-791; Peltier, J. Geophys. Res. 89 (1984) 11303-11316; Vermeersen et al., J. Geophys. Res. 102 (1997) 27689-27702; Mitrovica and Milne, J. Geophys. Res. 103 (1998) 985-1005; Johnston and Lambeck, Geophys. J. Int. 136 (1999) 537-558; Nakada, Geophys. J. Int. 143 (2000) 230-238). For earth models with ηlm<5×10 21 Pa s and an elastic lithosphere, the present-day PWS is very sensitive to the M1 mode (buoyancy mode) related to the density jump at 670 km depth [Mitrovica and Milne, J. Geophys. Res. 103 (1998) 985-1005]. The contribution of the M1 mode, however, is less significant for earth models with a viscoelastic lithosphere [Nakada, Geophys. J. Int. 143 (2000) 230-238]. This is due to the fact that this contribution depends on the relative strength of the M1 mode, Δ k2T(M1)/ kfT, where Δ k2T(M1) is the magnitude of tidal Love number ( k2T) of the M1 mode and kfT is the value of k2T in the fluid limit (fluid Love number). The magnitude of kfT for earth models with a viscoelastic lithosphere is larger than that for an elastic lithosphere, and it is smaller for a thicker elastic lithosphere than for a thinner one. Thus, for earth models with a viscoelastic lithosphere, the PWS is mainly sensitive to the lower mantle viscosity regardless of the behavior of the 670 km density discontinuity. This

  9. Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles

    PubMed Central

    Thiéry, Jean-Claude; Lomet, Didier; Bougoin, Sylvain; Malpaux, Benoit

    2009-01-01

    Background Sheep are seasonal breeders. The key factor governing seasonal changes in the reproductive activity of the ewe is increased negative feedback of estradiol at the level of the hypothalamus under long-day conditions. It has previously been demonstrated that when gonadotropin secretions are inhibited during long days, there is a higher concentration of estradiol in the cerebrospinal fluid (CSF) than during short days. This suggests an involvement of the CSF and choroid plexus in the neuroendocrine regulatory loop, but the mechanisms underlying this phenomenon remain unknown. One possible explanation of this difference in hormonal content is an effect of concentration or dilution caused by variations in CSF secretion rate. The aim of this study was thus to investigate changes in the CSF turnover rate related to light-dark cycles. Methods The turnover rate of the CSF was estimated by measuring the time taken for the recovery of intraventricular pressure (IVP) after removal of a moderate volume (0.5 to 2 ml) of CSF (slope in mmHg/min). The turnover rate was estimated three times in the same group of sheep: during a natural period of decreasing day-length corresponding to the initial period when gonadotropin activity is stimulated (SG1), during a long-day inhibitory period (IG), and finally during a short-day stimulatory period (SG2). Results The time taken and the speed of recovery of initial IVP differed between groups: 8 min 30 sec, 0.63 ± 0.07 mmHg/min(SG1), 11 min 1 sec, 0.38 ± 0.06 mmHg/min (IG) and 9 min 0 sec, 0.72 ± 0.15 mmHg/min (SG2). Time changes of IVP differed between groups (ANOVA, p < 0.005, SG1 different from IG, p < 0.05). The turnover rate in SG2: 183.16 ± 23.82 μl/min was not significantly different from SG1: 169. 23 ± 51.58 μl/min (Mann-Whitney test, p = 0.41), but was significantly different from IG: 71.33 ± 16.59 μl/min (p = 0.016). Conclusion This study shows that the turnover rate of CSF in ewes changes according to the light

  10. Fluctuation Amplitude of a Trapped Rigid Sphere Immersed in a Near-Critical Binary Fluid Mixture within the Regime of the Gaussian Model

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei

    2016-04-01

    The position of a colloidal particle trapped in an external field thermally fluctuates at equilibrium. As is well known, the ambient fluid is not a simple heat bath and the particle mass appears to increase, which influences the mean square velocity of the particle. In this study, we suppose that the particle is surrounded by a binary fluid mixture in the homogeneous phase near, but not too close to, the critical point. Usually, one component is preferably attracted by the particle surface, and the resultant adsorption layer becomes significant because of the near-criticality. When the particle fluctuates in this situation, its mean square displacement should also be influenced by the ambient fluid because the adsorption layer does not follow the particle motion totally. We calculate the influence in a simple case, where a rigid spherical particle fluctuates with a small amplitude and its surface attracts one component weakly. We utilize the hydrodynamics in the limit of no dissipation to examine the contribution from the ambient mixture to the equal-time correlation. According to our result, the mean square displacement is reduced by an additional stress, including osmotic pressure.

  11. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  12. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  13. Organic Fluids and Passive Cooling in a Supercritical Rankine Cycle for Power Generation from Low Grade Heat Sources

    NASA Astrophysics Data System (ADS)

    Vidhi, Rachana

    Low grade heat sources have a large amount of thermal energy content. Due to low temperature, the conventional power generation technologies result in lower efficiency and hence cannot be used. In order to efficiently generate power, alternate methods need to be used. In this study, a supercritical organic Rankine cycle was used for heat source temperatures varying from 125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures were selected as working fluid for this study while the cooling water temperature was changed from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of the thermodynamic cycle have been obtained as a function of heat source temperature. Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At areas where water cooling is not available and ambient air temperature is high, efficient power generation from low grade heat sources may be a challenge. Use of passive cooling systems coupled with the condenser was studied, so that lower sink temperatures could be obtained. Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger (EAHE) through which hot ambient air was passed. It was observed that the air temperature could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount of water lost was calculated and was found to be approximately 0.1% over 10 days. The different passive cooling systems were studied separately and their effects on the efficiency of the thermodynamic cycle were investigated. They were

  14. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions

    NASA Astrophysics Data System (ADS)

    Noah-Vanhoucke, Joyce E.; Andersen, Hans C.

    2007-08-01

    We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is

  15. The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Vlugt, Thijs J. H.; Gross, Joachim

    2014-01-01

    An analytical equation of state (EoS) is derived to describe the isotropic (I) and nematic (N) phase of linear- and partially flexible tangent hard-sphere chain fluids and their mixtures. The EoS is based on an extension of Onsager's second virial theory that was developed in our previous work [T. van Westen, B. Oyarzún, T. J. H. Vlugt, and J. Gross, J. Chem. Phys. 139, 034505 (2013)]. Higher virial coefficients are calculated using a Vega-Lago rescaling procedure, which is hereby generalized to mixtures. The EoS is used to study (1) the effect of length bidispersity on the I-N and N-N phase behavior of binary linear tangent hard-sphere chain fluid mixtures, (2) the effect of partial molecular flexibility on the binary phase diagram, and (3) the solubility of hard-sphere solutes in I- and N tangent hard-sphere chain fluids. By changing the length bidispersity, two types of phase diagrams were found. The first type is characterized by an I-N region at low pressure and a N-N demixed region at higher pressure that starts from an I-N-N triphase equilibrium. The second type does not show the I-N-N equilibrium. Instead, the N-N region starts from a lower critical point at a pressure above the I-N region. The results for the I-N region are in excellent agreement with the results from molecular simulations. It is shown that the N-N demixing is driven both by orientational and configurational/excluded volume entropy. By making the chains partially flexible, it is shown that the driving force resulting from the configurational entropy is reduced (due to a less anisotropic pair-excluded volume), resulting in a shift of the N-N demixed region to higher pressure. Compared to linear chains, no topological differences in the phase diagram were found. We show that the solubility of hard-sphere solutes decreases across the I-N phase transition. Furthermore, it is shown that by using a liquid crystal mixture as the solvent, the solubility difference can by maximized by tuning the

  16. Serum but not follicular fluid cytokine levels are increased in stimulated versus natural cycle IVF: a multiplexed assay study.

    PubMed

    Bersinger, N A; Kollmann, Z; Von Wolff, M

    2014-12-01

    Throughout follicular growth the number of immune cells increases, enhanced under stimulation with exogenous gonadotropins. This treatment, however, may adversely influence folliculogenesis and negatively affect oocyte quality through modifications in the follicular concentrations of cytokines released by these immune cells. We studied this hypothesis by systematically analysing the concentrations of cytokines present in the serum and follicular fluid at the time of follicular aspiration in conventional gonadotropin-stimulated (c-IVF) cycles in comparison with natural cycle IVF (NC-IVF) in which the follicles were naturally matured. Our study involved 37 NC-IVF and 39 c-IVF cycles including 13 women who underwent both therapies. Mean age was 35.3 ± 4.6 (SD) and 34.2 ± 3.7 years in the NC-IVF and c-IVF groups (ns). Thirteen cytokines were determined in matched serum and FF samples. Interleukin (IL)-4, TNF-α, RANTES, eotaxin and interferon-gamma-induced protein-10 concentrations were lower in FF than in serum. IL-6, -8, -10, -18, monocyte chemotactic protein-1 (MCP-1), VEGF and leukaemia inhibitory factor (LIF) showed higher median levels in FF than in serum, indicating possible ovarian production. Most of these markers were also increased in concentration in the stimulated (c-IVF) than in the NC groups in the serum, but not in the follicular fluid. This finding can be attributed to the increased number of active follicles present after controlled ovarian stimulation. IL-8 was reduced in c-IVF cycles. Our study did not reveal differences in follicular fluid but in serum cytokine concentrations, suggesting that the follicular immune system might not be significantly affected by gonadotropin stimulation. PMID:25103590

  17. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  18. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Na; Xiao, Song

    2015-06-01

    In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  19. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  20. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  1. Nuclear magnetic resonance spectroscopy of bovine ovarian follicular fluid at four selected times of the oestrous cycle

    PubMed Central

    Sarty, Gordon E.; Kendall, Edward J.; Adams, Gregg P.; Pierson, Roger A.

    2010-01-01

    The objective of the study was to determine if nuclear magnetic resonance (NMR) spectral features of ovarian follicular fluid were correlated with the physiological status of follicles so that we could assess the feasibility of using NMR spectroscopy during assisted reproduction therapy. Thirty-five sexually mature, nullparious heifers were monitored by transrectal ultrasonography to assess their follicle wave status during the oestrous cycle. Ovariectomies were performed on Day 3 of wave 1 (D3W1, n = 10), Day 6 of wave 1 (D6W1, n = 9), Day 1 of wave 2 (D1W2, n = 9), or in the immediate preovulatory period of at least 17 days after ovulation (D ≥ 17, n = 9). Follicle status was determined to be dominant or subordinate. Follicular fluid was extracted from the follicles and NMR spectra were collected. Principal components were extracted from ratios of line amplitudes and tested for effects of follicle status (dominant v. subordinate) and cycle time point (D1W3, D1W6, D1W2 and D ≥ 17) using multivariate analysis of variance. For most line ratio combinations, main effects of status, time point and their interaction were found (P < 0.05). We concluded that NMR spectra may be used for the determination of ovarian follicle physiological status. PMID:16836963

  2. Pressure solution inhibition in a limestone-chert composite multilayer: Implications for the seismic cycle and fluid flow

    NASA Astrophysics Data System (ADS)

    Petracchini, Lorenzo; Antonellini, Marco; Billi, Andrea; Scrocca, Davide; Trippetta, Fabio; Mollo, Silvio

    2015-04-01

    Pressure solution seams (PSSs) are frequent features in carbonate rocks undergoing tectonic shortening. In particular, pervasive, anticline-axis-parallel, bed-normal PSSs are known to develop during layer-parallel-shortening of (marly) carbonate rocks in fold-thrust belts. These pressure solution features can impact subsequent fracture development, fluid circulation, and strain localization including the seismic cycle. It is here demonstrated that the occurrence of frequent and continuous chert layers may strengthen a limestone sequence and inhibit pressure solution under layer-parallel-shortening. Field observations and laboratory determinations are reported from marly limestone with continuous chert layers of the Scaglia Fm. (Cingoli anticline, northern Apennines, Italy) exhumed from a depth of c. 1 km. In these outcrops, bed-normal solution seams do not occur or they occur only where infrequent chert layers have been shortened by small thrusts. In analogy with laminae-reinforced composite materials, a model is developed explaining the field observations with the strengthening effect of chert in the chert-limestone composite multilayer. During layer-parallel-shortening, the composite multilayer deforms under equal strain boundary conditions. In this situation, the tectonic load is mostly supported by the stiff and frequent chert layers and the strain of the whole chert-limestone composite remains in the elastic field, so that pressure solution seam development is prevented in the limestone beds. Our model may be applied down to a depth of a few kilometers in the upper crust that is relevant for the seismic cycle and fluid flow.

  3. A {approx} 40 YEAR VARIABILITY CYCLE IN THE LUMINOUS BLUE VARIABLE/WOLF-RAYET BINARY SYSTEM HD 5980?

    SciTech Connect

    Koenigsberger, Gloria; Hillier, D. John; Morrell, Nidia; Gamen, Roberto E-mail: georgiev@astro.unam.m E-mail: nmorrell@lco.c E-mail: rgamen@gmail.co

    2010-06-15

    The massive Wolf-Rayet stellar system HD 5980 in the Small Magellanic Cloud entered a sudden and brief {approx} 1-3 mag eruptive state in the mid-1990s. The cause of the instability is not yet understood, but mechanisms similar to those in luminous blue variables are suspected. Using a previously unreported set of spectroscopic data obtained in 1955-1967 and recently acquired optical and HST/STIS spectra, we find that (1) the brief eruptions of 1993 and 1994 occurred at the beginning of an extended ({approx} decades) high state of activity characterized by large emission-line intensities; (2) the level of activity is currently subsiding; and (3) another strong emission-line episode appears to have occurred between 1960 and 1965, suggesting the possibility that the long-term cyclical variability may be recurrent on a {approx} 40 year timescale. These characteristics suggest the possible classification of HD 5980 as an S Doradus-type variable. The effects due to binary interactions in the system are discussed, and we tentatively suggest that the short duration and relatively hot spectral type (WN11/B1.5I) observed during maximum in the visual light curve may be attributed to these interactions.

  4. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.

    PubMed Central

    Lehtonen, J. Y.; Kinnunen, P. K.

    1995-01-01

    Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the

  5. Analysis and reduction of degradation of working fluid in the Sundstrand Organic Rankine-Cycle System

    SciTech Connect

    Berger, R.

    1983-07-01

    Studies on understanding the location and construction levels of oxygen in the organic Rankine cycle (ORC) unit and establishing a rate of degradation with time for toluene in an operating ORC system are presented. Work on identifying the compounds in degraded toluene and contamination removal is discussed. (MHR)

  6. KEPLER CYCLE 1 OBSERVATIONS OF LOW-MASS STARS: NEW ECLIPSING BINARIES, SINGLE STAR ROTATION RATES, AND THE NATURE AND FREQUENCY OF STARSPOTS

    SciTech Connect

    Harrison, T. E.; Coughlin, J. L.; Ule, N. M.; Lopez-Morales, M. E-mail: jlcough@nmsu.edu E-mail: mlopez@ieec.uab.es

    2012-01-15

    We have analyzed Kepler light curves for 849 stars with T{sub eff} {<=} 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate 'warm Jupiter' exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T{sub eff} {<=} 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 days {<=} P{sub rot} {<=} 126.5 days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As has been found in previous studies, stars with shorter rotation periods generally exhibit larger modulations. This trend flattens beyond P{sub rot} = 25 days, demonstrating that even long-period binaries may still have components with high levels of activity and investigating whether the masses and radii of the stellar components in these systems are consistent with stellar models could remain problematic. Surprisingly, our modeling of the light curves suggests that the active regions on these cool stars are either preferentially located near the rotational poles, or that there are two spot groups located at lower latitudes, but in opposing hemispheres.

  7. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    SciTech Connect

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  8. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Astrophysics Data System (ADS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-04-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  9. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  10. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  11. Fluid and chemical cycling at Bush Hill: Implications for gas- and hydrate-rich environments

    NASA Astrophysics Data System (ADS)

    Tryon, Michael D.; Brown, Kevin M.

    2004-12-01

    The results of a deployment of aqueous flux meters at the Bush Hill hydrate mound show that persistent hydrologic instability is a primary feature of the globally abundant gas- and hydrate-rich cold seep environment. Seven flux meters were deployed for 14 weeks in the area of the Bush Hill hydrate mound. Instruments were deployed on microbial mats, bivalves, adjacent to the surface hydrate mound, and a site without visible fauna. Flow rates were observed to range from downflow of 0.01 mm/day to upflow of >15 mm/day. Temporal variability and a major hydrological event were observed to occur on all instruments. There is evidence that this event was related to a gas expulsion episode. The two instruments which exhibited downflow during the event were near surface hydrates and bubbling vents. Nearby instruments recorded a rapid increase in flow rates at the time of the event with a subsequent decrease in rates to the previous background values. Two instruments showed significant output of seawater-like fluids, while the others output typical methane seep-type pore fluids. These results at a passive margin site, along with our previously published convergent margin results at gas-rich northeast Pacific cold seeps (Hydrate Ridge, Eel River margin), illustrate the hydrologic complexity of these environments. We now propose that these and our earlier results are characteristic of seafloor environments which have abundant free gas and hydrates. These mechanisms have major consequences for the near-surface geochemical and microbial environment and for the way we interpret measurements made in these areas.

  12. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Ce; Wilde, Simon A.; Xu, Bei; Pang, Chong-Jin

    2016-09-01

    Continental basalts generally display enrichment of fluid-mobile elements and depletion of high-field-strength elements, similar to those that evolved in the subduction environment, but different from oceanic basalts. Based on the continental flood basalt database for six large igneous provinces, together with rift-related basalt data from the Basin and Range Province, this study aimed to test the validity of geochemical tectonic discrimination diagrams in distinguishing arc-like intra-continental basalts from arc basalts and to further investigate the role of deep-Earth water cycling in producing arc-like signatures in large-scale intra-continental basalts. Our evaluation shows that arc-like intra-continental basalts can be distinguished from arc basalts by integrating the following factors: (1) the FeO, MgO, and Al2O3 concentrations of the primary melt; (2) Tisbnd V, Zrsbnd Zr/Y, Zrsbnd Ti, and Ti/Vsbnd Zr/Smsbnd Sr/Nd discrimination diagrams; (3) the coexistence of arc-like and OIB-like subtype basalts within the same province; (4) primitive mantle-normalized trace element distribution patterns. The similarity of enrichment in fluid-mobile elements (Ba, Rb, Sr, U, and K) between arc-like and true arc basalts suggests the importance of water flux melting in producing arc-like signatures in continental basalts. Experimentally determined liquid lines of descent (LLD) imply high magma water concentrations for continental flood basalts (CFBs) and the Basin and Range basalts. Furthermore, estimates based on the Al2O3-LLD method indicates 4.0-5.0 wt% pre-eruptive magma H2O concentration for CFBs and the Basin and Range basalts. The tight relationships between H2O/Ce and Ba/La, Ba/Nb and Rb/Nb based on global arc basalt data were further used to estimate the primary H2O concentrations. With the exception of the Emeishan CFBs (mainly containing 4.0-5.6 wt% H2O), all other CFBs investigated have similar estimated primary H2O contents, with values ranging from 1.0 to 2

  13. Calcium and magnesium content of the uterine fluid and blood serum during the estrous cycle and pre-pubertal phase in water buffaloes

    PubMed Central

    Alavi Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Khaki, Amir; Belbasi, Abulfazle; Tahmasebian, Hamid

    2014-01-01

    To investigate uterine fluid and serum calcium (Ca) and Magnesium (Mg) variations during the estrus cycle in water buffaloes, 71 genital tracts and blood samples were collected from the abattoir in Urmia. The phase of the estrous cycle was determined by examining ovarian structures. 18 animals were pro-estrous, 15 estrous, 16 met-estrous and 22 diestrous. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. Blood serum and uterine fluid samples of 71 pre-pubertal buffalo calves were also collected and treated in similar manners. The mean ± SEM total serum and uterine fluid Ca in cyclic buffaloes were 8.68 ± 0.28 mg dL-1 and 8.10 ± 0.2 mg dL-1 vs. 6.76 ± 0.65 mg dL-1 and 7.90 ± 0.15 mg dL-1 in pre-pubertal calves, respectively. Blood serum Mg was not different in cyclic and pre-pubertal animals but the uterine fluid Mg in cyclic cows was higher than those in pre-pubertal calves. Serum Ca in pro-estrus and estrus were higher than those in other stages and also higher than those in the uterine fluid. The lowest Mg content of serum was recorded in diestrus, while in the uterine fluid it was observed in estrus. In all stages of estrous cycle except for estrus the uterine fluid Mg content was significantly higher than those of the serum. These results suggested that during the estrous cycle in the buffalo cows, Ca was passively secreted in uterine lumen and mostly dependent on blood serum Ca concentrations but Mg was secreted independently. The values (except for serum total Mg) also increased after puberty. PMID:25610582

  14. Results of closed cycle MHD power generation test with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.

  15. Results of closed cycle MHD power generation tests with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.

  16. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Shojib

    using visual feedback method led to an increase in UTS of 16% in XYZ, 7% in XZY, and 22% in ZXY. The FDM fabricated parts using PC were tested under thermal cycling of -30° C to 85° C. A series of experiments were performed (e.g., tensile test, deformation of fabricated part, glass transition measurement) to evaluate the possibility of FDM fabricated parts in the harsh environment (embedded electronics, wiring in automotive industry, etc.). The UTS results showed that the results were not significantly different using statistical analysis after 150 thermal cycles while average Young's modulus increased from 1389 MPa to 1469 MPa after 150 thermal cycles. The highest warping of the specimen was found to be 78 microm which was the result of continuous thermal expansion and contraction. A sealing algorithm was developed using LabVIEW and MATLAB programming. The LabVIEW program was developed to obtain the edge information of each layer of a 3D model part. The MATLAB programming was used to gather the output information from LabVIEW and calculate the suggested RW providing least amount of gap in between rasters and contours. As a result, each layer became sealed and was able to withstand air pressure within a pressure vessel. A test specimen was fabricated according to the developed sealing algorithm parameters and used to show entirely sealed walls capable of withstanding up to 138 kPa air pressure.

  17. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  18. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  19. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  20. Copper and zinc concentrations in uterine fluid and blood serum during the estrous cycle and pre-pubertal phase in water buffaloes.

    PubMed

    Alavi Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Khaki, Amir; Belbasi, Abulfazl; Tahmasebian, Hamid

    2015-01-01

    To investigate uterine fluid and serum copper (Cu) and zinc (Zn) variations during the estrous cycle in water buffaloes, 71 genital tracts and blood samples were collected from the abattoir in Urmia, Iran. The phase of the estrous cycle was determined by examining ovarian structures; 18, 15, 16 and 22 were pro-estrous, estrous, met-estrous and diestrous, respectively. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. Blood serum and uterine fluid samples of 71 pre-pubertal buffalo calves were also collected and treated in similar manners. The mean (± SEM) total serum (77.10 ± 1.50 µg dL(-1)) and uterine fluid (296.40 ± 9.40 μg dL(-1)) Cu in cyclic cows was higher than the values of 54.00 ± 1.10 μg dL(-1) and 133.40 ± 5.70 μg dL(-1) in pre-pubertal calves, respectively. Blood serum (114.60 ± 3.20 μg dL(-1)) and the uterine fluid (349.90 ± 8.90 μg dL(-1)) Zn content in cyclic cows were also higher than those (98.80 ± 1.50 μg dL(-1) and 246.6 ± 4.50 μg dL(-1) respectively) in pre-pubertal calves. Serum Cu in pro-estrus and estrus were lower than those in other stages and also lower than those in the uterine fluid. The lowest serum Zn content was recorded in pro- and met-estrus, while in the uterine fluid it was observed in estrus. In all stages of estrous cycle the uterine fluid Zn content was significantly higher than those of the serum. These results suggested that during the estrous cycle in the buffalo cows, Cu and Zn were actively secreted in uterine lumen and were not dependent on blood serum. The values also increased after puberty. PMID:26893810

  1. Copper and zinc concentrations in uterine fluid and blood serum during the estrous cycle and pre-pubertal phase in water buffaloes

    PubMed Central

    Alavi Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Khaki, Amir; Belbasi, Abulfazl; Tahmasebian, Hamid

    2015-01-01

    To investigate uterine fluid and serum copper (Cu) and zinc (Zn) variations during the estrous cycle in water buffaloes, 71 genital tracts and blood samples were collected from the abattoir in Urmia, Iran. The phase of the estrous cycle was determined by examining ovarian structures; 18, 15, 16 and 22 were pro-estrous, estrous, met-estrous and diestrous, respectively. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. Blood serum and uterine fluid samples of 71 pre-pubertal buffalo calves were also collected and treated in similar manners. The mean (± SEM) total serum (77.10 ± 1.50 µg dL-1) and uterine fluid (296.40 ± 9.40 μg dL-1) Cu in cyclic cows was higher than the values of 54.00 ± 1.10 μg dL-1 and 133.40 ± 5.70 μg dL-1 in pre-pubertal calves, respectively. Blood serum (114.60 ± 3.20 μg dL-1) and the uterine fluid (349.90 ± 8.90 μg dL-1) Zn content in cyclic cows were also higher than those (98.80 ± 1.50 μg dL-1 and 246.6 ± 4.50 μg dL-1 respectively) in pre-pubertal calves. Serum Cu in pro-estrus and estrus were lower than those in other stages and also lower than those in the uterine fluid. The lowest serum Zn content was recorded in pro- and met-estrus, while in the uterine fluid it was observed in estrus. In all stages of estrous cycle the uterine fluid Zn content was significantly higher than those of the serum. These results suggested that during the estrous cycle in the buffalo cows, Cu and Zn were actively secreted in uterine lumen and were not dependent on blood serum. The values also increased after puberty. PMID:26893810

  2. Dixie Valley Bottoming Binary Unit

    SciTech Connect

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  3. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.

    PubMed

    Muehlhausen, M-P; Janoske, U; Oertel, H

    2015-03-01

    Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects. PMID:26577098

  4. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  5. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  6. The Search for Trojan Binaries

    NASA Astrophysics Data System (ADS)

    Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.

    2007-10-01

    We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.

  7. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  8. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Tomasz; Ziółkowski, Paweł; Badur, Janusz

    2015-09-01

    The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid - organic working fluid - as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  9. A comparison of the biochemical composition of equine follicular fluid and serum at four different stages of the follicular cycle.

    PubMed

    Collins, A; Palmer, E; Bézard, J; Burke, J; Duchamp, G; Buckley, T

    1997-12-01

    Samples of blood and follicular fluid were recovered from 27 Welsh Pony mares at 4 distinct stages of follicular development. Eighteen biochemical parameters were measured in each sample, including sodium, potassium, chloride, glucose, urea, creatinine, calcium, inorganic phosphate, total bilirubin, total protein, albumin, magnesium, triglyceride, total cholesterol, nonesterified fatty acids, alkaline phosphatase, gamma-glutamyltransferase and aspartate aminotransferase. The concentrations of progesterone, 17beta oestradiol and testosterone, pH and osmolarity, were also measured in all the follicular fluid samples. The concentrations of all proteins measured were lower in follicular fluid than serum whereas the reverse was true in the case of the lipids. Analysis of variance indicated that serum and follicular fluid concentrations of most of the parameters measured varied in parallel. PMID:9593520

  10. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  11. Transport Properties of He-N{sub 2} Binary Gas Mixtures for CBC Space Applications

    SciTech Connect

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-21

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N{sub 2} and the binary mixtures of He-N{sub 2}. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  12. Transport Properties of He-N2 Binary Gas Mixtures for CBC Space Applications

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N2 and the binary mixtures of He-N2. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  13. Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids

    SciTech Connect

    Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

    1983-08-01

    Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

  14. Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Pravec, P.

    2006-06-01

    There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.

  15. Seismic evidence of methane cycling between deep and shallow fluid flow systems along the Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Pecher, I.; Klaeschen, D.; Henrys, S.

    2012-04-01

    Determining the source of the main natural gas, methane, forming gas hydrates, i.e. whether it is microbial or thermogenic, remains one of the main challenges in gas hydrate research. Geochemical data suggest that most of the methane that seep out from the seafloor above gas hydrate zones is microbial. However, significant volumes of free gas trapped beneath the base of the gas hydrate stability zone and the presence of faults and gas chimneys that link deep sited thermogenic gas reservoirs with the hydrate zones are evidence of fluid exchange between deep and shallow systems. We have reprocessed 10 and 12 km long surface streamer multi-channel seismic data from the Opouawe Bank and Porangahau Ridge regions along the Hikurangi Margin in order to obtain realistic geometries of fluid escape features associated with the subduction interface. Pre-stack depth migrated images of the subsurface show thrust faults linking the subduction interface with the gas hydrate zone. Anticlinal features with deeply rooted gas chimneys at their flanks and polygonal faults above the subduction interface are also evidence of fluid expulsion from the subdcuted sediments towards the gas hydrate zone. Further, anomalous low velocity zones in P-wave velocity macro models indicate preferred locations for fluid accumulations in sediments between the gas hydrate zone and the subduction interface. In order to explain the dominant microbial signature of methane sampled at the surface in spite of evident migration of fluids from well beneath the microbial zone, we present a model where microbial methane has been expelled from buried sediments together with thermogenic methane at different periods of overpressure related to the subduction system. We expect signatures for thermogenic methane to be found deeper than maximum depths of conventional coring (i.e. > 30 mbsf) in the sedimentary column. Our results complement an ongoing multidisciplinary investigation of gas hydrate systems along Hikurangi

  16. New binary systems: beaming binaries

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Weingrill, J.; Mazeh, T.; Ribas, I.

    2011-11-01

    Exoplanet missions such as COROT and Kepler are providing precise photometric follow-up data of new kinds of variable stars undetected till now. Beaming binaries are among these objects. On these binary systems, the orbital motion of their components is fast enough to produce a detectable modulation on the received flux due to relativistic effects (Zucker et al. 2007). The great advantage of these systems is that it is possible to reconstruct the radial velocity curve of the system from this photometric modulation and thus, orbital parameters such as the mass ratio and the semi-major axis can be estimated from photometry without the necessity of spectroscopic follow-up. In this poster, we briefly introduce the analysis of this kind of binary systems and in particular, the eclipsing cases.

  17. Fluid and diet patterns associated with weight cycling and changes in body composition assessed by continuous monitoring throughout a college wrestling season.

    PubMed

    Lingor, Ryan J; Olson, Amy

    2010-07-01

    This study examined the methods used to meet certification weight for wrestling and to measure the changes in body composition during 1 season for Division III college wrestlers. Nine college wrestlers completed this study. Body composition was analyzed by underwater weighing (UWW) and multifrequency bioelectrical impedance before and throughout the competitive season. Hydration status was measured by urine osmolality (Uosm) and urine specific gravity (Usg). Nutritional intake was measured for 2 1-week periods, once at the beginning and again near the end of the season. Subjects' fat-free mass (FFM) increased an average of 1.8 kg, whereas fat mass (FM) decreased 2.2 kg as indicated by UWW from the beginning to the end of the season. Wrestlers on average cycled their weight 3.4 kg (4.7% of body weight) per week. The majority of wrestlers cut weight by reducing calories and restricting fluids starting 2 days before the competition. Uosm and body weights on Friday suggested that for wrestlers to achieve the necessary weight loss by dehydration to "make weight" for a Saturday meet, wrestlers would approach a 5% level of dehydration. No loss of FFM because of weight cycling (WC) was evident to achieve competitive weight. Most wrestlers significantly restricted fluids and caloric intake in the 48 hours before weigh-in. PMID:20555285

  18. Temporal Chemical Variations during the Eruption Cycle at Crystal Geyser in Green River, Utah: Inverse Modeling of Fluid Sourcing and Implications to the Geyser Mechanism

    NASA Astrophysics Data System (ADS)

    Watson, Z. T.; Han, W. S.; Kampman, N.; Grundl, T.; Han, K.

    2014-12-01

    The most well-known example of a CO2-driven geyser is Crystal geyser in Green River, Utah. In situ monitoring of pressure and temperature and analysis of the elemental and isotopic composition of the emanating fluids has provided useful proxies for determining the geysering cycle, the source of water/CO2 and furthermore the physical constraints at depth which ultimately control the surficial expressions. Crystal geyser is the first geyser in the world which has been shown to go through repeated systematic chemical variations during its eruption cycle. The eruption cycle at Crystal geyser is comprised of 4 parts which follow the order of: minor eruption period (mEP), major eruption period (MEP), aftershock eruptions (Ae) and recharge period (R). Minor eruption periods are characterized by increasing specific conductivity (19.3 to 21.2 mS/cm), Na and Cl concentrations during the first half which plateau until the MEP. The beginning of the MEP denotes a sharp drop in temperature (17.4 to 16.8 ºC) Na, Cl, specific conductivity (21.2 to 18 mS/cm), and increasing concentrations of Fe, Sr, Ca, Mg and Mn. Downhole fluid sampling of the Entrada Sandstone and Navajo Sandstone provided 1 and 4 samples from the aquifers, respectively. The Entrada Sandstone in comparison to the deeper Navajo Sandstone has elevated concentrations of Sr and Fe and has lower concentrations of Na and Cl. Inverse modeling using the chemical characteristics of the Entrada Sandstone, Navajo Sandstone and brine was executed to determine the fractional inputs which comprise Crystal geyser's fluid. Variances in the fractional contribution are dependent on the depth of the sample chosen to be representative of the Navajo Sandstone because the concentration of Na and Cl, among other elements, changes over depth. During the mEP the Navajo Sandstone, Entrada Sandstone and brine supply 50-55%, 44-48% and 1-3% of the total fluid, respectively. During the MEP the Navajo Sandstone, Entrada Sandstone and brine

  19. Concentrations of steroids and biochemical constituents in follicular fluid of buffalo cows during different stages of the oestrous cycle.

    PubMed

    Eissa, H M

    1996-09-01

    One of the factors controlling ovarian physiology in cattle is the alteration that occurs in the hormonal and biochemical composition of follicular fluid. Because they are ill-defined in buffaloes, the present study was aimed at determining changes in the follicular fluid collected from 197 pairs of buffalo ovaries after slaughter. Total oestrogens, progesterone, calcium, inorganic phosphorus and total protein were found to be higher before oestrus and reached their peak values during oestrus. Glucose concentrations were maximal before oestrus. Testosterone, total corticosteroids and acid phosphatase concentrations increased during metoestrus peaking during dioestrus. Alkaline phosphatase concentration was higher during dioestrus. Ratios and correlations between changes in concentrations of the different follicular steroids were determined. PMID:8885467

  20. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  1. Diesel organic Rankine bottoming cycle powerplant program: Volume II. Industrial waste heat applications. Final report. [Using Fluorinol-85 as working fluid

    SciTech Connect

    Not Available

    1981-10-01

    Several industrial processes and facilities were evaluated as possible sites to demonstrate the application of an Organic Rankine Cycle system (ORCS) using Fluorinol-85 as the working fluid to effect industrial waste-heat recovery. The economic applications for ORCS's using Fluorinol as the working fluid are in situations where the temperature of the waste-heat stream is between 400/sup 0/ and 1000/sup 0/F. A literature review indicated that the greatest potential and economic advantage for an industrial application for the recovery of waste heat by means of an ORCS using Fluorinol as the working fluid is from the exhausts of high-temperature furnaces and boilers for six major industry categories. Together they expend 80% of the US annual energy consumption in the industrial sector. From these categories, four potential applications were selected, specific information about plant characteristics was obtained, and detailed performance predictions were carried out for an ORC waste-heat recovery system operating in these plants. In addition, the performance of the existing demonstration system hardware was predicted for two recommended applications, the petroleum refinery and the steel mill, utilizing only a portion of the available exhaust gas flow. Only nominal modifications would be required to make the existing hardware suitable for a demonstration program for either of these recommended applications.

  2. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGESBeta

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  3. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    NASA Astrophysics Data System (ADS)

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-01

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  4. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    SciTech Connect

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-28

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  5. Magnetic field effects on non-vacuum binaries

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Motl, Patrick; Neilsen, David; Palenzuela, Carlos; Tohline, Joel

    2009-05-01

    Observational evidence suggests that sizeable magnetic fields are present in a fair number of neutron star binaries and neutron star-black hole binaries. These magnetic fields can have a strong influence on the fluid's dynamics, the energetics of the system and even the production of gravitational radiation. We present results of non-vacuum binary neutron star and black hole- neutron star collisions and examine the influence of magnetic fields on the gravitational waves, fluid structure and dynamical behavior of the system.

  6. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780

  7. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  8. The Formation of Contact and Very Close Binaries

    SciTech Connect

    Kisseleva-Eggleton, L; Eggleton, P P

    2007-08-10

    We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).

  9. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  10. A study on the effects of the estrous cycle on uterine fluid and blood serum immunoglobulin G (IgG) content in the cow

    PubMed Central

    Alavi-Shoushtari, Sayed Mortaza; Abedizadeh, Roya; Khaki, Amir; Mokarizadeh, Aram; Dorostkar, Kamran

    2014-01-01

    To investigate the IgG content and its variations in uterine fluid (UF) during the estrous cycle of the cow and to compare them with those of the blood serum (S), six pairs of serum and UF samples for each phase of the cycle selected out of 240 bovine genital tracts and blood samples were collected from Urmia abattoir. The UF samples were collected by gentle scraping of the endometrium using a curette after uterine incision and their IgG content and those of the serum were measured by single radial immuno-diffusion (SRID) assay. Serum IgG values (Mean ± SEM) were generally higher than the UF values throughout the cycle except for di-estrus (S: 38.50 ± 0.90, UF: 51.60 ± 2.10 mg mL-1), in which the highest values were observed in UF samples. In met-estrus the difference was not significant (S: 34.80 ± 1.80 mg mL-1, UF: 30.80 ± 5.20 mg mL-1), however, in estrus the mean UF IgG value (12.50 ± 1.10 mg mL-1) was lower than that of the serum (31.30 ± 1.20 mg mL-1). In pro-estrus, the lowest values (S: 27.80 ± 1.30 mg mL-1, UF: 9.10 ± 1.50 mg mL-1) were obtained. The results showed a lower IgG values in the bovine UF than those of the serum in the follicular phase of the cycle, while in di-estrus the UF IgG content was the highest, suggesting some IgG production in the uterus at this phase. PMID:25568704

  11. Aqueous Iron-Sulfide Clusters in Variably Saturated Soil Systems: Implications for Iron Cycling and Fluid Flow

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2008-12-01

    Iron and sulfur cycling is an important control on contaminant fate and transport, the availability of micronutrients and the physics of water flow. This study explores the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on linked biogeochemical and hydrological processes involving Fe and S cycling in the vadose zone using packed soil columns. Three laboratory soil columns were constructed: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. Water samples extracted by lysimeter were analyzed for reduced species (including total sulfide, Fe(II), and FeSaq) voltammetrically using a mercury drop electrode. In addition to other reduced species, aqueous FeS clusters (FeSaq) were observed in two of the columns, with the greatest concentrations of FeSaq occurring in close proximity to the soil interface in the layered column. To our knowledge, this is the first documentation of aqueous FeS clusters in partially saturated sediments. The aqueous nature of FeSaq allows it to be transported instead of precipitating and suggests that current conceptual models of iron-sulfur cycling may need to be adapted to account for an aqueous phase. The presence of iron-rich soil aggregates near the soil interface may indicate that FeS clusters played a critical role in the formation of soil aggregates that subsequently caused up to an order of magnitude decrease in hydraulic conductivity.

  12. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes.

  13. Experience with parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.

  14. Storage of Nitrogen in the Cyclosilicates Beryl and Cordierite: Nitrogen Cycling, Isotope Fractionation, and Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Lazzeri, K. E.; Bebout, G. E.; Idleman, B. D.; Geiger, C. A.; Li, L.

    2011-12-01

    The N isotope system shows potential for tracing the transfer of volatiles among Earth's major reservoirs, including the transfer of organic N into solid inorganic phases. This work explores the potential for the storage of N (i.e., N2 and possibly as ammonium) in various microporous minerals (pores or channels), specifically the cyclosilicates beryl and cordierite (see early work on beryl by Scalan, 1958, dissertation, Univ. Arkansas). Isotopic analyses of the N2 residing in these phases could help elucidate fluid-rock interactions, potentially contributing information regarding fluid-mineral fractionation, and provide records of past biological processes (see Palya et al., 2011, Chem. Geol.). We are investigating the N release from beryl crystals of different size separates by using various heating regimes. Samples are first examined petrographically to determine equilibrium mineral assemblages (based on textures of the coexisting phases) and to identify possible mica (or other mineral) inclusions that could contaminate the N analyses. Analyses of one beryl sample from New England, USA, yielded very similar N concentrations and δ15Nair (40 ppm N; +5%) when tested over a wide range of grain sizes (0.25 to 1.00 mm), extraction temperatures (1050-1100°C), and durations of heating (3-5 hours at maximum T), which is consistent with complete extraction of the N2 from the channels of beryl. Shift to higher N and δ15N concentrations, in some analyses, can be attributed to very small amounts of mica as inclusions (observed by SEM) not removed by sieving and hand-picking. Preliminary work on cordierite has concentrated on several samples of iolite (gemstone variety of cordierite)-bearing, chlorite-muscovite schist from Connecticut, USA. For these rock samples, mica-rich matrices contain up to 350 ppm N with δ15Nair near +3.5%, whereas the iolite grains contain little or no measurable N. This contrasts with the observation by Palya et al. (2011) that cordierites in

  15. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    NASA Astrophysics Data System (ADS)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  16. The correlation between follicular fluid pregnancy-associated plasma protein A levels, fertilization, and embryo quality in GnRH agonist and GnRH antagonist protocols in ART cycles

    PubMed Central

    Dehghani Firouzabadi, Razieh; Mohammadian, Farnaz; Mashayekhy, Mehri; Davar, Robab; Eftekhar, Maryam

    2012-01-01

    Background: Determination of oocyte fertilization and embryo quality are one of the most important purposes in ART cycles. Follicular fluid provides an important microenvironment for development of oocytes and some biochemical characteristics of the follicular fluid, such as pregnancy-associated plasma protein-A (PAPP-A), may play an important role in prediction of success rate of ART. Objective: This study was performed to evaluate whether there was any difference in follicular fluid PAPP-A, fertilization, and embryo quality between GnRH agonist long protocol and flexible GnRH antagonist multiple-dose protocol in ART cycles. Materials and Methods: A total of 100 women who were candidates for ART were enrolled the study and were divided into two groups, GnRH agonist (GnRHa) long protocol (n=51) and flexible GnRH antagonist (GnRHant) multiple-dose protocol (n=49). Follicular fluid sample was obtained from a single mature follicle and follicular fluid PAPP-A level, fertilization and embryo quality of the same oocyte were evaluated in both groups. Results: There was no significant difference in the mean levels of follicular fluid PAPP-A between the GnRHa protocol and GnRHant protocol (3.5±1.4 vs. 3.8±1.9, respectively). The mean levels of follicular fluid PAPP-A in fertilized oocyte and good quality embryo were comparable in GnRHa and GnRHant protocols. Conclusion: Our data indicated that no differences of follicular fluid PAPP-A levels were observed between cycles using GnRHa long protocol and those of using flexible GnRHant multiple-dose protocol. PMID:25246915

  17. Raft River 5MW power plant: A small binary power plant

    NASA Astrophysics Data System (ADS)

    Whitbeck, J. F.; Dibello, E. G.; Walrath, L. F.

    1982-06-01

    The Raft River 5MW power plant is a binary cycle pilot plant. The system uses isobutane in a dual boiling cycle. This cycle was selected because the well field and temperatures were not well known at the time of cycle selection, and therefore, a boiling cycle was desirable. The dual boiling features provides about 15 to 20% more power and makes the output less sensitive to changes in geothermal temperature changes than a single boiler system. The plant design was based upon a 290F geothermal fluid temperature at the inlet to the plant and has a gross nominal generator rating of 5MW; however, actual output will vary according to ambient wet bulb temperatures over a range from 4.4MW to 6.2MW with the actual plant inlet temperature of 278F being obtained. The plant is supplied by three production wells. Geothermal fluid boost pumps within the plant inlet provide the pressure necessary to overcome plant pressure drop and return the fluid to the two injection sites.

  18. The Accretion Disk Limit Cycle Mechanism in the Black Hole X-Ray Binaries: Toward an Understanding of the Systematic Effects

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.

    1998-02-01

    We examine in detail several aspects of the physics of accretion disks that are of possible relevance to the outburst mechanism of the black hole X-ray transients. We adopt the one-dimensional, time-dependent model described in detail by Cannizzo, Chen, and Livio with parameters appropriate for a system such as A0620-00. We investigate (1) the effect of the grid spacing, utilizing a logarithmic radial spacing Δr ~ r in addition to the spacing Δr ~ r1/2, (2) the dependence of the local flow speed of gas within the hot part of the disk on radius and time during the time of the cooling wave propagation, (3) the shape of the outburst light curve as a function of the triggering location for the instability, (4) the long-term light curves of outbursts taken from trials in which complete cycles of quiescence and outburst are followed, both including and excluding the effect of evaporation or removal of matter from the inner edge of the disk, and (5) the strength of the self-irradiation of the outer parts of the disk by the X-rays from the inner disk. Our primary findings in each of these areas are that (1) low-resolution runs taking N ~= 20 grid points using the logarithmic spacing produce decay timescales that are artificially slow by factors of ~2-3 and slower than exponential; (2) the deviation from steady state within the outer part of the inner hot disk appears to be in accord with the discussion given in Vishniac and Wheeler--far from the transition front, the flow speed is ~αcs(h/r), whereas at the interface between the transition front and the cold disk, the flow speed is ~αcs (3) the outburst-triggering location must be >~100rinner for the rise time of the resulting outburst to be as short as is observed in the standard, bright systems; (4) the long-term light curves using the standard model produce frequent outbursts that are triggered near the inner disk edge and that have slow rise times, and the long-term light curves calculated assuming evaporation of

  19. Thermohydrodynamics of boiling in binary compressible fluids.

    PubMed

    Liu, Jiewei; Do-Quang, Minh; Amberg, Gustav

    2015-10-01

    We numerically study the thermohydrodynamics of boiling for a CO(2) + ethanol mixture on lyophilic and lyophobic surfaces in both closed and open systems, based on a diffuse interface model for a two-component system. The corresponding wetting boundary conditions for an isothermal system are proposed and verified in this paper. New phenomena due to the addition of another component, mainly the preferential evaporation of the more volatile component, are observed. In the open system and the closed system, the physical process shows very different characteristics. In the open system, except for the movement of the contact line, the qualitative features are rather similar for lyophobic and lyophilic surfaces. In the closed system, the vortices that are observed on a lyophobic surface are not seen on a lyophilic surface. More sophisticated wetting boundary conditions for nonisothermal, two-component systems might need to be further developed, taking into account the variations of density, temperature, and surface tension near the wall, while numerical results show that the boundary conditions proposed here also work well even in boiling, where the temperature is nonuniform. PMID:26565342

  20. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  1. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  2. Cycle Analysis

    Energy Science and Technology Software Center (ESTSC)

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  3. Abnormality in glutamine–glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study

    PubMed Central

    Hashimoto, K; Bruno, D; Nierenberg, J; Marmar, C R; Zetterberg, H; Blennow, K; Pomara, N

    2016-01-01

    Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-d-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N=28; age- and gender-matched comparison group, N=19) at baseline and 3-year follow-up (MDD group, N=19; comparison group, N=17). CSF levels of glutamine, glutamate, glycine, l-serine and d-serine were measured by high-performance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine–glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression. PMID:26926880

  4. Studies of cycles for liquid-metal magnetohydrodynamic generation of power

    NASA Technical Reports Server (NTRS)

    Lee, K.; Petrick, M.

    1969-01-01

    Studies of liquid-metal magnetohydrodynamic power cycles indicate that the overall efficiency of a binary cycle, employing a liquid-metal topping cycle and a bottoming steam cycle, may reach 60 percent. Details of analyses and data on cycles are presented, and the commercial potential of the binary cycle is discussed.

  5. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  6. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  7. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  8. Space Station fluid resupply

    NASA Technical Reports Server (NTRS)

    Winters, AL

    1990-01-01

    Viewgraphs on space station fluid resupply are presented. Space Station Freedom is resupplied with supercritical O2 and N2 for the ECLSS and USL on a 180 day resupply cycle. Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required. ECLSS contingency fluids (O2 and N2) are supplied and stored on station in a gaseous state. Efficiency and flexibility are major design considerations. Subcarrier approach allows multiple manifest combinations. Growth is achieved by adding modular subcarriers.

  9. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  10. Flip-Flopping Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Healy, James

    2015-04-01

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d ≈25 M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t =20 000 M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  11. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104

  12. 3D Models of Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.

    2015-12-01

    Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.

  13. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  14. Thermal transport properties of ethylene glycol/N-methylformamide binary mixture based CuO nanofluid

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, M.; Kiruba, R.; Jeevaraj, A. Kingson Solomon

    2015-06-01

    In this present investigation, we have synthesized copper oxide nanoparticles by solvothermal method and analyzed their rheological behavior and thermal conductivity properties in binary base fluids (Ethylene Glycol+N-Methylformamide) and CuO binary nanofluid at different temperature. The crystalline nature and morphological properties of prepared CuO nanoparticles were characterized using XRD and SEM analysis respectively. The influence of CuO nanoparticles increases the thermal conductivity of binary base fluids. The results suggested that prepared binary nanofluids can be applicable in heat transfer.

  15. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    NASA Astrophysics Data System (ADS)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  16. Coal-fired open-cycle liquid-metal magnetohydrodynamic topping cycle for retrofit of steam power plants. [Two-phase working fluid composed of coal combustion products and liquid copper

    SciTech Connect

    Pierson, E. S.; Herman, H.; Petrick, M.; Boom, R. W.; Carlson, L.; Cohen, D.; Dubey, G.; Grammel, S. J.; Schreiner, F.; Snyder, B. K.; Zinneman, T.

    1980-12-01

    The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the new plant efficiency and the cost benefit relative to other options, i.e., continuing to burn oil, a conventional retrofit to burn coal (if possible), and an over-the-fence gasifier for boilers that cannot burn coal directly. The OC-LMMHD cycle and the existing steam plant used in the study are discussed, and a detailed description of the retrofit plant is presented. The latter includes plant drawings, description of the coupling of the OC-LMMHD topping cycle and the steam boiler, drawings and descriptions of the major components in the retrofit plant, and costs. The unique capability of the OC-LMMHD cycle to control the pollutants normally associated with burning coal is discussed. The net plant output powers and efficiencies are calculated, with allowances for the required auxiliary powers and component inefficiencies, and a plant lifetime economic analysis performed by an architect/engineer. The efficiency and cost results are compared with the values for the other options.

  17. Gravitational wave background from binary systems

    SciTech Connect

    Rosado, Pablo A.

    2011-10-15

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.

  18. Two-fluid theory and thermodynamic properties of liquid mixtures: General theory

    PubMed Central

    Brandani, V.; Prausnitz, J. M.

    1982-01-01

    The two-fluid theory of binary mixtures postulates that the extensive thermodynamic properties of a binary mixture may be expressed by the contributions of two hypothetical fluids that mix ideally. This postulate, coupled with an expression for the partition function of the hypothetical fluid, permits evaluation of the properties of binary liquid mixtures by using only two adjustable binary parameters. Particular attention is given to the problem of nonrandomness in mixtures. A quantitative description of nonrandomness is achieved by combining the two-fluid concept with a hypothesis for ensemble averaging of a distribution of nearest-neighbor pairs. PMID:16593213

  19. Stable isotope constraints on fluid-pressure buildup cycles and fluid-rock interaction at the frontal part of the early Eocene-middle Miocene convergent system of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Remitti, F.; Vannucchi, P.; Dallai, L.; Boschi, C.

    2008-12-01

    Understanding the mechanical behavior of subduction megathrusts is intimately related to the characterization of their fluid regime. Stable isotopes help in characterizing the fluid regime that existed during megathrust development. Here we analyze the late Eocene-mid Miocene, erosive boundary between the European and Adriatic plates, now exhumed in the N. Apennines. 13C and 18O composition of 125 calcite veins and 83 host rocks have been analyzed from 4 transects of the 500 m-thick fault zone. Stable isotopes have been coupled with structural analysis. Field and microstructural observations suggest that the evolution of structures in the deeper portion of the outcropping megathust, correspondent to 5 km depth, was genetically linked to episodic high Pf, resulting in cyclic fluid-induced brittle deformation interspersed with aseismic ductile creep. δ18O and δ13C values vary from samples of host rock and veins. For the hangingwall rocks the δ18O values show a great variability for each transect if they relate to the previous accretionary prism, from -8.23 to -2.16‰ PDB. If they relate to the slope sediments the isotopic values within each transect are more uniform as well as shown for the footwall samples. The accretionary prism-related rocks are also characterized by a high variability of δ13C, from -1.28 to 2.29‰ PDB, as well as the slope sediment related rocks, from -1.82 to 0.92‰ PDB. Systematic variations of isotopic values are instead observed in the vein samples. In general they show a depletion in δ18O and a shift from mostly positive to negative δ13C values with respect to both the hangingwall and footwall. For the shear zone veins O- and C-isotopic composition tend to be more uniform irrespective of the host rock values. Different localities, though, have different linear trends of δ13C and δ18O values. In general the isotopic data are consistent with a fault architecture where the deformation results concentrated on an array of discrete

  20. Assessment of RELAP5/MOD2, Cycle 36-04 using LOFT (Loss of Fluid Test) Large Break Experiment L2-5

    SciTech Connect

    Bank, Young Seok; Lee, Sang Yong; Kim, Hho-Jung . Korea Nuclear Safety Center)

    1990-04-01

    The LOFT L2-5 LBLOCA Experiment was simulated using the RELAP5/MOD2 Cycle 36.04 code to assess its capability to predict the phenomena in LBLOCA. One base case calculation and three cases of different nodalizations were carried out. The effect of different nodalization was studied in the area of the downcomer and core. For a sensitivity study, another calculation was executed using an updated version of RELAP5/MOD2 Cycle 36.04. A Split downcomer with one crossflow junction and two core channels were found to be effective in describing the ECC bypass and hot channel behavior. And the updated version was found to be effective in overcoming the code deficiency in the interfacial friction and reflood quenching. 11 refs., 55 figs., 10 tabs.

  1. Heat Cycle Reserch Experimental Program report, FY-84

    SciTech Connect

    Whitbeck, J.F.

    1984-09-01

    The Heat Cycle Research Facility (HCRF) is an experimental binary-cycle facility used to investigate different concepts and/or components for generating electrical power from a geothermal resource. This report briefly desc

  2. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  3. Binary synchronous simulator

    NASA Technical Reports Server (NTRS)

    Rogers, J. R., III

    1980-01-01

    Flexible simulator for trouble-shooting data transmission system uses binary synchronous communications protocol to produce error-free transmission of data between two points. Protocol may be used to replace display generator or be directly fed to display generator.

  4. Binary pattern deflectometry.

    PubMed

    Butel, Guillaume P; Smith, Greg A; Burge, James H

    2014-02-10

    Deflectometry is widely used to accurately calculate the slopes of any specular reflective surface, ranging from car bodies to nanometer-level mirrors. This paper presents a new deflectometry technique using binary patterns of increasing frequency to retrieve the surface slopes. Binary Pattern Deflectometry allows almost instant, simple, and accurate slope retrieval, which is required for applications using mobile devices. The paper details the theory of this deflectometry method and the challenges of its implementation. Furthermore, the binary pattern method can also be combined with a classic phase-shifting method to eliminate the need of a complex unwrapping algorithm and retrieve the absolute phase, especially in cases like segmented optics, where spatial algorithms have difficulties. Finally, whether it is used as a stand-alone or combined with phase-shifting, the binary patterns can, within seconds, calculate the slopes of any specular reflective surface. PMID:24663273

  5. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  6. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  7. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  8. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  9. Supercritical fluid technology

    SciTech Connect

    Penninger, J.M.L.; McHugh, M.A.; Radosz, M.; Krukonis, V.J.

    1985-01-01

    This book presents the state-of-the-art in the science and technology of supercritical fluid (scf) processing. Current research as described in the book, focuses on developments in equations of state for binary and multicomponent mixtures (including polymer solutions), solubility measurements at near-critical conditions, measurements of critical properties of binary mixtures and their correlation with equations of state. Progress in thermodynamics, coupled with advances in the design and construction of high pressure equipment, has opened up a wide avenue of commercial application (e.g. decaffeination of coffee beans, extractions of flavours and spices, purification of pharmaceutical products, separations of polymeric materials, deodorization and deacidification of vegetable oils, fractionation of fatty acids, coal liquefaction, wood delignitication, etc.)

  10. Amniotic fluid

    MedlinePlus

    Amniotic fluid is a clear, slightly yellowish liquid that surrounds the unborn baby (fetus) during pregnancy. It is ... in the womb, the baby floats in the amniotic fluid. The amount of amniotic fluid is greatest at ...

  11. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  12. Nonlinear Tides in Coalescing Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin

    2016-03-01

    Coalescing binary neutron stars are among the most promising sources for ground-based gravitational wave detectors such as Advanced LIGO. Tidal interactions in such systems extract energy from the orbit and, at some level, modify the gravitational wave signal. Previous studies found that tidal effects are probably too small to be detected from individual systems with LIGO. However, these studies typically assumed that the tide can be treated as a linear perturbation to the star. I will show that the linear approximation is invalid even during the early stages of inspiral and that nonlinear fluid effects in the form of tide-internal wave interactions become important around the time the binary first enters LIGO's bandpass (at gravitational wave frequencies around 30 Hz). Although the precise influence of nonlinear fluid effects is not yet well constrained, I will show that they may significantly modify the gravitational wave signal and electromagnetic emission from coalescing binary neutron stars. This research was supported by NASA Grant NNX14AB40G.

  13. A Binary Teetering on the Edge

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; D'Souza, M. C. R.; Tohline, J. E.; Frank, J.

    2005-05-01

    We present a fully three-dimensional hydrodynamical simulation of Roche lobe overflow in a binary near the stability boundary. This boundary separates evolutionary branches that correspond to either an accelerating mass transfer rate leading eventually to merger through tidal instability or to a decaying mass transfer rate as the orbit expands. The binary begins with a mass ratio of 0.4 (ratio of donor to accretor mass) and is initially assumed to be rotating synchronously. We treat the stellar components as simple polytropic fluids characterized by a polytropic index, n = 3/2. As the donor overflows its Roche lobe, the mass transfer rate initially accelerates before stabilizing and eventually dropping over a timescale of tens of orbits. We also note that for this particular binary, the accretion stream impacts on the surface of the donor rather than forming an accretion disk. This simulation allows us to measure the efficiency with which the accretion stream spins up the accretor in this "direct impact" scenario and the degree to which angular momentum is transfered back to the binary orbit via the tidal field.

  14. Thermo-fluid dynamic design study of single and double-inflow radial and single-stage axial steam turbines for open-cycle thermal energy conversion net power-producing experiment facility in Hawaii

    SciTech Connect

    Schlbeiri, T. . Dept. of Mechanical Engineering)

    1990-03-01

    The results of the study of the optimum thermo-fluid dynamic design concept are presented for turbine units operating within the open-cycle ocean thermal energy conversion (OC-OTEC) systems. The concept is applied to the first OC-OTEC net power producing experiment (NPPE) facility to be installed at Hawaii's natural energy laboratory. Detailed efficiency and performance calculations were performed for the radial turbine design concept with single and double-inflow arrangements. To complete the study, the calculation results for a single-stage axial steam turbine design are also presented. In contrast to the axial flow design with a relatively low unit efficiency, higher efficiency was achieved for single-inflow turbines. Highest efficiency was calculated for a double-inflow radial design, which opens new perspectives for energy generation from OC-OTEC systems.

  15. Commission 42: Close Binaries

    NASA Astrophysics Data System (ADS)

    Giménez, Alvaro; Rucinski, Slavek; Szkody, P.; Gies, D.; Kang, Y.-W.; Linsky, J.; Livio, M.; Morrell, N.; Hilditch, R.; Nordström, B.; Ribas, I.; Sion, E.; Vrielman, S.

    2007-03-01

    The triennial report from Commission 42 covers various topics like massive binaries, contact systems, cataclysmic variables and low-mass binary stars. We try in a number of sections to provide an update on the current status of the main research areas in the field of close binaries. It is not a formal review, even complete or comprehensive, but an attempt to bring the main topics on recent research to astronomers working in other fields. References are also not comprehensive and simply added to the text to help the reader looking for deeper information on the subject. For this reason, we have chosen to include references (sometimes incomplete for ongoing work) not in a list at the end but integrated with the main text body. Complete references and additional sources can be easily obtained through web access of ADS or SIMBAD. Furthermore, the summary of papers on close-binary research contained in the Bibliography of Close Binaries (BCB) can be accessed from the web site of Commission 42. I would like to express the gratitude of the commission for the careful work of Colin Scarfe as Editor-in-Chief of BCB and Andras Holl and Attila Sragli for maintaining the web pages of the Commission within the structure of Division V. Finally, K. Olah and J. Jurcsik are gratefully acknowledged for their continued support as editors of the Information Bulletin on Variable Stars (IBVS), also accessible through the commission web page.

  16. The Role of Reactivation and Fluid Pressure Cycling in The Development of Late Zeolite-bearing Faults and Fractures From The Adamello Batholith, Italy

    NASA Astrophysics Data System (ADS)

    Dempsey, E. D.; Holdsworth, R. E.; Di Toro, G.

    2011-12-01

    Interconnected networks of faults and veins filled with zeolites and other minerals are a common feature of many crystalline rocks, including basaltic volcanics, deformed granitic plutons and regions of high grade continental basement. Typically the fracture fills formed late in the tectonic history and at relatively low temperatures (100-200°C) and in many cases appear to represent a final phase of fluid flow and mineralisation developed during the final stages of exhumation. In the northern part of the Adamello pluton in the Italian Alps, a geometrically complex and kinematically diverse set of zeolite bearing faults and veins is well exposed in the deformed tonalites associated with the Gole Larghe Fault Zone (GLFZ). These features post date all other deformation structures in the pluton, including cooling joints (formed at >550°C), ductile shear zones (550-450°C) and the well-known assemblage of faults, cataclasites and pseudotachylytes (300-250°C) associated with the GLFZ. Three main groups of zeolite-bearing fractures are recognised based on differences in orientation and kinematics of associated shear fracture displacements. These are: i) E-W sinistral reverse thrusts; ii) NNE-SSW sinistral normal faults; and iii) NNW-SSE normal faults. All three groups are associated with the development of white, yellow and red-orange zeolite-rich veins and fault gouge. Individual fault zones are rarely more than a few metres wide and fault offsets are generally small (mostly < 5m). Minor fractures associated with each group display mutually cross-cutting relationships consistent with them all being broadly contemporaneous features. This is confirmed by thin section and XRD analyses which reveal a fairly uniform set of mineral fills (including laumontite ± scolecite ± prehnite ± clinochlore ± stilbite ± stellerite ± quartz ± microcline ± albite). All three fracture groups are hard linked, locally forming spectacular mineralised fracture meshes. These features

  17. Magnetic field effects on gravitational waves from binary neutron stars

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Motl, Patrick; Neilsen, David; Palenzuela, Carlos; Tohline, Joel

    2008-04-01

    Observational evidence indicates that a fair number of neutron star binaries and neutron star-black hole binaries have a sizable magnetic field which can be responsible for powering pulsars and colimating jets. Magnetic field effects additionally can have a strong influence on the dynamics of the fluid by redistributing angular momentum through different mechanisms (magnetic winding and braking, magneto-rotational instabilities) depending on the strength of the magnetic field and the typical time scales involved in the process. These processes can affect the multipolar structure of the source and consequently the produced gravitational wave. We present results of neutron star binary mergers both with and without magnetic field and discuss the magnetic effects on the gravitational waves, fluid structure, and merger timescale.

  18. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  19. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  20. Simulating Contact Binaries

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Tohline, Joel E.; Staff, Jan E.; Motl, Patrick M.; Marcello, Dominic

    2014-06-01

    About one in every 150 stars is a contact binary system of WUMa type and it was thought for a long time that such a binary would naturally proceed towards merger, forming a single star. In September 2008 such a merger was observed in the eruption of a “red nova", V1309 Sco. We are developing a hydrodynamics simulation for contact binaries using Self Consistent Field (SCF) techniques, so that their formation, structural, and merger properties could be studied. This model can also be used to probe the stability criteria such as the large-scale equatorial circulations and the minimum mass ratio. We also plan to generate light curves from the simulation data in order to compare with the observed case of V1309 Sco. A comparison between observations and simulations will help us better understand the nova-like phenomena of stellar mergers.

  1. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  2. Identification list of binaries

    NASA Astrophysics Data System (ADS)

    Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.

    The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.

  3. Hydrocarbon fluid, ejector refrigeration system

    SciTech Connect

    Kowalski, G.J.; Foster, A.R.

    1993-08-31

    A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream of the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.

  4. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  5. Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle

    NASA Astrophysics Data System (ADS)

    Patanè, D.; Aiuppa, A.; Aloisi, M.; Behncke, B.; Cannata, A.; Coltelli, M.; di Grazia, G.; Gambino, S.; Gurrieri, S.; Mattia, M.; Salerno, G.

    2013-07-01

    the second half of the 1990s, the eruptive activity of Mount Etna has provided evidence that both explosive and effusive eruptions display periodic variations in discharge and eruption style. In this work, a multiparametric approach, consisting of comparing volcanological, geophysical, and geochemical data, was applied to explore the volcano's dynamics during 2009-2011. In particular, temporal and/or spatial variations of seismicity (volcano-tectonic earthquakes, volcanic tremor, and long-period and very long period events), ground deformation (GPS and tiltmeter data), and geochemistry (SO2 flux, CO2 flux, CO2/SO2 ratio) were studied to understand the volcanic activity, as well as to investigate magma movement in both deep and shallow portions of the plumbing system, feeding the 2011 eruptive period. After the volcano deflation, accompanying the onset of the 2008-2009 eruption, a new recharging phase began in August 2008. This new volcanic cycle evolved from an initial recharge phase of the intermediate-shallower plumbing system and inflation, followed by (i) accelerated displacement in the volcano's eastern flank since April 2009 and (ii) renewal of summit volcanic activity during the second half of 2010, culminating in 2011 in a cyclic eruptive behavior with 18 lava fountains from New Southeast Crater (NSEC). Furthermore, supported by the geochemical data, the inversion of ground deformation GPS data and the locations of the tremor sources are used here to constrain both the area and the depth range of magma degassing, allowing reconstructing the intermediate and shallow storage zones feeding the 2011 cyclic fountaining NSEC activity.

  6. Binary concatenated coding system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1973-01-01

    Coding, using 3-bit binary words, is applicable to any measurement having integer scale up to 100. System using 6-bit data words can be expanded to read from 1 to 10,000, and 9-bit data words can increase range to 1,000,000. Code may be ''read'' directly by observation after memorizing simple listing of 9's and 10's.

  7. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  8. Binary primitive alternant codes

    NASA Technical Reports Server (NTRS)

    Helgert, H. J.

    1975-01-01

    In this note we investigate the properties of two classes of binary primitive alternant codes that are generalizations of the primitive BCH codes. For these codes we establish certain equivalence and invariance relations and obtain values of d and d*, the minimum distances of the prime and dual codes.

  9. Interacting binaries. Lecture notes 1992.

    NASA Astrophysics Data System (ADS)

    Nussbaumer, H.; Orr, A.

    These lecture notes represent a unique collection of information and references on current research on interacting binaries: S. N. Shore puts the emphasis on observations and their connection to relevant physics. He also discusses symbiotic stars. Cataclysmic variables are the subject of M. Livio's course, whereas E. P. J. van den Heuvel concentrates on more massive binaries and X-ray binaries.

  10. Lennard-Jones fluid-fluid interfaces under shear

    NASA Astrophysics Data System (ADS)

    Galliero, Guillaume

    2010-05-01

    Using nonequilibrium molecular dynamics simulations on simple Lennard-Jones binary mixtures, we have studied the behavior of planar fluid-fluid interfaces undergoing shear flow. When the miscibility is low enough, a slip together with a partial depletion have been noticed at the interface between the two fluid phases. The slip length can reach a value equal to some molecular diameters and the corresponding interfacial viscosity can be two times smaller than the value in the bulk. It is shown how the omission of this slip may lead to flow-rate misevaluation when dealing with a multiphase flow in a nanoporous medium even for non polymer fluids. In addition, using the simulation results, a simple relation between interfacial tension and interfacial viscosity is proposed for the monoatomic systems studied in this work. Finally, it is shown that the interfacial viscosity cannot be fully accounted for by estimating the local viscosity deduced from the local thermodynamic properties of the interface.