Science.gov

Sample records for binary interaction classes

  1. Interacting binaries. Lecture notes 1992.

    NASA Astrophysics Data System (ADS)

    Nussbaumer, H.; Orr, A.

    These lecture notes represent a unique collection of information and references on current research on interacting binaries: S. N. Shore puts the emphasis on observations and their connection to relevant physics. He also discusses symbiotic stars. Cataclysmic variables are the subject of M. Livio's course, whereas E. P. J. van den Heuvel concentrates on more massive binaries and X-ray binaries.

  2. Mass loss from interacting close binary systems

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  3. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  4. Virtual Control Policy for Binary Ordered Resources Petri Net Class.

    PubMed

    Rovetto, Carlos A; Concepción, Tomás J; Cano, Elia Esther

    2016-01-01

    Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system's behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms. PMID:27548170

  5. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    SciTech Connect

    Piro, Anthony L.

    2011-10-20

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  6. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae. PMID:22837522

  7. MAGNETIC INTERACTIONS IN COALESCING NEUTRON STAR BINARIES

    SciTech Connect

    Piro, Anthony L.

    2012-08-10

    It is expected on both evolutionary and empirical grounds that many merging neutron star (NS) binaries are composed of a highly magnetized NS in orbit with a relatively low magnetic field NS. I study the magnetic interactions of these binaries using the framework of a unipolar inductor model. The electromotive force generated across the non-magnetic NS as it moves through the magnetosphere sets up a circuit connecting the two stars. The exact features of this circuit depend on the uncertain resistance in the space between the stars R{sub space}. Nevertheless, I show that there are interesting observational and/or dynamical effects irrespective of its exact value. When R{sub space} is large, electric dissipation as great as {approx}10{sup 46} erg s{sup -1} (for magnetar-strength fields) occurs in the magnetosphere, which would exhibit itself as a hard X-ray precursor in the seconds leading up to merger. With less certainty, there may also be an associated radio transient. When R{sub space} is small, electric dissipation largely occurs in the surface layers of the magnetic NS. This can reach {approx}10{sup 49} erg s{sup -1} during the final {approx}1 s before merger, similar to the energetics and timescales of short gamma-ray bursts. In addition, for dipole fields greater than Almost-Equal-To 10{sup 12} G and a small R{sub space}, magnetic torques spin up the magnetized NS. This drains angular momentum from the binary and accelerates the inspiral. A faster coalescence results in less orbits occurring before merger, which would impact matched-filtering gravitational-wave searches by ground-based laser interferometers and could create difficulties for studying alternative theories of gravity with compact inspirals.

  8. OGLE II Eclipsing Binaries In The LMC: Analysis With Class

    NASA Astrophysics Data System (ADS)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.

    2011-01-01

    The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.

  9. The White Dwarf Mass in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Mukai, Koji

    We are undertaking a comprehensive study of accreting white dwarfs in two broad types of interacting binaries, cataclysmic variables (CVs) and symbiotic stars, using X-ray and multi-wavelength data. Our goal is to understand the detailed accretion and X-ray emission processes in these binaries, and therefore determine what information can be extracted from X-ray observations of these systems. In paritular, we must measure the current masses of white dwarfs in CVs and symbiotic stars and understand if they gain or lose mass over time. We believe that these are all worthy objectives by themselves, with added interest in the context of Type Ia supernova progenitor models and the apparently diffuse Galactic ridge and bulge X-ray emission. For both these issues, we need surveys with well-understood selection effects to measure the space density of CVs and symbiotic stars, and X-ray surveys will likely play a key role. With these long-term goals in mind, we are undertaking several interlinked projects with overlapping sets of objectives and collaborators. In this proposal, we seek support for a subset of our overall research program, thematically linked to one of the most important parameters in any CVs and symbiotic stars: the white dwarf mass (Mwd). The depth of the gravitational potential of the white dwarf sets the maximum temperature that the accreting plasma can reach; therefore, by measuring the maximum temperature in the X-ray spectra of CVs and symbiotic stars, one can infer Mwd. This method has long been applied to magnetic CVs; we believe that it is also applicable to non-magnetic cases. We propose an empirical confirmation of this method for quiescent dwarf novae, and investigate any systematic uncertainties that may be inherent in this method. We already know that CVs and symbiotic stars with strong hard (>10 keV) X-ray emission harbor massive white dwarfs, and have used this fact to study the population such systems detected in INTEGRAL and Swift BAT

  10. Interactive Multimedia Instruction in Video Production Classes.

    ERIC Educational Resources Information Center

    Hudson, Timothy J.; Holland, Sheila Denise

    1992-01-01

    Evaluates the effectiveness of interactive multimedia instruction in a video production class as compared to the typical classroom lecture. Finds that students using the interactive multimedia system did not score higher on a posttest than students who attended lecture. (SR)

  11. On the formation of Be stars through binary interaction

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2014-11-20

    Be stars are rapidly rotating B-type stars. The origin of their rapid rotation is not certain, but binary interaction remains as a possibility. In this work, we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. We calculate binary evolution with both stars evolving simultaneously and consider different possible mass accretion histories for the accretor. From the calculated results, we obtain the critical mass ratios q {sub cr} that determine the stability of the mass transfer. We also numerically calculate the parameter λ in common envelope evolution and then incorporate both q {sub cr} and λ into the population synthesis calculations. We present the predicted numbers and characteristics of Be stars in binary systems with different types of companions, including helium stars, white dwarfs, neutron stars, and black holes. We find that in Be/neutron star binaries, the Be stars can have a lower mass limit ∼8 M {sub ☉} if they are formed by stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally, the fraction of Be stars that have involved binary interactions in all B-type stars can be as high as ∼13%-30%, implying that most Be stars may result from binary interaction.

  12. The structure and evolution of interacting binary galaxies

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    1983-08-01

    A numerical code was constructed for the study of the evolution of interacting binary galaxies. This "multiple three-body" algorithm (MTBA) essentially involves N concurrent three-body integrations. MTBA incorporates a violent relaxation phase that allows the particles to redistribute themselves in the gravitational field of the perturber prior to the full binary orbital evolution calculation. This redistribution is important for systems with an initially strong tidal potential; their predicted merger times are 50-100% larger than previously estimated. Merger times are tabulated both for circular and for elliptical orbits. Typical close binary galaxies will merge in about twice their initial binary oribtal periods. A specific interacting binary simulation is described in detail in the first paper. Many of the results reported here are consistent with those obtained from the larger, more expensive N-body simulations. MTBA is altered so that each "galaxy" is represented by a configuration of test particles.

  13. PatternCoder: A Programming Support Tool for Learning Binary Class Associations and Design Patterns

    ERIC Educational Resources Information Center

    Paterson, J. H.; Cheng, K. F.; Haddow, J.

    2009-01-01

    PatternCoder is a software tool to aid student understanding of class associations. It has a wizard-based interface which allows students to select an appropriate binary class association or design pattern for a given problem. Java code is then generated which allows students to explore the way in which the class associations are implemented in a…

  14. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    SciTech Connect

    Del Valle, Luciano; Escala, Andrés

    2014-01-01

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation that is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.

  15. Promoting Interactivity in Physics Lecture Classes.

    ERIC Educational Resources Information Center

    Meltzer, David E.; Manivannan, Kandiah

    1996-01-01

    Presents techniques aimed at promoting a higher level of student-faculty interaction and active student participation in the learning process in introductory physics lecture classes. Discusses group problem solving, the use of flash cards, and assessment. (JRH)

  16. The "Binarity and Magnetic Interactions in various classes of stars" (BinaMIcS) project

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Morin, J.; Alecian, E.

    2015-12-01

    The "Binarity and Magnetic Interactions in various classes of stars" (BinaMIcS) project is based on two large programs of spectropolarimetric observations with ESPaDOnS at CFHT and Narval at TBL. Three samples of spectroscopic binaries with two spectra (SB2) are observed: known cool magnetic binaries, the few known hot magnetic binaries, and a survey sample of hot binaries to search for additional hot magnetic binaries. The goal of BinaMIcS is to understand the complex interplay between stellar magnetism and binarity. To this aim, we will characterise and model the magnetic fields, magnetospheric structure and coupling of both components of hot and cool close binary systems over a significant range of evolutionary stages, to confront current theories and trigger new ones. First results already provided interesting clues, e.g. about the origin of magnetism in hot stars.

  17. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  18. Improving Interactions in the Large Language Class.

    ERIC Educational Resources Information Center

    Raymond, Patricia M.; Raymond, Jacques; Pilon, Daniel

    1998-01-01

    Describes a prototypical microcomputer system that improves the interactions between teacher and large language classes in a traditional language classroom setting. This system achieves dynamic interactions through multiple student/professor interventions, immediate and delayed feedback, and individual teacher/student conferences. The system uses…

  19. Orbital evolution of eccentric interacting binary star systems

    NASA Astrophysics Data System (ADS)

    Sepinsky, Jeremy Francis

    2009-06-01

    We provide a comprehensive description of the long-term (secular) orbital evolution of eccentric interacting binary systems. The evolution of circular interacting binary systems is a well studied phenomenon, but observations have shown the existence of a small but significant number of eccentric interacting binary systems. We begin by extending the commonly accepted Roche formalism for binary interacting to include eccentric orbits and asynchronously rotating stars. Using this, we calculate orbital trajectories for particles ejected from a Roche lobe-filling donor star at the periastron of the eccentric orbit. These particles admit of three possible trajectories: direct impact onto the secondary star, self accretion back onto the donor star, and the formation of a disk about the accretor. We provide a proscription for determining a priorithe trajectory of the particle given the initial system parameters, as well as describe the secular evolution of the system for each of the three cases described above. We find that these orbital evolution timescales are comparable to the mass transfer timescale which can be significantly longer than expected from the literature. Furthermore, while it is commonly assumed that any mass transfer interactions will act to circularize the orbit, we find that there are regimes of parameter space where mass transfer can cause an increase in eccentricity, and can do so at a timescale comparable to the circularization timescale created by tidal interactions. The formalism presented here can be incorporated into binary evolution and population synthesis models to create a self-consistent treatment of mass transfer in eccentric binaries.

  20. The Effect of Binary Interactions in Infrared Passbands

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Han, Z.

    2008-10-01

    We present the integrated J, H, K, L, M and N magnitudes and the colours involving infrared bands, for an extensive set of instantaneous-burst binary stellar populations (BSPs) by using evolutionary population synthesis (EPS). By comparing the results for BSPs WITH and WITHOUT binary interactions we show that the inclusion of binary interactions makes the magnitudes of populations larger (fainter) and the integrated colours smaller (bluer) for τ ≥ 1 Gyr. Also, we compare our model magnitudes and colours with those of Bruzual & Charlot (2003, hereafter BC03) and Maraston (2005, hereafter M05). At last, we compare these model broad colours with Magellanic Clouds globular clusters (GCs) and Milky Way GCs. In (V - R)-[Fe/H] and (V - I)-[Fe/H] diagrams it seems that our models match the observations better than those of BC03 and M05.

  1. Binary interactions and multiple stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Jiang, Dengkai

    2015-08-01

    Observations revealed the presence of multiple stellar populations in globular clusters (GCs) that exhibit wide abundance variations and multiple sequences in Hertzsprung-Russell diagram. We present a scenario for the formation of multiple stellar populations in GCs. In this scenario, initial GCs are single-generation clusters, and our model predicts that the abundance anomalous stars observed in GCs are the merged stars and the accretor stars produced by binary interactions, which are rapidly rotating stars at the moment of their formation. The stellar population with binaries can reproduce two important observational evidences of multiple stellar populations, the Na-O anticorrelation and the multiple sequences in HR diagram. This suggests that binary interactions may be a possible scenario for the formation of multiple stellar populations in GCs.

  2. New Population Synthesis Techniques in the Analysis of Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Nelson, Lorne

    2012-02-01

    Novel approaches to understanding the observed properties of interacting binaries containing compact accretors such as neutron stars and white dwarfs are examined. Explaining the evolution of these systems is a computationally challenging problem because the vector space of initial conditions that describes the progenitor binaries is wide-ranging. There are large variations in the chemical abundance (e.g., metallicity), binary mass correlations, and assumed input physics. In this paper we compare two very different strategies to synthesize a specific subset of the currently observed population of compact binaries. Both involve the pre-computing a large grid of representative models. In the first case, the grid of initial conditions is densely packed thereby allowing us to identify the spectrum of initial conditions and the most probable evolutionary channels leading to the formation of the observed binaries. In the second, the grid is accurately interpolated to provide us with the ensemble properties of the currently observed population of interacting binaries (e.g., Cataclysmic Variables). As an example of the utility of the first approach, we have taken advantage of the multicore processing power of the fast, new stellar evolution code known as MESA to compute an extensive grid of binary evolution tracks for low- and intermediate-mass X-ray binaries. The grid is about two orders of magnitude larger than any previous computation of X-ray binary evolution and includes more than 40,000 models. It comprises 60 initial donor masses over the range of 1 to 4 Modot and, for each of these, 700 initial orbital periods over the range of 10 to 250 hours were chosen. Using a 'traceback' analysis, we show how the extremely massive neutron star (1.97 Modot) in the binary pulsar PSR J1614-2230 is likely to have evolved. We find that the initial donor stars which produce the closest relatives to PSR J1614-2230 are likely to have had a mass of between approximately 3.4 to 3

  3. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and

  4. Hierarchical Classes Models for Three-Way Three-Mode Binary Data: Interrelations and Model Selection

    ERIC Educational Resources Information Center

    Ceulemans, Eva; Van Mechelen, Iven

    2005-01-01

    Several hierarchical classes models can be considered for the modeling of three-way three-mode binary data, including the INDCLAS model (Leenen, Van Mechelen, De Boeck, and Rosenberg, 1999), the Tucker3-HICLAS model (Ceulemans,VanMechelen, and Leenen, 2003), the Tucker2-HICLAS model (Ceulemans and Van Mechelen, 2004), and the Tucker1-HICLAS model…

  5. Bubble-Turbulence Interaction in Binary Fluids

    NASA Astrophysics Data System (ADS)

    F, Battista; M, Froio; F, Picano; P, Gualtieri; M, Casciola C.

    2011-12-01

    Multiphase flows represent a central issue in many natural, biological and industrial fields. For instance, liquid jets vaporization, petroleum refining and boiling, emulsions in pharmaceutical applications, are all characterized by a disperse phase, such as solid particles or liquid bubbles, which evolve in a Newtonian carrier fluid. Features such as the global evaporation rates of liquid fuels in air or the homogeneity of the emulsions are controlled by the finest interaction details occurring between the two phases. In this paper we study the rising motion of a bubble induced by buoyancy in a viscous fluid. Usually this issue is tackled by tracking the bubble interface by means of sharp interface methods. However this approach requires "ad hoc" techniques to describe changes in the topological features of the deforming interface and to enforce the mass preservation. Here the problem is addressed by using a different philosophy based on a diffuse interface method, that allows a straightforward analysis of complex phenomena such as bubbles coalescence and break up without any numerical expedient. The model we adopt, funded on a solid thermodynamical and physical base, relies on the Cahn-Hilliard equation for the disperse phase, see Cahn & Hilliard (1958) and Elliott & Songmu (1986).

  6. Looking for Interacting Binaries in Old Open Clusters

    NASA Technical Reports Server (NTRS)

    Grindley, Jonathan

    2005-01-01

    We requested a 12 ks observation of the old open cluster NGC7142 with the aim to investigate the population of interacting binaries, and compare the properties with those of interacting binaries in other old open clusters. Unfortunately, the observation suffered from long periods of background flaring, and as a result the effective exposure time was shortened to only approximately 25% of the planned exposure. The sensitivity to detect sources in the cluster was therefore much reduced, hampering a useful comparison with other clusters observed with Chandra and XMM. We detect 5 sources (all less than 300 counts) in the full field of view of the detectors; based on the large separations from the cluster center, we expect that at least 3-4 are not associated with the cluster. A brief paper that reports the results is in preparation.

  7. Binary stellar winds. [flow and magnetic field interactions

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.

  8. Hydrodynamics of the Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Armitage, Philip J.; Livio, Mario

    1998-01-01

    We use hydrodynamic simulations to provide quantitative estimates of the effects of the impact of the accretion stream on disks in interacting binaries. For low accretion rates, efficient radiative cooling of the hotspot region can occur, and the primary consequence of the stream impact is stream overflow toward smaller disk radii. The stream is well described by a ballistic trajectory, but larger masses of gas are swept up and overflow at smaller, but still highly supersonic, velocities. If cooling is inefficient, overflow still occurs, but there is no coherent stream inward of the disk rim. Qualitatively, the resulting structure appears as a bulge extending downstream along the disk rim. We calculate the mass fraction and velocity of the overflowing component as a function of the important system parameters, and discuss the implications of the results for X-ray observations and Doppler tomography of cataclysmic variables, low-mass X-ray binaries, and supersoft X-ray sources.

  9. A CLASS OF ECCENTRIC BINARIES WITH DYNAMIC TIDAL DISTORTIONS DISCOVERED WITH KEPLER

    SciTech Connect

    Thompson, Susan E.; Barclay, Thomas; Howell, Steve B.; Still, Martin; Ibrahim, Khadeejah A.; Everett, Mark; Mullally, Fergal; Rowe, Jason; Christiansen, Jessie L.; Twicken, Joseph D.; Clarke, Bruce D.; Kurtz, Donald W.; Hambleton, Kelly

    2012-07-01

    We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at timescales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class, and discuss the work required to accurately model these systems.

  10. Evaluation of removable statistical interaction for binary traits.

    PubMed

    Satagopan, Jaya M; Elston, Robert C

    2013-03-30

    This paper is concerned with evaluating whether an interaction between two sets of risk factors for a binary trait is removable and, when it is removable, fitting a parsimonious additive model using a suitable link function to estimate the disease odds (on the natural logarithm scale). Statisticians define the term 'interaction' as a departure from additivity in a linear model on a specific scale on which the data are measured. Certain interactions may be eliminated via a transformation of the outcome such that the relationship between the risk factors and the outcome is additive on the transformed scale. Such interactions are known as removable interactions. We develop a novel test statistic for detecting the presence of a removable interaction in case-control studies. We consider the Guerrero and Johnson family of transformations and show that this family constitutes an appropriate link function for fitting an additive model when an interaction is removable. We use simulation studies to examine the type I error and power of the proposed test and to show that, when an interaction is removable, an additive model based on the Guerrero and Johnson link function leads to more precise estimates of the disease odds parameters and a better fit. We illustrate the proposed test and use of the transformation by using case-control data from three published studies. Finally, we indicate how one can check that, after transformation, no further interaction is significant. PMID:23018341

  11. Evaluation of removable statistical interaction for binary traits

    PubMed Central

    Satagopan, Jaya M.; Elston, Robert C.

    2013-01-01

    This paper is concerned with evaluating whether an interaction between two sets of risk factors for a binary trait is removable and fitting a parsimonious additive model using a suitable link function to estimate the disease odds (on the natural logarithm scale) when an interaction is removable. Statisticians define the term “interaction” as a departure from additivity in a linear model on a specific scale on which the data are measured. Certain interactions may be eliminated via a transformation of the outcome such that the relationship between the risk factors and the outcome is additive on the transformed scale. Such interactions are known as removable interactions. We develop a novel test statistic for detecting the presence a removable interaction in case-control studies. We consider the Guerrero and Johnson family of transformations and show that this family constitutes an appropriate link function for fitting an additive model when an interaction is removable. We use simulation studies to examine the type I error and power of the proposed test and to show that an additive model based on the Guerrero and Johnson link function leads to more precise estimates of the disease odds parameters and a better fit when an interaction is removable. The proposed test and use of the transformation are illustrated using case-control data from three published studies. Finally, we indicate how one can check that, after transformation, no further interaction is significant. PMID:23018341

  12. Binary-binary interactions and the formation of the PSR B1620-26 triple system in M4

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Mcmillan, Steve; Hut, Piet

    1995-01-01

    The hierarchical triple system containing the millisecond pulsar PSR B1620-26 in M4 is the first star system ever detected in a globular cluster. Such systems should form in globular clusters as a result of dynamical interactions between binaries. We propose that the triple system containing PSR B1620-26 formed through an exchange interaction between a wide primordial binary and a pre-existing binary millisecond pulsar. This scenario would have the advantage of reconciling the approximately 10(exp 9) yr timing age of the pulsar with the much shorter lifetime of the triple system in the core of M4.

  13. New Interacting Binaries Identified by the Chandra Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Britt, Christopher; Hynes, R. I.; Jonker, P. G.; Bassa, C. G.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Mikles, V. J.; Gossen, L.; Collazzi, A. C.; Galactic Bulge Survey Collaboration

    2012-01-01

    The Chandra Galactic Bulge Survey (CGBS) is a shallow X-ray survey of 2 6x1 degree strips above and below the Galactic Plane, where extinction and crowding are substantially lower than in the plane itself. The strategy for the CGBS is to go deep enough in the X-ray to see quiescent Low Mass X-ray Binaries (qLMXB), but to remain shallow enough to avoid an overabundance of Cataclysmic Variables (CVs), with the goal of testing binary evolution models and greatly expanding the sample of LMXBs for optical follow up including mass determination. We present classification of selected X-ray emitting interacting binaries out of 1234 X-ray sources identified in the CGBS. Each source exhibits emission lines in its optical/IR spectrum. The optical variability of each source was also examined to determine lightcurve morphology and periodicity. Combining spectral information, lightcurve morphology, and X-ray to optical flux ratios enables classification of each of these sources. This work is supported by the National Science Foundation under Grant No.AST-0908789.

  14. Topological-distance-dependent transition in flocks with binary interactions.

    PubMed

    Bhattacherjee, Biplab; Mishra, Shradha; Manna, S S

    2015-12-01

    We have studied a flocking model with binary interactions (binary flock), where the velocity of an agent depends on the velocity of only another agent and its own velocity, topped by the angular noise. The other agent is selected as the nth topological neighbor; the specific value of n being a fixed parameter of the problem. On the basis of extensive numerical simulation results, we argue that for n = 1, the phase transition from the ordered to the disordered phase of the flock is a special kind of discontinuous transition. Here, the order parameter does not flip-flop between multiple metastable states. It continues its initial disordered state for a period t(c), then switches over to the ordered state and remains in this state ever after. For n = 2, it is the usual discontinuous transition between two metastable states. Beyond this range, the continuous transitions are observed for n≥3. Such a system of binary flocks has been further studied using the hydrodynamic equations of motion. Linear stability analysis of the homogeneous polarized state shows that such a state is unstable close to the critical point and above some critical speed, which increases as we increase n. The critical noise strengths, which depend on the average correlation between a pair of topological neighbors, are estimated for five different values of n, which match well with their simulated values. PMID:26764659

  15. Topological-distance-dependent transition in flocks with binary interactions

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Biplab; Mishra, Shradha; Manna, S. S.

    2015-12-01

    We have studied a flocking model with binary interactions (binary flock), where the velocity of an agent depends on the velocity of only another agent and its own velocity, topped by the angular noise. The other agent is selected as the n th topological neighbor; the specific value of n being a fixed parameter of the problem. On the basis of extensive numerical simulation results, we argue that for n = 1, the phase transition from the ordered to the disordered phase of the flock is a special kind of discontinuous transition. Here, the order parameter does not flip-flop between multiple metastable states. It continues its initial disordered state for a period tc, then switches over to the ordered state and remains in this state ever after. For n = 2, it is the usual discontinuous transition between two metastable states. Beyond this range, the continuous transitions are observed for n ≥3 . Such a system of binary flocks has been further studied using the hydrodynamic equations of motion. Linear stability analysis of the homogeneous polarized state shows that such a state is unstable close to the critical point and above some critical speed, which increases as we increase n . The critical noise strengths, which depend on the average correlation between a pair of topological neighbors, are estimated for five different values of n , which match well with their simulated values.

  16. Four classes of interactions for evolutionary games

    NASA Astrophysics Data System (ADS)

    Szabó, György; Bodó, Kinga S.; Allen, Benjamin; Nowak, Martin A.

    2015-08-01

    The symmetric four-strategy games are decomposed into a linear combination of 16 basis games represented by orthogonal matrices. Among these basis games four classes can be distinguished as it is already found for the three-strategy games. The games with self-dependent (cross-dependent) payoffs are characterized by matrices consisting of uniform rows (columns). Six of 16 basis games describe coordination-type interactions among the strategy pairs and three basis games span the parameter space of the cyclic components that are analogous to the rock-paper-scissors games. In the absence of cyclic components the game is a potential game and the potential matrix is evaluated. The main features of the four classes of games are discussed separately and we illustrate some characteristic strategy distributions on a square lattice in the low noise limit if logit rule controls the strategy evolution. Analysis of the general properties indicates similar types of interactions at larger number of strategies for the symmetric matrix games.

  17. Next-Generation Sequencing for Binary Protein–Protein Interactions

    PubMed Central

    Suter, Bernhard; Zhang, Xinmin; Pesce, C. Gustavo; Mendelsohn, Andrew R.; Dinesh-Kumar, Savithramma P.; Mao, Jian-Hua

    2015-01-01

    The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary protein–protein interactions (PPIs) via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS), and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine. PMID:26734059

  18. Interacting fronts in a model for binary-mixture convection

    SciTech Connect

    Riecke, H.; Herrero, H.

    1994-06-01

    Motivated by the observation of localized traveling-wave states (`pulses`) in convection in binary liquid mixtures, the interaction of fronts is investigated in a real Ginzburg-Landau equation which is coupled to a large-scale field. In that system the Ginzburg-Landau equation describes the traveling-wave amplitude and the large-scale field corresponds to a concentration mode which arises due to the slowness of mass diffusion. For single fronts the large-scale field can lead to a hysteretic transition between slow and fast fronts. Its contribution to the interaction between fronts can be attractive as well as repulsive and depends strongly on their direction of propagation. Based on this mechanism alone, pairs of fronts in binary-mixture convection are expected to form stable pulses if they travel backward, i.e. opposite to the linear group velocity. For positive velocities the interaction becomes attractive and destabilizes the pulses. This is in qualitative agreement with recent experimental results. This new localization mechanism does not require any dispersion in contrast to that operating in the complex Ginzburg-Landau equation.

  19. Critical adsorption and colloidal interaction in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Alam, Sharmine; Omari, Rami; Grabowski, Christopher; Mukhopadhyay, Ashis

    2015-03-01

    We studied critical adsorption on colloidal nanoparticles in binary liquid mixture of 2,6 lutidine + water by using fluorescence correlation spectroscopy (FCS). Our results indicated that the adsorbed film thickness is of the order of correlation length associated with concentration fluctuations. The excess adsorption per unit area increases following a power law in reduced temperature with an exponent of -1, which is the mean-field value for the bulk susceptibility exponent. The measurements at higher particle volume fractions, where particle-particle interaction becomes important, will be presented. Acknowledgements are made to the Donors of the American Chemical Society Petroleum Research fund (PRF # 51694-ND10) for support of this research.

  20. Coordinated observations of interacting peculiar red giant binaries, 1

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE Observations were begun for a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s) HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. From our earlier surveys of PRG's, they were primary candidates to test the hypothesis that Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  1. Constraining the disk masses of the class I binary protostar GV Tau

    SciTech Connect

    Sheehan, Patrick D.; Eisner, Josh A.

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  2. Non-coplanar planet-disc interactions in binary star systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Lubow, Stephen H.; Nixon, Chris; Armitage, Philip J.

    2016-06-01

    About half of observed exoplanets are estimated to be in binary systems. Thus, understanding planet formation and evolution in binaries is essential for explaining observed exoplanet properties. We will show how planet-disc interactions in a mildly inclined disc around one component of a binary can lead to the formation of highly eccentric and highly inclined planets.

  3. A Mid-Infrared Survey of Class I/Flat-Spectrum Binary/Multiple Systems

    NASA Astrophysics Data System (ADS)

    Haisch, Karl E., Jr.; Barsony, M.; Ressler, M. E.; Greene, T. P.

    2006-12-01

    We have obtained new mid-infrared observations of 65 Class I/Flat-Spectrum (F.S.) objects in the Perseus, Taurus, Chamaeleon I and II, Rho Ophiuchi, and Serpens dark clouds. These objects represent a subset of the young stellar objects (YSOs) from our previous near-infrared multiplicity surveys. We detected 45/48 (94%) of the single sources, 16/16 (100%) of the primary components, and 12/16 (75%) of the secondary/triple components of the binary/multiple objects surveyed. The composite spectral energy distributions (SEDs) for all of our sample YSOs are either Class I or F.S., and, in 15/16 multiple systems, at least one of the individual components displays a Class I or F.S. spectral index. However, the occurrence of mixed pairings, such as F.S. with Class I, F.S. with Class II, and, in one case, an F.S. with a Class III (Cha I T33B), is suprisingly frequent. Such behavior is not consistent with that of multiple systems among T Tauri stars (TTS), where the companion of a classical TTS also tends to be a classical TTS, although other mixed pairings have been previously observed among Class II YSOs. Based on an analysis of the spectral indices of the individual binary components, there appears to be a higher proportion of mixed Class I/Flat-Spectrum systems (65-80%) than that of mixed Classical/Weak Lined T Tauri systems (25-40%), demonstrating that the envelopes of Class I/Flat-Spectrum systems are rapidly evolving during this evolutionary phase. We report the discovery of a steep spectral index secondary companion to ISO-Cha I 97 (Alpha > +3.9), detected for the first time via our mid-infrared observations. The secondary component of this system is a member of a rare class (one of four known) of very steep spectral index YSOs, those with Alpha > +3.

  4. A New Class of Nascent Eclipsing Binaries with Extreme Mass Ratios

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell; Di Stefano, Rosanne

    2015-03-01

    Early B-type main-sequence (MS) stars (M 1 ≈ 5-16 M ⊙) with closely orbiting low-mass stellar companions (q = M 2/M 1 < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI refl ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M 2 ≈ 0.8-2.4 M ⊙ (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI 1 = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.

  5. Mass flow in the interacting binary TX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E., Jr.; Mccluskey, C. P. S.; Kondo, Y.

    1988-01-01

    Twenty-two far-ultraviolet and 23 near-ultraviolet high resolution IUE spectra of the interactive Algol-type binary TX Ursae Majoris (B8 V + F-K III-IV) were analyzed in order to determine the nature of the mass flow occurring in this system. Absorption features due to high-temperature ions of Si IV, C IV, and N V are always present. The resonance lines of Al III, Fe II, Mg II and Si IV show strong phase and secular variations indicative of gas streaming and circumstellar/circumbinary material. Radial velocities as high as 500 to 600 km/sec are present. The gas flow is particularly prominent in 1985 between phases 0.7 and 0.0. The system is more active than U Sagittae and as active as U Cephei.

  6. Bosonic binary mixtures with Josephson-type interactions

    NASA Astrophysics Data System (ADS)

    Souza, Valéria de C.; Arenas, Zochil González; Barci, Daniel G.; Linhares, Cesar A.

    2016-05-01

    Motivated by experiments in bosonic mixtures composed of a single element in two different hyperfine states, we study bosonic binary mixtures in the presence of Josephson interactions between species. We focus on a particular model with O(2) isospin symmetry, lifted by an imbalanced population parametrized by a Rabi frequency, ΩR, and a detuning, ν, which couples the phases of both species. We have studied the model at mean-field approximation plus Gaussian fluctuations. We have found that both species simultaneously condensate below a critical temperature Tc and the relative phases are locked by the applied laser phase, α. Moreover, the condensate fractions are strongly dependent on the ratio ΩR / ∣ ν ∣ that is not affected by thermal fluctuations.

  7. Coordinated observations of interacting peculiar red giant binaries, 2

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE and H alpha observations continued on a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s), HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. They were primary candidates from earlier surveys of PRG's to test the hypothesis that the Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  8. Effects of Social Class and Interactive Setting on Maternal Speech.

    ERIC Educational Resources Information Center

    Hoff-Ginsberg, Erika

    The speech that upper-middle class mothers used with their young children was compared to that used by working class mothers. Mother-child interaction was recorded in four settings: mealtime, dressing, reading, and playing with toys. Also investigated were mothers' child rearing beliefs and goals. Participants included 33 upper-middle class and 30…

  9. Electromagnetic outflows in a class of scalar-tensor theories: Binary neutron star coalescence

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Palenzuela, Carlos; Barausse, Enrico; Lehner, Luis

    2015-04-01

    As we showed in previous work, the dynamics and gravitational emission of binary neutron-star systems in certain scalar-tensor theories can differ significantly from that expected from general relativity (GR) in the coalescing stage. In this work we examine whether the characteristics of the electromagnetic counterparts to these binaries—driven by magnetosphere interactions prior to the merger event—can provide an independent way to test gravity in the most strongly dynamical stages of binary mergers. We find that the electromagnetic flux emitted by binaries in these scalar-tensor theories can show deviations from the GR prediction in particular cases. These differences are quite subtle, thus requiring delicate measurements to differentiate between GR and the type of scalar-tensor theories considered in this work using electromagnetic observations alone. However, if coupled with a gravitational-wave detection, electromagnetic measurements might provide a way to increase the confidence with which GR will be confirmed (or ruled out) by gravitational observations.

  10. Equivalence Class Formation: A Method for Teaching Statistical Interactions

    ERIC Educational Resources Information Center

    Fields, Lanny; Travis, Robert; Roy, Deborah; Yadlovker, Eytan; de Aguiar-Rocha, Liliane; Sturmey, Peter

    2009-01-01

    Many students struggle with statistical concepts such as interaction. In an experimental group, participants took a paper-and-pencil test and then were given training to establish equivalent classes containing four different statistical interactions. All participants formed the equivalence classes and showed maintenance when probes contained novel…

  11. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  12. Unsolved Problems in the Evolution of Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Webbink, R. F.

    2006-06-01

    Common envelope evolution is essential to the formation of short-period binaries with compact components. Conditions for its onset, and estimates of its outcome are summarized. However, applied to the well-known binaries V471 Tauri and T Coronae Borealis, these conditions lead to serious inconsistencies with their observed properties.

  13. A Class Exercise: Studying the Eclipsing Binary Star RZ Cas Through Visual Observations

    NASA Astrophysics Data System (ADS)

    Balonek, T. J.; Davis, S. M.

    2000-05-01

    As part of the sophomore-junior level "Astronomical Techniques" course at Colgate University, students learn just how much science they can do with simple tools: a pair of binoculars, a clock, and pencil and paper. The students study the Algol type visual eclipsing binary star system RZ Cassiopeiae: observing and making a light curve for the primary minimum, determining the time of minimum using several techniques, calculating the binary star system's orbital period, and determining changes in the system's period over a thirty year interval by constructing an O-C curve. Through a series of preparatory exercises, the students learn how to read star maps and use the unaided eye, binoculars and telescopes to locate star fields and make visual magnitude measurements. By making multiple measurements of stars in the field of RZ Cas on several nights, the students determine the accuracy they can achieve in estimating the visual magnitude of a star -- typically 0.2 magnitude. (Some students even accidentally discover that one of the stars in the field is a variable star!) With this experience, the students use binoculars to observe the four hour primary eclipse of RZ Cas (magnitude 6.2 - 7.7), making magnitude measurements every five minutes. A light curve is then plotted. Several methods are used to determine the time of minimum, which is then converted to heliocentric Julian day. Using times of minima determined by former students (and the instructor) in previous years dating from 1968 to the present, the students determine the average period to a tenth of a second second. By constructing an O-C curve from the class's data and that obtained by the AAVSO, changes in the period of RZ Cas are noticeable -- possibly due to mass transfer in the system. It will be interesting for future classes to build on this knowledge using the primitive tools of our not so distant past.

  14. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures.

    PubMed

    Krishnan, Kannan; Haddad, Sami; Béliveau, Martin; Tardif, Robert

    2002-12-01

    The available data on binary interactions are yet to be considered within the context of mixture risk assessment because of our inability to predict the effect of a third or a fourth chemical in the mixture on the interacting binary pairs. Physiologically based pharmacokinetic (PBPK) models represent a potentially useful framework for predicting the consequences of interactions in mixtures of increasing complexity. This article highlights the conceptual basis and validity of PBPK models for extrapolating the occurrence and magnitude of interactions from binary to more complex chemical mixtures. The methodology involves the development of PBPK models for all mixture components and interconnecting them at the level of the tissue where the interaction is occurring. Once all component models are interconnected at the binary level, the PBPK framework simulates the kinetics of all mixture components, accounting for the interactions occurring at various levels in more complex mixtures. This aspect was validated by comparing the simulations of a binary interaction-based PBPK model with experimental data on the inhalation kinetics of m-xylene, toluene, ethyl benzene, dichloromethane, and benzene in mixtures of varying composition and complexity. The ability to predict the kinetics of chemicals in complex mixtures by accounting for binary interactions alone within a PBPK model is a significant step toward the development of interaction-based risk assessment for chemical mixtures. PMID:12634130

  15. AM CVn Stars: Structure and Evolution of Ultra-Short Period Interacting Binaries

    NASA Technical Reports Server (NTRS)

    Froning, Cynthia

    2005-01-01

    This is the final report of a FUSE program to study the physics of accretion and outflows in ultra-compact, helium dominated, disk-accreting binaries. With FUSE, we observed the AM CVn binary V803 Cen, which is one of only two AM CVn systems observed by FUSE to date. V803 Cen is a short-period interacting binary in which a hydrogen-deficient white dwarf transfers mass to another white dwarf via a hot, steady-state accretion disk. Unlike other cataclysmic variables (CVs), AM CVn stars have undergone double common envelope evolution (one for each white dwarf in the binary) and so probe an alternate route of evolution in binary stars. Our goals in this project were to investigate how the structure of the accretion disk and the link between the disk and wind outflows are affected by the absence of hydrogen in the system and by the compact size of the binary and the accretion disk.

  16. An Interacting Binary System Powers Precessing Outflows of an Evolved Star

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.; Miszalski, Brent; Rauch, Thomas; Jones, David; Corradi, Romano L. M.; Napiwotzki, Ralf; Day-Jones, Avril C.; Köppen, Joachim

    2012-11-01

    Stars are generally spherical, yet their gaseous envelopes often appear nonspherical when ejected near the end of their lives. This quirk is most notable during the planetary nebula phase, when these envelopes become ionized. Interactions among stars in a binary system are suspected to cause the asymmetry. In particular, a precessing accretion disk around a companion is believed to launch point-symmetric jets, as seen in the prototype Fleming 1. Our finding of a post-common-envelope binary nucleus in Fleming 1 confirms that this scenario is highly favorable. Similar binary interactions are therefore likely to explain these kinds of outflows in a large variety of systems.

  17. An interacting binary system powers precessing outflows of an evolved star.

    PubMed

    Boffin, Henri M J; Miszalski, Brent; Rauch, Thomas; Jones, David; Corradi, Romano L M; Napiwotzki, Ralf; Day-Jones, Avril C; Köppen, Joachim

    2012-11-01

    Stars are generally spherical, yet their gaseous envelopes often appear nonspherical when ejected near the end of their lives. This quirk is most notable during the planetary nebula phase, when these envelopes become ionized. Interactions among stars in a binary system are suspected to cause the asymmetry. In particular, a precessing accretion disk around a companion is believed to launch point-symmetric jets, as seen in the prototype Fleming 1. Our finding of a post-common-envelope binary nucleus in Fleming 1 confirms that this scenario is highly favorable. Similar binary interactions are therefore likely to explain these kinds of outflows in a large variety of systems. PMID:23139326

  18. The formation of primordial binaries in globular clusters by star-disk interactions

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Clarke, C. J.; Pringle, J. E.

    1991-01-01

    The formation of primordial binaries in globular clusters is examined using simple numerical models. Clusters of protostars collapse until their velocity dispersion rises sufficiently to reverse the infall and the cluster reaches equilibrium. During the collapse, interactions between stars and protostellar disks lead to stellar capture. It is found that binary fraction of a few percent typically result. Binary formation is terminated when the velocity dispersion rises to a point at which most encounters result in disk destruction rather than capture. As a result, much gas is returned to the cluster ISM, limiting the star formation efficiency to a value significantly below 100 percent.

  19. Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate.

    PubMed

    Chen, Zhong-Xiu; Deng, Shao-Ping; Li, Xiao-Kui

    2008-02-15

    Mixed micelle formation and synergistic interactions of binary surfactant combinations of sodium nonylphenol polyoxyethylene ether sulfate (NPES) with typical surfactants such as sodium dodecyl sulfate (SDS), Triton X-100 (TX100), cetyl trimethyl ammonium bromide (CTAB), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at 25 degrees C in the presence of NaCl have been investigated. The critical micelle concentration of the binary mixtures has been quantitatively estimated by steady-state fluorescence measurements. The micellar characteristics such as composition, activity coefficients, and mutual interaction parameters have been estimated following different theoretical treatments. Investigation on the micellization and synergistic interaction of NPES with four kinds of surfactants showed that the behavior of the binary mixture deviated from the ideal state. The analysis revealed that the interaction parameter values (beta) varied with variation of solvent composition. Besides the strong electrostatic attraction between the oppositely charged surfactant NPES-CTAB mixture, the interaction between NPES and SDS also showed far more deviation from ideal behavior than that of TX100 and AOT. The reason for the synergism is also discussed and the results show that an ionic and a nonionic surfactant character existed concurrently in NPES due to the combination of a sulfate group and polyoxyethylene as a hydrophilic moiety. Zeta potential and diffusion coefficient measurements of micelles confirmed the synergistic interaction between the binary surfactants. PMID:18005979

  20. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  1. Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

    NASA Astrophysics Data System (ADS)

    Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.

    2007-10-01

    It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

  2. Identification of Five Interacting Binaries in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Britt, C. T.; Torres, M. A. P.; Hynes, R. I.; Jonker, P. G.; Maccarone, T. J.; Greiss, S.; Steeghs, D.; Groot, P.; Knigge, C.; Dieball, A.; Nelemans, G.; Mikles, V. J.; Gossen, L.

    2013-06-01

    We present optical light curves, spectroscopy, and classification of five X-ray sources in the Chandra Galactic Bulge Survey (CXOGBS J174009.1-284725 (CX5), CXOGBS J173935.7-272935 (CX18), CXOGBS J173946.9-271809 (CX28), CXOGBS J173729.1-292804 (CX37), CXOGBS J174607.6-261547 (CX561)). These objects were selected based on bright optical counterparts which were quickly found to have emission lines in their optical spectra. This paper presents an illustration of GBS optical follow-up, targeting emission line objects. Of these five objects, four exhibit photometric variability in the Sloan r' band. CX5 shows a tentative period of 2.1 hr and is clearly an intermediate polar (IP). CX28 and CX37 both exhibit flickering with no clear period. Both are also suggested to be IPs. CX18 was observed to undergo two dwarf nova outbursts. Finally, CX561 shows no detectable variability, although its characteristics would be consistent with either a quiescent low-mass X-ray binary or cataclysmic variable.

  3. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  4. Identification of five interacting binaries in the galactic bulge survey

    SciTech Connect

    Britt, C. T.; Hynes, R. I.; Mikles, V. J.; Gossen, L.; Torres, M. A. P.; Jonker, P. G.; Maccarone, T. J.; Knigge, C.; Dieball, A.; Greiss, S.; Steeghs, D.; Groot, P.; Nelemans, G.

    2013-06-01

    We present optical light curves, spectroscopy, and classification of five X-ray sources in the Chandra Galactic Bulge Survey (CXOGBS J174009.1–284725 (CX5), CXOGBS J173935.7–272935 (CX18), CXOGBS J173946.9–271809 (CX28), CXOGBS J173729.1–292804 (CX37), CXOGBS J174607.6–261547 (CX561)). These objects were selected based on bright optical counterparts which were quickly found to have emission lines in their optical spectra. This paper presents an illustration of GBS optical follow-up, targeting emission line objects. Of these five objects, four exhibit photometric variability in the Sloan r' band. CX5 shows a tentative period of 2.1 hr and is clearly an intermediate polar (IP). CX28 and CX37 both exhibit flickering with no clear period. Both are also suggested to be IPs. CX18 was observed to undergo two dwarf nova outbursts. Finally, CX561 shows no detectable variability, although its characteristics would be consistent with either a quiescent low-mass X-ray binary or cataclysmic variable.

  5. DC CIRCUIT POWERED BY ORBITAL MOTION: MAGNETIC INTERACTIONS IN COMPACT OBJECT BINARIES AND EXOPLANETARY SYSTEMS

    SciTech Connect

    Lai Dong

    2012-09-20

    The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.

  6. Class II HLA interactions modulate genetic risk for multiple sclerosis

    PubMed Central

    Dilthey, Alexander T; Xifara, Dionysia K; Ban, Maria; Shah, Tejas S; Patsopoulos, Nikolaos A; Alfredsson, Lars; Anderson, Carl A; Attfield, Katherine E; Baranzini, Sergio E; Barrett, Jeffrey; Binder, Thomas M C; Booth, David; Buck, Dorothea; Celius, Elisabeth G; Cotsapas, Chris; D’Alfonso, Sandra; Dendrou, Calliope A; Donnelly, Peter; Dubois, Bénédicte; Fontaine, Bertrand; Fugger, Lars; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Hemmer, Bernhard; Hillert, Jan; Kockum, Ingrid; Leslie, Stephen; Lill, Christina M; Martinelli-Boneschi, Filippo; Oksenberg, Jorge R; Olsson, Tomas; Oturai, Annette; Saarela, Janna; Søndergaard, Helle Bach; Spurkland, Anne; Taylor, Bruce; Winkelmann, Juliane; Zipp, Frauke; Haines, Jonathan L; Pericak-Vance, Margaret A; Spencer, Chris C A; Stewart, Graeme; Hafler, David A; Ivinson, Adrian J; Harbo, Hanne F; Hauser, Stephen L; De Jager, Philip L; Compston, Alastair; McCauley, Jacob L; Sawcer, Stephen; McVean, Gil

    2016-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles. PMID:26343388

  7. HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE WITH CHLOROFORM, CHLORODIBROMOMETHANE AND BROMOFORM

    EPA Science Inventory

    HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE (BDCM) WITH CHLOROFORM (CHC13), CHLORODIBROMOMETHANE (CDBM) AND BROMOFORM (CHBr3). Y M Se'', C Gennings2, A McDonald', L K Teuschler3, A Hamm2and J E Simmons .'NHEERL, ORD, U.S. EPA, RTP, NC; 2MCV, VCU, Ric...

  8. Accretion Disks in Interacting Binaries: Simulations of the Stream-Disk Impact

    NASA Astrophysics Data System (ADS)

    Armitage, P. J.; Livio, M.

    1996-10-01

    We investigate the impact between the gas stream from the inner Lagrangian point and the accretion disk in interacting binaries using three-dimensional smoothed particle hydrodynamics simulations. We find that a significant fraction of the stream material can ricochet off the disk edge and overflow toward smaller radii and that this generates pronounced nonaxisymmetric structure in the absorption column toward the central object. We discuss the implications of our results for observations and timedependent models of low-mass X-ray binaries, cataclysmic variables, and supersoft X-ray sources.

  9. Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data

    NASA Astrophysics Data System (ADS)

    Shukla, Rajeev K.; Kumar, Atul; Srivastava, Urvashi; Srivastava, Kirti; Pandey, Vivek K.

    2016-09-01

    Density and acoustic velocity were measured for binary liquid mixtures of formamide, N-methylacetamide (NMA), dimethylformamide (DMF), and dimethylacetamide (DMA) with acetonitrile at atmospheric pressure and 293.15 K, 298.15 K, 303.15 K, 308.15 K, or 313.15 K over the concentration range 0.12 to 0.97. Models assuming association and nonassociation of the components of the mixtures were used to predict the behavior of the studied liquids, which would typically show weak interactions. The measured properties were fitted to the Redlich-Kister polynomial to estimate the binary coefficients and standard errors. The data were used to study the molecular interactions in the binary mixtures. Furthermore, the McAllister multibody interaction model was used to correlate the properties of the binary liquid mixtures. Testing of the nonassociation and association models for the different systems showed that, compared with the nonassociation model theoretical results, the association model theoretical results were more consistent with the experimental results.

  10. Water dynamics and interactions in water-polyether binary mixtures.

    PubMed

    Fenn, Emily E; Moilanen, David E; Levinger, Nancy E; Fayer, Michael D

    2009-04-22

    Poly(ethylene) oxide (PEO) is a technologically important polymer with a wide range of applications including ion-exchange membranes, protein crystallization, and medical devices. PEO's versatility arises from its special interactions with water. Water molecules may form hydrogen-bond bridges between the ether oxygens of the backbone. While steady-state measurements and theoretical studies of PEO's interactions with water abound, experiments measuring dynamic observables are quite sparse. A major question is the nature of the interactions of water with the ether oxygens as opposed to the highly hydrophilic PEO terminal hydroxyls. Here, we examine a wide range of mixtures of water and tetraethylene glycol dimethyl ether (TEGDE), a methyl-terminated derivative of PEO with 4 repeat units (5 ether oxygens), using ultrafast infrared polarization selective pump-probe measurements on water's hydroxyl stretching mode to determine vibrational relaxation and orientational relaxation dynamics. The experiments focus on the dynamical interactions of water with the ether backbone because TEGDE does not have the PEO terminal hydroxyls. The experiments observe two distinct subensembles of water molecules: those that are hydrogen bonded to other waters and those that are associated with TEGDE molecules. The water orientational relaxation has a fast component of a few picoseconds (water-like) followed by much slower decay of approximately 20 ps (TEGDE associated). The two decay times vary only mildly with the water concentration. The two subensembles are evident even in very low water content samples, indicating pooling of water molecules. Structural change as water content is lowered through either conformational changes in the backbone or increasing hydrophobic interactions is discussed. PMID:19323522

  11. CLASSIFICATION OF BINARY MASS SPECTRA OF TOXIC COMPOUNDS WITH AN INDUCTIVE EXPERT SYSTEM AND COMPARISON WITH SIMCA CLASS MODELING (JOURNAL VERSION)

    EPA Science Inventory

    The performance of an inexpensive, inductive rule-building expert system, 1ST CLASS, using the ID3 algorithm was compared to that of SIMCA class modeling in classifying the binary mass spectra of 78 toxic and related compounds. The compressed mass spectra consisted of 17 masses c...

  12. Split-Protein Systems: Beyond Binary Protein-Protein Interactions

    PubMed Central

    Shekhawat, Sujan S.; Ghosh, Indraneel

    2011-01-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome [1], a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, E. coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  13. Split-protein systems: beyond binary protein-protein interactions.

    PubMed

    Shekhawat, Sujan S; Ghosh, Indraneel

    2011-12-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  14. Dynamics of binary and planetary-system interaction with disks - Eccentricity changes

    NASA Technical Reports Server (NTRS)

    Atrymowicz, Pawel

    1992-01-01

    Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.

  15. 3D Modeling of the Massive Binary Wind Interaction Region in Eta Carinae

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, T.; Owocki, S.; Okazaki, A.; Russell, C.

    2009-01-01

    We present recent work on the theoretical modeling of low excitation ([Fe II]) and high excitation ([Fe III]) wind lines observed in Eta Carinae using the HST/STIS. The spatially resolved structures seen in these lines are interpreted as the time-averaged, outer extensions of the wind from the primary star and the wind-wind interaction region of the massive binary system. For most of the orbit, the wind-wind interface can be approximated as a cone with a half-opening angle of 65° whose axis of rotation is aligned with the major axis of the binary orbit and appears to lie in the plane of the Homunculus disk. However, because the orbit is highly elliptical, this approximation breaks down at periastron and so full 3D Smoothed Particle Hydrodynamics (SPH) simulations become necessary. By analyzing the results of these 3D SPH simulations of the binary interactions and comparing them to the spectra obtained with the HST/STIS we place further constraints on the orientation of the binary orbit, and hope to eventually determine how/where UV light is escaping in the system, to search for any direct signatures of the companion star, and to ultimately establish a mass ratio for the system.

  16. Energy level realignment in weakly interacting donor-acceptor binary molecular networks.

    PubMed

    Zhong, Jian-Qiang; Qin, Xinming; Zhang, Jia-Lin; Kera, Satoshi; Ueno, Nobuo; Wee, Andrew Thye Shen; Yang, Jinlong; Chen, Wei

    2014-02-25

    Understanding the effect of intermolecular and molecule-substrate interactions on molecular electronic states is key to revealing the energy level alignment mechanism at organic-organic heterojunctions or organic-inorganic interfaces. In this paper, we investigate the energy level alignment mechanism in weakly interacting donor-acceptor binary molecular superstructures, comprising copper hexadecafluorophthalocyanine (F16CuPc) intermixed with copper phthalocyanine (CuPc), or manganese phthalocynine (MnPc) on graphite. The molecular electronic structures have been systematically studied by in situ ultraviolet photoelectron spectroscopy (UPS) and low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) experiments and corroborated by density functional theory (DFT) calculations. As demonstrated by the UPS and LT-STM/STS measurements, the observed unusual energy level realignment (i.e., a large downward shift in donor HOMO level and a corresponding small upward shift in acceptor HOMO level) in the CuPc-F16CuPc binary superstructures originates from the balance between intermolecular and molecule-substrate interactions. The enhanced intermolecular interactions through the hydrogen bonding between neighboring CuPc and F16CuPc can stabilize the binary superstructures and modify the local molecular electronic states. The obvious molecular energy level shift was explained by gap-state-mediated interfacial charge transfer. PMID:24433044

  17. Using the Generalized Index of Dissimilarity to Detect Gene-Gene Interactions in Multi-Class Phenotypes

    PubMed Central

    Yee, Jaeyong; Kim, Yongkang; Park, Taesung; Park, Mira

    2016-01-01

    To find genetic association between complex diseases and phenotypic traits, one important procedure is conducting a joint analysis. Multifactor dimensionality reduction (MDR) is an efficient method of examining the interactions between genes in genetic association studies. It commonly assumes a dichotomous classification of the binary phenotypes. Its usual approach to determining the genomic association is to construct a confusion matrix to estimate a classification error, where a binary risk status is determined and assigned to each genotypic multifactor class. While multi-class phenotypes are commonly observed, the current MDR approach does not handle these phenotypes appropriately because the thresholds for the risk statuses may not be clear. In this study, we suggest a new method for estimating gene-gene interactions for multi-class phenotypes. Our approach adopts the index of dissimilarity (IDS) as an evaluation measure. This is analytically equivalent to the common association measure of balanced accuracy (BA) for the binary traits, while it is not required to determine the risk status for the estimation. Moreover, it is easily expandable to the generalized index of dissimilarity (GIDS), which has an explicit form that can handle any number of categories. The performance of the proposed method was compared with those of other approaches via simulation studies in which fifteen genetic models were generated with three class outcomes. A consistently better performance was observed using the proposed method. The effect of a varying number of categories was examined. The proposed method was also illustrated using real genome-wide association studies (GWAS) data from the Korean Association Resource (KARE) project. PMID:27556585

  18. Using the Generalized Index of Dissimilarity to Detect Gene-Gene Interactions in Multi-Class Phenotypes.

    PubMed

    Yee, Jaeyong; Kim, Yongkang; Park, Taesung; Park, Mira

    2016-01-01

    To find genetic association between complex diseases and phenotypic traits, one important procedure is conducting a joint analysis. Multifactor dimensionality reduction (MDR) is an efficient method of examining the interactions between genes in genetic association studies. It commonly assumes a dichotomous classification of the binary phenotypes. Its usual approach to determining the genomic association is to construct a confusion matrix to estimate a classification error, where a binary risk status is determined and assigned to each genotypic multifactor class. While multi-class phenotypes are commonly observed, the current MDR approach does not handle these phenotypes appropriately because the thresholds for the risk statuses may not be clear. In this study, we suggest a new method for estimating gene-gene interactions for multi-class phenotypes. Our approach adopts the index of dissimilarity (IDS) as an evaluation measure. This is analytically equivalent to the common association measure of balanced accuracy (BA) for the binary traits, while it is not required to determine the risk status for the estimation. Moreover, it is easily expandable to the generalized index of dissimilarity (GIDS), which has an explicit form that can handle any number of categories. The performance of the proposed method was compared with those of other approaches via simulation studies in which fifteen genetic models were generated with three class outcomes. A consistently better performance was observed using the proposed method. The effect of a varying number of categories was examined. The proposed method was also illustrated using real genome-wide association studies (GWAS) data from the Korean Association Resource (KARE) project. PMID:27556585

  19. Abundance anomalies of carbon and nitrogen in the IUE spectra of Algol-type interacting binaries

    NASA Technical Reports Server (NTRS)

    Mccluskey, Carolina P. S.

    1990-01-01

    There are two primary ways in which the products of nucleosynthesis in stellar interiors may appear at the surface of a star. These are mixing and/or loss of the original unburned stellar envelope. In interacting binaries, overflow can contribute dramatically to envelope loss. The simplest abundance anomalies to be expected from nuclear burning of hydrogen, helium, or carbon would be under or over abundances H, He, C, O, Ne, and Mg. In addition, it is expected that carbon is initially severely depleted, while nitrogen is enhanced during hydrogen burning via the CNO cycle in stars above two solar masses. Other, more subtle anomalies are also expected, and elements heavier than magnesium can be created during very late evolution by nuclear burning in massive stars. Consequently, it is expected that abundance anomalies of various kinds should occur in interacting binaries where one or both stars have lost significant amounts of mass.

  20. Optical observations of the unusual interacting binary V644 Monocerotis (HD 51480)

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.; Dempsey, Robert C.

    1989-01-01

    New optical spectroscopic and UBV photometric observations of the bright Be/shell star V644 Mon (HD 51480) are presented. The object, which has been described as an interacting binary system, exhibits strong, variable Balmer emission as well as numerous metallic emission features in the blue. No signs of absorption features due to any late-type companion are seen at wavelengths below 6500 A.

  1. Optical observations of the unusual interacting binary V644 Monocerotis (HD 51480)

    SciTech Connect

    Bopp, B.W.; Dempsey, R.C. )

    1989-11-01

    New optical spectroscopic and UBV photometric observations of the bright Be/shell star V644 Mon (HD 51480) are presented. The object, which has been described as an interacting binary system, exhibits strong, variable Balmer emission as well as numerous metallic emission features in the blue. No signs of absorption features due to any late-type companion are seen at wavelengths below 6500 A. 9 refs.

  2. Class Size Effects on the Number and Types of Student-Teacher Interactions in Primary Classrooms

    ERIC Educational Resources Information Center

    Folmer-Annevelink, Elvira; Doolaard, Simone; Mascareno, Mayra; Bosker, Roel J.

    2010-01-01

    This paper addresses the relationship between class size and student-teacher interactions as an explanation for effects of class size on achievement. Observations were conducted in kindergarten and Grade 1 classes from 46 Dutch primary schools in order to address the effect of class size on the amount and type of student-teacher interactions. The…

  3. Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3-CuO binary nanofluids) for direct absorption solar thermal energy

    NASA Astrophysics Data System (ADS)

    Menbari, Amir; Alemrajabi, Ali Akbar

    2016-02-01

    Nanofluids play a major role in many modern engineering processes. Binary nanofluids are a new class of nanofluids that are prepared by dispersing simultaneously two dissimilar nanoparticles in a base fluid. They offer a good potential for use in direct absorption solar systems. The present study investigates both experimentally and analytically the optical properties of binary nanofluids for direct absorption in solar applications. For this purpose, two dissimilar nanoparticles, i.e. CuO and γ-Al2O3, are dispersed in water, ethylene glycol, and the ethylene glycol-water mixture to form binary nanofluids. In addition, a new method is developed for calculating the extinction coefficient of the binary nanofluids based on the classical electromagnetic theory. It will be shown that the extinction coefficients obtained from both analytical and experimental studies are in good agreement. Moreover, the extinction coefficient of the binary nanofluids is found to be approximately equal to the sum of the extinction coefficients of the constituent components, determined both analytically and experimentally. By increasing the nanoparticle volume fraction, improvements are observed in the extinction coefficient of the binary nanofluids prepared. Also, the analytical and experimental results of the study show that the extinction coefficient of the binary nanoparticles dispersed in water as the "base fluid" is greater than those of the binary nanoparticles dispersed in ethylene glycol or the mixture of ethylene glycol-water.

  4. Nonlocal quartic interactions and universality classes in perovskite manganites.

    PubMed

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2015-07-01

    A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via Wilson's renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the correlation exponent to be ν=1/2+O(ε) through epsilon expansion in the parameter ε=d(c)-d, where d is the space dimension, d(c)=4+2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values of σ compare well with various existing experimental estimates for perovskite manganites with various doping levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes. PMID:26274140

  5. The two-body interaction potential in the STF tensor formalism: an application to binary asteroids

    NASA Astrophysics Data System (ADS)

    Compère, A.; Lemaître, A.

    2014-08-01

    The symmetric trace free (STF) tensor formalism, developed by Hartmann et al. (Celest Mech Dyn Astron 60:139-159. doi: 10.1007/BF00693097, 1994), is a nice tool, not much used in Celestial Mechanics. It is fully equivalent to the usual spherical harmonics but permits more elegant and compact formulations. The coupling between the gravitational fields of extended bodies with this formalism has been used in Mathis and Le Poncin-Lafitte (Astron Astrophys 497:889-910. doi: 10.1051/0004-6361/20079054, 2009) for binary stars or planetary systems, but not yet applied to binary asteroids. However, binary asteroids are common in the Solar System and usually their study requires a full two rigid body approach. The formulation of the two-body interaction potential in the STF formalism in the full two rigid body problem is detailed and completed in this article. An application to the binary asteroid (66391) 1999 KW4 is presented with a comparison of our results with other results of the literature for validation.

  6. VizieR Online Data Catalog: Finding List of Interacting Binaries, 5th ed. (Wood+ 1980)

    NASA Astrophysics Data System (ADS)

    Wood, F. B.; Oliver, J. P.; Florkowski, D. R.; Koch, R. H.

    1996-01-01

    This catalog is abstracted from the Card Catalog maintained at the University of Florida containing information on all published, and to the extent available, unpublished work on eclipsing binaries. The fifth edition differs from the previous ones in the extension of the magnitude limit at maximum light from 13 to 15. The catalog fields are Finding List number; star name; position (equinox 1900); blue magnitude at maximum light; bandpass of maximum light; depth of primary minimum in same bandpass; bandpass primary minimum; depth of secondary minimum and its bandpass; spectral class of star eclipsed at primary light and optional uncertainty character; spectral class of star eclipsed at secondary light; most recent reliable epoch of primary minimum; most recent orbital period; duration of primary minimum; duration of totality of primary minimum; BD, CoD, CPD, and HD number; alternate designations of system; codes indicating the nature of the system. (3 data files).

  7. PG0027 + 260 - An example of a class of cataclysmic binaries with mysterious, but consistent, behavior

    NASA Technical Reports Server (NTRS)

    Thorstensen, John R.; Ringwald, F. A.; Wade, Richard A.; Schmidt, Gary D.; Norsworthy, Jane E.

    1991-01-01

    This paper reports extensive optical observations on the PG0027 + 260 binary, carried out on August 1984 with the 1.3 McGraw-Hill telescope and Mark II spectrometer at Michigan-Dartmouth-MIT Observatory on Kitt Peak. It is shown that this object is an eclipsing novalike variable with an orbital period of 3.51 hr. The PG0027 + 260 displays several unexplained phenomena which are remarkably similar to those of the SW Sex, DW UMa, and V1315 Aql, which are eclipsing novalike stars with periods between 3 and 4 hrs. The eclipse of the PG0027 + 260 is modeled, and it is shown that, while the mean eclipse light curve is easy to match, there is no simple explanation for the variable depth.

  8. Interactions between the Class II Transactivator and CREB Binding Protein Increase Transcription of Major Histocompatibility Complex Class II Genes

    PubMed Central

    Fontes, Joseph D.; Kanazawa, Satoshi; Jean, Dickson; Peterlin, B. Matija

    1999-01-01

    Class II major histocompatibility (class II) genes are regulated in a B-cell-specific and gamma interferon-inducible fashion. The master switch for the expression of these genes is the class II transactivator (CIITA). In this report, we demonstrate that one of the functions of CIITA is to recruit the CREB binding protein (CBP) to class II promoters. Not only functional but also specific binding interactions between CIITA and CBP were demonstrated. Moreover, a dominant negative form of CBP decreased the activity of class II promoters and levels of class II determinants on the surface of cells. Finally, the inhibition of class II gene expression by the glucocorticoid hormone could be attributed to the squelching of CBP by the glucocorticoid receptor. We conclude that CBP, a histone acetyltransferase, plays an important role in the transcription of class II genes. PMID:9858618

  9. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger.

    PubMed

    Bernuzzi, Sebastiano; Nagar, Alessandro; Dietrich, Tim; Damour, Thibault

    2015-04-24

    The data analysis of the gravitational wave signals emitted by coalescing neutron star binaries requires the availability of an accurate analytical representation of the dynamics and waveforms of these systems. We propose an effective-one-body model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to the merger. Our effective-one-body model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model energetics and the gravitational wave phasing with new high-resolution multiorbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement within the uncertainty of the numerical data for all configurations. Our model is the first semianalytical model that captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available. PMID:25955043

  10. An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-01

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (˜180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τp ˜ 1.4 × 104 yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  11. Interacting binary galaxies. III - Observations of NGC 1587/1588 and NGC 7236/7237

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Hoessel, John G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum.

  12. Interacting binary galaxies. III. Observations of NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.; Hoessel, J.G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum. 62 references.

  13. Teaching Literacy in Primary Schools Using an Interactive Whole-Class Technology: Facilitating Student-to-Student Whole-Class Dialogic Interactions

    ERIC Educational Resources Information Center

    Maher, Damian

    2012-01-01

    Much of the research conducted on the use of interactive whole-class technologies in primary school classroom focuses on teacher-to-student interactions. This paper, drawing on a social theory of learning, reports on a qualitative case study undertaken with two primary school classes in one school in New South Wales, Australia where the…

  14. Leadership Class Configuration Interaction Code - Status and Opportunities

    NASA Astrophysics Data System (ADS)

    Vary, James

    2011-10-01

    With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).

  15. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation.

    PubMed

    Kale, Avinash; Hire, Ramesh S; Hadapad, Ashok B; D'Souza, Stanislaus F; Kumar, Vinay

    2013-11-01

    The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases. PMID:23974012

  16. Binary Interactions as a Possible Scenario for the Formation of Multiple Stellar Populations in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Jiang, Dengkai; Han, Zhanwen; Li, Lifang

    2014-07-01

    Observations have revealed the presence of multiple stellar populations in globular clusters (GCs) that exhibit wide abundance variations and multiple sequences in the Hertzsprung-Russell (HR) diagram. We present a scenario for the formation of multiple stellar populations in GCs. In this scenario, initial GCs are single-generation clusters, and our model predicts that the stars with anomalous abundances observed in GCs are merged stars and accretor stars produced by binary interactions—rapidly rotating stars at the moment of their formation—and that these stars are more massive than normal single stars in the same evolutionary stage. We find that, due to their own evolution, these rapidly rotating stars have surface abundances, effective temperatures, and luminosities that are different from normal single stars in the same evolutionary stage. This stellar population of binaries reproduces two important points of observational evidence of multiple stellar populations: a Na-O anticorrelation and multiple sequences in the HR diagram. This evidence suggests that binary interactions may be a possible scenario for the formation of multiple stellar populations in GCs.

  17. Binary interactions as a possible scenario for the formation of multiple stellar populations in globular clusters

    SciTech Connect

    Jiang, Dengkai; Han, Zhanwen; Li, Lifang E-mail: zhanwenhan@ynao.ac.cn

    2014-07-01

    Observations have revealed the presence of multiple stellar populations in globular clusters (GCs) that exhibit wide abundance variations and multiple sequences in the Hertzsprung-Russell (HR) diagram. We present a scenario for the formation of multiple stellar populations in GCs. In this scenario, initial GCs are single-generation clusters, and our model predicts that the stars with anomalous abundances observed in GCs are merged stars and accretor stars produced by binary interactions—rapidly rotating stars at the moment of their formation—and that these stars are more massive than normal single stars in the same evolutionary stage. We find that, due to their own evolution, these rapidly rotating stars have surface abundances, effective temperatures, and luminosities that are different from normal single stars in the same evolutionary stage. This stellar population of binaries reproduces two important points of observational evidence of multiple stellar populations: a Na-O anticorrelation and multiple sequences in the HR diagram. This evidence suggests that binary interactions may be a possible scenario for the formation of multiple stellar populations in GCs.

  18. Class Blogs as a Teaching Tool to Promote Writing and Student Interaction

    ERIC Educational Resources Information Center

    Sullivan, Miriam; Longnecker, Nancy

    2014-01-01

    Blogs are a useful teaching tool for improving student writing and increasing class interaction. However, most studies have looked at individual blogs rather than blogs maintained by a whole class. We introduced assignments involving participation in class blogs to four science communication classes with enrolments of between 15 and 36 students.…

  19. Characterizing Olfactory Binary Mixture Interactions in Fischer 344 Rats Using Behavioral Reaction Times

    PubMed Central

    Yoder, Wendy M.; Gaynor, Leslie; Windham, Ethan; Lyman, Michelle; Munizza, Olivia; Setlow, Barry; Bizon, Jennifer L.

    2015-01-01

    Response times provide essential subthreshold perceptual data that extend beyond accuracy alone. Behavioral reaction times (RTs) were used to characterize rats’ ability to detect individual odorants in a series of complimentary binary odorant mixture ratios. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on an odor identification task using nonreinforced probe trials. Binary mixture ratios composed of aliphatic odorants (citral and octanol) were arranged such that relative contributions of the 2 components varied systematically by a factor of 1% (v/v). Odorant concentrations for the target (S+), control (S−), and mixture (S+:S−) odorants were presented relative to threshold for each rat. Rats were initially trained to respond by licking at a spout to obtain liquid reward for either citral or octanol as the reinforced target (S+) odorant. After achieving 100% accuracy, rats were transferred to variable ratio (VR 2) reinforcement for correct responding. Nonreinforced probe trials (2 per block of 22 trials) were tested for each mixture ratio and recorded as either S+ (rats lick-responded in the presence of the mixture) or S− (rats refrained from licking), thereby indicating detection of the trained, S+ odorant. To determine the perceived salience for each ratio, RTs (latency from odorant onset to lick response) were recorded for each trial. Consistent with previous studies, RTs for both odorants were shortest (~150–200ms) when the probe trials consisted of a single, monomolecular component. Binary mixtures that contained as little as 1% of the S−, nontarget odorant, however, were sufficiently different perceptually to increase behavioral RTs (i.e., rats hesitated longer before responding); RTs changed systematically as a function of the binary ratio. Interestingly, the rate of RT change was dependent on which odorant served as the S+, suggesting an asymmetric interaction between the 2 odorants. The data demonstrate

  20. Characterizing olfactory binary mixture interactions in Fischer 344 rats using behavioral reaction times.

    PubMed

    Yoder, Wendy M; Gaynor, Leslie; Windham, Ethan; Lyman, Michelle; Munizza, Olivia; Setlow, Barry; Bizon, Jennifer L; Smith, David W

    2015-06-01

    Response times provide essential subthreshold perceptual data that extend beyond accuracy alone. Behavioral reaction times (RTs) were used to characterize rats' ability to detect individual odorants in a series of complimentary binary odorant mixture ratios. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on an odor identification task using nonreinforced probe trials. Binary mixture ratios composed of aliphatic odorants (citral and octanol) were arranged such that relative contributions of the 2 components varied systematically by a factor of 1% (v/v). Odorant concentrations for the target (S+), control (S-), and mixture (S+:S-) odorants were presented relative to threshold for each rat. Rats were initially trained to respond by licking at a spout to obtain liquid reward for either citral or octanol as the reinforced target (S+) odorant. After achieving 100% accuracy, rats were transferred to variable ratio (VR 2) reinforcement for correct responding. Nonreinforced probe trials (2 per block of 22 trials) were tested for each mixture ratio and recorded as either S+ (rats lick-responded in the presence of the mixture) or S- (rats refrained from licking), thereby indicating detection of the trained, S+ odorant. To determine the perceived salience for each ratio, RTs (latency from odorant onset to lick response) were recorded for each trial. Consistent with previous studies, RTs for both odorants were shortest (~150-200ms) when the probe trials consisted of a single, monomolecular component. Binary mixtures that contained as little as 1% of the S-, nontarget odorant, however, were sufficiently different perceptually to increase behavioral RTs (i.e., rats hesitated longer before responding); RTs changed systematically as a function of the binary ratio. Interestingly, the rate of RT change was dependent on which odorant served as the S+, suggesting an asymmetric interaction between the 2 odorants. The data demonstrate the value

  1. Mapping and Modeling the Extended Winds of the Massive Interacting Binary, Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Ted

    2010-01-01

    The combination HST/STIS high spatial and moderate spectral resolutions have revealed the massive interacting wind structure of Eta Carinae by forbidden lines of singly and doubly ionized elements. Throughout the 5.54-year period, lines of Fe++, Ne++, Ar++, S++ and N+ reveal the interacting wind structures, near critical electron densities of 10(exp 5) to 3 x 10(exp 7)cu cm, photoionized by the hot secondary, Eta Car B, Lines of Fe+ and Ni+ trace the denser (>10(exp 7)cu cm. less-ionized (< 8 eV) primary wind of Eta Car A as it wraps around the interacting binary stars. For 5 years of the 5.54 year period, the FUV radiation from Eta Car B escapes the orbital region, ionizing the boundaries of the expanding wind structures. But for three to six months, Eta Car B plunges into the primary wind approaching to within 1 to 2 AU, leading to cutoff of FUV and X-ray fluxes. The interacting wind structure, resolved out to 0.8", drops io ionization and then rebuilds as Eta Car B emerges from the primary wind envelope. Solid Particle Hydrodynamical(SPH) models have been developed extending out to 2000 AU and adapted to include FUV radiation effects of the winds. In turn, synthetic spectroimages of selected forbidden lines have been constructed and compared to the spectroimages recorded by the HST/STIS throughout 1998.0 to 2004.3, extending across the 1998 and 2003.5 minima. By this method, we show that the orbital axis of the binary system must bc within 15 degrees of the Homunculus axis of symmetry and that periastron occurs with Eta Car B passing on the far side of Eta Car B. This result ties the current binary orbit with the bipolar ejection with intervening skirt and leads to implications that the binary system influenced the mass ejection of the l840s and the lesser ejection of the 1890s.

  2. THE REFLECTION EFFECT IN INTERACTING BINARIES OR IN PLANET-STAR SYSTEMS

    SciTech Connect

    Budaj, J.

    2011-02-15

    There are many similarities between interacting binary stars and stars with a close-in giant extrasolar planet. The reflection effect is a well-known example. Although the generally accepted treatment of this effect in interacting binaries is successful in fitting light curves of eclipsing binaries, it is not very suitable for studying cold objects irradiated by hot objects or extrasolar planets. The aim of this paper is to develop a model of the reflection effect which could be easily incorporated into the present codes for modeling of interacting binaries so that these can be used to study the aforementioned objects. Our model of the reflection effect takes into account the reflection (scattering), heating, and heat redistribution over the surface of the irradiated object. The shape of the object is described by the non-spherical Roche potential expected for close objects. Limb and gravity darkening are included in the calculations of the light output from the system. The model also accounts for the orbital revolution and rotation of the exoplanet with appropriate Doppler shifts for the scattered and thermal radiation. Subsequently, light curves and/or spectra of several exoplanets have been modeled and the effects of the heat redistribution, limb darkening/brightening, (non-)gray albedo, and non-spherical shape have been studied. Recent observations of planet-to-star flux ratio of HD189733b, WASP12b, and WASP-19b at various phases were reproduced with very good accuracy. It was found that HD189733b has a low Bond albedo and intense heat redistribution, while WASP-19b has a low Bond albedo and low heat redistribution. The exact Roche geometries and temperature distributions over the surface of all 78 transiting extrasolar planets have been determined. Departures from the spherical shape may vary considerably but departures of about 1% in the radius are common within the sample. In some cases, these departures can reach 8%, 12%, or 14%, for WASP-33b, WASP-19b, and

  3. High-velocity stars from the interaction of a globular cluster and a massive black hole binary

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.

    2016-05-01

    High-velocity stars are usually thought to be the dynamical product of the interaction of binary systems with supermassive black holes. In this paper, we investigate a particular mechanism of production of high-velocity stars as due to the close interaction between a massive and orbitally decayed globular cluster and a supermassive black hole binary. The high velocity acquired by some stars of the cluster comes from combined effect of extraction of their gravitational binding energy and from the slingshot due to the interaction with the black hole binary. After the close interaction, stars could reach a velocity sufficient to travel in the halo and even overcome the galactic potential well, while some of them are just stripped from the globular cluster and start orbiting around the galactic centre.

  4. Interactive Whole Class Teaching in the National Literacy and Numeracy Strategies

    ERIC Educational Resources Information Center

    Smith, Fay; Hardman, Frank; Wall, Kate; Mroz, Maria

    2004-01-01

    The study set out to investigate the impact of the official endorsement of 'interactive whole class teaching' on the interaction and discourse styles of primary teachers while teaching the National Literacy and Numeracy Strategies. In both strategies, interactive whole class teaching is seen as an 'active teaching' model promoting high quality…

  5. Research into Teaching with Whole-Class Interactive Technologies: Emergent Themes

    ERIC Educational Resources Information Center

    Littleton, Karen

    2010-01-01

    This discussion paper highlights a number of themes emerging from contemporary research into teaching with whole-class interactive technologies. Focusing particularly on the contributions to this special issue, the paper considers the significance of whole-class interactive technologies (primarily interactive whiteboards) with respect to the use…

  6. X-ray emission from interacting wind massive binaries: A review of 15 years of progress

    NASA Astrophysics Data System (ADS)

    Rauw, Gregor; Nazé, Yaël

    2016-09-01

    Previous generations of X-ray observatories revealed a group of massive binaries that were relatively bright X-ray emitters. This was attributed to emission of shock-heated plasma in the wind-wind interaction zone located between the stars. With the advent of the current generation of X-ray observatories, the phenomenon could be studied in much more detail. In this review, we highlight the progress that has been achieved in our understanding of the phenomenon over the last 15 years, both on theoretical and observational grounds. All these studies have paved the way for future investigations using the next generation of X-ray satellites that will provide crucial information on the X-ray emission formed in the innermost part of the wind-wind interaction.

  7. PHARMACOKINETIC AND PHARMACODYNAMIC INTERACTION FOR A BINARY MIXTURE OF CHLORPYRIFOS AND DIAZINON IN THE RAT

    SciTech Connect

    Timchalk, Chuck; Poet, Torka S.; Hinman, Melissa N.; Busby, Andrea L.; Kousba, Ahmed A.

    2005-05-15

    Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE) by their oxon metabolites. The pharmacokinetic and pharmacodynamic impact of acute binary exposures to CPF and DZN in rats were evaluated in this study. Rats were orally administered CPF, DZN or a CPF/DZN mixture (0, 15, 30 or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12 and 24 h post-dosing, urine was also collected at 24 h. Chlorpyrifos, DZN and their respective metabolites 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBCs and plasma. Co-exposure to CPF/DZN at 15/15 mg/kg, did not appreciably alter the pharmacokinetics of CPF, DZN or their metabolites in blood; whereas, a 60/60 mg/kg dose resulted in a transient increase in Cmax, AUC, and decreased clearance of both compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and co-exposures. The overall potency for ChE inhibition was greater for CPF than DZN and the binary mixture response appeared to be strongly influenced by CPF. A comparison of the ChE binary response at the low dose (15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These are the first reported experiments we are aware of that characterize both the pharmacokinetic and pharmacodynamic interactions between CPF and DZN in the rat, and will be used to further develop a binary physiologically based pharmacokinetic and pharmacodynamic

  8. Single Molecule Measurements of Interaction Free Energies Between the Proteins Within Binary and Ternary SNARE Complexes

    PubMed Central

    Liu, W.; Montana, Vedrana; Parpura, Vladimir; Mohideen, U.

    2010-01-01

    We use an Atomic Force Microscope based single molecule measurements to evaluate the activation free energy in the interaction of SNARE proteins syntaxin 1A, SNAP25B and synaptobrevin 2 which regulate intracellular fusion of vesicles with target membranes. The dissociation rate of the binary syntaxin-synaptobrevin and the ternary syntaxin-SNAP25B-synaptobrevin complex was measured from the rupture force distribution as a function of the rate of applied force. The temperature dependence of the spontaneous dissociation rate was used to obtain the activation energy to the transition state of 19.8 ± 3.5 kcal/mol = 33 ± 6 kBT and 25.7 ± 3.0 kcal/mol = 43 ± 5 kBT for the binary and ternary complex, respectively. They are consistent with those measured previously for the ternary complex in lipid membranes and are of order expected for bilayer fusion and pore formation. The ΔG was 12.4–16.6 kcal/mol = 21–28 kBT and 13.8–18.0 kcal/mol = 23–30 kBT for the binary and ternary complex, respectively. The ternary complex was more stable by 1.4 kcal/mol = 2.3 kBT, consistent with the spontaneous dissociation rates. The higher adhesion energies and smaller molecular extensions measured with SNAP25B point to its possible unique and important physiological role in tethering/docking the vesicle in closer proximity to the plasma membrane and increasing the probability for fusion completion. PMID:20107522

  9. Spectroscopy, MOST photometry, and interferometry of MWC 314: is it an LBV or an interacting binary?

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Moffat, Anthony F. J.; Maltais-Tariant, Raphaël; Pablo, Herbert; Gies, Douglas R.; Saio, Hideyuki; St-Louis, Nicole; Schaefer, Gail; Miroshnichenko, Anatoly S.; Farrington, Chris; Aldoretta, Emily J.; Artigau, Étienne; Boyajian, Tabetha S.; Gordon, Kathryn; Jones, Jeremy; Matson, Rachel; McAlister, Harold A.; O'Brien, David; Raghavan, Deepak; Ramiaramanantsoa, Tahina; Ridgway, Stephen T.; Scott, Nic; Sturmann, Judit; Sturmann, Laszlo; Brummelaar, Theo ten; Thomas, Joshua D.; Turner, Nils; Vargas, Norm; Zharikov, Sergey; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2016-01-01

    MWC 314 is a bright candidate luminous blue variable (LBV) that resides in a fairly close binary system, with an orbital period of 60.753 ± 0.003 d. We observed MWC 314 with a combination of optical spectroscopy, broad-band ground- and space-based photometry, as well as with long baseline, near-infrared interferometry. We have revised the single-lined spectroscopic orbit and explored the photometric variability. The orbital light curve displays two minima each orbit that can be partially explained in terms of the tidal distortion of the primary that occurs around the time of periastron. The emission lines in the system are often double-peaked and stationary in their kinematics, indicative of a circumbinary disc. We find that the stellar wind or circumbinary disc is partially resolved in the K'-band with the longest baselines of the CHARA Array. From this analysis, we provide a simple, qualitative model in an attempt to explain the observations. From the assumption of Roche Lobe overflow and tidal synchronization at periastron, we estimate the component masses to be M1 ≈ 5 M⊙ and M2 ≈ 15 M⊙, which indicates a mass of the LBV that is extremely low. In addition to the orbital modulation, we discovered two pulsational modes with the MOST satellite. These modes are easily supported by a low-mass hydrogen-poor star, but cannot be easily supported by a star with the parameters of an LBV. The combination of these results provides evidence that the primary star was likely never a normal LBV, but rather is the product of binary interactions. As such, this system presents opportunities for studying mass-transfer and binary evolution with many observational techniques.

  10. Tracing characteristic perturbations resulting from Planet-Disk and Binary-Disk interaction in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Ruge, Jan Philipp; Wolf, Sebastian; Uribe, Ana; Demidova, Tatiana; Klahr, Hubert; Grinin, Vladimir

    2013-07-01

    The perturbation by an additional, gravitating component (planet, binary star) within a protoplanetary disk induces characteristic large-scale structures in the disk density profile. We investigate the observability of these perturbations. On the basis of a large number of (M)HD and SPH simulations, we calculate synthetic scattered and polarized light images as well as thermal re-emission maps of these models and predict the observational results for different instruments from the optical to the (sub)mm wavelength range with a special focus on ALMA. In the first study (A) (Ruge et al., 2013a,c) we investigate the observability of the planet-disk interaction for different star-disk-planet configurations. We predict that ALMA is able to observe planet-induced gaps around stars of various types and for a large range of disk masses. Besides this, we find that ALMA can trace small, local perturbations indicating zonal flows in the disk. The detectability of gaps in scattered light is limited to a range of total disk masses between 1e-4 M_sun and 1e-6 M_sun. Gap detections in both wavelength ranges are feasible for M_disk ~ 1e-4 M_sun. In our second study (B) (Ruge et al. 2013b) we investigate the observability of perturbations in young circumbinary disks for several orbital elements of the binary system. We find that ALMA will allow one to trace characteristic AU-sized spiral arm features in disks in face-on orientation and also to detect binary-induced perturbations in the edge-on brightness profiles. We find that the technique of differential polarimetry offers the potential for significantly clearer detections of these disk structures than imaging in scattered light alone.

  11. CH/pi interaction between benzene and hydrocarbons having six carbon atoms in their binary liquid mixtures.

    PubMed

    Kasahara, Yasutoshi; Suzuki, Yuji; Kabasawa, Aino; Minami, Hideyuki; Matsuzawa, Hideyo; Iwahashi, Makio

    2010-01-01

    Molecular interactions between benzene and hydrocarbons having six carbon atoms, such as hexane, cyclohexane and 1-hexene in their binary liquid mixtures were studied through the measurements of density, viscosity, self-diffusion coefficient, (13)C NMR spin-lattice relaxation time and (1)H NMR chemical shift. CH/pi attraction between hexane and benzene in their binary mixture was observed in a relatively benzene rich region, whereas a special attractive interaction was not observed between cyclohexane and benzene. On the other hand, 1-hexene and benzene in their binary mixtures were characteristic in their self-diffusion coefficient behaviors: 1-hexene more strongly attract benzene not only by the CH/pi attraction but also probably by the p/p interaction between the double bond in 1-hexene and the p-electron in benzene ring. PMID:20032596

  12. The Effect of Tides on the Population of PN from Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Madappatt, Niyas; De Marco, Orsola; Villaver, Eva

    2016-08-01

    We have used the tidal equations of Zahn to determine the maximum orbital distance at which companions are brought into Roche lobe contact with their giant primary, when the primary expands during the giant phases. This is a key step when determining the rates of interaction between giants and their companions. Our stellar structure calculations are presented as maximum radii reached during the red and asymptotic giant branch (RGB and AGB, respectively) stages of evolution for masses between 0.8 and 4.0 M⊙ (Z=0.001 - 0.04) and compared with other models to gauge the uncertainty on radii deriving from details of these calculations. We find overall tidal capture distances that are typically 1-4 times the maximum radial extent of the giant star, where companions are in the mass range from 1 MJ to a mass slightly smaller than the mass of the primary. We find that only companions at initial orbital separations between ˜320 and ˜630 R⊙ will be typically captured into a Roche lobe-filling interaction or a common envelope on the AGB. Comparing these limits with the period distribution for binaries that will make PN, we deduce that in the standard scenario where all ˜1-8 M⊙ stars make a PN, at most 2.5 per cent of all PN should have a post-common envelope central star binary, at odds with the observational lower limit of 15-20 per cent. The observed over-abundance of post-interaction central stars of PN cannot be easily explained considering the uncertainties. We examine a range of explanations for this discrepancy.

  13. Large attractive depletion interactions in soft repulsive-sphere binary mixtures.

    PubMed

    Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis; Navascués, Guillermo; Tani, Alessandro; Velasco, Enrique

    2007-12-01

    We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure, and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results, the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed. PMID:18067358

  14. 3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.

    2010-01-01

    We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.

  15. An Odor Interaction Model of Binary Odorant Mixtures by a Partial Differential Equation Method

    PubMed Central

    Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong

    2014-01-01

    A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions. PMID:25010698

  16. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES

    SciTech Connect

    Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.; Ciardi, David R.; Hoard, D. W.; Wachter, Stefanie; Benedict, G. Fritz; McArthur, Barbara E.; Howell, Steve B.

    2010-07-10

    Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.

  17. New Photometric Study of the Interacting Binary Star System: Y Piscium

    NASA Astrophysics Data System (ADS)

    Yuhas, Bernard J.; Coleman, T.; Reed, P. A.

    2012-05-01

    We present a new photometric study of Y Psc, which is an Algol-type interacting binary system with an orbital period of 3.76 days and a nonlinear ephemeris. The Kutztown University Observatory (Kutztown, Pa), which houses a 0.46 meter modified Cassegrain telescope, was used to perform a photometric study of Y Psc. Data were collected over 18 nights of observation, which started on the 5th of October 2011 and ended on 15th of January 2012. Three different Bessel filters: Blue, Visual, and Infrared were used to analyze the system. These data were then compiled and modeled using the Wilson-Devinney code. An Analysis of previously recorded times of minimum in conjunction with our observations were used to suggest possible physical mechanisms intrinsic to the system.

  18. Phase behavior in binary fluid mixtures with spherical and non-spherical interactions

    NASA Astrophysics Data System (ADS)

    Diaz-Herrera, Enrique; Ramirez-Santiago, Guillermo; Moreno-Razo, J. Antonio

    2006-03-01

    We have carried out extensive MD simulations to study the T vs. ρ phase diagram and the mix-demix transition in fluid binary mixtures with (1) Lennard-Jones, (2) Stock-Mayer and (3) Gay-Berne molecular interactions. This analysis is performed in terms of the miscibility parameter, α=ɛAB/ɛAA, with ɛAA=ɛBB. When the miscibility of the mixture is in the range 0<α<1, a continuous critical line of consolute points appears. This line interscts the LV coexistence curve at different positions depending on the value of α, yielding mainly three different topologies for the phase diagrams. We also carried out a detailed study of the interfacial properties as function of T and α.

  19. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs

    PubMed Central

    Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard

    2015-01-01

    Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953

  20. Effects of Class Size and Attendance Policy on University Classroom Interaction in Taiwan

    ERIC Educational Resources Information Center

    Bai, Yin; Chang, Te-Sheng

    2016-01-01

    Classroom interaction experience is one of the main parts of students' learning lives. However, surprisingly little research has investigated students' perceptions of classroom interaction with different attendance policies across different class sizes in the higher education system. To elucidate the effects of class size and attendance policy on…

  1. Interaction of phenolic uncouplers in binary mixtures: concentration-additive and synergistic effects.

    PubMed

    Escher, B I; Hunziker, R W; Schwarzenbach, R P

    2001-10-01

    The uncoupling activities of 14 binary mixtures of substituted phenols and of 4 binary mixtures of phenols and anisols were investigated at different pH values. Experiments were performed with time-resolved spectroscopy on membrane vesicles (chromatophores) of the photosynthetic bacteria Rhodobacter sphaeroides. Phenols are known to destroy the electrochemical proton gradient in energy-transducing membranes by a protonophoric mechanism. Anisols do not have protonophoric activity but disturb membrane structure and functioning as a nonspecific baseline toxicant. It was postulated in the literature that, for certain substituted phenols, the formation of a dimer between the phenoxide and the neutral phenol may contribute significantly to the overall protonophoric activity. In 13 of 14 mixtures of substituted phenols but in none of the mixtures of phenols with anisols, such a dimer appears to be formed between two different mixture partners. An extended shuttle mechanism of uncoupling, which includes a term for the contribution of such a mixed dimer, provided a good description of all experimental data. Opposite speciation favors interaction and ortho substituents abate interaction, which adds evidence for the dimerformation via a hydrogen bond between the phenol-OH and the phenoxide. These findings are significant not only regarding the mechanism of protonophoric action but also for the risk assessment process of chemical mixtures in the environment. When assessing the effect of mixtures, concentration addition is regarded as a reference X concept to estimate effects of similarly acting compounds. The substituted phenols in this work act according to the same action mechanism of uncoupling. Nevertheless, the overall effect of four of the investigated mixtures, which exhibit stronger dimer formation as compared to the single compounds or for which the resulting dimer is intrinsically more active, exceeded the effect calculated according to concentration addition

  2. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    NASA Astrophysics Data System (ADS)

    Budaj, Ján

    2012-04-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. The Roche model can be used as a boundary condition for the radiative transfer. Recently, a new model of the reflection effect, dust and Mie scattering were incorporated into the code. ɛ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed a dark, inclined, disk of dust with a central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks: an internal optically thick disk and an external optically thin disk which absorbs and scatters radiation. Shallow mid-eclipse brightening may result from eclipses by nearly edge-on flared (dusty or gaseous) disks. Mid-eclipse brightening may also be due to strong forward scattering and optical properties of the dust which can have an important effect on the light-curves. There are many similarities between interacting binary stars and transiting extrasolar planets. The reflection effect which is briefly reviewed is one of them. The exact Roche shape and temperature distributions over the surface of all currently known transiting extrasolar planets have been determined. In some cases (HAT-P-32b, WASP-12b, WASP-19b), departures from the spherical shape can reach 7-15%.

  3. Quasi-Periodic Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan

    2015-08-01

    Four years of Kepler observations have revealed a class of Algol-type binaries in which the relative brightness of the quadrature light varies from > 1 to <1 on a time scale of about 100-400 days. The behavior pattern is quasi-periodic. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Although L/T inequality in eclipsing binaries has been noted from ground-based photometry by several observers since the early 1950s, the regular or quasi-regular switching between maxima is new. Twenty L/T systems have so far been found in the Kepler database and at least three classes of L/T behavior have been identified. In this presentation I will give an update on the L/T phenomenon gleaned from the Kepler and K2 databases. The Kepler and K2 light curves are being analyzed with the 2015 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). The prototype L/T variable is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 Tphot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  4. Adding Interactivity to a Non-Interative Class

    ERIC Educational Resources Information Center

    Rogers, Gary; Krichen, Jack

    2004-01-01

    The IT 3050 course at Capella University is an introduction to fundamental computer networking. This course is one of the required courses in the Bachelor of Science in Information Technology program. In order to provide a more enriched learning environment for learners, Capella has significantly modified this class (and others) by infusing it…

  5. Characterizing interactive engagement activities in a flipped introductory physics class

    NASA Astrophysics Data System (ADS)

    Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy

    2016-06-01

    Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B) at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL), which focuses on student interactions (with the lecturer, with each other, and with the material) is proposed. The pedagogical approach is based on Peer Instruction (PI) and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%), vicarious interactive (20%) (involving questions to and from the lecturer), and noninteractive (55%). As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B), although not on student-student interactions (12% and 12%) or on individual learning (10% and 7%). These results are explored in detail and the implications for future research are discussed.

  6. Effects of thermodynamic profiles on the interaction of binary tropical cyclones

    NASA Astrophysics Data System (ADS)

    Jang, Wook; Chun, Hye-Yeong

    2015-09-01

    The interactions between idealized binary tropical cyclones (TCs) on f and β planes with different separation distance and thermodynamic soundings obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data averaged over the western North Pacific are investigated through ensemble three-dimensional numerical simulations with a horizontal resolution of 10 km in a single domain. In the simulations on the f plane, two TCs show mutual cyclonic rotations with symmetric structures. Two TCs with thermodynamic profiles of larger convective available potential energy (CAPE) and maximum potential intensity (MPI) show greater interaction than those with a smaller CAPE and MPI due to the stronger tangential velocity near the TC center. In the simulations on the β plane, the two TCs do not merge, because the beta effect prevents the attraction of the two TCs by generating asymmetric motions of the TC with northwestward forcing. The relative strengths of the two TCs change with time and depend on the low-level inflow influenced by the Coriolis parameter. Similar to the results on the f plane, the two TCs only merge with the thermodynamic soundings of large CAPE and MPI.

  7. Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice

    NASA Astrophysics Data System (ADS)

    Cheng, Yongshan; Adhikari, S. K.

    2010-02-01

    By direct numerical simulation of the time-dependent Gross-Pitaevskii equation using the split-step Fourier spectral method, we study different aspects of the localization of a cigar-shaped interacting binary (two-component) Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a BEC [Roati , Nature 453, 895 (2008)]. We consider two types of localized states: (i) when both localized components have a maximum of density at the origin x=0, and (ii) when the first component has a maximum of density and the second a minimum of density at x=0. In the noninteracting case, the density profiles are symmetric around x=0. We numerically study the breakdown of this symmetry due to interspecies and intraspecies interactions acting on the two components. Where possible, we have compared the numerical results with a time-dependent variational analysis. We also demonstrate the stability of the localized symmetry-broken BEC states under small perturbation.

  8. Impact of kinase activating and inactivating patient mutations on binary PKA interactions

    PubMed Central

    Röck, Ruth; Mayrhofer, Johanna E.; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions. PMID:26347651

  9. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  10. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds

    PubMed Central

    Padilha, J. E.; Pontes, R. B.; Schmidt, T. M.; Miwa, R. H.; Fazzio, A.

    2016-01-01

    We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties. PMID:27212604

  11. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds.

    PubMed

    Padilha, J E; Pontes, R B; Schmidt, T M; Miwa, R H; Fazzio, A

    2016-01-01

    We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties. PMID:27212604

  12. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds

    NASA Astrophysics Data System (ADS)

    Padilha, J. E.; Pontes, R. B.; Schmidt, T. M.; Miwa, R. H.; Fazzio, A.

    2016-05-01

    We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties.

  13. JavaScript: Convenient Interactivity for the Class Web Page.

    ERIC Educational Resources Information Center

    Gray, Patricia

    This paper shows how JavaScript can be used within HTML pages to add interactive review sessions and quizzes incorporating graphics and sound files. JavaScript has the advantage of providing basic interactive functions without the use of separate software applications and players. Because it can be part of a standard HTML page, it is…

  14. Characterizing Interactive Engagement Activities in a Flipped Introductory Physics Class

    ERIC Educational Resources Information Center

    Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy

    2016-01-01

    Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of "how" they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in…

  15. Student Response Systems' Virtual Interaction Effects on Learning in Adult Second Language Classes

    ERIC Educational Resources Information Center

    Fassihi Langroodi, Sayedeh Parvanak

    2010-01-01

    In an English as a second language (ESL) or English as a foreign language (EFL) class, special emphasis is often put on interaction and negotiation as a means of learning and understanding the language being taught (Long, 1981; Pica, 1994). However, student-student interaction as well as student-teacher interaction could be difficult to achieve in…

  16. ORDER AND CHAOS IN A THREE-DIMENSIONAL BINARY SYSTEM OF INTERACTING GALAXIES

    SciTech Connect

    Zotos, Euaggelos E.

    2012-05-01

    We present a galactic gravitational model of three degrees of freedom in order to investigate and reveal the behavior of orbits in a binary quasar system. The two quasars are hosted in a pair of interacting disk galaxies. We study in detail the regular or chaotic character of motion in two different cases: the time-independent model in both two-dimensional (2D) and 3D dynamical systems, and the evolving 3D model. Our numerical calculations indicate that a large fraction of orbits in the 2D system are chaotic in the time-independent case. A careful analysis suggests that several Lindblad resonances are also responsible for the chaotic motion of stars in both host galaxies. In the time-dependent system, we follow the evolution of 3D orbits in our dynamical model, as the two interacting host galaxies develop dense and massive quasars in their cores by mass transportation from the disks to their nuclei. In this interesting case, there are orbits that change their orbital character from regular to chaotic and vice versa; there are also orbits that maintain their characters during the galactic evolution. These results strongly indicate that the ordered or chaotic nature of 3D orbits depends not only on the galactic interaction but also on the presence of quasars in the galactic cores of the host galaxies. The outcomes derived from our dynamical model are compared with observational data. Some theoretical arguments to support the numerically derived outcomes are presented, both in 2D and 3D systems, and a comparison with similar earlier work is also made.

  17. When Race and Class Both Matter: The Relationship between Socioeconomic Diversity, Racial Diversity, and Student Reports of Cross-Class Interaction

    ERIC Educational Resources Information Center

    Park, Julie J.; Denson, Nida

    2013-01-01

    This paper delves into a facet of socioeconomic diversity relatively unaddressed in the literature: student reports of cross-class interaction ("reported CCI"). Previous research has found that student interaction across social class is a significant predictor of cross-racial interaction, but it is unknown whether the actual…

  18. Delineating solute-solvent interactions in binary mixtures of ionic liquids in molecular solvents and preferential solvation approach.

    PubMed

    Khupse, Nageshwar D; Kumar, Anil

    2011-02-01

    The effect of solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators in binary mixtures of ionic liquids with molecular solvents has been investigated. The binary mixtures of the pyridinium-based ionic liquids 1-butylpyridinium tetrafluoroborate ([BP][BF4]), 1-butyl-3-methylpyridinium tetrafluoroborate ([3-MBP][BF4]), and 1-butyl-4-methylpyridinium tetrafluoroborate ([4-MBP][BF4]) with molecular solvents like water, methanol, and dichloromethane have been selected for this investigation. The effect of addition of ionic liquids to molecular solvents on the polarity parameters E(T)(N), Kamlet-Taft parameters, hydrogen bond donor ability (HBD) (α), hydrogen bond acceptor ability (HBA) (β), and polarizability (π*) was obtained. The polarity parameters of the mixture display nonideality on addition of ionic liquids to water and dichloromethane. On the other hand, strong synergetic effects were seen in the ionic liquid-methanol binary mixtures. The preferential solvation models have been employed to analyze the collected data in order to achieve information on solute-solvent interactions in these binary mixtures. PMID:21142058

  19. IRAS 19135+3937: an SRd variable as interacting binary surrounded by a circumbinary disc

    NASA Astrophysics Data System (ADS)

    Gorlova, N.; Van Winckel, H.; Ikonnikova, N. P.; Burlak, M. A.; Komissarova, G. V.; Jorissen, A.; Gielen, C.; Debosscher, J.; Degroote, P.

    2015-08-01

    Semi-regular (SR) variables are not a homogeneous class and their variability is often explained due to pulsations and/or binarity. This study focuses on IRAS 19135+3937, an SRd variable with an infrared excess indicative of a dusty disc. A time series of high-resolution spectra, UBV photometry as well as a very accurate light curve obtained by the Kepler satellite, allowed us to study the object in unprecedented detail. We discovered it to be a binary with a period of 127 d. The primary has a low surface gravity and an atmosphere depleted in refractory elements. This combination of properties unambiguously places IRAS 19135+3937 in the subclass of post-asymptotic giant branch stars with dusty discs. We show that the light variations in this object cannot be due to pulsations, but are likely caused by the obscuration of the primary by the circumbinary disc during orbital motion. Furthermore, we argue that the double-peaked Fe emission lines provide evidence for the existence of a gaseous circumbinary Keplerian disc inside the dusty disc. A secondary set of absorption lines has been detected near light minimum, which we attribute to the reflected spectrum of the primary on the disc wall, which segregates due to the different Doppler shift. This corroborates the recent finding that reflection in the optical by this type of discs is very efficient. The system also shows a variable H α profile indicating a collimated outflow originating around the companion. IRAS 19135+3937 thus encompasses all the major emergent trends about evolved disc systems, that will eventually help to place these objects in the evolutionary context.

  20. Strategies for Building Positive Student-Instructor Interactions in Large Classes

    ERIC Educational Resources Information Center

    Solis, Oscar J.; Turner, Windi D.

    2016-01-01

    Although large classes in and of themselves are pragmatic for universities, they can be challenging for both students and instructors. The purpose of this study was to investigate pedagogical strategies that instructors teaching large classes can utilize to create positive student-instructor interactions to counter these challenges. Both…

  1. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    SciTech Connect

    De Mink, S. E.; Langer, N.; Izzard, R. G.; Sana, H.; De Koter, A.

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  2. Interpreting NEAR XGRS Results for the Class S Asteroid 433 Eros with an Interactive Meteorite Database

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Murphy, M. E.; Nittler, L. R.

    2000-01-01

    The NEAR X-ray spectrometer, based on calculations using an interactive meteorite database, should be able to identify potential meteorite class and subclass analogs on a scale of 2 to 3 kilometers on asteroid 433 Eros.

  3. [Fe II] emissions associated with the young interacting binary UY Aurigae

    SciTech Connect

    Pyo, Tae-Soo; Hayashi, Masahiko; Beck, Tracy L.; Davis, Christopher J.; Takami, Michihiro

    2014-05-01

    We present high-resolution 1.06-1.28 μm spectra toward the interacting binary UY Aur obtained with GEMINI/NIFS and the adaptive optics system Altair. We have detected [Fe II] λ1.257 μm and He I λ1.083 μm lines from both UY Aur A (the primary source) and UY Aur B (the secondary). In [Fe II] UY Aur A drives fast and widely opening outflows with an opening angle of ∼90° along a position angle of ∼40°, while UY Aur B is associated with a redshifted knot. The blueshifted and redshifted emissions show a complicated structure between the primary and secondary. The radial velocities of the [Fe II] emission features are similar for UY Aur A and B: ∼ –100 km s{sup –1} for the blueshifted emission and ∼ +130 km s{sup –1} for the redshifted component. The He I line profile observed toward UY Aur A comprises a central emission feature with deep absorptions at both blueshifted and redshifted velocities. These absorption features may be explained by stellar wind models. The He I line profile of UY Aur B shows only an emission feature.

  4. Whole earth telescope observations of the helium interacting binary PG 1346+082 (CR Bootis)

    SciTech Connect

    Provencal, J.L. |; Winget, D.E.; Nather, R.E.; Robinson, E.L.; Clemens, J.C.; Bradley, P.A.; Claver, C.F.; Kleinman, S.J.; Grauer, A.D.; Hine, B.P.; Ferrario, L.; ODonoghue, D.; Warner, B.; Vauclair, G.; Chevreton, M.; Kepler, S.O.; Wood, M.A.; Henry, G.W.

    1997-05-01

    We present our analysis of 240 hr of white-light, high-speed photometry of the dwarf nova-like helium variable PG 1346+082 (CR Boo). We identify two frequencies in the low-state power spectrum, at 679.670{plus_minus}0.004{mu}Hz and 669.887{plus_minus}0.008{mu}Hz. The 679.670 {mu}Hz variation is coherent over at least a 2 week time span, the first demonstration of a phase-coherent photometric variation in any dwarf nova-like interacting binary white dwarf system. The high-state power spectrum contains a complex fundamental with a frequency similar, but not identical, to the low-state spectrum, and a series of harmonics not detected in low state. We also uncover an unexpected dependence of the high-frequency power{close_quote}s amplitude and frequency structure on overall system magnitude. We discuss these findings in light of the general AM CVn system model, particularly the implications of the high-order harmonics on future studies of disk structure, mass transfer, and disk viscosity. {copyright} {ital 1997} {ital The American Astronomical Society}

  5. The Variable Accretion Disk of the Interacting Binary Star System RW Tauri

    NASA Astrophysics Data System (ADS)

    Reed, Phillip A.

    2015-08-01

    Some interacting Algol-type binary stars with intermediate periods (˜3 days < Porb < ˜5 days) have been found to alternate between disk-like and stream-like states. These variations can occur on timescales as short as a few orbital cycles. RW Tauri is possibly such a system with an orbital period of 2.77 days. Presented here are new spectroscopic and photometric observations and analyses of RW Tau.A total of 179 spectra were obtained using the fiber-fed echelle spectrograph at the Kutztown University Observatory (KUO) in Kutztown, Pennsylvania, during 25 nights between 2014 November 10 and 2015 March 3. The spectrograph at KUO covers 4300 Å - 7100 Å and therefore includes Hα, Hβ, and several HeI line profiles. The final dispersion of the instrument is 0.050 Å/pixel. In addition, high precision photometry (error ~1 mmag) was performed during primary eclipse in order to determine a new and accurate ephemeris. An updated ephemeris curve and period study are also presented.The stellar photosphere of each star is modeled and subtracted from the observed spectra to reveal the emission from the circumstellar material, and the SHELLSPEC program is used to model the accretion disk and mass transfer stream. Variations in the disk emission strengths were detected during this observation window, and these observations will serve as a basis to construct Doppler tomograms of the disks in future studies in order to observe disk-like to stream-like oscillations.

  6. Focused Interactive Learning: A Tool for Active Class Discussion.

    ERIC Educational Resources Information Center

    Harton, Helen C.; Richardson, Deborah S.; Barreras, Ricardo E.; Rockloff, Matthew J.; Latane, Bibb

    2002-01-01

    Discusses the use of focused interactive learning (FIL), in which students participate in focused discussions with their peers to learn about psychological concepts. Evaluates the use of FIL at Florida Atlantic University (Boca Raton, Florida). Addresses student benefits resulting from this technique. (CMK)

  7. The Association of Classroom Interactions, Year Group and Social Class

    ERIC Educational Resources Information Center

    Harris, Diane; Williams, Julian

    2012-01-01

    We investigate differences in the teacher-learner interactions in Reception, Year 2 and Year 4 science and literacy classrooms through three measures: (i) the proportion of open questions asked by the teacher, (ii) the rate of successful responses, and (iii) wait-times. A regression analysis of data from 20 schools and 102 lessons suggests that…

  8. The Relationship of Social Presence and Interaction in Online Classes.

    ERIC Educational Resources Information Center

    Tu, Chih-Hsiung; McIsaac, Marina

    2002-01-01

    Studied social presence in an online learning environment and focused on three elements: social context, online communication, and interactivity: that emerged as important in establishing a sense of community among online learners. Discusses the privacy factor, learner characteristics, computer-mediated communication, and course design.…

  9. Spicing Up Information Literacy Tutorials: Interactive Class Activities that Worked

    ERIC Educational Resources Information Center

    Zdravkovic, Neda

    2010-01-01

    Constructivist learning theories promote students' engagement as one of the key factors in successful learning and knowledge building. Research indicates that the short attention span of adult learners, their need to "learn-by-doing," interact and multitask in the learning process can be accommodated with a positive outcome by introducing…

  10. DISSOLUTION AND COMPATIBILITY STUDY OF BINARY AND TERNARY INTERACTIVE MIXTURES OF INDOMETHACIN: COMPARISON WITH COMMERCIALLY AVAILABLE CAPSULES.

    PubMed

    Maswadeh, Hamzah M

    2016-01-01

    The main objective of this work was to use Weibull distribution function and Baker-Lonsdale models to study the dissolution kinetics of prepared binary and ternary interactive mixtures containing indomethacin in comparison with three commercially available capsules of indomethacin, namely, Rothacin®, Indomin® and Indylon®. Differential scanning calorimetry (DSC) in conjunction with cloud point method was used to study the compatibility of indomethacin with polyvinylpyrrolidone (PVP) and lactose and to provide an explanation(s) for the insignificant increase in dissolution rate observed in the ternary interactive mixture as well as for the reduction in the dissolution rate observed from the binary system in our previous study. Results showed that the Weibull distribution function equation was the best fit to the dissolution data for all formulations used in this study. DSC curves showed that the decrease in dissolution rate from the binary and ternary interactive mixtures was due to incompatibility of indomethacin with PVP. Also DSC curves showed that lactose was compatible with indomethacin and that lactose was used as excipient in two commercial products (Rothacin® and Indylon®). Results from the cloud point method showed that the addition of indomethacin to 1% PVP solution containing ammonium sulfate (with cloud point at 76°C) reduces the cloud point of PVP indicating that there is an interaction between indomethacin and PVP, while the cloud point of 1% PVP containing ammonium sulfate was not affected by the addition of lactose. PMID:27476292

  11. Interactive Lecture Experiments in Large Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  12. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  13. Interacting binary galaxies. IV - Simulations, masses, and spatial orientations for NGC 1587/1588 and NGC 7236/7237

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    1988-07-01

    Successful efforts to match interaction models to all of the available data for two pairs of interacting binary galaxies, Nos. 99 and 564 in the Karachentsev catalog of isolated pairs, are described. The results validate simple Newtonian gravity on the 10 kpc scale. The dynamical orbital status of both K99 and K564 is uniquely determined, and the masses and spatial orientations of the pairs are tightly constrained. Total masses for the pairs are derived which are quite reasonable and yield M/L values near 10. It is concluded that the observed disturbances in rotation velocity and luminosity distribution for these binary galaxies are entirely consistent with the merger hypothesis. Distortions including U-shaped rotation profiles and one-sided luminosity disturbances provide solid observational evidence of tidal friction in action.

  14. Interacting binary galaxies. IV. Simulations, masses, and spatial orientations for NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.

    1988-07-01

    Successful efforts to match interaction models to all of the available data for two pairs of interacting binary galaxies, Nos. 99 and 564 in the Karachentsev catalog of isolated pairs, are described. The results validate simple Newtonian gravity on the 10 kpc scale. The dynamical orbital status of both K99 and K564 is uniquely determined, and the masses and spatial orientations of the pairs are tightly constrained. Total masses for the pairs are derived which are quite reasonable and yield M/L values near 10. It is concluded that the observed disturbances in rotation velocity and luminosity distribution for these binary galaxies are entirely consistent with the merger hypothesis. Distortions including U-shaped rotation profiles and one-sided luminosity disturbances provide solid observational evidence of tidal friction in action. 18 references.

  15. The Use of a Web-Based Classroom Interaction System in Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar D.; Corpuz, Ma. Aileen A.; Rosalez, Rolando

    2010-10-01

    A web-based interaction system was used in algebra-based and calculus-based physics classes to enhance students' classroom interaction. The interactive teaching approach primarily incorporated elements of Mazur's Peer Instruction and Interactive Lecture Demonstration. In our implementation, students used personal digital assistants (PDAs) to interact with their instructor during lecture and classroom demonstration. In this paper, we document the perceptions and attitudes of algebra-based and calculus-based physics students towards the interactive teaching approach and likewise present data on how this approach affected students' performance on the Force Concept Inventory (FCI).

  16. DISCOVERY OF THE DISTURBED RADIO MORPHOLOGY IN THE INTERACTING BINARY QUASAR FIRST J164311.3+315618

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Janiuk, Agnieszka

    2011-08-01

    We report the high-resolution radio observations and the subsequent analysis of the radio-loud compact steep spectrum quasar FIRST J164311.3+315618, one of the members of a binary system. The second component of the system is a radio-quiet active galactic nucleus. The projected separation of this pair is 2.''3 (15 kpc); it is one of the smallest-known-separation binary quasars. The multi-band images of this binary system made with the Hubble Space Telescope show that the host galaxy of the radio-loud quasar is highly disturbed. The radio observations presented here were made with the Multi-Element Radio-Linked interferometer network (MERLIN) at 1.66 GHz and 5 GHz. We show that the radio morphology of FIRST J164311.3+315618 is complex on both frequencies and exhibits four components that indicate the intermittent activity with a possible rapid change of the jet direction and/or restarting of the jet due to the interaction with the companion. The radio components that are no longer powered by the jet can quickly fade away. We suggest that this makes the potential distortions of the radio structure short-lived phenomena. Our numerical simulations show that the influence of the companion can lead to prolonged current and future activities. FIRST J164311.3+315618 is an unusual and statistically very rare low redshift binary quasar wherein the first close encounter is probably just taking place.

  17. On a class of nonlinear dispersive-dissipative interactions

    SciTech Connect

    Rosenau, P.

    1997-07-29

    The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are found and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.

  18. ALMA observations of the T Tauri binary system AS 205: evidence for molecular winds and/or binary interactions

    SciTech Connect

    Salyk, Colette; Pontoppidan, Klaus; Corder, Stuartt; Muñoz, Diego; Zhang, Ke; Blake, Geoffrey A.

    2014-09-01

    In this study, we present high-resolution millimeter observations of the dust and gas disk of the T Tauri star AS 205 N and its companion, AS 205 S, obtained with the Atacama Large Millimeter Array. The gas disk around AS 205 N, for which infrared emission spectroscopy demonstrates significant deviations from Keplerian motion that has been interpreted as evidence for a disk wind, also displays significant deviations from Keplerian disk emission in the observations presented here. Detections near both AS 205 N and S are obtained in 1.3 mm continuum, {sup 12}CO 2-1, {sup 13}CO 2-1, and C{sup 18}O 2-1. The {sup 12}CO emission is extended up to ∼2'' from AS 205 N, and both {sup 12}CO and {sup 13}CO display deviations from Keplerian rotation at all angular scales. Two possible explanations for these observations hold up best to close scrutiny—tidal interaction with AS 205 S or disk winds (or a combination of the two)—and we discuss these possibilities in some detail.

  19. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  20. INTERACTING BINARIES WITH ECCENTRIC ORBITS. III. ORBITAL EVOLUTION DUE TO DIRECT IMPACT AND SELF-ACCRETION

    SciTech Connect

    Sepinsky, J. F.; Willems, B.; Kalogera, V.; Rasio, F. A. E-mail: b-willems@northwestern.ed E-mail: rasio@northwestern.ed

    2010-11-20

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of Roche lobe overflow is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semimajor axis and eccentricity, while self-accretion always decreases the orbital semimajor axis and eccentricity. In cases where mass overflow contributes to circularizing the orbit, circularization can set in on timescales as short as a few percent of the mass-transfer timescale. In cases where mass overflow increases the eccentricity, the orbital evolution is governed by competition between mass overflow and tidal torques. In the absence of tidal torques, mass overflow results in direct impact can lead to substantially subsynchronously rotating donor stars. Contrary to assumptions common in the literature, direct impact accretion furthermore does not always provide a strong sink of orbital angular momentum in close mass-transferring binaries; in fact, we instead find that a significant part can be returned to the orbit during the particle orbit. The formulation presented in this paper together with our previous work can be combined with stellar and binary evolution

  1. Studies on intermolecular interaction on binary mixtures of methyl orange-water system: excess molar functions of ultrasonic parameters at different concentrations and at different temperatures.

    PubMed

    Thanuja, B; Kanagam, Charles; Sreedevi, S

    2011-11-01

    Density (ρ), viscosity (η) and ultrasonic velocity (u) of binary mixtures of methyl orange and water were measured at different concentrations and at different temperatures; several useful parameters such as excess volume, excess velocity, and excess adiabatic compressibility have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is helpful in understanding the dye/solvent interaction at different concentration and temperatures. PMID:21596612

  2. Phase behavior and mixing-demixing transitions in binary liquid mixtures with spherical and non-spherical interactions

    NASA Astrophysics Data System (ADS)

    Diaz-Herrera, Enrique; Ramirez-Santiago, Guillermo; Moreno-Razo, J. Antonio

    2006-03-01

    We have carried out extensive equilibrium molecular dynamics simulations to study the temperature versus density phase diagrams and the mixing-demixing transition line in fluid equimolar binary mixtures modeled by: (i) Lennard-Jones, (ii) Stock-Mayer, and (iii) Gay- Berne molecular interactions. These studies are performed as function of miscibility parameter, α= ɛAB/ ɛAA, where ɛAA= ɛBB and ɛAB stand for the parameters related to the attractive part of the intermolecular interactions for similar and dissimilar particles, respectively. When the miscibility of the Lennard-Jones mixture varies in the range 0 < α< 1, a continuous critical line of consolute points Tcons(ρ), appears. This line intersects the liquid-vapor coexistence curve at different positions depending on the values of α, yielding mainly three different topologies for the phase diagrams. These results are in qualitative agreement to those found previously for square well and hard-core Yukawa binary mixtures. We also carry out a detailed study of the liquid-liquid interfacial and liquid-vapor surface tensions, as function of temperature and miscibility as well as its relationship to the topologies of the phase diagrams. Similar studies and analysis are also performed for Stock-Mayer and Gay-Berne binary mixtures.

  3. Effects of drug-carrier interactions on drug dissolution from binary and ternary matrices

    NASA Astrophysics Data System (ADS)

    Iqbal, Zafar

    For nearly five decades, pharmaceutical researchers have studied solid solutions of drugs in polymers as a potential means to enhance the dissolution of drugs with poor aqueous solubility. This has become of greater importance in recent years because most new potential drug compounds (new chemical entities) exhibit poor water solubility and present great challenges to scientists who must design dosage forms from which the drugs are bioavailable. During the formulation of a solid solution, the drug undergoes physical but not chemical alterations that increase its chemical potential in the formulation relative to that of the pure drug in its stable form. This increased chemical potential is responsible for enhanced dissolution as well as physical instabilities, such as amorphous to crystalline conversions and precipitation within the solid state. The chemical potential is derived from the Gibbs free energy, so it is reasonable to explain the behavior of solid solution systems in terms of thermodynamics. Solid solutions and dispersions have been extensively studied by pharmaceutical scientists, both with regard to manufacturing aspects and the proposal of various models in attempts to explain the physical bases for how these systems work. Recently, Dave and Bellantone proposed a model based on the thermodynamic changes resulting from the formulation of binary solid solutions of a drug in the polymer PVP. Their model introduced a modification of the F-H theory, which was used to quantify the drug-polymer interaction energies and calculate the entropy of mixing of the drug and polymer. In this work, the model of Dave and Bellantone was extended to include three-component systems, consisting of one drug mixed in a carrier matrix consisting of mixture of two polymers or a polymer and a surfactant. For this research, solid solutions were formed using various drug weight fractions in the formulations. The study focused on the following points: (1) Prepare solid solution

  4. UV and X-ray emission in the interacting binary U Cephei

    NASA Technical Reports Server (NTRS)

    Gimenez, A.; Guinan, E. F.; Gonzalez-Riestra, R.

    1993-01-01

    The active close binary U Cep has been monitored in the ultraviolet, using IUE, during 1.25 orbital cycles. The emission spectrum at the bottom of the primary total eclipse confirms earlier suggestions of an unexpected absence of the Hell 1640 A line. Stronger than expected emission in some other lines like NV, CII, CIV or AlIII, indicative of hot plasma, points out that some important differences still remain between the active components of RS CVn-type binaries and the mass-losing components of semidetached Algols. Simultaneous X-ray measurements, carried out with GINGA, indicated a low upper limit flux in the observed energy range (1 to 10 keV). A comparison with other binary systems or isolated stars is discussed in order to understand the obtained results.

  5. Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers.

    PubMed

    Baía, Diogo; Pou, Jordi; Jones, Des; Mandelboim, Ofer; Trowsdale, John; Muntasell, Aura; López-Botet, Miguel

    2016-07-01

    Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) has been reported to interact with a wide spectrum of HLA class I (HLA-I) molecules, albeit with different affinities determined by allelic polymorphisms and conformational features. HLA-G dimerization and the presence of intracellular Cys residues in HLA-B7 have been shown to be critical for their recognition by LILRB1. We hypothesized that dimerization of classical HLA class Ia molecules, previously detected in exosomes, might enhance their interaction with LILRB1. A soluble LILRB1-Fc fusion protein and a sensitive cellular reporter system expressing a LILRB1-ζ chimera were employed to assess receptor interaction with different HLA class Ia molecules transfected in the human lymphoblastoid 721.221 cell line. Under these conditions, intracellular Cys residues and HLA-I dimerization appeared associated with increased LILRB1 recognition. On the other hand, a marginal interaction of LILRB1 with primary monocytic cells, irrespective of their high HLA-I expression, was enhanced by type I interferon (IFN). This effect appeared disproportionate to the cytokine-induced increase of surface HLA-I expression and was accompanied by detection of HLA class Ia dimers. Altogether, the results support that a regulated assembly of these noncanonical HLA-I conformers during the immune response may enhance the avidity of their interaction with LILRB1. PMID:27109306

  6. An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations)

    NASA Astrophysics Data System (ADS)

    Öktem, Hakan; Pearson, Ronald; Egiazarian, Karen

    2003-12-01

    Following the complete sequencing of several genomes, interest has grown in the construction of genetic regulatory networks, which attempt to describe how different genes work together in both normal and abnormal cells. This interest has led to significant research in the behavior of abstract network models, with Boolean networks emerging as one particularly popular type. An important limitation of these networks is that their time evolution is necessarily periodic, motivating our interest in alternatives that are capable of a wider range of dynamic behavior. In this paper we examine one such class, that of continuous-time Boolean networks, a special case of the class of Boolean delay equations (BDEs) proposed for climatic and seismological modeling. In particular, we incorporate a biologically motivated refractory period into the dynamic behavior of these networks, which exhibit binary values like traditional Boolean networks, but which, unlike Boolean networks, evolve in continuous time. In this way, we are able to overcome both computational and theoretical limitations of the general class of BDEs while still achieving dynamics that are either aperiodic or effectively so, with periods many orders of magnitude longer than those of even large discrete time Boolean networks.

  7. Stellar evolution at low metallicity under the influence of binary interaction and rotation

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.

    2010-04-01

    The chapters of this thesis have been published in the following journals. Ch. 2: "Fluorine in carbon-enhanced metal-poor stars: a binary scenario", Astronomy and Astrophysics Letters, 484, 27, 2008, M. Lugaro, S.E. de Mink, R.G. Izzard, S.W. Campbell, A. I. Karakas, S. Cristallo, O.R. Pols, J.C. Lattanzio, O. Straniero, R. Gallino, and T.C. Beers Ch. 3: "Efficiency of mass transfer in massive close binaries. Tests from double-lined eclipsing binaries in the SMC", Astronomy and Astrophysics, 467, 1181, 2007, S.E. de Mink, O.R. Pols, and R.W. Hilditch Ch. 4: "Rotational mixing in massive binaries: detached short-period systems", Astronomy and Astrophysics 497, 243, 2009, S.E. de Mink, M. Cantiello, N. Langer and O.R. Pols, I. Brott and S.-Ch Yoon Ch. 5: "Massive binaries as the source of globular cluster abundance patterns", Astronomy and Astrophysics Letters, 507, 1, 2009, S.E. de Mink, O.R. Pols, N. Langer, R.G. Izzard Ch. 6: "The Effect of Stellar Rotation on Colour-Magnitude Diagrams: On the apparent presence of multiple populations in intermediate age stellar clusters", Monthly Notices of the Royal Astronomical Society Letters 398, 11, 2009, N. Bastian and S.E. de Mink Ch. 7: "The evolution of runaway stellar collision products", Astronomy and Astrophysics, 497, 255, 2009. E. Glebbeek, E. Gaburov, S.E. de Mink, O.R. Pols, and S.F. Portegies Zwart

  8. A CHANDRA X-RAY STUDY OF THE INTERACTING BINARIES IN THE OLD OPEN CLUSTER NGC 6791

    SciTech Connect

    Van den Berg, Maureen; Verbunt, Frank

    2013-06-20

    We present the first X-ray study of NGC 6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to L{sub X} Almost-Equal-To 1 Multiplication-Sign 10{sup 30} erg s{sup -1} (0.3-7 keV). We detect 86 sources within 8' of the cluster center, including 59 inside the half-mass radius. We identify 20 sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy, we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and He II emission lines in its optical spectrum; this is the first X-ray-selected CV in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC 6791 are primordial. We compare the X-ray properties of NGC 6791 with those of a few old open (NGC 6819, M 67) and globular clusters (47 Tuc, NGC 6397). It is puzzling that the number of ABs brighter than 1 Multiplication-Sign 10{sup 30} erg s{sup -1} normalized by cluster mass is lower in NGC 6791 than in M 67 by a factor {approx}3-7. CVs, ABs, and sub-subgiants brighter than 1 Multiplication-Sign 10{sup 30} erg s{sup -1} are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e., X-ray-emitting) binaries.

  9. A Chandra X-Ray Study of the Interacting Binaries in the Old Open Cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen; Verbunt, Frank; Tagliaferri, Gianpiero; Belloni, Tomaso; Bedin, Luigi R.; Platais, Imants

    2013-06-01

    We present the first X-ray study of NGC 6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to L X ≈ 1 × 1030 erg s-1 (0.3-7 keV). We detect 86 sources within 8' of the cluster center, including 59 inside the half-mass radius. We identify 20 sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy, we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and He II emission lines in its optical spectrum; this is the first X-ray-selected CV in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC 6791 are primordial. We compare the X-ray properties of NGC 6791 with those of a few old open (NGC 6819, M 67) and globular clusters (47 Tuc, NGC 6397). It is puzzling that the number of ABs brighter than 1 × 1030 erg s-1 normalized by cluster mass is lower in NGC 6791 than in M 67 by a factor ~3-7. CVs, ABs, and sub-subgiants brighter than 1 × 1030 erg s-1 are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e., X-ray-emitting) binaries.

  10. Evolutionary links in the zoo of interacting binaries. Proceedings. International workshop in memory of Livio Gratton: Evolutionary links in the zoo of interacting binaries, Monte Porzio (Italy), 21 - 24 Jun 1993.

    NASA Astrophysics Data System (ADS)

    D'Antona, F.; Caloi, V.; Maceroni, C.; Giovannelli, F.

    Contents: 1. General framework. 2. Close active binaries. 3. Contact binaries. 4. Symbiotic stars. 5. Cataclysmic variables and novae. 6. Low-mass X-ray binaries and millisecond pulsars. 7. Supernovae and their progenitors. 8. High-mass X-ray binaries. 9. Discussion session and concluding remarks. 10. Posters.

  11. Communicative Aspects of Definitions in Classroom Interaction: Learning to Define in Class for First and Second Language Learners

    ERIC Educational Resources Information Center

    Temmerman, Martina

    2009-01-01

    This paper studies the interactive structure and the interactive meaning of definitions in primary school classroom interaction. The classes that were chosen are classes which consisted solely or for a large part of second language learners, as definitions might have a special importance for them in their second language acquisition. Three…

  12. Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Pravec, P.

    2006-06-01

    There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.

  13. Child-to-Child Interaction and Corrective Feedback in a Computer Mediated L2 Class

    ERIC Educational Resources Information Center

    Morris, Frank

    2005-01-01

    The current study examined the provision of corrective feedback and learner repair following feedback in the interactional context of child-to-child conversations, particularly computer mediated, in an elementary Spanish immersion class. The relationship among error types, feedback types, and immediate learner repair were also examined. A total of…

  14. A Pre-Scientific Study of Interactions in Selected Science Classes.

    ERIC Educational Resources Information Center

    Gallagher, James Joseph

    The author summarizes his observations of interactions in two classes of an individualized, self-paced, laboratory-based high school science course for students who normally do not take physics or chemistry. Based on these and other observations of classroom behavior of teachers and pupils the author postulates that two agendas are operative in…

  15. Covering #SAE: A Mobile Reporting Class's Changing Patterns of Interaction on Twitter over Time

    ERIC Educational Resources Information Center

    Jones, Julie

    2015-01-01

    This study examined the social network that emerged on Twitter surrounding a mobile reporting class as they covered a national breaking news event. The work introduces pedagogical strategies that enhance students' learning opportunities. Through NodeXL and social network cluster analysis, six groups emerged from the Twitter interactions tied to…

  16. Magnetospheric Interactions of Binary Pulsars as a Model for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Vietri, Mario

    1996-11-01

    I consider a model of gamma -ray bursts in which they arise right before the merging of binary pulsars. A binary pulsar moving through its companion's magnetic field experiences a large, motional electric field E = v X B/c, which leads to the release in the pulsar's magnetosphere of a pair cascade and the acceleration of a wind of pure pairs. The energy and energy deposition rate of the wind are those of gamma -ray bursts, provided the pulsars have a field of ~1015 G. Baryon contamination is small and dominated by tidal heating, leading to Mbaryon ~ 10-6 Msolar, as required by the dirty-fireball model of Meszaros, Laguna, & Rees.

  17. Hydrodynamics of rotating stars and close binary interactions: Compressible ellipsoid models

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We develop a new formalism to study the dynamics of fluid polytropes in three dimensions. The stars are modeled as compressible ellipsoids, and the hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. Both viscous dissipation and the gravitational radiation reaction are incorporated. We establish the validity of our approximations and demonstrate the simplicity and power of the method by rederiving a number of known results concerning the stability and dynamical oscillations of rapidly rotating polytropes. In particular, we present a generalization to compressible fluids of Chandrasekhar's classical results for the secular and dynamical instabilities of incompressible Maclaurin spheroids. We also present several applications of our method to astrophysical problems of great current interest, such as the tidal disruption of a star by a massive black hole, the coalescence of compact binaries driven by the emission of gravitational waves, and the development of instabilities in close binary systems.

  18. Orbital motion and mass flow in the interacting binary Be star HR 2142

    NASA Technical Reports Server (NTRS)

    Peters, G. J.

    1983-01-01

    The discovery of an unusual, periodic, two-component shell phase of short duration in the 'classical' Be star HR2142 (HD41335, MWC133) offered convincing evidence that this object is a mass-transfer binary system. A model based solely on the phase-dependent behavior of the hydrogen shell lines in this 80(d).860 binary was developed by Peters and Polidan (1973) and by Peters (1976). The present investigation is concerned with a refinement to the earlier model, taking into account the utilization of an orbital solution obtained from measurements of the wings of the broad photospheric features observed in the rapidly rotating primary. Velocities and equivalent widths from the sharp 'shell' lines, presumably formed in or near the gas stream, provide additional information on the mass flow in the Balmer-line-formation region.

  19. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction

    NASA Astrophysics Data System (ADS)

    Racine, Étienne

    2008-08-01

    We analyze in detail the spin precession equations in binary black hole systems, when the tidal torque on a Kerr black hole due to quadrupole-monopole coupling is taken into account. We show that completing the precession equations with this term reveals the existence of a conserved quantity at 2PN order when averaging over orbital motion. This quantity allows one to solve the (orbit-averaged) precession equations exactly in the case of equal masses and arbitrary spins, neglecting radiation reaction. For unequal masses, an exact solution does not exist in closed form, but we are still able to derive accurate approximate analytic solutions. We also show how to incorporate radiation-reaction effects into our analytic solutions adiabatically, and compare the results to solutions obtained numerically. For various configurations of the binary, the relative difference in the accumulated orbital phase computed using our analytic solutions versus a full numerical solution varies from ˜0.3% to ˜1.8% over ˜80 140 orbital cycles accumulated while sweeping over the orbital frequency range ˜20 300Hz. This typically corresponds to a discrepancy of order ˜5 6 radians. While this may not be accurate enough for implementation in LIGO template banks, we still believe that our new solutions are potentially quite useful for comparing numerical relativity simulations of spinning binary black hole systems with post-Newtonian theory. They can also be used to gain more understanding of precession effects, with potential application to the gravitational recoil problem, and to provide semianalytical templates for spinning, precessing binaries.

  20. Images of Gravitational and Magnetic Phenomena Derived from Two-dimensional Back-projection Doppler Tomography of Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J.

    2014-11-01

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The Hα tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  1. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    SciTech Connect

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J. E-mail: asc5097@psu.edu

    2014-11-10

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The Hα tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  2. Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information

    PubMed Central

    Feng, Zhenxing; Hu, Xiuzhen

    2014-01-01

    The recognition of protein folds is an important step for the prediction of protein structure and function. After the recognition of 27-class protein folds in 2001 by Ding and Dubchak, prediction algorithms, prediction parameters, and new datasets for the prediction of protein folds have been improved. However, the influences of interactions from predicted secondary structure segments and motif information on protein folding have not been considered. Therefore, the recognition of 27-class protein folds with the interaction of segments and motif information is very important. Based on the 27-class folds dataset built by Liu et al., amino acid composition, the interactions of secondary structure segments, motif frequency, and predicted secondary structure information were extracted. Using the Random Forest algorithm and the ensemble classification strategy, 27-class protein folds and corresponding structural classification were identified by independent test. The overall accuracy of the testing set and structural classification measured up to 78.38% and 92.55%, respectively. When the training set and testing set were combined, the overall accuracy by 5-fold cross validation was 81.16%. In order to compare with the results of previous researchers, the method above was tested on Ding and Dubchak's dataset which has been widely used by many previous researchers, and an improved overall accuracy 70.24% was obtained. PMID:25136571

  3. An analytical method of predicting Lee-Kesler-Ploecker binary interaction coefficients: Part 1, For non-polar hydrocarbon mixtures

    SciTech Connect

    Sand, J.R.

    1994-12-31

    An analytical method is proposed for finding numerical values of binary interaction coefficients for non-polar hydrocarbon mixtures when the Lee-Kesler (LK) equation of state is applied. The method is based on solving simultaneous equations, which are Ploecker`s mixing rules for pseudocritical parameters of a mixture, and the Lee-Kesler equation for the saturation line. For a hydrocarbon mixture, the method allows prediction of {kappa}{sub ij} interaction coefficients (ICs) which are close to values obtained by processing experimental p-v-t data on the saturation line and subsequent averaging. For mixtures of hydrocarbon molecules containing from 2 to 9 carbon atoms, the divergence between calculated and experimentally based ICs is no more than {plus_minus}0.4%. The possibility of extending application of this method to other non-polar substances is discussed.

  4. Supergiant fast X-ray transients as an under-luminous class of supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Romano, P.; Ducci, L.; Bernardini, F.; Falanga, M.

    2015-02-01

    The usage of cumulative luminosity distributions, constructed thanks to the long-term observations available through wide field hard X-ray imagers, has been recently exploited to study the averaged high energy emission (>17 keV) from supergiant fast X-ray transients (SFXTs) and classical Supergiant High Mass X-ray Binaries (SgXBs). Here, we take advantage of the long term monitorings now available with Swift/XRT to construct for the first time the cumulative luminosity distributions of a number of SFXTs and the classical SgXB IGR J18027-2016 in the soft X-ray domain with a high sensitivity focusing X-ray telescope (0.3-10 keV). By complementing previous results obtained in the hard X-rays, we found that classical SgXBs are characterized by cumulative distributions with a single knee around ∼ 1036-1037 erg s-1, while SFXTs are found to be systematically sub-luminous and their distributions are shifted at significantly lower luminosities (a factor of ∼ 10-100). As the luminosity states in which these sources spend most of their time are typically below the sensitivity limit of large field of view hard X-ray imagers, we conclude that soft X-ray monitorings carried out with high sensitivity telescopes are particularly crucial to reconstruct the complete profile of the SFXT cumulative luminosity distributions. The difference between the cumulative luminosity distributions of classical SgXBs and SFXTs is interpreted in terms of accretion from a structured wind in the former sources and the presence of magnetic/centrifugal gates or a quasi-spherical settling accretion regime in the latter.

  5. A Low Cost Key Agreement Protocol Based on Binary Tree for EPCglobal Class 1 Generation 2 RFID Protocol

    NASA Astrophysics Data System (ADS)

    Jeng, Albert; Chang, Li-Chung; Chen, Sheng-Hui

    There are many protocols proposed for protecting Radio Frequency Identification (RFID) system privacy and security. A number of these protocols are designed for protecting long-term security of RFID system using symmetric key or public key cryptosystem. Others are designed for protecting user anonymity and privacy. In practice, the use of RFID technology often has a short lifespan, such as commodity check out, supply chain management and so on. Furthermore, we know that designing a long-term security architecture to protect the security and privacy of RFID tags information requires a thorough consideration from many different aspects. However, any security enhancement on RFID technology will jack up its cost which may be detrimental to its widespread deployment. Due to the severe constraints of RFID tag resources (e. g., power source, computing power, communication bandwidth) and open air communication nature of RFID usage, it is a great challenge to secure a typical RFID system. For example, computational heavy public key and symmetric key cryptography algorithms (e. g., RSA and AES) may not be suitable or over-killed to protect RFID security or privacy. These factors motivate us to research an efficient and cost effective solution for RFID security and privacy protection. In this paper, we propose a new effective generic binary tree based key agreement protocol (called BKAP) and its variations, and show how it can be applied to secure the low cost and resource constraint RFID system. This BKAP is not a general purpose key agreement protocol rather it is a special purpose protocol to protect privacy, un-traceability and anonymity in a single RFID closed system domain.

  6. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun E-mail: woomyang@gmail.com

    2011-04-20

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  7. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant

    NASA Astrophysics Data System (ADS)

    Wu, Chuandong; Liu, Jiemin; Yan, Luchun; Chen, Haiying; Shao, Huiqi; Meng, Tian

    2015-02-01

    Odor activity value (OAV) has been widely used for the assessment of odor pollution from various sources. However, little attention has been paid to the extreme OAV variation and potential inaccuracies of odor contribution assessment caused by odor interaction effects. The objective of this study is to assess the odor interaction effect for precise assessment of odor contribution. In this paper, samples were collected from a food waste disposal plant, and analyzed by instrumental and olfactory method to conclude odorants' occurrence and OAV. Then odor activity value coefficient (γ) was first proposed to evaluate the type and the level of binary interaction effects based on determination of OAV variation. By multiplying OAV and γ, odor activity factor (OAF) was used to reflect the real OAV. Correlation between the sum of OAF and odor concentration reached 80.0 ± 5.7%, which was 10 times higher than the sum of OAV used before. Results showed that hydrogen sulfide contributed most (annual average 66.4 ± 15.8%) to odor pollution in the waste disposal plant. However, as odor intensity of samples in summer rising, odor contribution of trimethylamine increased to 48.3 ± 3.7% by the strong synergistic interaction effect, while odor contribution of phenol decreased to 0.1 ± 0.02% for the increasing antagonistic interaction effect.

  8. Abell 58 - a Planetary Nebula with an ONe-rich knot: a signature of binary interaction? .

    NASA Astrophysics Data System (ADS)

    Lau, H. H. B.; De Marco, O.; Liu, X.-W.

    We have investigated the possibility that binary evolution is involved in the formation of the planetary nebula Abell 58. In particular, we assume a neon nova is responsible for the observed high oxygen and neon abundances of the central hydrogen-deficient knot of the H-deficient planetary nebula Abell 58 and the ejecta from the explosion are mixed with the planetary nebula. We have investigated different scenarios involving mergers and wind accretion and found that the most promising formation scenario involves a primary SAGB star that ends its evolution as an ONe white dwarf with an AGB companion at a moderately close separation. Mass is deposited on the white dwarf through wind accretion. So neon novae could occur just after the secondary AGB companion undergoes its final flash. However, the initial separation has to be fine-tuned. To estimate the frequency of such systems we evolve a population of binary systems and find that that Abell 58-like objects should indeed be rare and the fraction of Abell-58 planetary nebula is on the order of 10-4, or lower, among all planetary nebulae.

  9. T cell receptor interactions with class I heavy-chain influence T cell selection

    PubMed Central

    Kuhns, Scott T.; Tallquist, Michelle D.; Johnson, Aaron J.; Mendez-Fernandez, Yanice; Pease, Larry R.

    2000-01-01

    The interaction of the T cell receptor (TCR) with peptide in the binding site of the major histocompatibility complex molecule provides the basis for T cell recognition during immune surveillance, repertoire development, and tolerance. Little is known about the extent to which repertoire selection is influenced directly by variation of the structure of the class I heavy chain. We find that the 2C TCR, normally positively selected in the context of the Kb molecule, is minimally selected into the CD8 lineage in the absence of antigen-processing genes. This finding underscores the importance of peptides in determining the positive-selecting class I ligands in the thymus. In contrast, Kbm3, a variant class I molecule that normally exerts a negative selection pressure on 2C-bearing T cells, positively selects 2C transgenic T cells into the CD8 lineage in an antigen-processing gene-deficient environment. These findings indicate that structural changes in the heavy chain can have direct influence in T cell recognition, from which we conclude that the nature of TCR interaction with class I heavy chain influences the array of TCRs selected during development of the functional adult repertoire. PMID:10639152

  10. Analysis of the interactions between Rab GTPases and class V myosins.

    PubMed

    Lindsay, Andrew J; Miserey-Lenkei, Stéphanie; Goud, Bruno

    2015-01-01

    Myosins are actin-based motor proteins that are involved in a wide variety of cellular processes such as membrane transport, muscle contraction, and cell division. Humans have over 40 myosins that can be placed into 18 classes, the malfunctioning of a number of which can lead to disease. There are three members of the human class V myosin family, myosins Va, Vb, and Vc. People lacking functional myosin Va suffer from a rare autosomal recessive disease called Griscelli's Syndrome type I (GS1) that is characterized by severe neurological defects and partial albinism. Mutations in the myosin Vb gene lead to an epithelial disorder called microvillus inclusion disease (MVID) that is often fatal in infants. The class V myosins have been implicated in the transport of diverse cargoes such as melanosomes in pigment cells, synaptic vesicles in neurons, RNA transcripts in a variety of cell types, and organelles such as the endoplasmic reticulum. The Rab GTPases play a critical role in recruiting class V myosins to their cargo. We recently published a study in which we used the yeast two-hybrid system to systematically test myosin Va for its ability to interact with each member of the human Rab GTPase family. We present here a detailed description of this yeast two-hybrid "living chip" assay. Furthermore, we present a protocol for validating positive interactions obtained from this screen by coimmunoprecipitation. PMID:25800833

  11. V404 Cyg - an Interacting Black-Hole Low-Mass X-ray Binary

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Mauerhan, Jon; Graham, Melissa

    2015-07-01

    This DDT proposal is prompted by the June 15, 2015 outburst of V404 Cyg, a black-hole (BH) low-mass X-ray binary (LMXB). This outburst stands out since it is the first black hole system with a measured parallax, lying at a distance of only 2.39+/-0.14 kpc. An extensive and loosely organized multi-wavelength campaign is already underway by the astronomical community. One of the missing pieces of the puzzle is the mid-infrared (IR). Combined with radio, optical, and X-ray data, the mid-IR will help to discriminate discriminate between an accretion disk, jet emission, or circumstellar dust scenarios. Spitzer offers a unique opportunity to observe at these wavelengths. Here we propose 4 very short (5-minutes at 3.6 and 4.5 micron) observations of IRAC hotometry to search for the presence of warm dust and, if present, constrain the heating mechanism.

  12. Reverse Radiative Shock Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Huntington, C. M.; Doss, F. W.; Grosskopf, M. J.; Marion, D. C.; Klein, S.; Young, R. P.; Plewa, T.

    2011-11-01

    In many Cataclysmic Binary systems, mass onto an accretion disk produces a ``hot spot'' where the infalling flow obliquely strikes the rotating accretion disk. It has been argued (Armitage & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. We report two experimental attempts to produce this type of radiative reverse shock in a colliding plasma stream. In the laboratory this requires producing a sufficiently fast flow (>100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. The experiments have been performed at the Omega-60 laser facility. We will discuss the astrophysical context, our experimental design, and the available data.

  13. Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.

    2010-05-01

    In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  14. LILRB2 interaction with HLA class I correlates with control of HIV-1 infection.

    PubMed

    Bashirova, Arman A; Martin-Gayo, Enrique; Jones, Des C; Qi, Ying; Apps, Richard; Gao, Xiaojiang; Burke, Patrick S; Taylor, Craig J; Rogich, Jerome; Wolinsky, Steven; Bream, Jay H; Duggal, Priya; Hussain, Shehnaz; Martinson, Jeremy; Weintrob, Amy; Kirk, Gregory D; Fellay, Jacques; Buchbinder, Susan P; Goedert, James J; Deeks, Steven G; Pereyra, Florencia; Trowsdale, John; Lichterfeld, Mathias; Telenti, Amalio; Walker, Bruce D; Allen, Rachel L; Carrington, Mary; Yu, Xu G

    2014-03-01

    Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10(-2)). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10(-11)-10(-9)) and African (p = 10(-5)-10(-3)) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement. PMID:24603468

  15. The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase

    NASA Astrophysics Data System (ADS)

    Chesneau, O.; Meilland, A.; Chapellier, E.; Millour, F.; van Genderen, A. M.; Nazé, Y.; Smith, N.; Spang, A.; Smoker, J. V.; Dessart, L.; Kanaan, S.; Bendjoya, Ph.; Feast, M. W.; Groh, J. H.; Lobel, A.; Nardetto, N.; Otero, S.; Oudmaijer, R. D.; Tekola, A. G.; Whitelock, P. A.; Arcos, C.; Curé, M.; Vanzi, L.

    2014-03-01

    Context. Only a few stars are caught in the very brief and often crucial stages when they quickly traverse the Hertzsprung-Russell diagram, and none has yet been spatially resolved in the mass transfer phase. Aims: We initiated long-term optical interferometry monitoring of the diameters of massive and unstable yellow hypergiants (YHG) with the goal of detecting both the long-term evolution of their radius and shorter term formation of a possible pseudo-photosphere related to proposed large mass-loss events. Methods: We observed HR 5171 A with AMBER/VLTI. We also examined archival photometric data in the visual and near-IR spanning more than 60 years, as well as sparse spectroscopic data. Results: HR 5171 A exhibits a complex appearance. Our AMBER data reveal a surprisingly large star for a YHG R∗ = 1315 ± 260R⊙ (or ~6.1 AU) at the distance of 3.6 ± 0.5 kpc. The source is surrounded by an extended nebulosity, and these data also show a large level of asymmetry in the brightness distribution of the system, which we attribute to a newly discovered companion star located in front of the primary star. The companion's signature is also detected in the visual photometry, which indicates an orbital period of Porb = 1304 ± 6 d. Modeling the light curve with the NIGHTFALL program provides clear evidence that the system is a contact or possibly over-contact eclipsing binary. A total current system mass of 39+40-22 M⊙ and a high mass ratio q ≥ 10 is inferred for the system. Conclusions: The low-mass companion of HR 5171 A is very close to the primary star that is embedded within its dense wind. Tight constraints on the inclination and vsini of the primary are lacking, which prevents us from determining its influence precisely on the mass-loss phenomenon, but the system is probably experiencing a wind Roche-Lobe overflow. Depending on the amount of angular momentum that can be transferred to the stellar envelope, HR 5171 A may become a fast-rotating B

  16. Latent Class Analysis of Antisocial Behavior: Interaction of Serotonin Transporter Genotype and Maltreatment

    PubMed Central

    Li, James J.

    2010-01-01

    To improve understanding about genetic and environmental influences on antisocial behavior (ASB), we tested the association of the 44-base pair polymorphism of the serotonin transporter gene (5-HTTLPR) and maltreatment using latent class analysis in 2,488 boys and girls from Wave 1 of the National Longitudinal Study of Adolescent Health. In boys, ASB was defined by three classes (Exclusive Covert, Mixed Covert and Overt, and No Problems) whereas in girls, ASB was defined by two classes (Exclusive Covert, No Problems). In boys, 5-HTTLPR and maltreatment were not significantly related to ASB. However, in girls, maltreatment, but not 5-HTTLPR, was significantly associated with ASB. A significant interaction between 5-HTTLPR and maltreatment was also observed, where maltreated girls homozygous for the short allele were 12 times more likely to be classified in the Exclusive Covert group than in the No Problems group. Structural differences in the latent structure of ASB at Wave 2 and Wave 3 prevented repeat LCA modeling. However, using counts of ASB, 5-HTTLPR, maltreatment, and its interaction were unrelated to overt and covert ASB at Wave 2 and only maltreatment was related to covert ASB at Wave 3. We discuss these findings within the context of sex differences in ASB and relevant models of gene-environment interplay across developmental periods. PMID:20405199

  17. Latent class analysis of antisocial behavior: interaction of serotonin transporter genotype and maltreatment.

    PubMed

    Li, James J; Lee, Steve S

    2010-08-01

    To improve understanding about genetic and environmental influences on antisocial behavior (ASB), we tested the association of the 44-base pair polymorphism of the serotonin transporter gene (5-HTTLPR) and maltreatment using latent class analysis in 2,488 boys and girls from Wave 1 of the National Longitudinal Study of Adolescent Health. In boys, ASB was defined by three classes (Exclusive Covert, Mixed Covert and Overt, and No Problems) whereas in girls, ASB was defined by two classes (Exclusive Covert, No Problems). In boys, 5-HTTLPR and maltreatment were not significantly related to ASB. However, in girls, maltreatment, but not 5-HTTLPR, was significantly associated with ASB. A significant interaction between 5-HTTLPR and maltreatment was also observed, where maltreated girls homozygous for the short allele were 12 times more likely to be classified in the Exclusive Covert group than in the No Problems group. Structural differences in the latent structure of ASB at Wave 2 and Wave 3 prevented repeat LCA modeling. However, using counts of ASB, 5-HTTLPR, maltreatment, and its interaction were unrelated to overt and covert ASB at Wave 2 and only maltreatment was related to covert ASB at Wave 3. We discuss these findings within the context of sex differences in ASB and relevant models of gene-environment interplay across developmental periods. PMID:20405199

  18. The interaction effects of binary mixtures of benzene and toluene on the developing heart of medaka (Oryzias latipes).

    PubMed

    Teuschler, Linda K; Gennings, Chris; Hartley, William R; Carter, Hans; Thiyagarajah, Arunthavarani; Schoeny, Rita; Cubbison, Chris

    2005-03-01

    The United States Environmental Protection Agency (USEPA) has pursued the estimation of risk of adverse health effects from exposure to chemical mixtures since the early 1980s. Methods used to calculate risk estimates of mixtures were often based on single chemical information that required assumptions of dose-addition or response-addition and did not consider possible changes in response due to interaction effects among chemicals. Full factorial designs for laboratory studies can produce interactions information, but these are expensive to perform and may not provide the information needed to evaluate specific environmentally relevant mixtures. In this research, groups of Japanese medaka (Oryzias latipes) embryos were exposed to binary mixtures of benzene and toluene as well as to each of these chemicals alone. Endpoint specific dose-response models were built for the hydrocarbon mixture under an assumption of dose-additivity, using the single chemical dose-response information on benzene and toluene. The endpoints included heart rate, heart rate progression, and lethality. Results included a synergistic response for heart rate at 72 h of development, and either additivity or antagonism for all other endpoints at 96 h of development. This work uses an established statistical method to evaluate the toxicity of an environmentally relevant mixture to ascertain whether interaction effects are occurring, thus providing additional information on toxicity. PMID:15667848

  19. A combined binary interaction and phenotypic map of C. elegans cell polarity proteins

    PubMed Central

    Koorman, Thijs; Lemmens, Irma; Ramalho, João J.; Nieuwenhuize, Susan; van den Heuvel, Sander; Tavernier, Jan; Nance, Jeremy; Boxem, Mike

    2015-01-01

    The establishment of cell polarity is an essential process for the development of multicellular organisms and the functioning of cells and tissues. Here, we combine large-scale protein interaction mapping with systematic phenotypic profiling to study the network of physical interactions that underlies polarity establishment and maintenance in the nematode Caenorhabditis elegans. Using a fragment-based yeast two-hybrid strategy, we identified 439 interactions between 296 proteins, as well as the protein regions that mediate these interactions. Phenotypic profiling of the network resulted in the identification of 100 physically interacting protein pairs for which RNAi-mediated depletion caused a defect in the same polarity-related process. We demonstrate the predictive capabilities of the network by showing that the physical interaction between the RhoGAP PAC-1 and PAR-6 is required for radial polarization of the C. elegans embryo. Our network represents a valuable resource of candidate interactions that can be used to further our insight into cell polarization. PMID:26780296

  20. PHOTOMETRIC PROPERTIES OF THE INTERACTING BINARY BO MONOCEROTIS: EVIDENCE FOR MAGNETIC ACTIVITY

    SciTech Connect

    Reed, Phillip A.; Yuhas, Bernard J. E-mail: byuha055@live.kutztown.edu

    2013-05-15

    BO Monocerotis (BO Mon) is a severely neglected short-period (2.23 days) Algol-type eclipsing binary star system undergoing angular momentum variations that are likely due to the evolved secondary star experiencing cycles of magnetic activity. We present the first CCD light curves of BO Mon, which were observed at the Kutztown University Observatory (Kutztown, PA) in 2012 using B, V, and I filters. The analysis presented here is the first of its kind for BO Mon and provides the first physical model of the system's parameters. We also incorporate over 40 yr of published times of minimum light to provide a new ephemeris curve and perform a period study that greatly improves, while differing significantly from, an earlier ephemeris analysis that was done more than 13 yr ago. The observed variations in BO Mon's orbital period supply evidence for mass transfer and magnetic activity and our photometric model affords the basic properties of the system for use in future photometric and spectroscopic studies.

  1. Reverse Radiative Shock Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. Paul; Kuranz, Carolyn; Huntington, Channing; Grosskopf, Michael; Marion, Donna; Young, Rachel; Plewa, Tomek

    2010-11-01

    In many Cataclysmic Binary systems, mass onto an accretion disk produces a ``hot spot'' where the infalling flow obliquely strikes the rotating accretion disk. It has been argued (Armitage & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. We report the first experimental attempt to produce colliding flows that create a radiative reverse shock. The experiment will have occurred at the Omega-60 laser facility in August 2010. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (>100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will discuss the experimental design, the available data, and our astrophysical context. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  2. Reverse Radiative Shock Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. K.; Huntington, C. M.; Grosskopf, M. J.; Marion, D. C.; Young, R.; Plewa, T.

    2011-05-01

    In many Cataclysmic Binary systems, mass onto an accretion disk produces a `hot spot’ where the infalling supersonic flow obliquely strikes the rotating accretion disk. This collision region has many ambiguities as a radiation hydrodynamic system, but shock development in the infalling flow can be modeled. Depending upon conditions, it has been argued (Armitage & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter the hot spot's structure and emissions. We report the first experimental attempt to produce colliding flows that create a radiative reverse shock at the Omega-60 laser facility. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will discuss the experimental design, the available data, and our astrophysical context. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  3. Water–solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures

    PubMed Central

    Ghorab, Mohamed K.; Toth, Scott J.; Simpson, Garth J.; Mauer, Lisa J.; Taylor, Lynne S.

    2016-01-01

    Amorphous and crystalline solids are commonly found together in a variety of pharmaceutical and food products. In this study, the influence of co-formulation of amorphous maltodextrins (MDs) and crystalline sucrose (S) on moisture sorption, deliquescence, and glass transition (Tg) properties of powder blends was investigated. Individual components and binary mixtures of four different molecular weight MDs with sucrose in 1:1 w/w ratios were exposed to various relative humidity (RH) environments and their equilibrium and dynamic moisture contents were monitored. The deliquescence point (RH0) and dissolution behavior of sucrose alone and in blends was also monitored by polarized light microscopy and second harmonic generation imaging. In S:MD blends, the deliquescence RH of sucrose was lower than the RH0 of sucrose alone, and synergistic moisture sorption also occurred at RHs lower than the RH0. Intimate contact of sucrose crystals with the amorphous MDs resulted in complete dissolution of sucrose at RH < RH0. When blends were stored at conditions exceeding the Tg of the individual MDs (25 °C and 60%, 49% and 34%RH for MD21, MD29 and MD40, respectively), the Tg of the blends was lower than that of individual MDs. Thus, co-formulation of amorphous MDs with crystalline sucrose sensitizes the blend to moisture, potentially leading to deleterious changes in the formulation if storage conditions are not adequately controlled. PMID:23477494

  4. Analysis of the IUE spectra of the strongly interacting binary beta Lyrae

    NASA Technical Reports Server (NTRS)

    Mccluskey, George E., Jr.

    1993-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically-thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO-A2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 A and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically-thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  5. A note on the binary interaction potential in complex (dusty) plasmas

    SciTech Connect

    Khrapak, S. A.; Morfill, G. E.

    2008-08-15

    The effect of ion-neutral collisions on the potential of interaction between a pair of negatively charged grains in isotropic weakly collisional plasmas is investigated. Two interaction mechanisms are considered: Electric repulsion between like-charged grains and attraction due to the so-called ''ion shadow'' effect. It is demonstrated that in the presence of collisions, both interaction potentials exhibit Coulomb-like {proportional_to}r{sup -1} decay at large distances. A necessary condition for the existence of long-range attraction is derived. The obtained results are then used to reconsider the possibility of liquid-vapor critical point occurrence in complex plasmas.

  6. Cloning and characterization of a novel RING finger protein that interacts with class V myosins.

    PubMed

    El-Husseini, A E; Vincent, S R

    1999-07-01

    We have identified a novel protein (BERP) that is a specific partner for the tail domain of myosin V. Class V myosins are a family of molecular motors thought to interact via their unique C-terminal tails with specific proteins for the targeted transport of organelles. BERP is highly expressed in brain and contains an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil (RBCC domain), and a unique C-terminal beta-propeller domain. A yeast two-hybrid screening indicated that the C-terminal beta-propeller domain mediates binding to the tail of the class V myosin myr6 (myosin Vb). This interaction was confirmed by immunoprecipitation, which also demonstrated that BERP could associate with myosin Va, the product of the dilute gene. Like myosin Va, BERP is expressed in a punctate pattern in the cytoplasm as well as in the neurites and growth cones of PC12 cells. We also found that the RBCC domain of BERP is involved in protein dimerization. Stable expression of a mutant form of BERP lacking the myosin-binding domain but containing the dimerization domain resulted in defective PC12 cell spreading and prevented neurite outgrowth in response to nerve growth factor. Our studies present a novel interaction for the beta-propeller domain and provide evidence for a role for BERP in myosin V-mediated cargo transport. PMID:10391919

  7. The Training of a Child with Autism in a Greek Preschool Inclusive Class through Intensive Interaction: A Case Study

    ERIC Educational Resources Information Center

    Argyropoulou, Zoe; Papoudi, Despina

    2012-01-01

    The purpose of this study was to examine the effectiveness of intensive interaction during interactive play between a preschool boy with autism and his teacher and, as a consequence, improve the social interaction between the boy and a non-autistic girl in an inclusive class in Greece. A single subject ABA design was applied. Observed variables…

  8. Preliminary Studies of Interacting Binaries From NURO Observations : V963 Cygni and GSC 1419 0091

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Jones, S. M.; Scott, T.; Branning, J.; Miller, J.; Faulkner, D. R.; Hawkins, N. C.

    2005-12-01

    We present preliminary analyses of V963 and V965 Cygni based on observations taken at the National Undergraduate Research Observatory (NURO). Our CCD observations were taken 07-12 March 2005 and 19-25 July 2004 by DRF,RGS, and NCH with the Lowell Observatory 31-inch reflector. Standard UBVRI filters were used. Preliminary light curve analyses and updated periodicity studies are presented for these variables. V963 Cyg (GSC 2656 1995,α (2000) = 19h 44m 04.92s, δ (2000) = +31 41 50.17) is a detached binary discovered by Wachmann (Ast Abh Ham St VI, #1, 1961). The eclipse depths are nearly equal, 0.78 and 0.67 magnitudes in in V in the primary and secondary eclipses, respectively, causing observers to MISTAKINGLY classify it as an Algol-type system. Thus the two stars are similar in temperature and the period has to be DOUBLED. The curves appear fairlysymmetrical with a depressed section following the primary eclipse in R and I about 0.2 phase units wide. In BVRI, 100 to 130 observations were taken along with 75 in U. We determined three new times of minimum light, two secondary eclipses, HJD Min II = 2453207.76857±0.00029d and 2453211.9540±0.0032d, and one primary eclipse HJD Min I = 2453209.86073±0.00095d. A corrected period and an improved ephemeris was computed using available times of minimum light: HJD Min I = 2453209.8616(±0.0011)d + 1.39466792(±0.00000019)*E. GSC 1419 0091 (Brh V132) [α (2000) = 10h 11m 59.152s,δ (2000) = +16 52 30.28] is an overcontact binary discovered by Klaus Bernhard (BAV, http://www.var-mo.de/star/brh_v132.htm). We took approximately 60-65 observations in each of B,V,R, and I. We determined four new times of minimum light: HJD Min I = 2453437.8293(±0.0003) and 2453441.8291(±0.0019), and HJD Min II = 2453437.6973(±0.0012) and 2453442.76317(±0.0005). We computed an improved ephemeris from all available times of minimum and low light: HJD Min I = 2452754.4733(±0.0030)d + 0.2667251*E(±0.0000011). The light curves show shallow

  9. The binary interacting network of the conserved oligomeric Golgi tethering complex.

    PubMed

    Loh, Eva; Hong, Wanjin

    2004-06-01

    Several recent studies have revealed the existence of a conserved oligomeric Golgi (COG) complex consisting of several novel proteins as well as known Golgi proteins that were identified by independent approaches. The mammalian COG complex contains eight subunits: COG1/LdlBp, COG2/LdlCp, COG3/Sec34, COG4/Cod1, COG5/GTC-90/Cod4, COG6/Cod2, COG7, and COG8/Dor1. COG1, COG2, and COG7 seem structurally unique to mammalian cells, whereas the other five subunits are structurally conserved in yeast, which also contains three other unique proteins (COG1/Sec36p/Cod3p, COG2/Sec35p, and COG7/Cod5p). We report here the network of intermolecular interactions of the COG complex, revealed by in vitro translation and co-immunoprecipitation approaches. Our results suggest that COG4 serves as a core component of the complex by interacting directly with COG1, COG2, COG5, and COG7. COG3 is incorporated by its direct interaction with COG1 and COG2, whereas COG6 and COG8 do not interact with any individual subunit. Incorporation of COG6 into the complex depends on the concerted interaction of both COG5 and COG7, whereas optimal incorporation of COG8 depends on the concerted interaction of COG5, COG6, and COG7. Because COG4 (together with COG1, COG2, and COG3) is among the four essential genes of the COG complex in yeast, this molecular network highlights the structural basis for a crucial role of COG4 in the assembly/function of the complex. A model for the assembly of the COG complex is presented. PMID:15047703

  10. The Impact of Social Class on Parent-Professional Interaction in School Exclusion Processes: Deficit or Disadvantage?

    ERIC Educational Resources Information Center

    Gazeley, Louise

    2012-01-01

    Although a great deal of previous literature has explored the ways in which social class affects parental engagement in educational processes, there has been surprisingly little discussion of the way in which social class shapes the parent-professional interaction that occurs in school exclusion processes specifically. School exclusion processes…

  11. Binary 2in1 Vectors Improve in Planta (Co)localization and Dynamic Protein Interaction Studies.

    PubMed

    Hecker, Andreas; Wallmeroth, Niklas; Peter, Sébastien; Blatt, Michael R; Harter, Klaus; Grefen, Christopher

    2015-07-01

    Fluorescence-based protein-protein interaction techniques are vital tools for understanding in vivo cellular functions on a mechanistic level. However, only under the condition of highly efficient (co)transformation and accumulation can techniques such as Förster resonance energy transfer (FRET) realize their potential for providing highly accurate and quantitative interaction data. FRET as a fluorescence-based method unifies several advantages, such as measuring in an in vivo environment, real-time context, and the ability to include transient interactions as well as detecting the mere proximity of proteins. Here, we introduce a novel vector set that incorporates the benefit of the recombination-based 2in1 cloning system with the latest state-of-the-art fluorescent proteins for optimal coaccumulation and FRET output studies. We demonstrate its utility across a range of methods. Merging the 2in1 cloning system with new-generation FRET fluorophore pairs allows for enhanced detection, speeds up the preparation of clones, and enables colocalization studies and the identification of meaningful protein-protein interactions in vivo. PMID:25971551

  12. Case Studies of Interactive Whole-Class Teaching in Primary Science: Communicative approach and pedagogic purposes

    NASA Astrophysics Data System (ADS)

    McMahon, Kendra

    2012-07-01

    By developing two case studies of expert teaching in action, this study aimed to develop knowledge of talk in whole-class teaching in UK primary science lessons and understand this in relation to both the teachers' interpretations and sociocultural theoretical frameworks. Lessons were observed and video-recorded and the teachers engaged in video-stimulated-reflective dialogue to capture participants' reflections upon their own pedagogic purposes and interactions in the classroom. The analytic framework was developed at three levels: sequence of lessons, lesson, and episode. For each episode, the 'communicative approach' and teaching purposes were recorded. Transcripts were developed for fine grain analysis of selected episodes and a quantitative analysis was undertaken of the use of communicative approaches. Findings exemplify how different communicative approaches were used by the case-study teachers for different pedagogical purposes at different points in the sequence of lessons, contributing to primary teachers' repertoire for planning and practice. The initial elicitation of children's ideas can be understood as pooling them to enhance multivoicedness and develop a shared resource for future dialogues. Whole-class talk can support univocality by rehearsing procedural knowledge and exploring the meanings of scientific terminology. Identifying salient features of phenomena in the context of the whole-class marks them as significant as shared knowledge but valuing other observations extends the multivoicedness of the discourse.

  13. Evolution of Close Binary Systems

    SciTech Connect

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  14. Considerations on the role of fall-back discs in the final stages of the common envelope binary interaction

    NASA Astrophysics Data System (ADS)

    Kuruwita, Rajika L.; Staff, Jan; De Marco, Orsola

    2016-09-01

    The common envelope interaction is thought to be the gateway to all evolved compact binaries and mergers. Hydrodynamic simulations of the common envelope interaction between giant stars and their companions are restricted to the dynamical, fast, in-spiral phase. They find that the giant envelope is lifted during this phase, but remains mostly bound to the system. At the same time, the orbital separation is greatly reduced, but in most simulations it levels off at values larger than measured from observations. We conjectured that during the post-in-spiral phase the bound envelope gas will return to the system. Using hydrodynamic simulations, we generate initial conditions for our simulation that result in a fall-back disc with total mass and angular momentum in line with quantities from the simulations of Passy et al. We find that the simulated fall-back event reduces the orbital separation efficiently, but fails to unbind the gas before the separation levels off once again. We also find that more massive fall-back discs reduce the orbital separation more efficiently, but the efficiency of unbinding remains invariably very low. From these results we deduce that unless a further energy source contributes to unbinding the envelope (such as was recently tested by Nandez et al.), all common envelope interactions would result in mergers. On the other hand, additional energy sources are unlikely to help, on their own, to reduce the orbital separation. We conclude by discussing our dynamical fall-back event in the context of a thermally regulated post-common envelope phase.

  15. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR)*

    PubMed Central

    Hemmasi, Sarah; Czulkies, Bernd A.; Schorch, Björn; Veit, Antonia; Aktories, Klaus; Papatheodorou, Panagiotis

    2015-01-01

    CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757–866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin. PMID:25882847

  16. Cohesin regulates major histocompatibility complex class II genes through interactions with MHC-II insulators1

    PubMed Central

    Majumder, Parimal; Boss, Jeremy M.

    2011-01-01

    Cohesin is a multiprotein ringed complex that is most well known for its role in stabilizing the association of sister chromatids between S phase and M. More recently cohesin was found to be associated with transcriptional insulators, elements that are associated with the organization of chromatin into regulatory domains. The human major histocompatibility complex class II (MHC-II) locuscontains ten intergenic elements, termed MHC-II insulators, which bind the transcriptional insulator protein CCCTC transcription factor (CTCF). MHC-II insulators interact with each other forming a base architecture of discrete loops and potential regulatory domains. When MHC-II genes are expressed, their proximal promoter regulatory regions reorganize to the foci established by the interacting MHC-II insulators. MHC-II insulators also bind cohesin, but the functional role of cohesin in regulating this system is not known. Here we show that the binding of cohesin to MHC-II insulators occurred irrespective of MHC-II expression but was required for optimal expression of the HLA-DR and HLA-DQ genes. In a DNA dependent manner, cohesin subunits interacted with CTCF and the MHC-II specific transcription factors RFX and CIITA. Intriguingly, cohesin subunits were important for DNA looping interactions between the HLA-DRA promoter region and a 5’ MHC-II insulator but were not required for interactions between the MHC-II insulators themselves. This latter observation introduces cohesin as a regulator of MHC-II expression by initiating or stabilizing MHC-II promoter regulatory element interactions with the MHC-II insulator elements; events which are required for maximal MHC-II transcription. PMID:21911605

  17. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  18. Odorants of different chemical classes interact with distinct odorant binding protein subtypes.

    PubMed

    Löbel, Dietrich; Jacob, Marion; Völkner, Meike; Breer, Heinz

    2002-01-01

    The ligand profile for three odorant binding proteins (OBPs) of the rat have been determined using a large number of odorous compounds from different chemical classes. To evaluate the binding spectra of distinct subtypes, all OBPs were produces in Escherichia coli as recombinant His-tagged fusion proteins. The individual binding properties of each OBP subtype were analysed using a large array of organic compounds, representing derivatives of aliphatic and aromatic compounds, as well as terpenes, pyrazines and thiazoles, in a competitive spectroscopic binding assay with various fluorescence chromophores as the specific interacting partner for the OBPs. Most of the compounds were identified to interact only with one OBP subtype. But interestingly, a small change, for example in the 2-methyl or 2-ethoxy side chain in the pyrazine and thiazole derivatives to a 2-isobutyl group, caused overlapping binding affinities to rat-OBP1 and rat-OBP3. However, the data strongly support the notion that each OBP subtype displays a characteristic ligand binding profile and interacts with a different subset of exogenous organic compounds in a micromolar range. PMID:11751466

  19. Does Use of ICT-Based Teaching Encourage Innovative Interactions in the Classroom? Presentation of the CLI-O: Class Learning Interactions--Observation Tool

    ERIC Educational Resources Information Center

    Manny-Ikan, Edith; Tikochinski, Tal Berger; Bashan, Zipi

    2013-01-01

    This article presents a new classroom observations analysis tool (CLI-O: Class Learning Interactions--Observation tool). The CLI-O tool enables the collection of various data regarding the use of ICT tools, organization of learning, and teacher-student interactions in the lesson. Several examples demonstrating the use of CLI-O and some preliminary…

  20. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase.

    PubMed Central

    Sissler, M; Eriani, G; Martin, F; Giegé, R; Florentz, C

    1997-01-01

    Gene cloning, overproduction and an efficient purification protocol of yeast arginyl-tRNA synthetase (ArgRS) as well as the interaction patterns of this protein with cognate tRNAArgand non-cognate tRNAAspare described. This work was motivated by the fact that the in vitro transcript of tRNAAspis of dual aminoacylation specificity and is not only aspartylated but also efficiently arginylated. The crystal structure of the complex between class II aspartyl-tRNA synthetase (AspRS) and tRNAAsp, as well as early biochemical data, have shown that tRNAAspis recognized by its variable region side. Here we show by footprinting with enzymatic and chemical probes that transcribed tRNAAspis contacted by class I ArgRS along the opposite D arm side, as is homologous tRNAArg, but with idiosyncratic interaction patterns. Besides protection, footprints also show enhanced accessibility of the tRNAs to the structural probes, indicative of conformational changes in the complexed tRNAs. These different patterns are interpreted in relation to the alternative arginine identity sets found in the anticodon loops of tRNAArgand tRNAAsp. The mirror image alternative interaction patterns of unmodified tRNAAspwith either class I ArgRS or class II AspRS, accounting for the dual identity of this tRNA, are discussed in relation to the class defining features of the synthetases. This study indicates that complex formation between unmodified tRNAAspand either ArgRS and AspRS is solely governed by the proteins. PMID:9396794

  1. Whole-class interactions and code-switching in secondary mathematics teaching in Mauritius

    NASA Astrophysics Data System (ADS)

    Salehmohamed, Asifa; Rowland, Tim

    2014-09-01

    This paper reports a study of whole-class interactions in mathematics classrooms in a girls' secondary school in Mauritius. It focuses on three teachers and their instructional language practices. Analysis of audio-recordings of lessons showed that code-switching was commonly practised by all the teachers in the study. The teachers' comments on their use of language within the classroom show that although they are aware of the languages they use, they are not always conscious of their code-switching. Different functions of the teachers' code-switching practices were identified, indicating it can be an important support for learning mathematics, despite some related tensions that teachers face in using code-switch in their teaching. The paper concludes with some implications for national policy and for teacher education.

  2. Carbonic Anhydrase Interaction With Lipothioars Enites: A Novel Class of Isozymes I and II Inhibitors

    PubMed Central

    Timotheatou, Despina; Ioannou, Panayiotis V.; Scozzafava, Andrea; Briganti, Fabrizio

    1996-01-01

    The interaction of carbonic anhydrase (CA) isozymes I and II with a series of As(III) derivatives, dialkyl and diaryl rac-2,3-dimyristoyloxypropyldithioarsonites, was investigated kinetically and spectrophotometrically, utilizing the native and Co(II)-substituted enzymes. Depending on the substitution pattern at the -As(SR)2 moiety of the investigated derivatives, inactive compounds were found for R = phenyl or naphthyl, and active ones for derivatives containing carboxyl groups (R = CH2COOH, cysteinyl and glutathionyl). Together with the arsonolipids previously investigated, the active compounds of this series - the "lipothioarsenites"- constitute a novel class of CA inhibitors that bind to the metal ion within the enzyme active site, as proved by changes in the electronic spectra of adducts of such inhibitors with Co(II)CA. PMID:18475756

  3. Collaborative Filtering for Brain-Computer Interaction Using Transfer Learning and Active Class Selection

    PubMed Central

    Wu, Dongrui; Lance, Brent J.; Parsons, Thomas D.

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188

  4. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    PubMed

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients. PMID:25332688

  5. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    PubMed

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188

  6. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination

    PubMed Central

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤4 µg/ml) and stimulates CSR at high concentrations (≥8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients. PMID:25332688

  7. Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments

    PubMed Central

    Lun, Aaron T. L.; Perry, Malcolm; Ing-Simmons, Elizabeth

    2016-01-01

    The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C). These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by the lack of basic infrastructure to represent and manipulate genomic interaction data. Here, we present the InteractionSet package that provides classes to represent genomic interactions and store their associated experimental data, along with the methods required for low-level manipulation and processing of those classes. The InteractionSet package exploits existing infrastructure in the open-source Bioconductor project, while in turn being used by Bioconductor packages designed for higher-level analyses. For new packages, use of the functionality in InteractionSet will simplify development, allow access to more features and improve interoperability between packages. PMID:27303634

  8. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    PubMed

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-06-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs. PMID:25833688

  9. Molecular interactions in binary mixtures of methyl formate with 1-butanol, 1-pentanol, and 1-hexanol by using ultrasonic data at 303 K

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Mullainathan, S.

    2016-05-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of methyl formate with 1-butanol, 1-pentanol and 1-hexanol at 303 K. From the experimental results, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been determined. Excess values of various parameters have also been calculated and interoperated in terms of molecular interactions. The deviations in the parameters show that strength of intermolecular interactions between methyl formate with selected 1-alcohols have been observed in the order of 1-butanol < 1-pentanol < 1-hexanol.

  10. Binary primitive alternant codes

    NASA Technical Reports Server (NTRS)

    Helgert, H. J.

    1975-01-01

    In this note we investigate the properties of two classes of binary primitive alternant codes that are generalizations of the primitive BCH codes. For these codes we establish certain equivalence and invariance relations and obtain values of d and d*, the minimum distances of the prime and dual codes.

  11. Analytical studies of the interaction of Tb(III)-2-{[(4-methoxy benzoyl) oxy]} methyl benzoic acid binary complex with nucleosides

    NASA Astrophysics Data System (ADS)

    Shehata, A. M. A.; Azab, H. A.; El-assy, N. B.; Anwar, Z. M.; Mostafa, H. M.

    2016-01-01

    The interaction of Tb(III)-2-{[(4-methoxy benzoyl) oxy]} methyl benzoic acid binary complex with nucleosides (adenosine, cytidine, guanosine and inosine) was investigated using UV and fluorescence methods. The reaction of Tb-complex with cytidine, guanosine and adenosine is accompanied by shift to longer wavelength in the absorption band, while there is a blue shift in the absorption band with an enhancement in the molar absorptivity upon the reaction with inosine. The fluorescence intensity of Tb(III)-2-{[(4- methoxy benzoyl) oxy]} methyl benzoic acid binary complex at λ = 545 nm (5D4 → 7F5) was decreased with the addition of the nucleoside molecule following the order: cytidine > inosine > guanosine > adenosine.

  12. Teleducation : Linking Continents Across Time and Space Through Live, Real-Time Interactive Classes

    NASA Astrophysics Data System (ADS)

    Macko, S. A.; Szuba, T.; Swap, R.; Annegarn, H.; Marjanovic, B.; Vieira, F.; Brito, R.

    2005-12-01

    International education is a natural extension of global economies, global environmental concerns, and global science. While faculty and student exchanges between geographic areas permit for educational experiences and cultural exchanges for the privileged few, distance learning offers opportunities for educational exchanges under any circumstance where time, expense, or location otherwise inhibit offering or taking a particular course of study. However, there are severe pedagogical limitations to traditional Web-based courses that suffer from a lack of personalized, spontaneous exchange between instructor and student. The technology to establish a real time, interactive teleducation program exists, but to our knowledge is relatively untested in a science classroom situation, especially internationally over great distances. In a project to evaluate this type of linkage, we offered a real-time, interactive class at three separate universities, which communicated instantaneously across an ocean at a distance of greater than 8,000 miles and seven time zones. The course, 'Seminar on the Ecology of African Savannas', consisted of a series of 11 lectures originating in either Mozambique (University of Eduardo Mondlane), South Africa (University of the Witwatersrand) or the United States (University of Virginia). We combined ISDN, internet and satellite linkages to facilitate the lectures and real time discussions between instructors and approximately 200 university students in the three countries. Although numerous technical, logistical, and pedagogical issues - both expected and unexpected - arose throughout the pilot year, the project can be viewed as overwhelmingly successful and certainly serves as proof-of-concept for future initiatives, both internationally and locally. This review of our experience will help to prepare other students, faculty, and institutions interested in establishing or developing international education initiatives

  13. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions.

    PubMed

    Jönsson, Peter; Southcombe, Jennifer H; Santos, Ana Mafalda; Huo, Jiandong; Fernandes, Ricardo A; McColl, James; Lever, Melissa; Evans, Edward J; Hudson, Alexander; Chang, Veronica T; Hanke, Tomáš; Godkin, Andrew; Dunne, Paul D; Horrocks, Mathew H; Palayret, Matthieu; Screaton, Gavin R; Petersen, Jan; Rossjohn, Jamie; Fugger, Lars; Dushek, Omer; Xu, Xiao-Ning; Davis, Simon J; Klenerman, David

    2016-05-17

    The αβ T-cell coreceptor CD4 enhances immune responses more than 1 million-fold in some assays, and yet the affinity of CD4 for its ligand, peptide-major histocompatibility class II (pMHC II) on antigen-presenting cells, is so weak that it was previously unquantifiable. Here, we report that a soluble form of CD4 failed to bind detectably to pMHC II in surface plasmon resonance-based assays, establishing a new upper limit for the solution affinity at 2.5 mM. However, when presented multivalently on magnetic beads, soluble CD4 bound pMHC II-expressing B cells, confirming that it is active and allowing mapping of the native coreceptor binding site on pMHC II. Whereas binding was undetectable in solution, the affinity of the CD4/pMHC II interaction could be measured in 2D using CD4- and adhesion molecule-functionalized, supported lipid bilayers, yielding a 2D Kd of ∼5,000 molecules/μm(2) This value is two to three orders of magnitude higher than previously measured 2D Kd values for interacting leukocyte surface proteins. Calculations indicated, however, that CD4/pMHC II binding would increase rates of T-cell receptor (TCR) complex phosphorylation by threefold via the recruitment of Lck, with only a small, 2-20% increase in the effective affinity of the TCR for pMHC II. The affinity of CD4/pMHC II therefore seems to be set at a value that increases T-cell sensitivity by enhancing phosphorylation, without compromising ligand discrimination. PMID:27114505

  14. Earth2Class: Assessing Interactions Between Research Scientists and Classroom Teachers

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Iturrino, G.; Assumpcao, C. M.; Baggio, F. D.

    2006-12-01

    The Earth2Class Workshops at the Lamont-Doherty Earth Observatory (E2C) have brought together research scientists and secondary school teachers from the New York metropolitan area and neighboring states to learn about outcomes of investigations into many aspects of the Earth System and processes involved in making such discoveries. NSF Geoscience Education Grant 0331232 has provided support for an expanded program over the past three years, described at the 2005 Fall Meeting. We now present the results of formative and summative assessments of the effectiveness of this project. Among questions explored were: What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? Formative evaluations were conducted through online and written responses from participants, feedback from conference presentations, and comments posted on teacher list-servers. Almost all responses were overwhelmingly positive. Formal, summative studies conducted by two external grant evaluators also noted many positive results. One abridged conclusion states: The E2C project is a unique and effective professional development program that can stimulate teachers and keep them informed of the vital content they teach. It is a model worthy of duplication in other subject areas and across the country. It may help to retain the best of our teachers and overcome an unfortunate attrition rate. The direct contact with professional scientists and collegial interactions in a non-threatening professional environment are critical dispositional and cognitive components of this

  15. Health Science students’ evaluation of courses and Instructors: the effect of response rate and class size interaction

    PubMed Central

    Kuwaiti, Ahmed Al

    2015-01-01

    Objective This study aims at investigating the effect of response rate and class size interaction on students’ evaluation of instructors and the courses offered at heath science colleges in Saudi Arabia. Methodology A retrospective study design was adapted to ascertain Course Evaluation Surveys (CES) conducted at the health science colleges of the University of Dammam [UOD] in the academic year 2013–2014. Accordingly, the CES data which was downloaded from an exclusive online application ‘UDQUEST’ which includes 337 different courses and 15,264 surveys were utilized in this study. Two-way analysis of variance was utilized to test whether there is any significant interaction between the class size and the response rate on the students’ evaluation of courses and instructors. Results The study showed that high response rate is required for student evaluation of instructors at Health Science colleges when the class size is small whereas a medium response rate is required for students’ evaluation of courses. On the other hand, when the class size is medium, a medium or high response rate is needed for students’ evaluation of both instructors and courses. Conclusions The results of this study recommend that the administrators of the health science colleges to be aware of the interpretation of students’ evaluations of courses and instructors. The study also suggests that the interaction between response rate and class size is a very important factor that needs to be taken into consideration while interpreting the findings of the students’ evaluation of instructors and courses. PMID:25901133

  16. Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer.

    PubMed

    Wise, Steven G; Liu, Hongjuan; Yeo, Giselle C; Michael, Praveesuda L; Chan, Alex H P; Ngo, Alan K Y; Bilek, Marcela M M; Bao, Shisan; Weiss, Anthony S

    2016-03-01

    Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress-strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair. PMID:26857114

  17. Effect of in-class student-student interaction on the learning of physics in a college physics course

    NASA Astrophysics Data System (ADS)

    Samiullah, Mohammad

    1995-10-01

    The effectiveness of in-class student-student interaction on the learning of physics in an algebra-based college physics course is investigated. The student-student interaction leads to an improvement of attitudes of the students toward the course, improves the academic environment of the class, and makes students feel better about the material they are learning. However, it is also found that these qualitative improvements in the class do not lead to a significant change in the test scores on either the classroom tests or the Halloun-Hestenes's mechanics diagnostics test. The correlation between the performances of students on the classroom tests with the performance on the Halloun-Hestenes test used as a pretest is also investigated and it is found that this correlation is less for students with cooperative learning than for students without cooperative learning.

  18. Student-Faculty Interaction in Research Universities: Differences by Student Gender, Race, Social Class, and First-Generation Status

    ERIC Educational Resources Information Center

    Kim, Young K.; Sax, Linda J.

    2009-01-01

    This study examined whether the effects of student-faculty interaction on a range of student outcomes--i.e., college GPA, degree aspiration, integration, critical thinking and communication, cultural appreciation and social awareness, and satisfaction with college experience--vary by student gender, race, social class, and first-generation status.…

  19. The Nature of Interactions between Chinese Immigrant Families and Preschool Staff: How Culture, Class, and Methodology Matter

    ERIC Educational Resources Information Center

    Heng, Tang T.

    2014-01-01

    While the parental involvement field has progressed from asking what the impact of parental involvement is to how we can better involve parents, research has lagged in finding out how sociocultural and class differentials between homes and schools affect immigrant families' interactions with schools. This case study uses ethnographic tools to…

  20. Relationship of Maternal Psychological Distress Classes to Later Mother-Infant Interaction, Home Environment, and Infant Development in Preterm Infants.

    PubMed

    Santos, Hudson; Yang, Qing; Docherty, Sharron L; White-Traut, Rosemary; Holditch-Davis, Diane

    2016-06-01

    Latent class analyses can be used early in the postpartum period to identify mothers of preterm infants experiencing similar patterns of psychological distress symptoms, but whether these classes of mothers also differ in parental responses to their infants or in their infants' development is largely unknown. In this longitudinal multisite-repeated measures study, we evaluated the usefulness of three psychological distress classes (low distress, high depressive and anxiety symptoms, and extreme distress) in predicting mother-infant interactions, quality of home environment, and infant development in 229 mother-preterm infant pairs. Mothers completed psychological distress questionnaires at study entry; parent-infant interaction was recorded at 2 and 6 months of age corrected for prematurity; and infant developmental data were collected 12 months corrected age. Mothers in the extreme distress class engaged in more developmental stimulation at 2 months (β = .99, p < 0.01) and at 6 months (β = 1.38, p < .01) than mothers in the other classes and had better quality of home environment at 2 months (β = 2.52, p = .03). When not controlling for neurological insult, infants of mothers in the extreme distress class had poorer cognitive (β = -10.28, p = .01) and motor (β = -15.12, p < .01) development scores at 12 months corrected age than infants of mothers in the other distress classes, but after controlling for infant neurological insult, there were no differences in cognitive, motor, and language development based on maternal psychological distress class. © 2016 Wiley Periodicals, Inc. PMID:27059608

  1. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    PubMed

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA. PMID:27380048

  2. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  3. A qualitative investigation of out-of-class student-faculty interaction in an undergraduate residential learning community

    NASA Astrophysics Data System (ADS)

    Strong, Philip E.

    The central question of this study was to investigate the nature of and outcomes associated with out-of-class student-faculty interaction in a residential learning community (RLC). There exists a strong national movement in residential higher education for the development of residential learning communities. Using qualitative methodology, I interviewed 14 second-year undergraduate students who were pursuing a bachelor degree in the sciences. Ten of the 14 students were members of the same RLC. From the analysis of the interview data, I found that the students interacted with their faculty outside of class at two distinct levels---rudimentary and heightened---as interpreted through four primary variables---frequency of interactions, quality of the interaction experiences, the intensity of interactions, and location of interactions. Students reported significant impacts on their academic, social, and personal development with the specific outcomes of increased student learning, motivation, self-worth, effort, and comfort level. Students also identified their perceptions of faculty members' roles at the institution as well as preferred characteristics of a 'good' faculty member. The residential learning community at the center of this study, and other institutionally developed programs, were shown to have positive impacts on students in their academic, personal, and social development as well as their access to heightened-level interactions with faculty.

  4. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  5. Interactions between the Isolated-Interactive Elements Effect and Levels of Learner Expertise: Experimental Evidence from an Accountancy Class

    ERIC Educational Resources Information Center

    Blayney, Paul; Kalyuga, Slava; Sweller, John

    2010-01-01

    This study investigated interactions between the isolated-interactive elements effect and levels of learner expertise with first year undergraduate university accounting students. The isolated-interactive elements effect occurs when learning is facilitated by initially presenting elements of information sequentially in an isolated form rather than…

  6. Two classes of human papillomavirus type 16 E1 mutants suggest pleiotropic conformational constraints affecting E1 multimerization, E2 interaction, and interaction with cellular proteins.

    PubMed Central

    Yasugi, T; Vidal, M; Sakai, H; Howley, P M; Benson, J D

    1997-01-01

    Random mutagenesis of human papillomavirus type 16 (HPV16) E1 was used to generate E1 missense mutants defective for interaction with either hUBC9 or 16E1-BP, two cDNAs encoding proteins that have been identified by their ability to interact with HPV16 E1 in two-hybrid assays. hUBC9, the human counterpart of Saccharomyces cerevisiae UBC9, is a ubiquitin-conjugating enzyme known to be involved in cell cycle progression. 16E1-BP encodes a protein of no known function but does contain an ATPase signature motif. Eight hUBC9 or 16E1-BP interaction-defective HPV16 E1 missense mutants were identified and characterized for origin-dependent transient DNA replication, ATPase activity, and various protein-protein interaction phenotypes. Six of these mutant E1 proteins were significantly impaired for replication. Among these, two classes of replication-defective HPV16 E1 missense mutants were observed. One class, represented by the S330R replication-defective mutant (containing an S-to-R change at position 330), remained competent for all protein-protein interactions tested, with the exception of hUBC9 association. Furthermore, this mutant, unlike the other replication-defective HPV16 E1 missense mutants, had a strong dominant negative replication phenotype in transient-replication assays. The other class, represented by five of the missense mutants, was defective for multiple protein-protein interactions, usually including, but not limited to, the interaction defect for which each mutant was originally selected. In many cases, a single missense mutation in one region of HPV16 E1 had pleiotropic effects, even upon activities thought to be associated with other domains of HPV16 E1. This suggests that E1 proteins are not modular but may instead be composed of multiple structurally and/or functionally interdependent domains. PMID:9223484

  7. The magnetic field of the hot spectroscopic binary HD 5550

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Alecian, E.

    2015-12-01

    HD 5550 is a spectroscopic binary composed of two A stars observed with Narval at TBL in the frame of the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) Large Program. One component of the system is found to be an Ap star with a surprisingly weak dipolar field of ˜65 G. The companion is an Am star for which no magnetic field is detected, with a detection threshold on the dipolar field of ˜40 G. The system is tidally locked, the primary component is synchronised with the orbit, but the system is probably not completely circularised yet. This work is only the second detailed study of magnetic fields in a hot short-period spectroscopic binary. More systems are currently being observed with both Narval at TBL and ESPaDOnS at CFHT within the BinaMIcS project, with the goal of understanding how magnetism can impact binary evolution and vice versa.

  8. Comparing Interactions in Literature Circles in Both Online and in Class Discussions

    ERIC Educational Resources Information Center

    Skeen, Christel Ghrist

    2014-01-01

    Discourse analysis of literature circles can lead educators to understand the different types of interactions taking place as students talk about text. Social and academic interactions exist in both face-to-face and online discussions of reading material. This study examines two different settings of literature circles and compares interactions of…

  9. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  10. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.

    2015-07-01

    NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.