Science.gov

Sample records for binary metal oxides

  1. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals

    NASA Astrophysics Data System (ADS)

    Akashev, L. A.; Popov, N. A.; Kuznetsov, M. V.; Shevchenko, V. G.

    2015-05-01

    The kinetics of oxidation of the surface of Al alloys with 1-2.5 at % rare-earth metals (REMs) at 400-500°C in air was studied by ellipsometry and X-ray photoelectron spectroscopy (XPS). The addition (1-2.5 at % REM) of all rare-earth metals to aluminum was shown to increase the thickness of the oxide layer. The addition of surfactant and chemically active REMs (Yb, Sm, La, and Ce) increased the rate of oxidation of solid aluminum most effectively. The oxidation can be accelerated by the polymorphic transformations of the individual REM oxides in the film. The surface activity of Sm with respect to solid Al was confirmed by XRS.

  2. Semiconducting transition metal oxides.

    PubMed

    Lany, Stephan

    2015-07-22

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO(2), and the high levels of hole doping in Co(2)ZnO(4) due to a self-doping mechanism that originates from the multivalence of Co. PMID:26126022

  3. Semiconducting transition metal oxides

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2015-07-01

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO2, and the high levels of hole doping in Co2ZnO4 due to a self-doping mechanism that originates from the multivalence of Co.

  4. Metal oxide films on metal

    DOEpatents

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  5. An Acidity Scale for Binary Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  6. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites

    PubMed Central

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-01-01

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co3O4 and TiO2) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In general, ZnO NPs showed the strongest effect on microbial growth in all measurements, showing an EC50 value of 10.9 mg/L for ATP content. The ranking (EC50) of NPs based on their effect on microbial growth assessed by ATP content and VCC was ZnO > Co3O4 > NiO > TiO2. Upon exposure to binary NP mixtures, synergistic and additive modes of action were observed for ATP content and VCC, respectively. The ranges of observed (P(O)) and expected (P(E)) activity were 83%–92% and 78%–82% of the control (p-value 0.0010) based on ATP content and 78%–95% and 72%–94% of the control (p-value 0.8813) based on VCC under the tested conditions, respectively. The results indicate that the effects of NP mixtures on microbial growth in the sandy soil matrix were as great, or greater, than those of single NPs. Therefore, understanding the effects of single NPs and NP mixtures is essential for proper ecological risk assessment. Additionally, these findings demonstrate that the evaluation of NP effects may be profoundly influenced by the method of microbial growth measurement. PMID:26610489

  7. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J.D.; Cochran, J.K.; Hill, D.N.; Chapman, A.T.; Clark, G.W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  8. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  9. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  10. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  11. Binary alloys for refractory-metal brazing

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Data on binary-metal eutectics and melting-point minimums have been assembled for use in selecting brazing filler compositions for refractory metals. Data are presented in four tables for ready reference. Brief discussion of problems and potentials of metallides is included in appendix.

  12. Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system.

    PubMed

    Gao, Shuang; Zeng, Fei; Wang, Minjuan; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-05-21

    The common nonpolar switching behavior of binary oxide-based resistive random access memory devices (RRAMs) has several drawbacks in future application, such as the requirements for a high forming voltage, a large reset current, and an additional access device to settle the sneak-path issue. Herein, we propose the tuning of the switching behavior of binary oxide-based RRAMs by inserting an ultra-thin chemically active metal nanolayer, and a case study on Ta2O5-Ta systems is provided. The devices are designed to be Pt/Ta2O5(5 - x/2)/Ta(x)/Ta2O5(5 - x/2)/Pt with x = 0, 2, or 4 nm. The reference devices without the Ta nanolayer exhibit an expected nonpolar switching behavior with a high forming voltage of ?-4.5 V and a large reset current of >10 mA. In contrast, a self-compliance bipolar switching behavior with a low forming voltage of ?-2 V and a small reset current of <1 mA is observed after inserting a 2 nm Ta nanolayer. When the Ta nanolayer is increased to 4 nm, a complementary resistive switching (CRS) behavior is found, which can effectively settle the sneak-path issue. The appearance of CRS behavior suggests that a thin Ta nanolayer of 4 nm is robust enough to act as an inner electrode. Besides, the behind switching mechanisms are thoroughly discussed with the help of a transmission electron microscope and temperature-dependent electrical measurements. All these results demonstrate the feasibility of tuning switching behavior of binary oxide-based RRAMs by inserting an ultra-thin chemically active metal nanolayer and might help to advance the commercialization of binary oxide-based RRAMs. PMID:25907552

  13. Can low metallicity binaries avoid merging?

    E-print Network

    S. E. de Mink; M. Cottaar; O. R. Pols

    2007-10-11

    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Zmetallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we will present analytic fits to models of accreting stars at various metallicities intended for the use in population synthesis models.

  14. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  15. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  16. Can low metallicity binaries avoid merging?

    E-print Network

    de Mink, S E; Pols, O R

    2007-01-01

    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Zmetallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we w...

  17. Stochastic learning in oxide binary synaptic device for neuromorphic computing

    PubMed Central

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  18. Synthesis of oxide-coated metal clusters

    SciTech Connect

    Crane, R.A.; Matthews, J.T.; Andres, R.P.

    1997-09-01

    Fish-eye particles consisting of metal clusters (Ag, Cu) a few nanometers in diameter encapsulated within a thin layer ({minus}1 nm) of silica are produced using aerosol synthesis procedures. The authors present a method for predicting stable fish-eye nanostructures and describe synthesis techniques for producing significant quantities of silica-encapsulated metal nanoparticles. For many metal/oxide pairs, gas phase formation of oxide encapsulated metal particles is thermodynamically favorable. Using known surface free energies and binary phase diagrams, it is possible to predict whether SiO{sub 2}-encapsulated metal clusters will form in the gas phase. Two conditions which must be satisfied are: (1) that the surface free energy of the metal is higher than that of Si; and (2) that the metal composition in the particle is greater than the eutectic composition in the metal/Si phase diagram. Ag-SiO{sub 2} and Cu-SiO{sub 2} are two examples of systems which readily form fish-eye structures. Two types of gas phase cluster sources are used at Purdue for producing encapsulated metal nanoparticles. The Multiple Expansion Cluster Source (MECS) is a well established apparatus which produces small quantities ({minus}50 mg/hr) of very uniform materials using resistive heating for evaporation. The new Arc Cluster Evaporation Source (ACES) offers much higher production rates (> 1 g/hr) using DC arc evaporation. These two cluster sources make possible the study of a unique class of materials.

  19. Polymorphism Control in Nanostructured Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sood, Shantanu

    Polymorphic phase transformations are common to all nanocrystalline binary metal oxides. The polymorphic nature of such metal oxides makes available a large number of phases with differing crystal structures, each stable under certain conditions of temperature, pressure, and/or particle size. These different crystal structures translate to unique physical and chemical properties for each structural class of polymorphs. Thus predicting when polymorphic phase transitions are likely to occur becomes important to the synthesis of stable functional materials with desired properties. Theoretical calculations using a heuristic approach have resulted in an accurate estimation of the critical particle size predicting metastable to stable phase transitions. This formula is applied to different case studies: for anatase to rutile titania; gamma-Alumina to alpha-Alumina; and tetragonal to monoclinic zirconia. The theoretical values calculated have been seen to be very close to the experimental results from the literature. Manifestation of the effect of phase transitions in nanostructured metal oxides was provided in the study of metastable to stable phase transitions in WO3. Nanowires of tungsten trioxide have been synthesized in-situ inside an electron microscope. Such structure of tungsten trioxide result due to a metastable to stable phase transformation, from the cubic to the monoclinic phase. The transformation is massive and complete. The structures formed are unique one-dimensional nanowires. Such a method can be scaled inside any equipment equipped with an electron gun, for example lithography systems either using STEM or E-beam lithography. Another study on nanowire formation in binary metal oxides involved the synthesis of stable orthorhombic MoO3 by means of blend electrospinning. Both a traditional single jet electrospinning set up and a novel high-throughput process to get high aspect ratio nanowires. The latter is a jet-controlled and flow controlled electrospinning. The mechanism of the formation of nanowires of both tungsten trioxide and molybdenum trioxide are discussed in relation to the polymorphic nature of the oxides.

  20. Oxidation Behavior of Binary Niobium Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale, are masked by the overriding tendency for a porous scale.

  1. Nanosize Powders of Transition Metals Binary Systems

    NASA Astrophysics Data System (ADS)

    Zaharov, Yu A.; Pugachev, V. M.; Dodonov, V. G.; Popova, A. N.; Kolmykov, R. P.; Rostovtsev, G. A.; Vasiljeva, O. V.; Zyuzyukina, E. N.; Ivanov, A. V.; Prosvirin, I. P.

    2012-02-01

    The review of the results obtained by the authors in the field of synthesis of Fe-Co, Fe-Ni, Co-Ni and Cu-Ni nano-size binary systems (NBS) by the liquid-phase reducing of metal chlorides by hydrazine (pH>10) and sodium tetrahydroborate (NaBH4) (pH = 7-8) by the process conditions variation (temperature of reaction medium, concentration and input order of reagents) as well as NBS properties investigation is presented.

  2. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    SciTech Connect

    Ogihara, Hitoshi; Masahiro, Sadakane; Nodasaka, Yoshinobu; Ueda, Wataru

    2009-06-15

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen. - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.

  3. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  4. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu]. PMID:26744146

  5. METAL OXIDE NANOPARTICLES

    SciTech Connect

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  6. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  7. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  8. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  9. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S. (Livermore, CA)

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  10. Simple Route to Gradient Concentric Metal and Metal Oxide Rings

    E-print Network

    Lin, Zhiqun

    Simple Route to Gradient Concentric Metal and Metal Oxide Rings Suck Won Hong, Supratim Giri ring structures consisting of metals has been demonstrated on many occasions. Mesos- copic gold rings on metal and metal oxide have been reported. The rings organized in a concentric mode many offer

  11. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  12. Lithium metal reduction of plutonium oxide to produce plutonium metal

    SciTech Connect

    Coops, M.S.

    1992-06-02

    This patent describes a method for production of plutonium metal from plutonium oxide by metallic lithium reduction, with regeneration of lithium reactant. It comprises: reacting the plutonium oxide with metallic lithium; oxides and unreacted lithium; subliming the product lithium oxide and unreacted lithium from unreacted plutonium oxide with high heat and low pressure; recapturing the product lithium oxides; reacting the recaptured product lithium oxides with anhydrous hydrochloric acid to produce lithium chloride salt; and decomposing product lithium chloride salt by electrolysis to regenerate lithium metal.

  13. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  14. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  15. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  16. Making A Noble-Metal-On-Metal-Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Miller, Irvin M.; Davis, Patricia P.; Upchurch, Billy T.

    1989-01-01

    Catalyst exhibits superior performance in oxidation of CO in CO2 lasers. Two-step process developed for preparing platinum- or palladium-on-tin-oxide catalyst for recombination of CO and O2, decomposition products that occur in high-voltage discharge region of closed-cycle CO2 laser. Process also applicable to other noble-metal/metal-oxide combinations.

  17. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  18. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  19. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D. (Richland, WA)

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  1. The oxidation of metals and alloys

    NASA Technical Reports Server (NTRS)

    Scheil, Erich

    1952-01-01

    This paper reviews the various types of oxidation processes occurring with pure metals and gives explanations for the varying time-temperature-oxidation rate relations that exist for copper, tungsten, zinc, cadmium, and tantalum. The effect of shape and crystal structure on oxidation is discussed. Principles derived are applied to the oxidation of alloys.

  2. An in situ study using anomalous wide angle X-ray scattering and X-ray absorption spectroscopy of the binary metal oxide catalytic system SnO2-ZnAI2O4 supported on alumina

    NASA Astrophysics Data System (ADS)

    Revel, R.; Bazin, D.; Bouchet-Fabre, B.; Seigneurin, A.; Kihn, Y.

    2002-07-01

    A fine structural description of the local order around zinc and tin atoms of a binary metal oxide catalyst, namely SnO2-ZnAl2O4/AI2O3 which can be used as a DeNOx catalyst, is achieved through XAS (X-ray absorption Spectroscopy) and AWAXS (Anomalous wide angle X-ray scattering). The analysis of the data was supported by ab initio calculations based on the multiple scattering processes for the XAS spectroscopy and ab initio calculations based on the Debye equation in the case of anomalous scattering. We found that the tetrahedral sites occupied by the zinc atoms are not completely filled and that part of the zinc atoms are engaged in a SnO2 like structure. Also, it seems that most of the tin atoms are engaged in tin dioxide clusters. For the set of in situ XAS experiments done at the K Zn edge and K Sn edge, no significant modification of the interatomic distances around each of the two metals versus the reactive gases are measured. Taking into account the previous results obtained on the monoxide metal supported catalyst ZnAl2O4/Al2O3, we can assume thus that only a dramatic lack of occupancy on the metal site favours an incursion of light atoms in the network. This structural property can explain in return the expansion of the crystallographic cell as well as a significant increased of the Debye-Waller factor associated to zinc-zinc pairs. Une description détaillée de l'ordre local autour du zinc et de l'étain est effectuée sur un catalyseur SnO2-ZnAl2O4/AI2O3 par deux techniques spécifiques au rayonnement synchrotron, la spectroscopie d'absorption X et la diffraction anomale. Une attention particulière est portée sur l'analyse des données. En ce qui concerne la spectroscopie d'absorption X, celle-ci s'effectue par le biais de logiciels prenant en compte les processus de diffusion multiple du photoélectron. La simulation numérique des différentielles obtenues par soustraction des diagrammes de diffraction s'effectue à partir de l'équation de Debye en tenant compte des fluctuations du facteur de diffusion atomique en fonction de l'énergie du photon incident. Le jeu de résultats ainsi recueilli permet une mesure précise de l'état électronique du zinc, du taux d'occupation des sites tétraédriques ainsi que de la taille du cristallite de l'oxyde étudié. Se basant sur des résultats précédents inhérents au monométallique ZnAl2O4/Al2O3, nous discutons l'importance du caractère lacunaire en zinc du catalyseur et la relation existant entre cette spécificité et la modification des paramètres structuraux enregistrés à haute température.

  3. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  4. Photodegradation of chlorofluorocarbon alternatives on metal oxide

    SciTech Connect

    Tanaka, K.; Hisanaga, T. )

    1994-05-01

    HCFC and HFC were photodegraded on metal oxides. Degradation rate on several metal oxides was in the order: TiO[sub 2] > ZnO > Fe[sub 2]O[sub 3] > kaolin [ge] SiO[sub 2] [ge] Al[sub 2]O[sub 3]. Principal degradation products were CO[sub 2], Cl[sup [minus

  5. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  6. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  7. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  8. SPECTROSCOPIC METALLICITY DETERMINATIONS FOR W UMa-TYPE BINARY STARS

    SciTech Connect

    Rucinski, Slavek M.; Pribulla, Theodor; Budaj, Jan E-mail: pribulla@ta3.sk

    2013-09-15

    This study is the first attempt to determine the metallicities of W UMa-type binary stars using spectroscopy. We analyzed about 4500 spectra collected at the David Dunlap Observatory. To circumvent problems caused by the extreme spectral line broadening and blending and by the relatively low quality of the data, all spectra were subject to the same broadening function (BF) processing to determine the combined line strength in the spectral window centered on the Mg I triplet between 5080 A and 5285 A. All individual integrated BFs were subsequently orbital-phase averaged to derive a single line-strength indicator for each star. The star sample was limited to 90 W UMa-type (EW) binaries with the strict phase-constancy of colors and without spectral contamination by spectroscopic companions. The best defined results were obtained for an F-type sub-sample (0.32 < (B - V){sub 0} < 0.62) of 52 binaries for which integrated BF strengths could be interpolated in the model atmosphere predictions. The logarithmic relative metallicities, [M/H], for the F-type sub-sample indicate metal abundances roughly similar to the solar metallicity, but with a large scatter which is partly due to combined random and systematic errors. Because of the occurrence of a systematic color trend resulting from inherent limitations in our approach, we were forced to set the absolute scale of metallicities to correspond to that derived from the m{sub 1} index of the Stroemgren uvby photometry for 24 binaries of the F-type sub-sample. The trend-adjusted metallicities [M/H]{sub 1} are distributed within -0.65 < [M/H]{sub 1} < +0.50, with the spread reflecting genuine metallicity differences between stars. One half of the F-sub-sample binaries have [M/H]{sub 1} within -0.37 < [M/H]{sub 1} < +0.10, a median of -0.04 and a mean of -0.10, with a tail toward low metallicities, and a possible bias against very high metallicities. A parallel study of kinematic data, utilizing the most reliable and recently obtained proper motion and radial velocity data for 78 binaries of the full sample, shows that the F-type sub-sample binaries (44 stars with both velocities and metallicity determinations) have similar kinematic properties to solar-neighborhood, thin-disk dwarfs with space velocity component dispersions: {sigma}U = 33 km s{sup -1}, {sigma}V = 23 km s{sup -1} and {sigma}W = 14 km s{sup -1}. FU Dra with a large spatial velocity, V{sub tot} = 197 km s{sup -1} and [M/H]{sub 1} = -0.6 {+-} 0.2, appears to be the only thick-disk object in the F-type sub-sample. The kinematic data indicate that the F-type EW binaries are typical, thin-disk population stars with ages about 3-5.5 Gyr. The F-type binaries that appear to be older than the rest tend to have systematically smaller mass ratios than most of the EW binaries of the same period.

  9. Magnetochromism in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Musfeldt, Janice; Choi, Jongwoo; Haraldsen, Jason; Woodward, Jonathan; Wei, Xing; He, Jian; Mandrus, David; Landee, Chris; Turnbull, Mark; Suryanarayanan, Ramanathanan; Revcolevschi, Alex

    2004-03-01

    We discuss the discovery and mechanism of magnetic field-induced color changes in three different low-dimensional transition metal oxides: Li purple bronze, (CPA)_2CuBr_4, and Pr-substituted La_1.2Sr_1.8Mn_2O_7. In Li purple bronze, the field manipulates the density of states near E_F, altering O p to Mo d excitations. In the copper halide, the applied field rotates the CuBr4 chromophore units, yielding a strong magnetochromic effect. And in (La_0.4Pr_0.6_1.2Sr_1.8Mn_2O_7, the magnetic field acts on the Jahn-Teller-split Mn^3+ eg orbitals, with consequences of a substantial CMR effect, unusual magnetic relaxation behavior, and a change in orbital occupation.

  10. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (inventor); Gedwill, Michael G. (inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  11. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  12. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  13. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  14. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  15. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  16. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  17. Binary metal metallocarbohedrenes of titanium and group IIIA, VA, and VIA metals

    SciTech Connect

    Cartier, S.F.; May, B.D.; Castleman, A.W. Jr. )

    1994-06-15

    Binary metal metallocarbohedrenes of titanium and the metals yttrium, niobium, molybdenum, tantalum, and tungsten have been produced by the direct laser vaporization of mixtures of titanium carbide with these metals. Interestingly, as individuals metals, yttrium, tantalum, and tungsten have not displayed a tendency for forming the metallocarbohedrene (Met-Car) structure. Substitution of titanium atoms by these non-group IVA metals in the titanium Met-Car, Ti[sub 8]C[sub 12], is not as extensive as that achieved with the group IVA metal zirconium under similar conditions. Recent theoretical predictions based upon electronic structure and nuclear charge are considered in interpreting these results. 15 refs., 1 fig.

  18. Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide.

    PubMed

    Taujale, Saru; Zhang, Huichun

    2012-03-01

    Manganese oxides typically exist as mixtures with other metal oxides in soil-water environments; however, information is only available on their redox activity as single oxides. To bridge this gap, we examined three binary oxide mixtures containing MnO(2) and a secondary metal oxide (Al(2)O(3), SiO(2) or TiO(2)). The goal was to understand how these secondary oxides affect the oxidative reactivity of MnO(2). SEM images suggest significant heteroaggregation between Al(2)O(3) and MnO(2) and to a lesser extent between SiO(2)/TiO(2) and MnO(2). Using triclosan and chlorophene as probe compounds, pseudofirst-order kinetic results showed that Al(2)O(3) had the strongest inhibitory effect on MnO(2) reactivity, followed by SiO(2) and then TiO(2). Al(3+) ion or soluble SiO(2) had comparable inhibitory effects as Al(2)O(3) or SiO(2), indicating the dominant inhibitory mechanism was surface complexation/precipitation of Al/Si species on MnO(2) surfaces. TiO(2) inhibited MnO(2) reactivity only when a limited amount of triclosan was present. Due to strong adsorption and slow desorption of triclosan by TiO(2), precursor-complex formation between triclosan and MnO(2) was much slower and likely became the new rate-limiting step (as opposed to electron transfer in all other cases). These mechanisms can also explain the observed adsorption behavior of triclosan by the binary oxide mixtures and single oxides. PMID:22309023

  19. Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects

    NASA Astrophysics Data System (ADS)

    Grover, Valerie Ann

    The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.

  20. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOEpatents

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  1. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOEpatents

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  2. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  3. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  4. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  5. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  6. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  7. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  8. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01binary metal oxides.

  9. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01binary metal oxides.

  10. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  11. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, P.R.

    1999-09-28

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  12. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  13. Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature.

    PubMed

    Zhang, J; Liu, F; Cheng, J P; Zhang, X B

    2015-08-19

    Nickel-cobalt oxides were prepared by coprecipitation of their hydroxides precursors and a following thermal treatment under a moderate temperature. The preformed nickel-cobalt bimetallic hydroxide exhibited a flower-like morphology with single crystalline nature and composed of many interconnected nanosheets. The ratio of Ni to Co in the oxides could easily be controlled by adjusting the composition of the original reactants for the preparation of hydroxide precursors. It was found that both the molecular ratio of Ni to Co and the annealing temperature had significant effects on their porous structure and electrochemical properties. The effect of the Ni/Co ratio on the pseudocapacitive properties of the binary oxide was investigated in this work. The binary metal oxide with the exact molar ratio of Ni:Co = 0.8:1 annealed at 300 °C, showing an optimum specific capacitance of 750 F/g. However, too high an annealing temperature would lead to a large crystal size, a low specific surface area, as well as a much lower pore volume. With the use of the binary metal oxide with Ni:Co = 0.8:1 and activated carbon as the positive and negative electrode, respectively, the assembled hybrid capacitor could exhibit a high-energy density of 34.9 Wh/kg at the power density of 875 W/kg and long cycling life (86.4% retention of the initial value after 10000 cycles). PMID:26204426

  14. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  15. Metal-Metal Oxide Nanoomposite for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Gemar, H.; Ghosh, K.

    2012-02-01

    Currently, there is a large need for alternative energies and one good option is solar cells. A High efficiency solar cell generally consists of a number of thin layers: active layer consisting of a material having high absorption in the solar spectrum, transparent conducting layer, p- and n-type materials used to fabricate the junction, and electrodes for good Ohmic contacts. The presence of metal nanoparticles in metal oxide films improves significantly the solar absorbance of metal oxide films. The absorption depends on the bandgap of metal oxides which can be tuned by incorporation of metal nanoparticles. Tuning of the bandgap and absorption are the very important parameters to fabricate the solar cell devices. Thin films of M-MO (M = transition metals Co and Ni) nanocomposite have been grown on quartz substrate using pulse laser deposition technique. Structural properties have been characterized using X-ray diffraction and scanning electron microscopy. Electrical properties with and without light and absorption spectra have been measured using I-V characterization and UV-VIS spectroscopy techniques. Detailed results will be discussed in the presentation.

  16. Self-assembly of metal nanostructures on binary alloy surfaces

    PubMed Central

    Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Bar??; Evans, J. W.; Thiel, P. A.

    2011-01-01

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706

  17. Uranium Metal to Oxide Conversion by Air Oxidation ?Process Development

    SciTech Connect

    Duncan, A

    2001-12-31

    Published technical information for the process of metal-to-oxide conversion of uranium components has been reviewed and summarized for the purpose of supporting critical decisions for new processes and facilities for the Y-12 National Security Complex. The science of uranium oxidation under low, intermediate, and high temperature conditions is reviewed. A process and system concept is outlined and process parameters identified for uranium oxide production rates. Recommendations for additional investigations to support a conceptual design of a new facility are outlined.

  18. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  19. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  20. Role of metal oxides in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kamaluddin

    2013-06-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  1. Modeling of surface oxidation and oxidation induced damage in metal matrix composites 

    E-print Network

    Ma, Xinzheng

    1995-01-01

    Surface oxidation in metal matrix composites (MMC's) is modeled by Fickian diffusion of oxygen in both the oxide layer and metal matrix. The oxidation process and the resulting immobilized oxygen at the interface is accounted for by the introduction...

  2. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    PubMed

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3?NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. PMID:25662252

  3. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S. (Durham, NC); Gupta, Raghubir P. (Durham, NC)

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  4. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S. (Durham, NC); Gupta, Raghubir P. (Durham, NC)

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  5. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  6. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  7. Metal-supported solid oxide fuel cells

    SciTech Connect

    Villarreal, I.; Jacobson, C.; Leming, A.; Matus, Y.; Visco, S.; De Jonghe, L.

    2003-01-07

    Low cost, colloidal deposition methods have been utilized to produce novel solid oxide fuel cell structures on metal alloy support electrodes. YSZ films were deposited on iron-chrome supports on top of a thin Ni/YSZ catalytic layer, and sintered at 1350 degrees C, in a reducing atmosphere. Dense, 20??m YSZ electrolyte films were obtained on highly porous stainless steel substrates.

  8. Synthesis and applications of metal oxide nanowires

    NASA Astrophysics Data System (ADS)

    Tien, Li-Chia

    The one-dimensional nanostructured materials have attracted much attention because of their superior properties from the deducing size in the nanometer range. Among them, metal oxide materials provide a wide diversity and functionality in both theoretical study and applications. This work focused on the synthesis of metal oxide nanowires, and further investigated possible applications of nanostructured metal oxide materials. High quality ZnO nanowires have been synthesized by catalyst-assisted molecular beam epitaxy. The control of initial Au or Ag film thickness and subsequent annealing conditions is shown to provide an effective method for controlling the size and density of nucleation sites for catalyst-driven growth of ZnO nanowires. For gas sensing applications, it is found that the sensitivity for detecting hydrogen is greatly enhanced by sputter-depositing metal catalysts (Pt and Pt) on surface. The sensors are shown to detect ppm hydrogen at room temperature using <0.4 mW of power when using multiple nanowires. A comparison study of the hydrogen-sensing characteristics of ZnO thin films with different thickness and ZnO nanowires was studied. The Pt-coated single nanowires show a current response by approximately a factor of 3 larger at room temperature. Both types of sensors are shown to be capable of the detection of ppm hydrogen at room temperature with nW power levels, but the nanowires show different recovery characteristics, consistent with the expected higher surface coverage of adsorbed hydrogen. The feasibility of a number of metal oxide nanowires has been synthesized by a high-pressure assisted pulsed laser deposition. The high density well-aligned metal oxide nanowires can be directly grown on substrate without metal catalysts. The results suggest the possibility of growing complex metal oxide nanostructures, including tailored heterostructures and aligned heterojunction arrays with PLD technique. The growth of epitaxial SnO2 on c-sapphire using pulsed laser deposition is examined. X-ray diffraction analysis shows that the films are highly a-axis oriented SnO2 with the rutile structure. The effects of Ga doping on SnO2 films were studied. The Hall data showed p-type behavior occurs only at specific growth condition, but converted back to n-type and degraded as time proceeds.

  9. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A. (Madison, WI)

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  10. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  11. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  12. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  13. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006 Section...Chemical Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance...substance identified generically as mixed metal oxide (PMN P-99-511) is...

  14. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  15. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  16. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  17. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  18. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  19. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  20. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  1. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  2. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  3. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  4. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  5. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  6. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  7. "Metal-oxide gas sensors have been around for

    E-print Network

    Diebold, Ulrike

    Publishing "Metal-oxide gas sensors have been around for over 40 years, but only now we have: Surface Studies of Gas Sensing Metal Oxides 21 February 2007 1. Could you explain the significance of your article to the non-specialist? Metal oxide-gas sensors are practical devices used in a variety of every

  8. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  9. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  10. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  11. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  12. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  13. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  14. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  15. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  16. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  17. Impact Dynamics of Oxidized Liquid Metal Drops

    E-print Network

    Xu, Qin; Jaeger, Heinrich M

    2013-01-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during the impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number $We^{\\star}$ is employed that uses an effective surface...

  18. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A. (Madison, WI); Zeltner, Walter A. (Oregon, WI)

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  19. Topological crystalline insulators in transition metal oxides.

    PubMed

    Kargarian, Mehdi; Fiete, Gregory A

    2013-04-12

    Topological crystalline insulators possess electronic states protected by crystal symmetries, rather than time-reversal symmetry. We show that the transition metal oxides with heavy transition metals are able to support nontrivial band topology resulting from mirror symmetry of the lattice. As an example, we consider pyrochlore oxides of the form A2M2O7. As a function of spin-orbit coupling strength, we find two Z2 topological insulator phases can be distinguished from each other by their mirror Chern numbers, indicating a different topological crystalline insulators. We also derive an effective k·p Hamiltonian, similar to the model introduced for Pb(1-x)Sn(x)Te, and discuss the effect of an on-site Hubbard interaction on the topological crystalline insulator phase using slave-rotor mean-field theory, which predicts new classes of topological quantum spin liquids. PMID:25167290

  20. Irreversibility temperatures in oxide- and metallic superconductors

    SciTech Connect

    Suenaga, M.; Ghosh, A.K.; Xu, Youwen; Welch, D.O.

    1990-01-01

    We measured the irreversibility temperatures, T{sub r}(H) for both oxides (pure and alloyed Y(123) and Bi(2212, 2223)) and metallic (Nb, NbTi, and Nb{sub 3}Sn) superconductors. These results are compared and discussed in terms of T{sub r}(H) being the depinning line and/or the melting line of the flux line (crystalline or disordered) lattice in the H-T plane.

  1. Surface and redox properties of cobalt-ceria binary oxides: On the effect of Co content and pretreatment conditions

    NASA Astrophysics Data System (ADS)

    Konsolakis, Michalis; Sgourakis, Michalis; Carabineiro, Sónia A. C.

    2015-06-01

    Ceria-based transition metal catalysts have recently received considerable attention both in heterogeneous catalysis and electro-catalysis fields, due to their unique physicochemical characteristics. Their catalytic performance is greatly affected by the surface local chemistry and oxygen vacancies. The present study aims at investigating the impact of Co/Ce ratio and pretreatment conditions on the surface and redox properties of cobalt-ceria binary oxides. Co-ceria mixed oxides with different Co content (0, 20, 30, 60, 100 wt.%) were prepared by impregnation method and characterized by means of N2 adsorption at -196 °C, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The results shown the improved reducibility of Co/CeO2 mixed oxides compared to single oxides, due to a synergistic interaction between cobalt and cerium. Oxidation pretreatment results in a preferential localization of cerium species on the outer surface. In contrast, a uniform distribution of cobalt and cerium species over the entire catalyst surface is obtained by the reduction process, which facilitates the formation of oxygen vacancies though Co3+/Co2+ and Ce3+/Ce4+ redox cycles. Fundamental insights toward tuning the surface chemistry of cobalt-ceria binary oxides are provided, paving the way for real-life industrial applications.

  2. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides ?-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  3. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  4. Removal of Metallic Iron on Oxide Slags

    NASA Astrophysics Data System (ADS)

    Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman

    2009-10-01

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere ({p_{O2}} of approximately 10-4 atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 °C and in 160 seconds at 1600 °C.

  5. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc?0.1.

  6. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  7. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  8. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n?=?2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  9. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-01

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Srn+1TinO3n+1 Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  10. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  11. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    DOEpatents

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  12. CO oxidation on gold-supported iron oxides: New insights into strong oxide–metal interactions

    DOE PAGESBeta

    Yu, Liang; Liu, Yun; Yang, Fan; Evans, Jaime; Rodriguez, José A.; Liu, Ping

    2015-07-14

    Very active FeOx–Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate. Neither FeO nor Fe2O3 is stable under the reaction conditions. Under an environment of CO/O2, they undergo oxidation (FeO) or reduction (Fe2O3) to yield nanoparticles of Fe3O4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxide–metal interaction (SOMI) between Fe3O4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of an active phase, and provides a unique interface to facilitate a catalytic reaction. This workmore »highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metal–oxide catalysts.« less

  13. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  14. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  15. DEVELOPMENTAL PHYTOTOXICITY OF METAL OXIDE NANOPARTICLES TO ARABIDOPSIS THALIANA

    E-print Network

    Alvarez, Pedro J.

    DEVELOPMENTAL PHYTOTOXICITY OF METAL OXIDE NANOPARTICLES TO ARABIDOPSIS THALIANA CHANG WOO LEEFe3O4), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three Metal oxide nanoparticles Arabidopsis INTRODUCTION Nanotechnology is a rapidly growing industry

  16. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  17. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  18. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  19. Orbital physics in transition-metal oxides

    PubMed

    Tokura; Nagaosa

    2000-04-21

    An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons. PMID:10775098

  20. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  1. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A. (Madison, WI); Webster, Elizabeth T. (Madison, WI); Xu, Qunyin (Plainsboro, NJ)

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  2. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W. (Bolingbrook, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  3. Near room temperature lithographically processed metal-oxide transistors

    E-print Network

    Tang, Hui, M. Eng. Massachusetts Institute of Technology

    2008-01-01

    A fully lithographic process at near-room-temperature was developed for the purpose of fabricating transistors based on metal-oxide channel materials. The combination of indium tin oxide (ITO) as the source/drain electrodes, ...

  4. Oxidation of vanadium metal in oxygen plasma and their characterizations

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ? C and 7.5 × 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  5. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  6. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  7. Amorphorized tantalum-nickel binary films for metal gate applications

    SciTech Connect

    Ouyang, Jiaomin; Wongpiya, Ranida; Clemens, Bruce M.; Deal, Michael D.; Nishi, Yoshio

    2015-04-13

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400?°C in RTA for 1?min and up to at least 700?°C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi{sub 3} phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12?nm and 1.2?nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500?°C. The resistivity of the films as-deposited are around 200 ??·cm. The work function of the alloy is fixed at close to the Ta work function of 4.6?eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  8. Amorphorized tantalum-nickel binary films for metal gate applications

    NASA Astrophysics Data System (ADS)

    Ouyang, Jiaomin; Wongpiya, Ranida; Deal, Michael D.; Clemens, Bruce M.; Nishi, Yoshio

    2015-04-01

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400 °C in RTA for 1 min and up to at least 700 °C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi3 phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12 nm and 1.2 nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500 °C. The resistivity of the films as-deposited are around 200 ??.cm. The work function of the alloy is fixed at close to the Ta work function of 4.6 eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  9. Effect of surface-applied reactive element oxide on the oxidation of binary alloys containing Cr

    SciTech Connect

    Hou, P.Y.; Stringer, J.

    1987-07-01

    The influence of surface-applied Ca,Ce, Hf, La, Y, and Zr nitrate-converted oxides on the oxidation behavior of Co-15 weight percent (w/o) Cr, Co-25 w/o Cr, and Ni-25 w/o Cr alloys at 1000/sup 0/ and 1100/sup 0/C in 1 atm O/sub 2/ was studied. The surface oxides were most beneficial on the established Cr/sub 2/O/sub 3/ forming alloy. Surface-applied CeO/sub 2/,Y/sub 2/O/sub 3/, and La/sub 2/O/sub 3/ were effective in reducing the growth rate of the Cr/sub 2/O/sub 3/ scale and improving the scale adhesion. The presence of these surface oxides also prevented base metal oxide formation and changed the growth direction of the scale. All of these observed effects were similar to those found when the reactive element oxides were present within the alloys. However, the presence of surface HfO/sub 2/ made the oxide scales nonadherent causing a breakaway behavior at the early stage of the oxidation process. None of the surface-applied oxides showed any effects on the non-Cr/sub 2/O/sub 3/ forming alloy, and they acted as a semibarrier on the borderline Cr/sub 2/O/sub 3/ former. Unlike the case of dispersoids present in the alloy, these surface-applied as a semibarrier on the borderline Cr/sub 2/O/sub 3/ layer at alloy Cr levels lower than those normally required to form the Cr/sub 2/O/sub 3/ scale.

  10. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  11. Nanoionic switching in metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Ielmini, Daniele

    2013-03-01

    Ion migration in oxide nanostructures is a key process in information storage technologies, where the logic data are stored as nanoscale conductive filaments. Due to the inherently nanoscale size of the ionic switching location (few cubic nanometers), the local electric field and current density induce extremely high temperatures as a result of Joule heating. To develop and design advanced nanoionic materials and devices with improved performance and reliability, the ion migration phenomena in metal oxides must be carefully understood and modeled. This talk will address the modeling of ionic migration and the consequent switching in HfOx layers of RRAM devices. The model solves drift/diffusion equations for thermally-activated hopping of positive ion, such as oxygen vacancies (VO+)and metal cations (Hf+) , in presence of intense Joule heating and electric field. The impact of the ion distribution on the local conductivity is described physics-based models of defect-assisted electronic conduction in semiconductors. Microscopic parameters, such as the energy barrier for ion hopping, are directly inferred from the experimental switching kinetics at variable voltages. The simulation results picture the filament growth/depletion with time and account for the observed switching characteristics, such as the progressive opening of a depleted gap and the possibility of electrode-to-electrode migration of ions. Finally, new phenomena, such as switching variability at atomic-size filaments and stress-induced symmetric switching, will be discussed.

  12. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  13. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J. (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  14. Alkane activation on crystalline metal oxide surfaces.

    PubMed

    Weaver, Jason F; Hakanoglu, Can; Antony, Abbin; Asthagiri, Aravind

    2014-11-21

    Advances in the fundamental understanding of alkane activation on oxide surfaces are essential for developing new catalysts that efficiently and selectively promote chemical transformations of alkanes. In this tutorial review, we discuss the current understanding of alkane activation on crystalline metal oxide surfaces, and focus mainly on summarizing our findings on alkane adsorption and C-H bond cleavage on the PdO(101) surface as determined from model ultrahigh vacuum experiments and theoretical calculations. These studies show that alkanes form strongly-bound ?-complexes on PdO(101) by datively bonding with coordinatively-unsaturated Pd atoms and that these molecularly adsorbed species serve as precursors for C-H bond activation on the oxide surface. In addition to discussing the binding and properties of alkane ?-complexes on PdO(101), we also summarize recent advances in kinetic models to predict alkane dissociation rates on solid surfaces. Lastly, we highlight computations which predict that the formation and facile C-H bond activation of alkane ?-complexes also occurs on RuO2 and IrO2 surfaces. PMID:24480977

  15. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  16. FT-ICR studies of metal-carbon binary clusters for formation mechanism of endohedral fullerene

    E-print Network

    Maruyama, Shigeo

    FT-ICR studies of metal-carbon binary clusters for formation mechanism of endohedral fullerene the clustering process of endohedral metallo-fullerene (Figure 1). Cluster beams were generated by laser-vaporizations of various sample materials used for arc-discharge generation of metal- containing fullerene and SWNT (single

  17. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  18. Prediction of electron energies in metal oxides.

    PubMed

    Walsh, Aron; Butler, Keith T

    2014-02-18

    The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells. In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application. Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each, emphasizing the difficulties in translating concepts from molecular to solid-state systems. Finally, we stress the need for a universal description of the alignment of band energies for materials design from first-principles. By demonstrating the applicability and challenges of using theory to calculate the relevant quantities, as well as impressing the necessity of a clarification and unification of the descriptions, we hope to provide a stimulus for the continued development of this field. PMID:24066925

  19. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  20. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  1. Conductive metal oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F. (Kennewick, WA); Exarhos, Gregory J. (Richland, WA)

    1999-01-01

    The present invention is a method for reducing a dopant in a film of a metal oxide wherein the dopant is reduced and the first metal oxide is substantially not reduced. The method of the present invention relies upon exposing the film to reducing conditions for a predetermined time and reducing a valence of the metal from a positive valence to a zero valence and maintaining atoms with a zero valence in an atomic configuration within the lattice structure of the metal oxide. According to the present invention, exposure to reducing conditions may be achieved electrochemically or achieved in an elevated temperature gas phase.

  2. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  3. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  4. Amorphous Ni-Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors.

    PubMed

    Long, Chao; Zheng, Mingtao; Xiao, Yong; Lei, Bingfu; Dong, Hanwu; Zhang, Haoran; Hu, Hang; Liu, Yingliang

    2015-11-11

    A simple and outstanding approach is provided to fabricate amorphous structure Ni-Co binary oxide as supercapacitors electrode materials. We can easily obtain porous Ni-Co oxides composite materials via chemical bath deposition and subsequent calcination without any template or complicate operation procedures. The amorphous porous Ni-Co binary oxide exhibits brilliant electrochemical performance: first, the peculiar porous structure can effectively transport electrolytes and shorten the ion diffusion path; second, binary composition and amorphous character introduce more surface defects for redox reactions. It shows a high specific capacitance up to 1607 F g(-1) and can be cycled for 2000 cycles with 91% capacitance retention. In addition, the asymmetric supercapacitor delivers superior energy density of 28 W h kg(-1), and the maximum power density of 3064 W kg(-1) with a high energy density of 10 W h kg(-1). PMID:26099689

  5. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  6. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide (generic...Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic...chemical substance identified generically as nickel, cobalt mixed metal oxide....

  7. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide (generic...Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic...chemical substance identified generically as nickel, cobalt mixed metal oxide....

  8. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide (generic...Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic...chemical substance identified generically as nickel, cobalt mixed metal oxide....

  9. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide (generic...Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic...chemical substance identified generically as nickel, cobalt mixed metal oxide....

  10. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide (generic...Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic...chemical substance identified generically as nickel, cobalt mixed metal oxide....

  11. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Acryloxy alkanoic alkane derivative with mixed metal oxides (generic...721.10148 Acryloxy alkanoic alkane derivative with mixed metal oxides (generic...generically as acryloxy alkanoic alkane derivative with mixed metal oxides (PMN...

  12. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Acryloxy alkanoic alkane derivative with mixed metal oxides (generic...721.10148 Acryloxy alkanoic alkane derivative with mixed metal oxides (generic...generically as acryloxy alkanoic alkane derivative with mixed metal oxides (PMN...

  13. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  14. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  15. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A. (Star City, WV)

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  16. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. Electronic supplementary information (ESI) available: XRD and EDS analysis of the prepared metal oxides, EDS analysis of nanoparticles adsorbed on the surface of metal oxides and SEM micrographs of metal oxides are included. See DOI: 10.1039/c3nr34221b

  17. Route to transition metal carbide nanoparticles through cyanamide and metal oxides

    SciTech Connect

    Li, P.G. Lei, M.; Tang, W.H.

    2008-12-01

    We have designed an efficient route to the synthesis of transition metal carbide nanoparticles starting from an organic reagent cyanamide and transition metal oxides. Four technologically important metal carbide nanoparticles such as tungsten carbide, niobium carbide, tantalum carbide and vanadium carbide were synthesized successfully at moderate temperatures. It is found that cyanamide is an efficient carburization reagent and that the metal oxides are completely transmitted into the corresponding carbide nanoparticles. A possible mechanism is proposed to explain the results of the reaction between cyanamide and the metal oxides.

  18. Formation of metal oxides by cathodic arc deposition

    SciTech Connect

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  19. CO oxidation on gold-supported iron oxides: New insights into strong oxide–metal interactions

    SciTech Connect

    Yu, Liang; Liu, Yun; Yang, Fan; Evans, Jaime; Rodriguez, José A.; Liu, Ping

    2015-07-14

    Very active FeOx–Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate. Neither FeO nor Fe2O3 is stable under the reaction conditions. Under an environment of CO/O2, they undergo oxidation (FeO) or reduction (Fe2O3) to yield nanoparticles of Fe3O4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxide–metal interaction (SOMI) between Fe3O4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of an active phase, and provides a unique interface to facilitate a catalytic reaction. This work highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metal–oxide catalysts.

  20. Development of a regenerable metal oxide CO removal system

    NASA Technical Reports Server (NTRS)

    Cusick, Robert J.

    1990-01-01

    A regenerable metal oxide carbon dioxide (CO2) removal system was developed to replace the current means of a nonreusable chemical, lithium hydroxide, for removing the metabolic CO2 of an astronaut in a space suit. Testing indicates that a viable low-volume metal oxide concept can be used in the portable life support system for CO2 removal during Space Station extravehicular activity (EVA). A canister of nearly the same volume as that used for the Space Shuttle, containing 0.10 cu ft of silver-oxide-based pellets, was tested; test data analysis indicates that 0.18 cu ft of the metal oxide will result in an 8-hour EVA capability. The testing suggests that the metal oxide technology offers a low-volume approach for a reusable CO2 removal concept applicable for at least 40 EVA missions. The development and testing of the breadboard regeneration package is also described.

  1. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular reaction, I found that Pd nanoparticles supported on mesoporous TiO2 exhibit the best catalytic performance. The demonstrated low-cost and high-productivity preparation method can be extended to other catalysts, which can contain various metals and oxide substrates and will have high potential for industrial applications. Our preparation method also provides a platform for the studies of the synergetic catalytic effects between different oxide substrates and metals. I further fabricated hollow mesoporous microspheres containing differently shaped noble metal nanocrystals. Hollow structures are strongly desired in many applications because of their high pore volumes, surface areas, and possible light-trapping effect. In my study, the hollow structures were obtained by simply dispersing polystyrene (PS) nanospheres into the precursor solution for aerosol spray. The PS spheres were removed by thermal calcination to produce hollow mesoporous microspheres. In my first study, the noble metal salts were dissolved in the precursor solutions, and the noble metal nanoparticles were obtained through thermal calcination. In this way, the size and shape of the metal nanoparticles cannot be well controlled. In my second study, I first grew noble metal nanocrystals and then incorporated them into the oxide supports. This preparation route allowed me to incorporate metal nanocrystals with controlled sizes, shapes, and compositions into the oxide matrices. The metal nanocrystals I used in this experiment included Pd nanocubes, Au nanorods, and Au core--Pd shell nanorods. These nanocrystals were functionalized with thiol-terminated methoxypoly(ethylene glycol) . The surface functionalization allowed them to adsorb on the PS spheres. After thermal calcination, the noble metal nanocrystals were left inside and adsorbed on the inner surface of the hollow mesoporous metal oxide microspheres. I investigated the catalytic activities of the Pd nanocube-embedded hollow mesoporous TiO2 and ZrO2 microspheres for the reduction of 4-nitrophenol to 4-aminophenol. I also examined the recycla

  2. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  3. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (inventor); Davis, Patricia (inventor); Miller, Irvin M. (inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  4. Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC

    NASA Astrophysics Data System (ADS)

    Tan, J.; Das, M. K.; Cooper, J. A., Jr.; Melloch, M. R.

    1997-04-01

    A method to form SiO2/SiC metal-oxide-semiconductor structures by oxidation of a thin polycrystalline silicon (polysilicon) layer deposited on SiC is demonstrated. The oxidation time used is sufficient to oxidize all the polysilicon while short enough at 1050 °C to insure insignificant oxidation of the underlying SiC. Since the oxidation of SiC is highly anisotropic, this method allows uniform oxide formation on a nonplanar SiC surface. The SiO2/SiC interface quality is comparable to that obtained with thermal oxidation.

  5. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical resistance of these SnO2 nanomaterials towards reducing gases. With regard to the sensitivity of the different nascent nanostructures, the electrospun nanofibers appear preferable

  6. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the ? and ? bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the ? network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states ?* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  7. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  8. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM); Stohl, Frances V. (Albuquerque, NM)

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  9. Multiscale model of metal alloy oxidation at grain boundaries.

    PubMed

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales. PMID:26049486

  10. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L. Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.

  11. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.

  12. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  13. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  14. Magnetotransport in half-metallic ferromagnetic oxides

    NASA Astrophysics Data System (ADS)

    Watts, Steven Michael

    Magnetotransport properties are described for thin films of two different ferromagnetic oxide material systems that are thought to be half-metallic , with possible applications in spintronics: the doped lanthanum manganites, La1-xA xMnO3 where A = (Ca,Sr), and CrO2. Magnetotransport properties dominated by extrinsic (microstructure-dependent) effects are described for the manganites. The degree of crystalline texture is correlated to large changes in the magnetotransport, with less textured films showing a magnetoresistance (MR) that is both large and relatively temperature-independent over a wide temperature range, and exhibits a hysteretic peak structure in low fields. Microscopic disorder induced by ion irradiation in a highly-textured Sr-doped film induces a similar hysteretic peak structure in the MR. A mesoscopic model is described in which ion damage creates small regions of reduced magnetic properties, giving an enhanced MR for diffusive transport through those regions. Intrinsic magnetotransport properties are described for CrO2. At low temperatures, highly-textured CrO2 films grown by the high-pressure thermal decomposition of CrO3, exhibit record spin polarization and good metallic properties. As the temperature is raised through a characteristic value Delta = 80 K the character of transport changes because of the onset of strong magnetic scattering and a T2 law in the resistivity. The Hall effect data at low temperatures exhibit a sign reversal in low fields which is interpreted within a simple two-band model as indicating the presence of highly mobile holes and less mobile but more numerous electrons. The growth of CrO2 films by chemical vapor deposition (CVD) is described. X-ray diffraction data show that the CVD films---especially a film on (100) TiO2---are generally more strained than the high-pressure film. Magnetotransport measurements show much the same behavior as for the high-pressure film, except that the Hall effect reverses sign at a much higher field for the CVD film on (100) TiO2. For planar junctions with superconducting counter electrodes, a polarization of 97% was found in a metallic contact between CrO2 and Pb, and Zeeman-splitting the superconducting Al density of states in a CrO2/Al junction showed no evidence of minority spins.

  15. Mesoporous Mn- and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation.

    PubMed

    Vickers, Susan M; Gholami, Rahman; Smith, Kevin J; MacLachlan, Mark J

    2015-06-01

    New precious-metal-free mesoporous materials were investigated as catalysts for the complete oxidation of methane to carbon dioxide. Mesoporous cobalt oxide was first synthesized using KIT-6 mesoporous silica as a hard template. After removal of the silica, the cobalt oxide was itself used as a hard template to construct cerium oxide/cobalt oxide composite materials. Furthermore, cerium oxide/cobalt oxide composite materials doped with manganese and lanthanum were also prepared. All of the new composite materials retained the hierarchical long-range order of the original KIT-6 template. Temperature-programmed oxidation measurements showed that these cerium oxide/cobalt oxide and doped cerium oxide/cobalt oxide materials are effective catalysts for the total oxidation of methane, with a light-off temperature (T50%) of ?400 °C observed for all of the nanostructured materials. PMID:26000732

  16. Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal

    E-print Network

    Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal Alain in a ferromanganese nodule from Lake Baikal were charac- terized by X-ray microfluorescence, microdiffraction a tectoman- ganate (romanechite) or phyllomanganate (vernadite) is formed during the ferromanganese nodule

  17. Metal oxide semiconductor structure using oxygen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Chicot, G.; Maréchal, A.; Motte, R.; Muret, P.; Gheeraert, E.; Pernot, J.

    2013-06-01

    Metal-oxide-semiconductor structures with aluminum oxide as insulator and p-type (100) mono-crystalline diamond as semiconductor have been fabricated and investigated by capacitance versus voltage and current versus voltage measurements. The aluminum oxide dielectric was deposited using low temperature atomic layer deposition on an oxygenated diamond surface. The capacitance voltage measurements demonstrate that accumulation, depletion, and deep depletion regimes can be controlled by the bias voltage, opening the route for diamond metal-oxide-semiconductor field effect transistor. A band diagram is proposed and discussed.

  18. Metal Oxide Thin Films Deposited from Metal Organic Precursors in Supercritical CO2 Solutions

    E-print Network

    Gougousi, Theodosia

    Metal Oxide Thin Films Deposited from Metal Organic Precursors in Supercritical CO2 Solutions and oxidizing agents are delivered in liquid and supercritical CO2. A cyclic deposition process is presented properties of supercritical CO2 can aid in the delivery of precursors and in the removal of byproducts

  19. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C. (4745 Trinity Dr., Los Alamos, NM 87544); Kodas, Toivo T. (5200 Noreen Dr. NE., Albuquerque, NM 87111)

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  20. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P. (Knoxville, TN)

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  1. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  2. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  3. Micro- and nano-structured metal oxides based chemical sensors: an overview.

    PubMed

    Batra, Ashok K; Chilvery, A K; Guggilla, Padmaja; Aggarwal, Mohan; Currie, James R

    2014-02-01

    This article examines various kinds of chemical sensors, their mechanism of operation and the ways to improve their performance. It reports the results of exploratory investigation of binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, and SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. It also contains an overview on the status of the new types of metal oxide based nanostructured sensors, such as nano belts, nanorods, nanotubes, nanofibers, nanocomposites, etc. PMID:24749474

  4. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  5. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.

    PubMed

    Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping

    2015-11-15

    A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters. PMID:26210099

  6. Charge, orbital and magnetic ordering in transition metal oxides 

    E-print Network

    Senn, Mark Stephen

    2013-06-29

    Neutron and x-ray diffraction has been used to study charge, orbital and magnetic ordering in some transition metal oxides. The long standing controversy regarding the nature of the ground state (Verwey structure) of the ...

  7. Magnetic Properties of Mesoporous and Nano-particulate Metal Oxides 

    E-print Network

    Hill, Adrian H

    2009-01-01

    The magnetic properties of the first row transition metal oxides are wide and varied and have been studied extensively since the 1930’s. Observations that the magnetic properties of these material types change with the ...

  8. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  9. Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.

    1977-01-01

    Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.

  10. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide.

  11. Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum(111)

    E-print Network

    Lin, Xi

    Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum at the highest coverages and sulfur oxidation states. Calculated vibrational spectra are used to assign observed the preferred SOx species on Pt(111), consistent with observation. I. Introduction The chemistry of sulfur

  12. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  13. Surface Induced Order in Liquid Metals and Binary Alloys

    E-print Network

    Elaine DiMasi; Holger Tostmann; Oleg G. Shpyrko; Peter S. Pershan; Benjamin M. Ocko; Moshe Deutsch

    2004-12-05

    Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.

  14. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  15. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  16. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  17. Interaction of Metal Oxides with Biomolecules: Implication in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kamaluddin; Iqubal, Md. Asif

    2014-08-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Polymerization of biomonomers could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  18. FUNCTIONALIZED METAL OXIDE NANOPARTICLES: ENVIRONMENTAL TRANSFORMATIONS AND ECOTOXICITY

    EPA Science Inventory

    This study will provide fundamental information on alterations in the surface chemistry of commercially important functionalized metal oxide NPs under environmentally relevant oxidative and reductive conditions, as well as needed data on the inherent and photo-enhanced toxicit...

  19. Custom-designed nanomaterial libraries for testing metal oxide toxicity.

    PubMed

    Pokhrel, Suman; Nel, André E; Mädler, Lutz

    2013-03-19

    Advances in aerosol technology over the past 10 years have enabled the generation and design of ultrafine nanoscale materials for many applications. A key new method is flame spray pyrolysis (FSP), which produces particles by pyrolyzing a precursor solution in the gas phase. FSP is a highly versatile technique for fast, single-step, scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology, including variations in precursor chemistry, have enabled flexible, dry synthesis of loosely agglomerated, highly crystalline ultrafine powders (porosity ? 90%) of binary, ternary, and mixed-binary-and-ternary oxides. FSP can fulfill much of the increasing demand, especially in biological applications, for particles with specific material composition, high purity, and high crystallinity. In this Account, we describe a strategy for creating nanoparticle libraries (pure or Fedoped ZnO or TiO?) utilizing FSP and using these libraries to test hypotheses related to the particles' toxicity. Our innovation lies in the overall integration of the knowledge we have developed in the last 5 years in (1) synthesizing nanomaterials to address specific hypotheses, (2) demonstrating the electronic properties that cause the material toxicity, (3) understanding the reaction mechanisms causing the toxicity, and (4) extracting from in vitro testing and in vivo testing in terrestrial and marine organisms the essential properties of safe nanomaterials. On the basis of this acquired knowledge, we further describe how the dissolved metal ion from these materials (Zn²? in this Account) can effectively bind with different cell constituents, causing toxicity. We use Fe-S protein clusters as an example of the complex chemical reactions taking place after free metal ions migrate into the cells. As a second example, TiO? is an active material in the UV range that exhibits photocatalytic behavior. The induction of electron-hole (e?/h?) pairs followed by free radical production is a key mechanism for biological injury. We show that decreasing the bandgap energy increases the phototoxicity in the presence of near-visible light. We present in detail the mechanism of electron transfer in biotic and abiotic systems during light exposure. Through this example we show that FSP is a versatile technique for efficiently designing a homologous library, meaning a library based on a parent oxide doped with different amounts of dopant, and investigating the properties of the resulting compounds. Finally, we describe the future outlook and state-of-the-art of an innovative two-flame system. A double-flame reactor enables independent control over each flame, the nozzle distances and the flame angles for efficient mixing of the particle streams. In addition, it allows for different flame compositions, flame sizes, and multicomponent mixing (a grain-grain heterojunction) during the reaction process. PMID:23194152

  20. Catalytic oxidation of dye wastewater by metal oxide catalyst and granular activated carbon

    SciTech Connect

    Li, S.H.; Lai, C.L.

    1999-05-01

    Bench experiments were conducted to investigate the catalytic oxidation of dye wastewater by metal oxides. The catalytic oxidation was carried out in an air fluidized-bed reactor and was assisted by V{sub 2}O{sub 5} as catalyst, granular activated carbon (GAC), and hydrogen peroxide. The experimental results indicated that, in the present oxidation process, both chemical and physical actions took place which are distinctly different from the decomposition of dyes involved in previous research. This may account for the high efficiency of the GAC catalytic oxidation method in color and chemical oxygen demand (COD) reductions of dye wastewater. An adsorption/oxidation hypothesis was proposed to account for the catalytic oxidation. Test runs were performed to determine the optimal operating conditions and amounts of metal oxide catalyst, GAC, and H{sub 2}O{sub 2}.

  1. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  2. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (inventor); Dargo, David R. (inventor); Lyons, John C. (inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  3. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  4. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  5. Binary metal sorption by pine bark: Study of equilibria and mechanisms

    SciTech Connect

    Al-Asheh, S.; Duvnjak, Z.

    1998-06-01

    Pine bark was able to sorb cadmium, copper, and nickel ions from aqueous solutions. Binary equilibrium data from the combination of these metals were collected in this work using the sorbent. These data were modeled using three types of binary component equilibrium isotherms, all of which resulted in good fitting of the experimental data, with the Langmuir-Freundlich model resulting in their best representation. In general, the capacity of bark for each metal in the binary system was lower than in the single metal systems. The study also examined the mechanisms of metal biosorption by bark. Scanning electron microscopy (SEM) and energy-dispersive c-ray (EDX) microanalyses revealed that metal ions were sorbed mainly at the cell wall of the bark and only a small amount of ions diffused into the cytoplasm. Both the EDX analysis and the atomic absorption spectrophotometry (AAS) measurements showed that ion exchange was an important mechanism in this sorption process. Electron spin resonance (ESR) tests demonstrated that free radicals from the sorbent also have a significant role in the sorption processes.

  6. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities in oxidation reactions and adsorption of heavy metal. Spontaneous formation of OMS-2 nanospheres was possible by tuning reaction parameters in the ultrasonic atomization process. In the second part, a microwave-hydrothermal route has been developed for the synthesis of 1D cobalt compounds (Chapter 5). These compounds are transformed to spinel type Co3O4 nanorods. The effects of solvents, cobalt sources, and microwave radiation time in the formation of 1D cobalt oxide nanostructures were studied in detail. These materials are catalytically active for CO oxidation and styrene oxidation reactions. Magnesia-yttria nanocomposites with controlled nanoscale grain sizes and homogenous microstructures are useful as IR transparent materials. A simple cost-effective sucrose based sol-gel route was devised for making MgO-Y 2O3 nanocomposites. Grain growth in these nanocomposites was systematically evaluated using transmission electron microscopy studies.

  7. Interactions of hydrogen isotopes and oxides with metal tubes

    SciTech Connect

    Longhurst, G. R.; Cleaver, J.

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  8. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  9. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Iveti?, T.B.; Fin?ur, N.L.; ?a?anin, Lj. R.; Abramovi?, B.F.; Luki?-Petrovi?, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  10. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  11. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Ji?í; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces. PMID:26423076

  12. Emerging applications of liquid metals featuring surface oxides.

    PubMed

    Dickey, Michael D

    2014-11-12

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide "skin" enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  13. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  14. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells

    E-print Network

    Heo, Jaeyeong

    We demonstrate a tunable electron-blocking layer to enhance the performance of an Earth-abundant metal-oxide solar-cell material. A 5 nm thick amorphous ternary metal-oxide buffer layer reduces interface recombination, ...

  15. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1991-01-01

    We have completed a large number of experiments which examine the release of MnO{sub 2}-bound Co, Ni, and Cu. Our work has focused upon the following areas: (1) competitive adsorption among the three toxic metals and Mn(II); (2) toxic metal release upon addition of low MW organic reductants and complexants; and (3) toxic metal release upon addition of natural organic matter-rich surface waters and IHSS organic matter reference material.

  16. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  17. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip E-mail: phil.massey@lowell.edu

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ?100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  18. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  19. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  20. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  1. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  2. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  3. Spectroscopic studies of metal growth on oxides 

    E-print Network

    Luo, Kai

    2000-01-01

    -two dimensional (2D); at higher coverages, three-dimensional growth of Au was found. In these three systems, Ag/TiO?, Ag/Al?O?, and Au/SiO?, no strong chemical interaction was observed between metal clusters and substrates. Sintering was observed for all metal...

  4. Linking experiment and theory for three-dimensional networked binary metal nanoparticle-triblock terpolymer superstructures

    NASA Astrophysics Data System (ADS)

    Li, Zihui; Hur, Kahyun; Sai, Hiroaki; Higuchi, Takeshi; Takahara, Atsushi; Jinnai, Hiroshi; Gruner, Sol M.; Wiesner, Ulrich

    2014-02-01

    Controlling superstructure of binary nanoparticle mixtures in three dimensions from self-assembly opens enormous opportunities for the design of materials with unique properties. Here we report on how the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles with a triblock terpolymer. Poly(isoprene-block-styrene-block-(N,N-dimethylamino)ethyl methacrylate) is synthesized and used as structure-directing agent for ligand-stabilized platinum and gold nanoparticles. Quantitative analysis provides insights into short- and long-range nanoparticle-nanoparticle correlations, and local and global contributions to structural chirality in the networks. Results provide synthesis criteria for next-generation mesoporous network superstructures from binary nanoparticle mixtures for potential applications in areas including catalysis.

  5. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine residues through ROS scavenging. The present results suggest that MTs are excellent markers of metal stress, but not of oxidative stress. PMID:22854745

  6. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  7. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  8. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  9. Atomic layer deposition of rare-earth-based binary and ternary oxides for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Wiemer, C.; Lamagna, L.; Fanciulli, M.

    2012-07-01

    Atomic layer deposition (ALD) has been established as a powerful method for the growth of very thin and conformal films to be used in ultra-scaled conventional and novel microelectronic devices. We report the most recent advancements in the field of ALD of rare-earth-based oxides to be implemented as active dielectrics. The review is balanced between the development of new ALD processes and the assessment and the discussion of fundamental scientific issues related to the structural, chemical and electrical properties of thin films of rare-earth-based oxides. The deposition process of binary lanthanide oxides is critically reviewed focusing on the first (La) and last (Lu) element of the series. Concomitantly, the integration of rare earth elements as dopant atoms in HfO2 and ZrO2 is also systematically reported. A final overview is dedicated to the results obtained by ALD of more innovative lanthanum-based ternary oxides.

  10. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1992-01-01

    This project is concerned with the mobilization of MnO{sub 2}- and FeOOH-bound toxic metals in subsurface environments arising from an influx of natural organic matter or organic-containing wastes. Our work to date emphasizes the importance of characterizing the reductant, complexant, and adsorptive characteristics of constituent organic chemicals. Organic chemicals may interact with pollutant metals directly, or may bring about changes in speciation and solubility indirectly by acting upon MnO{sub 2} and FeOOH host phases. The primary application of this work is the understanding of metal sorption and release processes within subsurface environments undergoing changes in redox status.

  11. Versatile Applications of Nanostructured Metal Oxides

    E-print Network

    Li, Li

    2014-05-29

    derived from block-copolymer microphase separation. The electrochromic device fabricated using gyroid-structured vanadium oxide film showed significantly improved coloration responses, because the interconnected porous net- work greatly shortened... have synthesized crystalline tungsten oxide consisting of micellar or cylindrical pores with uniform sizes. This porous structure reduced diffu- sion limitations of the reagents, allowing the easy access to a large surface area, there- fore improving...

  12. Total oxidation catalysis over supported metals

    SciTech Connect

    Carberry, J.J.

    1985-12-01

    In 1962 the author selected Pt-catalyzed CO oxidation as a model catalytic reaction to evaluate the spinning basket catalytic reactor concept. That simple oxidation reaction was, then, incidental to the major objective. The spinning basket catalytic reactor is now a rather conventional reality. The simple test reaction has proved to be of awesome complexity, revealing as it does pathological kinetic behavior, apparent structure sensitivity, and oscillatory phenomena of evident diversity of form, frequency, and amplitude. 37 references, 8 figures.

  13. Deposition of Metal Oxide Films from Metal-EDTA Complexes by Flame Spray Technique

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sekiya, Tetsuo; Toyama, Ayumu; Hasebe, Yasuhiro; Nakamura, Atsushi; Noguchi, Masahiro; Li, Yu; Ohshio, Shigeo; Akasaka, Hiroki; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2014-06-01

    R2O3 (R = Y, Eu, Er) metal oxides were synthesized from metal-ethylenediaminetetraacetic acid (EDTA) complexes using a flame spray technique. As this technique enables high deposition rates, films with thickness of several tens of micrometers were obtained. Films of yttria, europia, and erbia phase were synthesized on stainless-steel substrates with reaction assistance by H2-O2 combustion gas. The oxide films consisted of the desired crystalline phase with micropores. The porosity of the films was in the range of 6-15%, varying with the metal used. These results suggest that the true density of the metal oxide obtained from metal-EDTA powder through the thermal reaction process plays an important role in achieving film with the desired porosity.

  14. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  15. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    PubMed

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity. PMID:26040400

  16. Electronic structures of two-dimensional metallic oxides and bronzes

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Motta, N.; Marcus, J.; Drouard, S.; Balaska, B.

    2001-06-01

    The electronic structures of some molybdenum and tungsten oxides or bronzes exhibiting Peierls transitions are investigated at room temperature. The detection of a weak conduction band, well separated from a large valence band, evidences the metallic character of each oxide. The distributions of the valences of the different transition metals are analyzed by XPS. In each oxide, the presence of atleast two contributive components to the main core levels reveals a mixed valence state of the transition metal. But the proportions of the different components do not reflect the distribution of the cationic valences, as expected from the crystallographic structures. To understand this disagreement, we suggest that two alternative ways, including or rejecting a screening effect generated by the conduction electrons contribute to the photoemission processes and alter the real distribution of the cationic charges.

  17. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions.

    PubMed

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)-Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. PMID:26398455

  18. Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles.

    PubMed

    Jiménez-Rojo, Noemi; Lete, Marta G; Rojas, Elena; Gil, David; Valle, Mikel; Alonso, Alicia; Moya, Sergio E; Goñi, Félix M

    2015-10-01

    We have studied the effect of adding lipid nanovesicles (liposomes) on the aggregation of commercial titanium oxide (TiO2), zinc oxide (ZnO), or cerium oxide (CeO2) nanoparticles (NPs) suspensions in Hepes buffer. Liposomes were prepared with pure phospholipids or mixtures of phospholipids and/or cholesterol. Changes in turbidity were recorded as a function of time, either of metal nanoparticles alone, or for a mixture of nanoparticles and lipidic nanovesicles. Lipid nanovesicles markedly decrease the NPs tendency to sediment irrespective of size or lipid compositions, thus keeping the metal oxide NPs in suspension. Cryo-electron microscopy, fluorescence anisotropy of TMA-DPH and general polarization of laurdan failed to reveal any major effect of the NPs on the lipid bilayer structure or phase state of the lipids. The above data may help in developing studies of the interaction of inhaled particles with lung surfactant lipids and alveolar macrophages. PMID:26301898

  19. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads.

    PubMed

    Yamani, Jamila S; Miller, Sarah M; Spaulding, Matthew L; Zimmerman, Julie B

    2012-09-15

    Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al?O? and nanocrystalline TiO? were successfully developed. This adsorbent exploits the high capacity of Al?O? for arsenate and the photocatalytic activity of TiO? to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO? oxidizes arsenite to arsenate which is then removed from solution by Al?O?. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO?-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs. PMID:22743162

  20. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, G G

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  1. Sonochemical water splitting in the presence of powdered metal oxides.

    PubMed

    Morosini, Vincent; Chave, Tony; Virot, Matthieu; Moisy, Philippe; Nikitenko, Sergey I

    2016-03-01

    Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20kHz, micrometric particles slowdown the sonolysis of water at 362kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects. PMID:26558997

  2. Method for continuous synthesis of metal oxide powders

    SciTech Connect

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  3. Large Lateral Photovoltaic Effect in Metal-(Oxide-) Semiconductor Structures

    PubMed Central

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463

  4. Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures.

    PubMed

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463

  5. Photocatalytic activity of nanostructured ZnO-ZrO2 binary oxide using fluorometric method

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.

    2015-06-01

    Evaluation of the photocatalytic activity of ZnO-ZrO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, ZnO-ZrO2 mixed oxides coupled with various ZnO dosages (0, 10, 30, 50, 70 wt%) were prepared by impregnation method. These nanomaterials were characterized by studying their structural, surface and optical properties. The photocatalytic activity in term of quantitative determination of the active oxidative species (radOH) produced on the surface of binary oxide was evaluated using fluorescent probe method. The interaction between ZnO and ZrO2 was affected on the photocatalytic efficiency of mixture. The results show that, the addition of ZnO to ZrO2 decreased the electron-hole recombination and increased the rate of radOH radicals formation. 50 wt% ZnO-ZrO2 photocatalyst exhibited much higher photocatalytic activity. The profound effect of binary oxide catalyst was generally considered due to the high surface area, small particle size, high monoclinic phase of ZrO2 content, low band gap and the presence of surface OH groups.

  6. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe2 + and Fe3 + in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe2 + and Fe3 +), particularly for the case of pyrrhotite minerals.

  7. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  8. Modifying the catalytic and adsorption properties of metals and oxides

    NASA Astrophysics Data System (ADS)

    Yagodovskii, V. D.

    2015-11-01

    A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of ? ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

  9. Atomic Layer Deposition of Metal Oxide Thin Films on Metallic Substrates

    NASA Astrophysics Data System (ADS)

    Foroughi Abari, Ali

    Atomic layer deposition (ALD) is a powerful ultra-thin film deposition technique that uses sequential self-limiting surface reactions to provide conformal atomic scale film growth. Deposition of ALD films on many substrate systems has been studied before; however, limited data is available on deposition on metallic surfaces. The investigation of the growth of Al 2O3, HfO2, and ZrO2 as three technologically important metal oxides on metallic substrates is the subject of this thesis. Al2O3, HfO2, and ZrO2 films were grown by ALD on silicon, as a well-studied substrate, in different operating conditions to investigate the effect of process parameters on film properties. To study the growth of oxides on metals, thin metallic substrates were prepared by sputter deposition on silicon wafers and then were transferred to the ALD chamber where the film growth was monitored by in-situ spectroscopic ellipsometry. The transfer was performed via a load lock system without breaking the vacuum to preserve the pristine metal surface. Formation of a thin interfacial layer of metal oxide was observed during the initial moments of plasma enhanced ALD, that was due to the exposure of metal surface to oxygen plasma. In-situ spectroscopic ellipsometry was used to accurately measure the thickness change of the growing films including the interfacial layer. The thickness of this interfacial oxide layer depended on various process parameters including deposition temperature, order of precursors and plasma pulse length. The interfacial oxide layer was absent during the conventional thermal ALD. However, thermal ALD of oxides on metals exhibited substrate-inhibited growth, especially at higher deposition temperatures. With the knowledge of ALD growth characteristics on metals, metal-insulator-metal (MIM) devices were fabricated by both thermal and plasma enhanced ALD and electrically characterized. The presence of the interfacial oxide layer altered the device performance by changing the capacitance and current characteristics. Employing this approach, it was shown that ALD can be successfully used in the fabrication process of MIM devices and similar systems where ultra-thin insulating layers need to be uniformly deposited on a metallic surface.

  10. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  11. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  12. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks

    PubMed Central

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  13. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J. (Albuquerque, NM)

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  14. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi E-mail: takuma.suda@nao.ac.jp E-mail: honda@nhao.jp

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  15. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE. II. Binary Fraction

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] \\lt -3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  16. Oxidic or metallic palladium: which is the active phase in pd-catalyzed aerobic alcohol oxidation?

    PubMed

    Grunwaldt, Jan-Dierk; Caravati, Matteo; Baiker, Alfons

    2006-12-28

    In situ X-ray absorption spectroscopy combined with on-line catalytic measurements using FT-IR spectroscopy unequivocally identified that metallic palladium is the more active phase in the aerobic oxidation of benzyl alcohol than palladium oxide. The aerobic oxidation of benzyl alcohol in cyclohexane at 50 degrees C was low over oxidized 0.5%Pd/Al2O3 and 5%Pd/Al2O3 catalysts. XANES and EXAFS showed that the catalysts in the as-received state were almost fully oxidized and no reduction of the palladium constituent was observed during time-on-stream. After in situ reduction by hydrogen-saturated cyclohexane, the catalysts were much more active (over 50 times) than before reduction. Both XANES and EXAFS uncovered that the palladium constituent was mainly in a reduced state under these conditions of high catalytic activity. This demonstrates that metallic palladium is the active phase for alcohol dehydrogenation. PMID:17181190

  17. Container Prevents Oxidation Of Metal Powder

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.

    1992-01-01

    Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.

  18. ADSORPTION OF TRACE METALS BY HYDROUS FERRIC OXIDE IN SEAWATER

    EPA Science Inventory

    The adsorption of trace metals by amorphous hydrous ferric oxide in seawater is studied with reference to simple model systems designed to isolate the factors which may have an effect on the isotherms. Results show that the complex system behaves in a remarkably simple way and th...

  19. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J. (Knoxville, TN)

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  20. Molten-Metal Electrodes for Solid Oxide Fuel Cells

    SciTech Connect

    Jayakumar, A.; Vohs, J. M.; Gorte, R. J.

    2010-11-03

    Molten In, Pb, and Sb were examined as anodes in solid oxide fuel cells (SOFC) that operate between 973 and 1173 K. The results for these metals were compared with those reported previously for molten Sn electrodes. Cells were operated under “battery” conditions, with dry He or N2 flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the yttria-stabilized zirconia (YSZ)-electrolyte interface. In most cases, the open-circuit voltages (OCVs) were close to that based on equilibrium between the metals and their oxides. With Sn and In, the cell impedances increased dramatically at all temperatures after drawing current due to formation of insulating, oxide barriers at the electrolyte interface. Similar results were observed for Pb at 973 and 1073 K, but the impedance remained low even after PbO formation at 1173 K because this is above the melting temperature of PbO. Similarly, the impedances of molten Sb electrodes at 973 K were low and unaffected by current flow because of the low melting temperature of Sb{sub 2}O{sub 3}. The potential of using molten-metal electrodes for direct-carbon fuel cells and for energy-storage systems is discussed.

  1. CMOS array design automation techniques. [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  2. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore »when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  3. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  4. Stability and Aggregation of Metal Oxide Nanoparticles in Natural

    E-print Network

    Cardinale, Bradley J.

    dispersed three different metal oxide nanoparticles (TiO2, ZnO and CeO2) in samples taken from eightO) nanoparticles, such as TiO2, ZnO and CeO2, are increasingly incorporated into a wide range of products (e

  5. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  6. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  7. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Wagner, Richard W. (Murrysville, PA)

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  8. Growth of metal oxide nanoparticles using pulsed laser ablation technique

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Drmosh, Q. A.; Saleh, Tawfik A.; Yamani, Z. H.

    2011-02-01

    Nano particles exhibit physical and chemical properties distinctively different from that of bulk due to high number of surface atoms, surface energy and surface area to volume ratio. Laser is a unique source of radiation and has been applied in the synthesis of nano structured metal oxides. The pulsed laser ablation (PLA) technique in liquid medium has been proven an effective and simple technique for preparing nanoparticles of high purity. Pulsed laser deposition (PLD) is another way to fabricate nano structured single crystal thin films of metal oxides. PLA technique has been applied in our laboratory for the growth of metal oxides such as nano-ZnO, nano-ZnO2 nano- SnO2, nano-Bi2O3, nano-NiO and nano-MnO2. Different techniques such as AFM, UV, FT-IR, PL and XRD were applied to characterize these materials. We will present our latest development in the growth of nano metal oxides using PLA and PLD.

  9. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts. PMID:26355535

  10. A metallic room-temperature oxide ion conductor.

    PubMed

    Heise, Martin; Rasche, Bertold; Isaeva, Anna; Baranov, Alexey I; Ruck, Michael; Schäfer, Konrad; Pöttgen, Rainer; Eufinger, Jens-Peter; Janek, Jürgen

    2014-07-01

    Nanoparticles of Bi3 Ir, obtained from a microwave-assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3 Ir and Bi3 IrOx (x?2) were investigated by X-ray diffraction, electron microscopy, and quantum-chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time- and temperature-dependent monitoring of the oxygen uptake in an oxygen-filled chamber shows that the activation energy for oxide diffusion (84?meV) is one order of magnitude smaller than that in any known material. Bi3 IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature. PMID:24866268

  11. Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

    E-print Network

    Wang, Dihua

    Molten oxide electrolysis (MOE) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful deployment of MOE hinges upon the existence of an inert anode capable of ...

  12. Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered

    E-print Network

    Complementary metal oxide semiconductor compatible fabrication and characterization of parylene technology involving parylene-C conformal deposition that is compatible with complementary metal oxide parylene-C coated nanochannels with integrated gold nanoelectrodes. © 2009 American Institute of Physics

  13. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  14. Electrical excitation of colloidally synthesized quantum dots in metal oxide structures

    E-print Network

    Wood, Vanessa Claire

    2010-01-01

    This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

  15. Silatranes for binding inorganic complexes to metal oxide surfaces.

    PubMed

    Materna, Kelly L; Brennan, Bradley J; Brudvig, Gary W

    2015-12-21

    A ruthenium complex containing silatrane functional groups has been synthesized and covalently bound to a conductive metal oxide film composed of nanoparticulate ITO (nanoITO). The silatrane-derived siloxane surface anchors were found to be stable in the examined range of pH 2 to 11 in aqueous phosphate buffer, and the ruthenium complex was found to have stable electrochemical features with repeated electrochemical cycling. The non-coordinating properties of the silatrane group to metals, which facilitates synthesis of silatrane-labeled coordination complexes, together with the facile surface-binding procedure, robustness of the surface linkages, and stability of the electrochemical properties suggest that incorporating silatrane motifs into ligands for inorganic complexes provides superior properties for attachment of catalysts to metal oxide surfaces under aqueous conditions. PMID:26506505

  16. Acute tellurium toxicity from ingestion of metal-oxidizing solutions.

    PubMed

    Yarema, Mark C; Curry, Steven C

    2005-08-01

    Tellurium is an element used in the vulcanization of rubber and in metal-oxidizing solutions to blacken or tarnish metals. Descriptions of human toxicity from tellurium ingestion are rare. We report the clinical course of 2 children who ingested metal-oxidizing solutions containing substantial concentrations of tellurium. Clinical features included vomiting, black discoloration of the oral mucosa, and a garlic odor to the breath. One patient developed corrosive injury to the esophagus secondary to the high concentration of hydrochloric acid in the solution. Both patients recovered without serious sequelae, which is typical of tellurium toxicity. An awareness of situations in which children may be exposed to tellurium and its clinical presentation may assist clinicians in the diagnosis of this rare poisoning. PMID:15995006

  17. Oxidized Metal Powders for Mechanical Shock and Crush Safety Enhancers

    SciTech Connect

    GARINO, TERRY J.

    2002-01-01

    The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented.

  18. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides.

    SciTech Connect

    Shkrob, I. A.; Marin, T. M.; Sevilla, M. D.; Chemerisov, S.

    2011-03-24

    Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition-metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO{sub 2}, {alpha}-FeOOH, and {alpha}-Fe{sub 2}O{sub 3} particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO{sub 2} oxidizes all of the carbohydrates and polyols, whereas {alpha}-FeOOH oxidizes some of the carbohydrates, and {alpha}-Fe{sub 2}O{sub 3} is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

  19. Degradation of C-hordein by metal-catalysed oxidation.

    PubMed

    Huang, Xin; Kanerva, Päivi; Salovaara, Hannu; Sontag-Strohm, Tuula

    2016-04-01

    C-hordein is a monomeric prolamin protein in barley. The unusual primary structure of C-hordein has highly repetitive sequences and forms a secondary structure of beta-turns. C-hordein structure is similar to that of collagen protein, whose degradation by metal-catalysed oxidation has been intensively studied. No information exists on the metal catalysed oxidation of C-hordein, however. In this study, copper-catalysed hydrogen peroxide induced oxidation of C-hordein caused substantial degradation and formed some insoluble compounds. The use of a gliadin standard in R5 ELISA determinations causes an overestimation of hordeins in a sample. A C-hordein standard was therefore directly used as a standard, thus allowing the C-hordein to be analysed as its oxidised prolamin product. After 48h of oxidation, the prolamin concentration of oxidised C-hordein decreased to 20% of its original amount for competitive ELISA, and to 3% for sandwich ELISA methods. Carbonyl groups were formed during the oxidation. Backbone fragmentation and side-chain modification suggested structural changes of R5 epitopes in C-hordein. Oxidation is an alternative to enzymatic hydrolysis when degrading and modifying C-hordein. PMID:26593614

  20. EELS and atom probe tomography study of the evolution of the metal/ oxide interface during zirconium alloy oxidation

    E-print Network

    Motta, Arthur T.

    EELS and atom probe tomography study of the evolution of the metal/ oxide interface during studies of the oxide/metal interface demonstrated by both electron energy loss spectroscopy (EELS to understand the evolution of these oxide phases. This study presents results from both EELS and APT analyses

  1. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  2. CuO-CeO{sub 2} binary oxide nanoplates: Synthesis, characterization, and catalytic performance for benzene oxidation

    SciTech Connect

    Hu, Chaoquan; Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 ; Zhu, Qingshan; Chen, Lin; Wu, Rongfang; Graduate School of Chinese Academy of Sciences, Beijing 100049

    2009-12-15

    This work reports the first synthesis of CuO-CeO{sub 2} binary oxides with a plate-like morphology by a solvothermal method. The as-prepared CuO-CeO{sub 2} nanoplates calcined at 400 {sup o}C were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrum, and tested for catalytic oxidation of dilute benzene in air. Various structural characterizations showed that large amounts of copper species were exposed on the CuO-CeO{sub 2} nanoplate surface. The effect of the synthesis conditions on the structure of the product, as well as the growth process of the nanoplates, has been studied and discussed. The CuO-CeO{sub 2} nanoplates exhibited an excellent catalytic activity for benzene oxidation despite its relatively low surface area and could catalyze the complete oxidation of benzene at a temperature as low as 240 {sup o}C.

  3. Dissolution of metal and metal oxide nanoparticles in aqueous media.

    PubMed

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-08-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. PMID:24832924

  4. A new family of copper-oxide-based isotropic metallic oxides for normal metal barriers in SNS junctions

    SciTech Connect

    Eom, C.B.

    1996-12-31

    Thin films and heterostructures of a new family of copper-oxide-based isotropic metallic oxides such as La{sub 6.4}Sr{sub 1.6}Cu{sub 8}O{sub 20}, La{sub 5}BaCu{sub 6}O{sub 13} and La{sub 6}BaYCu{sub 8}O{sub 20} have been investigated. These metallic oxides are oxygen deficient pseudo-cubic perovskites that exhibits Pauli paramagnetism, which could be ideal normal metals for SNS junctions in high {Tc} superconducting devices. The authors have grown epitaxial thin films of these metallic oxides and SNS superconducting heterostructures (c-axis YBa{sub 2}Cu{sub 3}O{sub 7}/La{sub 6.4}Sr{sub 1.6}Cu{sub 8}O{sub 20}/c-axis YBa{sub 2}Cu{sub 3}O{sub 7}) in situ by 90{degree} off-axis sputtering. X-ray diffraction and cross-sectional transmission electron microscopy reveal these heterostructures to have high crystalline quality and clean interfaces. This material will facilitate fabrication of ideal SNS Josephson junctions with low boundary resistance due to its excellent chemical compatibility and lattice match with cuprate superconductors and will be useful for determining the source of interface resistance in such heterostructures.

  5. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  6. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  7. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  8. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  9. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  10. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  11. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  12. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  13. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  14. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  15. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  16. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  17. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  18. Solvated Electrons on Metal Oxide Surfaces

    SciTech Connect

    Zhao, Jin; Li, Bin; Onda, Ken; Feng, Min; Petek, Hrvoje

    2006-09-13

    An electron added to a solvent polarizes its surrounding medium to minimize the free energy. Such an electron with its polarization cloud, which we refer to as the solvated electron, is one of the most fundamental chemical reagents of significant experimental and theoretical interest. The structure and dynamics of solvated electrons in protic solvents have been explored ever since the discovery of intense blue coloration in solutions of alkali metals in ammonia.1-3 Because solvated electrons are the most fundamental chemical reagents as well as carriers of negative charge, substantial experimental and theoretical efforts have focused on elucidating their equilibrium structure and solvation dynamics in a variety of neat liquids.4,5 One of the most important but least explored environments for solvated electrons, namely, the two-dimensional liquid/solid and liquid/vacuum interfaces, is the subject of this review.

  19. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect

    Das, Supriyo

    2010-05-16

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

  20. Nearly free electrons in a 5d delafossite oxide metal

    PubMed Central

    Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J. W.; Bawden, Lewis; Riley, Jonathon M.; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P.; Arnold, Frank; Hassinger, Elena; Kim, Timur K.; Hoesch, Moritz; Mackenzie, Andrew P.; King, Phil D. C.

    2015-01-01

    Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit–assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (??-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along kz. Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14me. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below EF, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free–electron system in a 5d delafossite transition-metal oxide. PMID:26601308

  1. Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

    E-print Network

    Sadoway, Donald Robert

    Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful with an iridium anode operating at 0.55 A cmÀ2 produced liquid metal and oxygen gas by the decomposition of iron

  2. Monolayered nanodots of transition metal oxides.

    PubMed

    Nakamura, Keisuke; Oaki, Yuya; Imai, Hiroaki

    2013-03-20

    Monolayered nanodots of titanium, tungsten, and manganese oxides were obtained by exfoliation of the nanocrystals through aqueous solution processes at room temperature. The precursor nanocrystals of the layered compounds, such as sodium titanate (Na(0.80)Ti(1.80)?(0.2)O4·xH2O, ?: vacancy (x < 1.17)), cesium tungstate (Cs4W11O35·yH2O (y < 10.5)), and sodium manganate (Na0.44MnO2·zH2O (z < 0.85)), were synthesized in an aqueous solution. These nanocrystals of the layered compounds were delaminated into the monolayered nanodots through introduction of a bulky organic cation in the interlayer space. The resultant monolayered nanodots of the titanate and tungstate 2-5 nm in lateral size showed a remarkable blueshift of the bandgap energies. The calculation studies supported the blueshifts of the bandgap energies. The results suggest that syntheses of monolayered nanodots can expand the tuning range of the properties based on size effect. The present approaches for generation of ultrathin tiny objects can be applied to a variety of nanomaterials. PMID:23441590

  3. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  4. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Karakas, A. I.; Izzard, R. G.

    2015-04-01

    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process (s-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass (?0.85 M?) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and s-element-enhanced metal-poor (CEMP-s) halo stars that are found in binary systems with measured orbital periods. With our model of binary evolution and AGB nucleosynthesis, we determine the binary configuration that best reproduces, at the same time, the observed orbital period and surface abundances of each star of the sample. The observed periods provide tight constraints on our model of wind mass transfer in binary stars, while the comparison with the observed abundances tests our model of AGB nucleosynthesis. For most of the stars in our sample, we find that an episode of efficient wind mass transfer, combined with strong angular momentum loss, has occurred in the past. In some cases we find discrepancies between the observed and modelled abundances even if we adopt a fine-tuned set of parameters in our binary evolution model. These discrepancies are probably caused by missing physical ingredients in our models of AGB nucleosynthesis and they provide indications of how to improve our knowledge of the process of nucleosynthesis in AGB stars. Appendices are available in electronic form at http://www.aanda.org

  5. Transport phenomena of aluminium oxide in metal halide lamps

    NASA Astrophysics Data System (ADS)

    Fischer, S.; Niemann, U.; Markus, T.

    2008-07-01

    A better understanding of the transport phenomena observed in metal halide lamps can be achieved using computer-based model calculations. The chemical transport of aluminium oxide in advanced high-pressure discharge vessels was calculated as a function of temperature and composition of the salt mixture relevant to the lamp. Below 1773 K chemical transport is the prevailing process; above this temperature the vaporization and condensation of the envelope material—aluminium oxide—become more important. The results of the calculations show that the amount of transported alumina increases linearly with the number of iteration cycles and exponentially with the temperature gradient.

  6. Microelectronic components and metallic oxide studies and applications

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1976-01-01

    The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.

  7. Field-induced resistive switching in metal-oxide interfaces

    SciTech Connect

    Tsui, S.; Baikalov, A.; Cmaidalka, J.; Sun, Y.Y.; Wang, Y.Q.; Xue, Y.Y.; Chu, C.W.; Chen, L.; Jacobson, A.J.

    2004-07-12

    We investigate the polarity-dependent field-induced resistive switching phenomenon driven by electric pulses in perovskite oxides. Our data show that the switching is a common occurrence restricted to an interfacial layer between a deposited metal electrode and the oxide. We determine through impedance spectroscopy that the interfacial layer is no thicker than 10 nm and that the switch is accompanied by a small capacitance increase associated with charge accumulation. Based on interfacial I-V characterization and measurement of the temperature dependence of the resistance, we propose that a field-created crystalline defect mechanism, which is controllable for devices, drives the switch.

  8. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  9. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion.

    PubMed

    Yang, Yu; Zhang, Chiqian; Hu, Zhiqiang

    2013-01-01

    Metallic and metal oxide nanomaterials have been increasingly used in consumer products (e.g. sunscreen, socks), the medical and electronic industries, and environmental remediation. Many of them ultimately enter wastewater treatment plants (WWTPs) or landfills. This review paper discusses the fate and potential effects of four types of nanoparticles, namely, silver nanoparticles (AgNPs), nano ZnO, nano TiO2, and nano zero valent iron (NZVI), on waste/wastewater treatment and anaerobic digestion. The stabilities and chemical properties of these nanoparticles (NPs) result in significant differences in antimicrobial activities. Analysis of published data of metallic and metal oxide NPs suggests that oxygen is often a prerequisite for the generation of reactive oxygen species (ROS) for AgNPs and NZVI, while illumination is necessary for ROS generation for nano TiO2 and nano ZnO. Furthermore, such nanoparticles are capable of being oxidized or dissolved in water and can release metal ions, leading to metal toxicity. Therefore, AgNPs and nano TiO2 are chemically stable NPs that have no adverse effects on microbes under anaerobic conditions. Although the toxicity of nanomaterials has been studied intensively under aerobic conditions, more research is needed to address their fate in anaerobic waste/wastewater treatment systems and their long-term effects on the environment. PMID:24592426

  10. METALLICITY EFFECT ON LOW-MASS X-RAY BINARY FORMATION IN GLOBULAR CLUSTERS

    SciTech Connect

    Kim, D.-W.; Fabbiano, G.; Fragos, T.; Ivanova, N.; Sivakoff, G. R.; Jordan, A.; Voss, R.

    2013-02-10

    We present comprehensive observational results of the metallicity effect on the fraction of globular clusters (GCs) that contain low-mass X-ray binaries (LMXB), by utilizing all available data obtained with Chandra for LMXBs and Hubble Space Telescope Advanced Camera for Surveys (ACS) for GCs. Our primary sample consists of old elliptical galaxies selected from the ACS Virgo and Fornax surveys. To improve statistics at both the lowest and highest X-ray luminosity, we also use previously reported results from other galaxies. It is well known that the fraction of GCs hosting LMXBs is considerably higher in red, metal-rich, GCs than in blue, metal-poor GCs. In this paper, we test whether this metallicity effect is X-ray luminosity-dependent and find that the effect holds uniformly in a wide luminosity range. This result is statistically significant (at {>=}3{sigma}) in LMXBs with luminosities in the range L {sub X} = 2 Multiplication-Sign 10{sup 37} to 5 Multiplication-Sign 10{sup 38} erg s{sup -1}, where the ratio of GC-LMXB fractions in metal-rich to metal-poor GCs is R = 3.4 {+-} 0.5. A similar ratio is also found at lower (down to 10{sup 36} erg s{sup -1}) and higher luminosities (up to the ULX regime), but with less significance ({approx}2{sigma} confidence). Because different types of LMXBs dominate in different luminosities, our finding requires a new explanation for the metallicity effect in dynamically-formed LMXBs. We confirm that the metallicity effect is not affected by other factors such as stellar age, GC mass, stellar encounter rate, and galacto-centric distance.

  11. Catalytic oxidation of carbon nanotubes with noble metal nanoparticles.

    PubMed

    Yoshida, Kaname; Arai, Shigeo; Sasaki, Yukichi; Tanaka, Nobuo

    2015-09-01

    Catalytic oxidation of multi-walled carbon nanotubes (MWNCTs) with some noble metal nanoparticles was observed by environmental transmission electron microscopy (E-TEM). Amoeba-like movement of the nanoparticles was observed even at a temperature of ?400°C, which is much lower than the melting points of any of the metals. In particular, rhodium particles reacted intensely with MWCNTs, and assumed a droplet-like shape. On the other hand, gold particles caused very little erosion of the MWCNTs under the conditions of this study. PMID:26025589

  12. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-01

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality. PMID:26308184

  13. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  14. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    SciTech Connect

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  15. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  16. Fluorine in carbon-enhanced metal-poor stars: a binary scenario

    E-print Network

    M. Lugaro; S. E. de Mink; R. G. Izzard; S. W. Campbell; A. I. Karakas; S. Cristallo; O. R. Pols; J. C. Lattanzio; O. Straniero; R. Gallino; T. C. Beers

    2008-05-08

    A super-solar fluorine abundance was observed in the carbon-enhanced metal-poor (CEMP) star HE 1305+0132 ([F/Fe] = +2.90, [Fe/H] = -2.5). We propose that this observation can be explained using a binary model that involve mass transfer from an asymptotic giant branch (AGB) star companion and, based on this model, we predict F abundances in CEMP stars in general. We discuss wether F can be used to discriminate between the formation histories of most CEMP stars: via binary mass transfer or from the ejecta of fast-rotating massive stars. We compute AGB yields using different stellar evolution and nucleosynthesis codes to evaluate stellar model uncertainties. We use a simple dilution model to determine the factor by which the AGB yields should be diluted to match the abundances observed in HE 1305+0132. We further employ a binary population synthesis tool to estimate the probability of F-rich CEMP stars. The abundances observed in HE 1305+0132 can be explained if this star accreted 3-11% of the mass lost by its former AGB companion. The primary AGB star should have dredged-up at least 0.2 Msun of material from its He-rich region into the convective envelope via third dredge-up, which corresponds to AGB models of Z ~ 0.0001 and mass ~ 2 Msun. Many AGB model uncertainties, such as the treatment of convective borders and mass loss, require further investigation. We find that in the binary scenario most CEMP stars should also be FEMP stars, that is, have [F/Fe] > +1, while fast-rotating massive stars do not appear to produce fluorine. We conclude that fluorine is a signature of low-mass AGB pollution in CEMP stars, together with elements associated with the slow neutron-capture process.

  17. Engineering metal oxide nanostructures for the fiber optic sensor platform.

    PubMed

    Poole, Zsolt L; Ohodnicki, Paul; Chen, Rongzhang; Lin, Yuankun; Chen, Kevin P

    2014-02-10

    This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. High-temperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500 °C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials. PMID:24663558

  18. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  19. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  20. Metal oxide semi-conductor gas sensors in environmental monitoring.

    PubMed

    Fine, George F; Cavanagh, Leon M; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases--CO, NO(x), NH(3) and the particularly challenging case of CO(2). Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  1. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  2. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  3. Evolution of massive stars at very low metallicity including rotation and binary interactions

    E-print Network

    S. -C. Yoon; M. Cantiello; N. Langer

    2008-01-28

    We discuss recent models on the evolution of massive stars at very low metallicity including the effects of rotation, magnetic fields and binarity. Very metal poor stars lose very little mass and angular momentum during the main sequence evolution, and rotation plays a dominant role in their evolution. In rapidly rotating massive stars, the rotationally induced mixing time scale can be even shorter than the nuclear time scale throughout the main sequence. The consequent quasi-chemically homogeneous evolution greatly differs from the standard massive star evolution that leads to formation of red giants with strong chemical stratification. Interesting outcomes of such a new mode of evolution include the formation of rapidly rotating massive Wolf-Rayet stars that emit large amounts of ionizing photons, the formation of a long gamma-ray bursts and a hypernovae, and the production of large amounts of primary nitrogen. We show that binary interactions can further enhance the effects of rotation, as mass accretion in a close binary spins up the secondary.

  4. Experimental bandstructure of the 5 d transition metal oxide IrO2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  5. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  6. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  7. Dual-environment effects on the oxidation of metallic interconnects

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.; Covino, B.S., Jr.; Bullard, S.J.

    2006-08-01

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

  8. The Development of Metal Oxide Chemical Sensing Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.

    2008-01-01

    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.

  9. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  10. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  11. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  12. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  13. Tunable and responsive plasmonic properties of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Milliron, Delia

    2015-03-01

    Degenerately doped metal oxide semiconductors, like ITO, exhibit plasmonic resonance at near and mid-infrared wavelengths tunable by varying their composition. Nanocrystals of many such materials have now been synthesized and applications are emerging that leverage the responsiveness of their localized surface plasmon resonance (LSPR) to electronic charging and discharging. For example, electrochromic glass that can dynamically control heat loads in buildings is under development. In biological systems, plasmonic oxide nanocrystals can act as remote sensors, where changes in their optical absorption indicates biochemical redox has occurred. Nonetheless, significant fundamental questions remain open regarding the nature of the infrared optical response in these doped oxides. Dopant impurities influence the optoelectronic properties beyond simply donating free carriers. For example, the distribution of Sn in ITO was found to dramatically influence the line shape of the LSPR and the effective electron mobility. In addition, by post-synthetically modifying carrier concentrations (through photodoping or electrochemical doping), we have observed that aliovalent doping and electronic doping each modify LSPR spectra, providing access to a broad range of tunable optical properties. Heterogeneous broadening, uncovered by single nanocrystal spectroscopy, also contributes to ensemble line shapes, complicating direct interpretation of LSPR spectra. Finally, the possibility of electric field enhancement by metal oxide LSPRs is critically examined to suggest what future applications might be on the horizon.

  14. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-06-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

  15. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  16. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  17. Technetium Dichloride: A New Binary Halide Containing Metal-Metal Multiple Bonds

    SciTech Connect

    Poineau, Frederic; Malliakas, Christos D.; Weck, Philippe F.; Scott, Brian L.; Johnstone, Erik V.; Forster, Paul M.; Kim, Eunja; Kanatzidis, Mercouri G.; Czerwinski, Kenneth R.; Sattelberge, Alfred P.

    2011-10-19

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

  18. Technetium dichloride : a new binary halide containing metal-metal multiple bonds.

    SciTech Connect

    Poineau, F.; Malliakas, C. D.; Weck, P. F.; Scott, B. L.; Johnstone, E. V.; Forster, P. M.; Kim, E.; Kanatzidis, M. G.; Czerwinski, K. R.; Sattelberger, A. P.

    2011-06-15

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

  19. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    SciTech Connect

    Cahalan, J.; Wigeland, R. ); Friedel, G. , Bergisch Gladbach ); Kussmaul, G.; Royl, P. ); Moreau, J. ); Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs.

  20. Degradation mechanisms and stability forecasting and adhesion contacts of metal films with binary dielectric substrates

    SciTech Connect

    Stolyarova, S.; Nemirovsky, Y.; Simanovskis, A.

    1996-12-31

    In this paper the authors present their conception of degradation and stability on the adhesion contacts of metal films with binary nonmetallic crystals. There are numerous works devoted to the atomic scale determination of adhesion forces and development of adhesion interaction laws. But in the real life the kinetic processes, taking place on the adhesion contact, can lead to such dramatic changes in adhesion strength values that the initial adhesion characteristics do not worth much for practice. Sometimes, adhesion contact with a metal which supposed to be highly adhesive failes in a short period of aging time. What the authors have learned from their studies of the contact processes is that in many cases the aging could not be separately addressed to the individual properties of film metal or to those of the substrate material. It depends mainly on the relationships between the parameters of interacting pair. The question is: what parameters should be taken into account to explain degradation phenomena and to predict them? The purpose of the present work is to show how the relative chemical activity of film metal and substrate cation affects the contact degradation in a vacuum and in different environmental conditions.

  1. THE EFFECT OF STARBURST METALLICITY ON BRIGHT X-RAY BINARY FORMATION PATHWAYS

    SciTech Connect

    Linden, T.; Kalogera, V.; Sepinsky, J. F.; Prestwich, A.; Zezas, A.; Gallagher, J. S.

    2010-12-20

    We investigate the characteristics of young (<20 Myr) and bright (L{sub X} > 1 x 10{sup 36} erg s{sup -1}) high-mass X-ray binaries (HMXBs) and find the population to be strongly metallicity dependent. We separate the model populations among two distinct formation pathways: (1) systems undergoing active Roche lobe overflow (RLO) and (2) wind accretion systems with donors in the (super)giant stage, which we find to dominate the HMXB population. We find metallicity to primarily affect the number of systems which move through each formation pathway, rather than the observable parameters of systems which move through each individual pathway. We discuss the most important model parameters affecting the HMXB population at both low and high metallicities. Using these results, we show that (1) the population of ultra-luminous X-ray sources can be consistently described by very bright HMXBs which undergo stable RLO with mild super-Eddington accretion and (2) the HMXB population of the bright starburst galaxy NGC 1569 is likely dominated by one extremely metal-poor starburst cluster.

  2. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  3. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    DOEpatents

    Venkatesh, Koppampatti R. (Pittsburgh, PA); Hu, Jianli (Cranbury, NJ); Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA)

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  4. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, André E.; Mädler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ? 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  5. Electrical properties of inalp native oxides for metal-oxide-semiconductor device applications

    SciTech Connect

    Cao, Y.; Zhang, J.; Li, X.; Kosel, T.H.; Fay, P.; Hall, D.C.; Zhang, X.B.; Dupuis, R.D.; Jasinski, J.B.; Liliental-Weber, Z.

    2004-09-01

    Data are presented on the insulating properties and capacitance-voltage (CV) characteristics of metal-oxide-semiconductor (MOS) device-thickness (below approx. 100 nm) native oxides formed by wet thermal oxidation of thin InAlP epilayers lattice matched to GaAs. Low leakage current densities of J=1.4 x 10-9 A/cm2 and J=8.7 x 10-11 A/cm2 are observed at an applied field of 1 MV/cm for MOS capacitors fabricated with 17 nm and 48 nm oxides, respectively. TEM images show that the In-rich interfacial particles which exist in 110 nm oxides are absent in 17 nm oxide films. Quasi-static capacitance-voltage measurements of MOS capacitors fabricated on both n-type and p-type GaAs show that the InAlP oxide-GaAs interface is sufficiently free of traps to support inversion, indicating an unpinned Fermi level. These data suggest that InAlP native oxides may be a viable insulator for GaAs MOS device applications.

  6. The close binary properties of massive stars in the Milky Way and low-metallicity Magellanic Clouds

    SciTech Connect

    Moe, Maxwell; Di Stefano, Rosanne

    2013-12-01

    In order to understand the rates and properties of Type Ia and Type Ib/c supernovae, X-ray binaries, gravitational wave sources, and gamma-ray bursts as a function of galactic environment and cosmic age, it is imperative that we measure how the close binary properties of O- and B-type stars vary with metallicity. We have studied eclipsing binaries with early B main-sequence primaries in three galaxies with different metallicities: the Large and Small Magellanic Clouds (LMC and SMC, respectively) and the Milky Way (MW). The observed fractions of early B stars that exhibit deep eclipses 0.25 < ?m (mag) < 0.65 and orbital periods 2 < P (days) < 20 in the MW, LMC, and SMC span a narrow range of (0.7-1.0)%, which is a model-independent result. After correcting for geometrical selection effects and incompleteness toward low-mass companions, we find for early B stars in all three environments (1) a close binary fraction of (22 ± 5)% across orbital periods 2 < P (days) < 20 and mass ratios q = M {sub 2}/M {sub 1} > 0.1, (2) an intrinsic orbital period distribution slightly skewed toward shorter periods relative to a distribution that is uniform in log P, (3) a mass-ratio distribution weighted toward low-mass companions, and (4) a small, nearly negligible excess fraction of twins with q > 0.9. Our fitted parameters derived for the MW eclipsing binaries match the properties inferred from nearby, early-type spectroscopic binaries, which further validates our results. There are no statistically significant trends with metallicity, demonstrating that the close binary properties of massive stars do not vary across metallicities –0.7 < log(Z/Z {sub ?}) < 0.0 beyond the measured uncertainties.

  7. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOEpatents

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  8. Giant and switchable surface activity of liquid metal via surface oxidation

    E-print Network

    Velev, Orlin D.

    Giant and switchable surface activity of liquid metal via surface oxidation Mohammad Rashed Khana,1 metals. Liquid metals offer new opportunities for soft, stretch- able, and shape the interfacial ten- sion of metals but either limit the shape of liquid metals to plugs (e.g., continuous

  9. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    PubMed

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. PMID:23571113

  10. Thin Films of Metal Oxides on Metal Single Crystals: Structure and Growth by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Galloway, Heather Claire

    1995-11-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(111) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing the structures of different oxides. For the iron oxide system the first monolayer grows as FeO(111) with a lateral lattice constant of 3.09 +/- 0.02 A as compared to the bulk value of 3.04 A. The surface is oxygen terminated with a strongly contracted FeO bond distance of 1.90 A as compared to the bulk value of 2.15 A. At higher coverages Fe _3O_4(111) and alpha-Fe_2rm O_3 (0001) structures can be identified by their symmetry with respect to the FeO monolayer. The Fe_3 O_4(111) has a simple 2 x 2 unit cell and the alpha-Fe _2O_3(0001) is surd3 x surd3R30 ^circ. The FeO(111) exhibits a large three fold symmetric unit cell (26 A) due to the lattice mismatch with the Pt(111) surface and the alpha -Fe_2O_3(0001) has an even larger unit cell (43 A) due to the lattice mismatch with the FeO monolayer. The large unit cells are images as Moire patterns (modulations in the average current and atomic corrugation) in the STM images. For titanium oxide the first monolayer grows as Ti _2O_3(0001) under reducing conditions and TiO_2(111) structures are formed at higher oxygen pressures and higher coverages. Both ordered structures also exhibit Moire pattern images in the STM experiments. A second goal of these studies is to advance the understanding of the tunneling process in metal oxides and to better determine the relationship between the experimental STM results and the surface atomic positions. For this purpose Electron Scattering Quantum Chemistry (ESQC) calculations have been applied to the case of an FeO monolayer on Pt(111) to simulate the experimental images. The correspondence between surface structure and STM image features has been determined. In particular, the maxima observed in the experimental images spaced by 3.1 A are due to the positions of the oxygen atoms. The atomic corrugation has a simple relationship with the tip-surface distance and therefore with the surface buckling. Namely, the atomic corrugation increases with decreasing tip-surface distance. However, there is no simple relationship between the average tunneling current and topography. This is the first calculation of an STM image for a metal oxide surface as well as the first STM modeling of a Moire structure. Other studies include an investigation of the coadsorption of oxygen and sulfur on the Ni(110) surface. The results of the coadsorption experiments will be included in the last chapter. Further STM calculations using the ESQC method to compare the chemisorbed oxygen system to the metal oxide structures would enhance the understanding of tunneling in metal-oxygen systems.

  11. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, A B

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO{sub 2} hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  12. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    ?erný, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials. PMID:26634719

  13. Fabrication of nickel oxide nanoparticles in SiO{sub 2} by metal-ion implantation combined with thermal oxidation

    SciTech Connect

    Amekura, H.; Umeda, N.; Takeda, Y.; Lu, J.; Kishimoto, N.

    2004-08-09

    A method is proposed to synthesize oxide nanoparticles in insulators, using metal-ion implantation and following thermal oxidation, which introduces less damage compared to the sequential implantation of metal ions and oxygen ions. Ni-oxide nanoparticles are formed in O{sub 2} gas flow at {approx}800 deg. C for 1 h, through thermal oxidation of Ni metal nanoparticles, which were introduced in SiO{sub 2} by charging-free negative ion implantation of 60 keV. After the oxidation, optical absorption in the visible region, which is due to Ni metal nanoparticles in the specimen, disappears, and a steep absorption edge of insulator NiO appears around {approx}4 eV. Simultaneously, the large magnetization of Ni metal nanoparticles changes to a weak magnetization of antiferromagnetic NiO nanoparticles. The nanoparticle formation is confirmed by transmission electron microscopy observation.

  14. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...metals, acid gases, organics, and nitrogen oxides. (a) The emission limits...affected facility any gases that contain nitrogen oxides in excess of the emission...

  15. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...metals, acid gases, organics, and nitrogen oxides. (a) The emission limits...affected facility any gases that contain nitrogen oxides in excess of the emission...

  16. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...metals, acid gases, organics, and nitrogen oxides. (a) The emission limits...affected facility any gases that contain nitrogen oxides in excess of the emission...

  17. Electronic structure of high-k transition metal oxides and their silicate and aluminate alloys

    E-print Network

    Electronic structure of high-k transition metal oxides and their silicate and aluminate alloys G earth dielectrics and ii SiO2 and Si oxynitride alloys by presenting a systematic x-ray absorption alloys of: i group IIIB, IVB, and VB transition metal TM oxides and ii first row RE oxides with SiO2

  18. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  19. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  20. Wannier function analysis of charge states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren

    2015-03-01

    The charge (or oxidation) state of a cation has been a crucial concept in analyzing the electronic and magnetic properties of oxides as well as interpreting ``charge ordering'' metal-insulator transitions. In recent years a few methods have been proposed for the objective identification of charge states, beyond the conventional (and occasionally subjective) use of projected densities of states, weighted band structures (fatbands), and Born effective charges. In the past two decades Wannier functions (WFs) and particularly maximally localized WFs (MLWFs), have become an indispensable tool for several different purposes in electronic structure studies. These developments have motivated us to explore the charge state picture from the perspective of MLWFs. We will illustrate with a few transition metal oxide examples such as AgO and YNiO3 that the shape, extent, and location of the charge centers of the MLWFs provide insights into how cation-oxygen hybridization determines chemical bonding, charge distribution, and ``charge ordering.'' DOE DE-FG02-04ER46111.

  1. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.

    PubMed

    Seley, David; Ayers, Katherine; Parkinson, B A

    2013-02-11

    A library of electrocatalysts for water electrolysis under acidic conditions was created by ink jet printing metal oxide precursors followed by pyrolysis in air to produce mixed metal oxides. The compositions were then screened in acidic electrolytes using a pH sensitive fluorescence indicator that became fluorescent due to the pH change at the electrode surface because of the release of protons from water oxidation. The most promising materials were further characterized by measuring polarization curves and Tafel slopes as anodes for water oxidation. Mixed metal oxides that perform better than the iridium oxide standard were identified. PMID:23298465

  2. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4+ ratio in fassaite and the presence of osbornite indicate that the Comet refractory minerals formed in the inner solar nebula and were later transported to the outer solar system where the comet formed. This implies a much more dynamic and perhaps more violent solar nebula than was previously suspected.

  3. Miniaturized metal oxide pH sensors for bacteria detection.

    PubMed

    Uria, Naroa; Abramova, Natalia; Bratov, Andrey; Muñoz-Pascual, Francesc-Xavier; Baldrich, Eva

    2016-01-15

    It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfumL(-1) in undiluted culture medium in just 5h. PMID:26592620

  4. [Synthesis and characterization of mixed metal oxide pigments].

    PubMed

    Ding, Jie; Yue, Shi-juan; Liu, Cui-ge; Wei, Yong-ju; Meng, Tao; Jiang, Han-jie; Shi, Yong-zheng; Xu, Yi-zhuang; Yu, Jiang; Wu, Jin-guang

    2012-03-01

    In the present work, aluminum chloride and various soluble salts of doping ions were dissolved in water. In addition, urea and polyvinyl pyrrolidone (PVP) were also dissolved in the above aqueous solution under supersonic treatments. Then the solutions were heated to induce the hydrolysis of urea so that soluble aluminum and doping ions convert into insoluble hydroxide or carbonate gels. After calcinations, the obtained gels change to mixed metal oxide pigments whose color is related to type and concentrations of the doping ions. XRD characterization demonstrates that the diffraction patterns of the products are the same as that of alpha-alumina. Diffuse reflectance spectra of samples of the samples in UV-Vis regions show that the absorption bands for d-d transitions of the doping ions undergo considerable change as the coordinate environments change. In addition, L*, a* and b* values of the pigments were measured by using UV-Vis densitometer. SEM results indicate that the size of the pigment powders is in the range 200-300 nm. The pigments are quite stable since no evidence of dissolution was observed after the synthesized pigment is soaked for 24 hours. ICP test shows that very little amount of doped metal occurs in the corresponding filtrate. The above results suggest that these new kinds of mixed metal oxide pigments are stable, non-toxic, environmental friendly and they may be applicable in molten spinning process and provide a new chance for non-aqueous printing and dyeing industry. PMID:22582641

  5. PHYSICAL REVIEW E 87, 043012 (2013) Impact dynamics of oxidized liquid metal drops

    E-print Network

    Jaeger, Heinrich M.

    2013-01-01

    PHYSICAL REVIEW E 87, 043012 (2013) Impact dynamics of oxidized liquid metal drops Qin Xu,1,* Eric April 2013) With exposure to air, many liquid metals spontaneously generate an oxide layer: 10.1103/PhysRevE.87.043012 PACS number(s): 47.50.Ef I. INTRODUCTION Normal impact of liquid metals

  6. Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes

    NASA Astrophysics Data System (ADS)

    Bareiß, Mario; Hochmeister, Andreas; Jegert, Gunther; Zschieschang, Ute; Klauk, Hagen; Huber, Rupert; Grundler, Dirk; Porod, Wolfgang; Fabel, Bernhard; Scarpa, Giuseppe; Lugli, Paolo

    2011-08-01

    A large area array of metal-oxide-metal (MOM) tunneling diodes with an ultrathin dielectric (˜3.6 nm aluminum oxide) have been fabricated via a transfer-printing process. The MOM diodes exhibit an excellent tunneling behavior that is suitable for rectifying high-frequency ac current into direct current (dc). Direct tunneling and Fowler-Nordheim tunneling have been observed over eight orders of magnitude in current density. The ratio between forward and reverse current is as large as two orders of magnitude. Simulations have been carried out to extract the static device parameters and have confirmed the existence of a dipole layer at the aluminum/aluminum oxide interface of the printed tunneling diodes. Capacitance measurements have shown that the permittivity of the ultrathin aluminum oxide film is smaller than that of bulk aluminum oxide. The mechanical yield of the transfer-printing process is better than 80%, confirming that transfer printing is a promising candidate for the efficient fabrication of quantum devices over large areas.

  7. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation

    SciTech Connect

    Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H.

    2015-05-21

    The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, ?-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200?keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation. It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.

  8. Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Stancliffe, R. J.; Izzard, R. G.; Karakas, A. I.; Beers, T. C.; Lee, Y. S.

    2015-09-01

    The stellar population in the Galactic halo is characterised by a large fraction of carbon-enhanced metal-poor (CEMP) stars. Most CEMP stars have enhanced abundances of s-process elements (CEMP-s stars), and some of these are also enriched in r-process elements (CEMP-s/r stars). In one formation scenario proposed for CEMP stars, the observed carbon excess is explained by invoking wind mass transfer in the past from a more massive thermally-pulsing asymptotic giant branch (AGB) primary star in a binary system.In this work we generate synthetic populations of binary stars at metallicity Z = 0.0001 ([Fe/H] ? - 2.3), with the aim of reproducing the observed fraction of CEMP stars in the halo. In addition, we aim to constrain our model of the wind mass-transfer process, in particular the wind-accretion efficiency and angular-momentum loss, and investigate under which conditions our model populations reproduce observed distributions of element abundances.We compare the CEMP fractions determined from our synthetic populations and the abundance distributions of many elements with observations. Several physical parameters of the binary stellar population of the halo are uncertain, in particular the initial mass function, the mass-ratio distribution, the orbital-period distribution, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population.The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The resulting fractions are more than a factor of three higher than those determined with default assumptions in previous population-synthesis studies, which typically underestimated the observed CEMP fraction. We find that most CEMP stars in our simulations are formed in binary systems with periods longer than 10 000 days. Few CEMP stars have measured orbital periods, but all that do have periods up to a few thousand days. Our results are consistent only if this small subpopulation represents the short-period tail of the underlying period distribution. The results of our comparison between the modelled and observed abundance distributions are significantly different for CEMP-s/r stars and for CEMP-s stars without strong enrichment in r-process elements. For the latter, our simulations qualitatively reproduce the observed distributions of carbon, sodium, and heavy elements such as strontium, barium, europium, and lead. Contrarily, for CEMP-s/r stars our model cannot reproduce the large abundances of neutron-rich elements such as barium, europium, and lead. This result is consistent with previous studies, and suggests that CEMP-s/r stars experienced a different nucleosynthesis history to CEMP-s stars.

  9. Cluster synthesis via ligand-arrested solid growth: triethylphosphine-capped fragments of binary metal chalcogenides.

    PubMed

    Crawford, Nathan R M; Hee, Allan G; Long, Jeffrey R

    2002-12-18

    A new and potentially highly generalizable technique for synthesizing molecular fragments of binary solids is demonstrated through application to selected transition metal chalcogenides. Employing a metal atom reactor, the solids are evaporated with a tungsten heating boat, and the resulting vapor is co-condensed with triethylphosphine. Major cluster products identified from a survey of first-row transition metal sulfides include the known species Cr6S8(PEt3)6, Co6S8(PEt3)6, and Cu12S6(PEt3)8, as well as the unprecedented species Fe4S4(PBun3)4, Ni4S4(PEt3)8, and Cu6S4(PEt3)4. Reactions utilizing Cu2Se resulted in the much larger clusters Cu26Se13(PEt3)14 and Cu70Se35(PEt3)21. The core of the former has a Th-symmetry structure featuring a body-centered icosahedron of Se2- anions, while the latter adopts a triangular structure based on three hexagonal closest packed layers of Se2- anions. In both cases, the Cu+ cations occupy distorted tetrahedral or trigonal planar sites similar to those encountered in Cu2Se; however, emergence of the face-centered cubic anion lattice of the bulk solid is not yet apparent at these cluster sizes. PMID:12475314

  10. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis.

    PubMed

    Zhang, Wei; Naidu, Boddu S; Ou, Jian Zhen; O'Mullane, Anthony P; Chrimes, Adam F; Carey, Benjamin J; Wang, Yichao; Tang, Shi-Yang; Sivan, Vijay; Mitchell, Arnan; Bhargava, Suresh K; Kalantar-Zadeh, Kourosh

    2015-01-28

    Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activity due to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt % incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3. PMID:25543876

  11. Biofouling of various metal oxides in marine environment

    NASA Astrophysics Data System (ADS)

    Kougo, T.; Kuroda, D.; Wada, N.; Ikegai, H.; Kanematsu, H.

    2012-03-01

    Biofouling has induced serious problems in various industrial fields such as marine structures, bio materials, microbially induced corrosion (MIC) etc. The effects of various metals on biofouling have been investigated so far and the mechanism has been clarified to some extent(1,2), and we proposed that Fe ion attracted lots of bacteria and formed biofilm very easily(3). In this study, we investigated the possibility for biofouling of Pseudomonas aeruginosa on various metal oxides such as Fe2O3, TiO2, WO3, AgO, Cr2O3 etc. And in addition of such a model experiment on laboratory scale, they were immersed into actual sea water as well as artificial sea water. As for the preparation of metal oxides, commercial oxide powders were used as starting material and those whose particle sizes were under 100 micrometers were formed into pellets by a press. Some of them were heated to 700 °C and sintered for 10 hours at the temperatures. After the calcinations, they were immersed into the culture of P. aeruginosa at 35 °C in about one week. After the immersion, they were taken out of the culture and the biofouling behaviors were observed by optical microscopy, low pressure scanning electron microscopy (low pressure SEM) etc. Biofouling is generally classified into several steps. Firstly, conditioning films composed of organic matters were formed on specimens. Then bacterial were attached to the specimen's surfaces, seeking for conditioning films as nutrition. Then bacteria formed biofilm on the specimens. In marine environment, more larger living matters such as shells etc would be attached to biofilms. However, in the culture media, only biofilms were formed.

  12. Filament observation in metal-oxide resistive switching devices

    NASA Astrophysics Data System (ADS)

    Celano, Umberto; Yin Chen, Yang; Wouters, Dirk J.; Groeseneken, Guido; Jurczak, Malgorzata; Vandervorst, Wilfried

    2013-03-01

    Metal-oxide-based resistive random access memory (RRAM) is a predominant candidate for future non-volatile memories. In this Letter, we report on an innovative technique to observe conductive filaments in these oxide-based RRAM devices. We demonstrate the role of these conductive filaments as responsible for the different ON/OFF resistive states in memory devices by means of Conductive Atomic Force Microscopy (C-AFM). More specifically, C-AFM is used to cycle, de-process, and finally characterizes capacitor-like devices. Different conductive filaments are found for the different memory states. As we show, the ON/OFF state of the devices is associated to changes in morphological and electrical properties of the conductive filaments.

  13. Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yuemin; Wöll, Christof

    2009-06-01

    The most successful method to unravel the microscopic mechanisms governing reactions in heterogeneous catalysis is the "surface science" approach which is based on well-controlled studies on model catalysts (usually single crystal surfaces) under ultrahigh vacuum (UHV) conditions [G. Ertl, Angew. Chem. 47 (2008) 3524]. In this review our recent vibrational spectroscopic studies on selected model reactions at various single-crystalline metal oxide surfaces are summarized. Two vibrational spectroscopic methods, high resolution electron energy loss spectroscopy (HREELS) and Fourier-transform infrared spectroscopy (FTIRS), were applied to characterize the adsorbed species and to elucidate the elementary processes of chemical reactions at oxide surfaces ranging from well-defined single crystals to modified surfaces with deliberately introduced defects. The combination of both methods allows us to extend the vibrational spectroscopic studies from ideal to complex systems.

  14. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    E-print Network

    Abate, C; Karakas, A I; Izzard, R G

    2015-01-01

    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process ($s$-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass ($\\lesssim 0.85M_{\\odot}$) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and $s$-element-en...

  15. Determination of Systems Suitable for Study as Monotectic Binary Metallic Alloy Solidification Models

    NASA Technical Reports Server (NTRS)

    Smith, J. E., Jr.

    1983-01-01

    Succinonitrile-water and diethylene glycol-ethyl salicylate are two transparent systems which have been studied as monotectic binary metallic alloy solidification models. Being transparent, these systems allow for the direct observations of phase transformations and solidification reactions. The objective was to develop a screening technique to find systems of interest and then experimentally measure those systems. The succinonitrile-water system was used to check the procedures. To simulate the phase diagram of the system, two computer programs which determine solid-liquid and liquid-liquid equilibria were obtained. These programs use the UNIFAC method to determine activity coefficients and together with several other programs were used to predict the phase diagram. An experimental apparatus was developed and the succinonitrile-water phase diagram measured. The diagram was compared to both the simulation and literature data. Substantial differences were found in the comparisons which serve to demonstrate the need for this procedure.

  16. Binary rare earth element-Ni/Co metallic glasses with distinct ?-relaxation behaviors

    NASA Astrophysics Data System (ADS)

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-01

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct ?-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The ?-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct ?-relaxation can serve as model system to investigate the nature of the ?-relaxation as well as its relations with other physical and mechanical properties of MGs.

  17. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    SciTech Connect

    Jing, Dapeng

    2010-12-15

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.

  18. Cyclic catalytic upgrading of chemical species using metal oxide materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2010-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  19. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H. (Boulder, CO); Schutte, Erick J. (Thornton, CO); Rolfe, Sara L. (Loveland, CO)

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  20. Development of microstrain in aged lithium transition metal oxides.

    PubMed

    Lee, Eung-Ju; Chen, Zonghai; Noh, Hyung-Ju; Nam, Sang Cheol; Kang, Sung; Kim, Do Hyeong; Amine, Khalil; Sun, Yang-Kook

    2014-08-13

    Cathode materials with high energy density for lithium-ion batteries are highly desired in emerging applications in automobiles and stationary energy storage for the grid. Lithium transition metal oxide with concentration gradient of metal elements inside single particles was investigated as a promising high-energy-density cathode material. Electrochemical characterization demonstrated that a full cell with this cathode can be continuously operated for 2500 cycles with a capacity retention of 83.3%. Electron microscopy and high-resolution X-ray diffraction were employed to investigate the structural change of the cathode material after this extensive electrochemical testing. It was found that microstrain developed during the continuous charge/discharge cycling, resulting in cracking of nanoplates. This finding suggests that the performance of the cathode material can be further improved by optimizing the concentration gradient to minimize the microstrain and to reduce the lattice mismatch during cycling. PMID:24960550

  1. Magnetic behavior of reduced graphene oxide/metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Panigrahy, Bharati; Li, Dan; Bahadur, D.

    2013-05-01

    The dispersion of metal nanoparticles on reduced graphene oxide (RGO) sheets potentially provides a new way to develop novel catalytic, magnetic, adsorbing, and electrode materials. In this work, we report the structural and magnetic properties of RGO/metal (Bi, Pt, Ni, and Pt-Ni) nanocomposites. Such nanocomposites are successfully synthesized by a facile in situ co-reduction route. The structure, composition, and morphology of the synthesized materials are systematically investigated by X-ray diffraction, inductively coupled plasma-atomic emission spectrometer , and high resolution transmission electronic microscopy. The M-H curve and zero-field-cooled and field-cooled data for RGO, RGO/Ni, and RGO/Pt-Ni nanocomposites exhibit ferromagnetic behaviour. RGO/Pt nanocomposite shows diamagnetic, while RGO/Bi nanocomposite shows lower magnetization compared to that of RGO. Detailed magnetic studies on these nanocomposites and its correlation with microstructural features are presented here.

  2. Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces

    SciTech Connect

    Boily, Jean F.; Lins, Roberto D.

    2009-09-24

    The O-H bond distribution of hydroxyl groups at the {110} goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was strongly affected by electrostatic interactions with neighboring oxo and hydroxo groups. The effects of proton surface loading, simulated by emplacing two protons at different distances of separation, were diverse and generated several sets of O-H bond distributions. DFT calculations of a representative molecular cluster were also carried out to demonstrate the impact of these effects on the orientation of oxygen lone pairs in neighboring oxo groups. These effects should have strong repercussions on O-H stretching vibrations of metal oxide surfaces.h

  3. Pollution performance of 110 kV metal oxide arresters

    SciTech Connect

    Chrzan, K.; Pohl, Z.; Grzybowski, S.; Koehler, W.

    1997-04-01

    Pollution test results of single unit 110 kV metal oxide surge arresters with porcelain housing according to the solid layer and salt fog methods are presented. During 6 hours of testing, the internal and external charge and maximum temperature along the varistor column were measured. The formation of single stable dry bands on the housing was often observed, especially during salt fog tests. In such cases, the varistor temperature can reach about 70 C. The simple electrical model of the arrester enabling calculations of voltages and currents as a function of arrester and pollution parameters is shown.

  4. Breakdown voltage of metal-oxide resistors in liquid argon

    E-print Network

    Bagby, L F; James, C C; Jones, B J P; Jostlein, H; Lockwitz, S; Naples, D; Raaf, J L; Rameika, R; Schukraft, A; Strauss, T; Weber, M S; Wolbers, S A

    2014-01-01

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period to simulate the electric breakdown in a HV-divider chain. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131\\,kV pulses, the limit of the test setup.

  5. Giant magnetoresistance in oxide-based metallic multilayers

    SciTech Connect

    Granada, Mara; Rojas Sanchez, J. Carlos; Steren, Laura B.

    2007-08-13

    The authors report on the first measurement of low-field giant magnetoresistance in metallic multilayers of perovskite oxides. The authors performed in-plane measurements of the magnetoelectric transport properties in La{sub 0.75}Sr{sub 0.25}MnO{sub 3}/LaNiO{sub 3} trilayers and succeeded in distinguishing the giant magnetoresistance effect from other contributions to the total magnetoresistance. The samples were grown on single-crystalline SrTiO{sub 3} substrates by dc sputtering.

  6. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  7. Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides Gordon@chemistry.harvard.edu

    E-print Network

    Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides Roy Gordon Gordon@chemistry.harvard.edu Harvard University, Cambridge, MA Abstract To achieve ALD's unique characteristics, ALD precursors must or the substrates. Precursors with metal-nitrogen bonds have been found to be particularly effective for ALD

  8. Water at Metal Oxide Interfaces: To Dissociate or Not to Dissociate?

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Arble, C.; Goodwin, C.; Boscoboinik, A.; Tong, X.; Ferrari, A.; Giordano, L.

    2014-12-01

    Metal oxides are a major component of suspended aerosol particulate matter. The molecular level understanding of metal oxide surfaces has important implications in trace gas adsorption and/or chemical processing in atmospheric aerosol chemistry. The extent to which water molecularly adsorbs and/or dissociates at metal oxide interfaces under ambient conditions is becoming increasingly recognized through fundamental studies via spectroscopy and microscopy tools. We will be presenting recent efforts to understand the interfacial chemistry of metal oxide single crystal and thin film surfaces exposed to ambient water vapor conditions using in-vacuo X-ray Photoelectron Spectroscopy (XPS), ambient pressure XPS, scanning tunneling microscopy (STM), and computer simulations. Results highlight the importance of surface chemistry, metal oxide crystal termination, and external humidity conditions on the interfacial dynamics and chemistry of water at metal oxide interfaces.

  9. Oxide Wizard: an EELS application to characterize the white lines of transition metal edges.

    PubMed

    Yedra, Lluís; Xuriguera, Elena; Estrader, Marta; López-Ortega, Alberto; Baró, Maria D; Nogués, Josep; Roldan, Manuel; Varela, Maria; Estradé, Sònia; Peiró, Francesca

    2014-06-01

    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space. PMID:24750576

  10. Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1974-01-01

    Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.

  11. A Low Temperature Fully Lithographic Process For Metal–Oxide Field-Effect Transistors

    E-print Network

    Sodini, Charles G.

    We report a low temperature ( ~ 100à °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc-indium-oxide (ZIO) semiconductor channel and organic, parylene, ...

  12. Metal-based turn-on fluorescent probes for nitric oxide sensing

    E-print Network

    Lim, Mi Hee

    2006-01-01

    Chapter 1. Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide. Nitric oxide, a reactive free radical, regulates a variety of biological processes. The absence of tools to detect NO directly, rapidly, specifically ...

  13. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Min; Jeong, Doo Seok; Hwang, Cheol Seong

    2011-06-01

    This review article summarized the recent understanding of resistance switching (RS) behavior in several binary oxide thin film systems. Among the various RS materials and mechanisms, TiO2 and NiO thin films in unipolar thermo-chemical switching mode are primarily dealt with. To facilitate the discussions, the RS was divided into three parts; electroforming, set and reset steps. After short discussions on the electrochemistry of 'electrolytic' oxide materials, the general and peculiar aspects of these RS systems and mechanism are elaborated. Although the RS behaviors and characteristics of these materials are primarily dependent on the repeated formation and rupture of the conducting filaments (CFs) at the nanoscale at a localized position, this mechanism appears to offer a basis for the understanding of other RS mechanisms which were originally considered to be irrelevant to the localized events. The electroforming and set switching phenomena were understood as the process of CF formation and rejuvenation, respectively, which are mainly driven by the thermally assisted electromigration and percolation (or even local phase transition) of defects, while the reset process was understood as the process of CF rupture where the thermal energy plays a more crucial role. This review also contains several remarks on the outlook of these resistance change devices as a semiconductor memory.

  14. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook.

    PubMed

    Kim, Kyung Min; Jeong, Doo Seok; Hwang, Cheol Seong

    2011-06-24

    This review article summarized the recent understanding of resistance switching (RS) behavior in several binary oxide thin film systems. Among the various RS materials and mechanisms, TiO(2) and NiO thin films in unipolar thermo-chemical switching mode are primarily dealt with. To facilitate the discussions, the RS was divided into three parts; electroforming, set and reset steps. After short discussions on the electrochemistry of 'electrolytic' oxide materials, the general and peculiar aspects of these RS systems and mechanism are elaborated. Although the RS behaviors and characteristics of these materials are primarily dependent on the repeated formation and rupture of the conducting filaments (CFs) at the nanoscale at a localized position, this mechanism appears to offer a basis for the understanding of other RS mechanisms which were originally considered to be irrelevant to the localized events. The electroforming and set switching phenomena were understood as the process of CF formation and rejuvenation, respectively, which are mainly driven by the thermally assisted electromigration and percolation (or even local phase transition) of defects, while the reset process was understood as the process of CF rupture where the thermal energy plays a more crucial role. This review also contains several remarks on the outlook of these resistance change devices as a semiconductor memory. PMID:21572206

  15. ORIGINAL PAPER Influence of the Metal Oxide Substrate Structure on Vanadium

    E-print Network

    Marks, Laurence D.

    ORIGINAL PAPER Influence of the Metal Oxide Substrate Structure on Vanadium Oxide Monomer Formation 2013 Ó Springer Science+Business Media New York 2013 Abstract Vanadium oxide (VOx) molecular species nature of surface VOx species. Keywords Vanadium oxide Á Strontium titanate Á XPS Á Surface structure 1

  16. Preparation of Binary and Ternary Oxides by Molten Salt Method and its Electrochemical Properties

    NASA Astrophysics Data System (ADS)

    Reddy, M. V.; Theng, L. Pei; Soh, Hulbert; Beichen, Z.; Jiahuan, F.; Yu, C.; Ling, A. Yen; Andreea, L. Y.; Ng, C. H. Justin; Liang, T. J. L. Galen; Ian, M. F.; An, H. V. T.; Ramanathan, K.; Kevin, C. W. J.; Daryl, T. Y. W.; Hao, T. Yi; Loh, K. P.; Chowdari, B. V. R.

    2013-07-01

    We report simple binary oxides namely SnO2, TiO2, CuO, MnO2, Fe2O3, Co3O4 and ternary oxides like MnCo2O4 by molten salt method at a temperature range of 280°C to 950°C in air and discuss the effect of morphology, crystal structure and electrochemical properties of binary and ternary oxides. Materials were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods. XRD patterns showed all MSM prepared materials exhibited characteristic lattice parameter values. BET surface area varies depending on the nature of the material, molten salt and preparation temperature and the obtained values are in the range, 1 to 160 m2/g. Electrochemical properties were studied using cyclic voltammetry (CV) and electrochemical performance studies were carried in the voltage range, 0.005-1.0V for SnO2, 1.0-2.8V for TiO2 and Fe2O3, MCo2O4 (M = Co, Mn), MnO2 and CuO were cycled in the range, 0.005-3.0V. At a current rates of 30-100 mA/g and a scan rate of 0.058 mV/sec was used for galvanostatic cycling and cyclic voltammetry. SnO2 showed that an alloying-de-alloying reaction occurs at ˜0.2 and ˜0.5 V vs. Li. TiO2 main intercalation and de-interaction reactions at ˜1.7 and ˜1.8 V vs. Li. Co3O4, MnCo2O4, and MnO2 main discharge potentials at ˜1.2, 0.9V and 0.4V, resp. and charge potentials peak ˜2.0V and 1.5V vs. Li. CuO prepared at 750°C exhibited main anodic peak at ˜2.45V and cathodic peaks at ˜0.85V and ˜1.25V. We discussed the possible reaction mechanisms and Li-storage performance values in detail.

  17. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O. (Forest Hills Boro, PA)

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  18. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  19. Electrochemical lithiation and delithiation for control of magnetic properties of nanoscale transition metal oxides

    E-print Network

    Sivakumar, Vikram

    2008-01-01

    Transition metal oxides comprise a fascinating class of materials displaying a variety of magnetic and electronic properties, ranging from half-metallic ferromagnets like CrO2, ferrimagnetic semiconductors like Fey's, and ...

  20. DBU-mediated metal-free oxidative cyanation of ?-amino carbonyl compounds: using molecular oxygen as the oxidant.

    PubMed

    Li, Lei; Wang, Qian; Liu, Pei; Meng, Hua; Kan, Xing-Lan; Liu, Qun; Zhao, Yu-Long

    2016-01-01

    A novel DBU-mediated oxidative cyanation of ?-amino carbonyl compounds by using air as the sole oxidant was developed under mild metal-free conditions for the first time. The reaction involves a tandem oxidation/Strecker reaction/oxidation process and provides a new and efficient method for the construction of ?-iminonitriles in good to high yields in a single step. PMID:26578362

  1. Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust.

    PubMed Central

    Lison, D; Buchet, J P; Swennen, B; Molders, J; Lauwerys, R

    1994-01-01

    OBJECTIVE--The aim was to examine the relation between environmental and biological (blood and urine) indices of exposure to different chemical forms of cobalt. METHODS--A cross sectional study was undertaken in workers exposed to cobalt metal, oxides, and salts in a refinery and to a mixture of cobalt and tungsten carbide in a hard metal producing plant. RESULTS AND CONCLUSION--Although biological monitoring of workers exposed to cobalt oxides showed higher blood and urine concentrations than in non-exposed subjects, these indices poorly reflected the recent exposure level. By contrast, when exposure was to soluble cobalt compounds (metal, salts, and hard metals), the measurement of urine or blood cobalt at the end of the workweek could be recommended for the assessment of recent exposure. An eight hour exposure to 20 or 50 micrograms/m3 of a soluble form of cobalt would lead to an average concentration in a postshift urine sample collected at the end of the workweek of 18.2 or 32.4 micrograms of cobalt/g creatinine, respectively. PMID:8044242

  2. Physicochemical Factors that Affect Metal and Metal Oxide Nanoparticle Passage Across Epithelial Barriers

    PubMed Central

    Elder, Alison; Vidyasagar, Sadasivan; DeLouise, Lisa

    2014-01-01

    The diversity of nanomaterials in terms of size, shape, and surface chemistry poses a challenge to those who are trying to characterize the human health and environmental risks associated with incidental and unintentional exposures. There are numerous products that are already commercially available that contain solid metal and metal oxide nanoparticles, either embedded in a matrix or in solution. Exposure assessments for these products are often incomplete or difficult due to technological challenges associated with detection and quantitation of nanoparticles in gaseous or liquid carriers. The main focus of recent research has been on hazard identification. However, risk is a product of hazard and exposure, and one significant knowledge gap is that of the target organ dose following in vivo exposures. In order to reach target organs, nanoparticles must first breech the protective barriers of the respiratory tract, gastrointestinal tract, or skin. The fate of those nanoparticles that reach physiological barriers is in large part determined by the properties of the particles and the barriers themselves. This article reviews the physiological properties of the lung, gut, and skin epithelia, the physicochemical properties of metal and metal oxide nanoparticles that are likely to affect their ability to breech epithelial barriers, and what is known about their fate following in vivo exposures. PMID:20049809

  3. A simple and generic approach for synthesizing colloidal metal and metal oxide nanocrystals.

    PubMed

    Cloud, Jacqueline E; Yoder, Tara S; Harvey, Nathan K; Snow, Kyle; Yang, Yongan

    2013-08-21

    A simple and generic approach--alternating voltage induced electrochemical synthesis (AVIES)--has been reported for synthesizing highly dispersed colloidal metal (Au, Pt, Sn, and Pt-Pd) and metal oxide (ZnO and TiO2) nanocrystals. The respective nanocrystals are produced when a zero-offset alternating voltage at 60 Hz is applied to a pair of identical metal wires, which are inserted in an electrolyte solution containing capping ligands. In the case of Au, the obtained nanocrystals are highly crystalline nano-icosahedra of 14 ± 2 nm in diameter, the smallest Au icosahedra synthesized in aqueous solutions via green chemistry. Their catalytic activity has been demonstrated through facilitating the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride. This AVIES approach is an environmentally benign process and can be adopted by any research lab. PMID:23828213

  4. A simple and generic approach for synthesizing colloidal metal and metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Cloud, Jacqueline E.; Yoder, Tara S.; Harvey, Nathan K.; Snow, Kyle; Yang, Yongan

    2013-07-01

    A simple and generic approach--alternating voltage induced electrochemical synthesis (AVIES)--has been reported for synthesizing highly dispersed colloidal metal (Au, Pt, Sn, and Pt-Pd) and metal oxide (ZnO and TiO2) nanocrystals. The respective nanocrystals are produced when a zero-offset alternating voltage at 60 Hz is applied to a pair of identical metal wires, which are inserted in an electrolyte solution containing capping ligands. In the case of Au, the obtained nanocrystals are highly crystalline nano-icosahedra of 14 +/- 2 nm in diameter, the smallest Au icosahedra synthesized in aqueous solutions via green chemistry. Their catalytic activity has been demonstrated through facilitating the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride. This AVIES approach is an environmentally benign process and can be adopted by any research lab.

  5. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors.

    PubMed

    Cao, Xiehong; Zheng, Bing; Rui, Xianhong; Shi, Wenhui; Yan, Qingyu; Zhang, Hua

    2014-01-27

    A simple method for the preparation of metal-oxide-coated three-dimensional (3D) graphene composites was developed. The metal-organic frameworks (MOFs) that served as the precursors of the metal oxides were first synthesized on the 3D graphene networks (3DGNs). The desired metal oxide/3DGN composites were then obtained by a two-step annealing process. As a proof-of-concept application, the obtained ZnO/3DGN and Fe2 O3 /3DGN materials were used in a photocatalytic reaction and a lithium-ion battery, respectively. We believe this method could be extended to the synthesis of other metal oxide/3DGN composites with 3D structures simply through the appropriate choice of specific MOFs as precursors. PMID:24459058

  6. Thermodynamic Study of Transformation of Methane to Synthesis Gas Over Metal Oxides

    NASA Astrophysics Data System (ADS)

    Roohi, P.; Alizadeh, R.; Fatehifar, E.

    2015-01-01

    A metal oxide reduction-water splitting cycle is a new developing method to produce synthesis gas without using a catalyst. In the reduction stage, metal oxide reduction and methane activation are combined in an efficient and energy-saving process using methane as a reducing agent. In this study, the effect of temperature and reductant (oxidant) amount on the equilibrium composition of products, graphitic carbon formation, yield of synthesis gas (water splitting stage), and produced ratio are thermodynamically investigated. This investigation includes metal oxides of zinc, tin, cobalt, and nickel. The results show that the synthesis gas is produced simultaneously with gaseous zinc, molten tin, solid cobalt, and solid nickel for those metal oxides in the reduction process. In the case of tin oxide, the feasibility of the graphitic carbon formation is less than the other oxides. The maximum yield of synthesis gas occurs in the stoichiometric molar ratio of methanothermal reduction reactions. From the methane consumption point of view, zinc oxide has a much higher synthesis gas yield. Finally, it is proposed that cobalt and nickel oxides can be used only in the reduction stage to produce synthesis gas and reduced metals due to low equilibrium conversion in the water splitting stage. The metal oxide reduction-water splitting cycle can be developed as an environmentally friendly technology for synthesis gas production over metal oxides.

  7. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOEpatents

    Tolt, Thomas L. (North Olmsted, OH); Poeppel, Roger B. (Glen Ellyn, IL)

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide in the form of a ceramic slip which has not yet set, orientation of the crystal basal planes parallel with the direction of desired current flow is accomplished by an applied acoustic plane wave in the acoustic or ultrasonic frequency range (either progressive or standing) in applying a torque to each crystal particle. The ceramic slip is then set and fired by conventional methods to produce a conductor with preferentially oriented grains and substantially enhanced current carrying capacity.

  8. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOEpatents

    Capone, D.W.

    1990-11-27

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.

  9. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    SciTech Connect

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ? 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  10. Absolute dimensions of the metallic-line eclipsing binary V501 Monocerotis

    E-print Network

    Torres, Guillermo; Pavlovski, Kresimir; Fekel, Francis C; Muterspaugh, Matthew W

    2015-01-01

    We report extensive high-resolution spectroscopic observations and V-band differential photometry of the slightly eccentric 7.02-day detached eclipsing binary V501 Mon (A6m+F0), which we use to determine its absolute dimensions to high precision (0.3% for the masses and 1.8% for the radii, or better). The absolute masses, radii, and temperatures are M(A) = 1.6455 +/- 0.0043 M(Sun), R(A) = 1.888 +/- 0.029 R(Sun), and T(A) = 7510 +/- 100 K for the primary, and M(B) = 1.4588 +/- 0.0025 M(Sun), R(B) = 1.592 +/- 0.028 R(Sun), and T(B) = 7000 +/- 90 K for the secondary. Apsidal motion has been detected, to which General Relativity contributes approximately 70%. The primary star is found to be a metallic-line A star. A detailed chemical analysis of the disentangled spectra yields abundances for more than a dozen elements in each star. Based on the secondary, the system metallicity is near solar: [Fe/H] = +0.01 +/- 0.06. Lithium is detected in the secondary but not in the primary. A comparison with current stellar ev...

  11. Absolute Dimensions of the Metallic-line Eclipsing Binary V501 Monocerotis

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Sandberg Lacy, Claud H.; Pavlovski, Krešimir; Fekel, Francis C.; Muterspaugh, Matthew W.

    2015-11-01

    We report extensive high-resolution spectroscopic observations and V-band differential photometry of the slightly eccentric 7.02 day detached eclipsing binary V501 Mon (A6m+F0), which we use to determine its absolute dimensions to high precision (0.3% for the masses and 1.8% for the radii, or better). The absolute masses, radii, and temperatures are MA = 1.6455 ± 0.0043 M?, RA = 1.888 ± 0.029 R?, and {T}{{eff}}{{A}} = 7510 ± 100 K for the primary and MB = 1.4588 ± 0.0025 M?, RB = 1.592 ± 0.028 R?, and TeffB = 7000 ± 90 K for the secondary. Apsidal motion has been detected, to which General Relativity contributes approximately 70%. The primary star is found to be a metallic-line A star. A detailed chemical analysis of the disentangled spectra yields abundances for more than a dozen elements in each star. Based on the secondary, the system metallicity is near solar: [Fe/H] = +0.01 ± 0.06. Lithium is detected in the secondary but not in the primary. A comparison with current stellar evolution models shows a good match to the measured properties at an age of about 1.1 Gyr.

  12. Fabrication of hollow metal oxide nanocrystals by etching cuprous oxide with metal(ii) ions: approach to the essential driving force

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Cha, Hyun Gil; Kim, Chang Woo; Kim, Do Kyoung; Kang, Young Soo

    2013-10-01

    Hollow metal oxide nanocrystals were prepared by etching cuprous oxide with metal ions and were applied as photoelectrodes. As a hard template, polyvinylpyrrolidone stabilized cuprous oxide (PVP-Cu2O) and non-stabilized cuprous oxide (nPVP-Cu2O) were synthesized by a precipitation method. Hollow iron oxide and cobalt oxide nanocrystals with a truncated octahedral morphology were fabricated by an etching reaction with transition metal(ii) ions (Fe2+ or Co2+). In the etching reaction process, a cationic exchange reaction occurs between the divalent metal ion and Cu+ due to the higher Lewis acidity. Facet selective etching of cuprous oxide has been observed during the ionic exchange reaction of Cu+ and O2- ions in PVP-Cu2O complexes with transition metal(ii) ions (Fe2+ or Co2+) at the surface of a (110) facet. Amorphous states of hollow metal oxide products were annealed to form ?-Fe2O3 (hematite) and Co3O4 and their crystal structure was examined with X-ray diffraction and HR-TEM. The optical absorption behavior of semiconductor nanocrystals was measured with UV-vis spectroscopy to define band gap energy. The hollow hematite structure has a 2.08 eV band gap and Co3O4 (Co(ii,iii) oxide) has a 1.80 eV indirect band gap. Using these hollow nanocrystals, a metal oxide monolayer film was fabricated with a secondary growth approach and was studied for its photocatalytic properties.Hollow metal oxide nanocrystals were prepared by etching cuprous oxide with metal ions and were applied as photoelectrodes. As a hard template, polyvinylpyrrolidone stabilized cuprous oxide (PVP-Cu2O) and non-stabilized cuprous oxide (nPVP-Cu2O) were synthesized by a precipitation method. Hollow iron oxide and cobalt oxide nanocrystals with a truncated octahedral morphology were fabricated by an etching reaction with transition metal(ii) ions (Fe2+ or Co2+). In the etching reaction process, a cationic exchange reaction occurs between the divalent metal ion and Cu+ due to the higher Lewis acidity. Facet selective etching of cuprous oxide has been observed during the ionic exchange reaction of Cu+ and O2- ions in PVP-Cu2O complexes with transition metal(ii) ions (Fe2+ or Co2+) at the surface of a (110) facet. Amorphous states of hollow metal oxide products were annealed to form ?-Fe2O3 (hematite) and Co3O4 and their crystal structure was examined with X-ray diffraction and HR-TEM. The optical absorption behavior of semiconductor nanocrystals was measured with UV-vis spectroscopy to define band gap energy. The hollow hematite structure has a 2.08 eV band gap and Co3O4 (Co(ii,iii) oxide) has a 1.80 eV indirect band gap. Using these hollow nanocrystals, a metal oxide monolayer film was fabricated with a secondary growth approach and was studied for its photocatalytic properties. Electronic supplementary information (ESI) available: TEM and SEM images of PVP-Cu2O and nPVP-Cu2O, FTIR result of PVP and PVP-Cu2O etc. See DOI: 10.1039/c3nr03626j

  13. Anaerobic microbial dissolution of transition and heavy metal oxides.

    PubMed

    Francis, A J; Dodge, C J

    1988-04-01

    Anaerobic microbial dissolution of several crystalline, water-insoluble forms of metal oxides commonly associated with the waste from energy production was investigated. An anaerobic N-fixing Clostridium sp. with an acetic, butyric, and lactic acid fermentation pattern, isolated from coal-cleaning waste, solubilized Fe(2)O(3) and MnO(2) by direct enzymatic reduction; CdO, CuO, PbO, and ZnO were solubilized by indirect action due to the production of metabolites and the lowering of the pH of the growth medium. Extracellular heat-labile components of the cell-free spent medium obtained from cultures without oxide solubilized a significant amount of Fe(2)O(3) (1.7 mumol); however, direct contact with the bacterial cells resulted in the complete dissolution (4.8 mumol) of the oxide. Under identical conditions, the cell-free spent medium solubilized only a small amount of MnO(2) (0.07 mumol), whereas 2.3 mumol of the oxide was solubilized by direct bacterial contact. Reduction of Fe(2)O(3) and MnO(2) by Clostridium sp. proceeds at different rates and, possibly, by different enzymatic systems. Fe(III) and Mn(IV) oxides appear to be used as sinks for excess electrons generated from glucose fermentation, since there is no apparent increase in growth of the bacterium concomitant with the reduction of the oxides. Dialysis bag experiments with Co(2)O(3) indicate that there is a slight dissolution of Co (0.16 mumol) followed by precipitation or biosorption. Although Mn(2)O(3), Ni(2)O(3), and PbO(2) may undergo reductive dissolution from a higher to a lower oxidation state, dissolution by direct or indirect action was not observed. Also, Cr(2)O(3) and NiO were not solubilized by direct or indirect action. Significant amounts of solubilized Cd, Cu, and Pb were immobilized by the bacterial biomass, and the addition of Cu inhibited the growth of the bacterium. PMID:16347595

  14. Active metal oxides and polymer hybrids as biomaterials

    NASA Astrophysics Data System (ADS)

    Jarrell, John D.

    Bone anchored prosthetic attachments, like other percutaneous devices, suffer from poor soft tissue integration, seen as chronic inflammation, infection, epithelial downgrowth and regression. We looked at the use of metal oxides as bioactive agents that elicit different bioresponses, ranging from cell attachment, tissue integration and reduction of inflammation to modulation of cell proliferation, morphology and microbe killing. This study presents a novel method for creating titanium oxide and polydimethylsiloxane (PDMS) hybrid coated microplates for high throughput biological, bacterial and photocatalytic screening that overcomes several limitations of using bulk metal samples. Titanium oxide coatings were doped with silver, zinc, vanadium, aluminum, calcium and phosphorous, while PDMS was doped with titanium, vanadium and silver and subjected to hydrothermal heat treatment to determine the influence of chemistry and crystallinity on the viability, proliferation and adhesion of human fibroblasts, keratinocytes and Hela cells. Also explored was the influence of Ag and Zn doping on E. coli proliferation. We determined how titanium concentration in hybrids and silver doping influenced the photocatalytic degradation of methylene blue by coatings. A combined sub/percutaneous, polyurethane device was developed and implanted into the backs of CD hairless rats to investigate how optimized coatings influenced soft tissue integration in vivo. We demonstrate that the bioresponse of cells to coatings is controlled by elemental doping (V & Ag) and that planktonic bacterial growth was greatly reduced or stopped by Ag, but not Zn doping. Hydrothermal heat treatments (65 °C and 121 °C) did not greatly influence cellular bioresponse to coatings. We discovered a range of temperature resistant (up to 400 °C), solid state dispersions with enhanced ability to block full spectrum photon transmission and degrade methylene using medical x-rays, UV, visible and infrared photons. We show that silver doping improved the photoactivity of oxide coatings, but hindered activity of a specific hybrid. Doped titanium oxide and polymer hybrid coatings have potential for improving soft tissue integration of medical implants and wound healing by modulating cell proliferation, attachment, inflammation and providing controlled delivery of bioactive and antimicrobial compounds and photon induced electro-chemical activity.

  15. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    SciTech Connect

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  16. Dual Environment Effects on the Oxidation of Metallic Interconnects

    SciTech Connect

    Holcomb, Gordon R.; Ziomek-Moroz, Malgorzata; Cramer, Stephen D.; Covino, Jr., Bernard S.; and Bullard, Sophie J.

    2004-10-20

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e. H2 gas) and oxidizer on the other side (i.e. air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual environment scales are flaky and more friable than the single environment scales. The H2 disrupts the scale on the air-side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air/air, H2/air, and H2/Ar environments are reported in support of the model.

  17. Comparative responses to metal oxide nanoparticles in marine phytoplankton.

    PubMed

    Castro-Bugallo, Alexandra; González-Fernández, África; Guisande, Cástor; Barreiro, Aldo

    2014-11-01

    A series of experiments was undertaken on three different marine microalgae to compare the effect of two metal oxide nanoparticles (NPs) on different physiological responses to stress: zinc oxide (ZnO), a known toxic compound for microalgae, and the never before tested yttrium oxide (Y?O3). The effect of these potential pollutants was estimated for different physiological variables and temporal scales: Growth, carbon content, carbon-to-nitrogen (C:N) ratio, and chlorophyll fluorescence were evaluated in long-term assays, and reactive oxygen species (ROS) production was evaluated in a short-term assay. Population growth was the most susceptible variable to the acute toxic effects of both NPs as measured in terms of number of cells and of biomass. Although Phaeodactylum tricornutum and Alexandrium minutum were negatively affected by ZnO NPs, this effect was not detected in Tetraselmis suecica, in which cell growth was significantly decreased by Y?O? NPs. Biomass per cell was negatively affected in the most toxic treatments in T. suecica but was positively affected in A. minutum. ZnO treatments induced a sharper decrease in chlorophyll fluorescence and higher ROS than did Y?O? treatments. The pronounced differences observed in the responses between the species and the physiological variables tested highlight the importance of analyzing diverse groups of microalgae and various physiological levels to determine the potential effects of environmental pollutants. PMID:24908584

  18. Experimental Study of Resistive Bistability in Metal Oxide Junctions

    SciTech Connect

    Su, D.; Tan, Z.; Patel, V.; Likharev, K.K.; Zhu, Y.

    2011-05-01

    We have studied resistive bistability (memory) effects in junctions based on metal oxides, with a focus on sample-to-sample reproducibility, which is necessary for the use of such junctions as crosspoint devices of hybrid CMOS/nanoelectronic circuits. Few-nm-thick layers of NbO{sub x}, CuO{sub x} and TiO{sub x} have been formed by thermal and plasma oxidation, at various deposition and oxidation conditions, both with and without rapid thermal post-annealing. The resistive bistability effect has been observed for all these materials, with particularly high endurance (over 10{sup 3} switching cycles) obtained for single-layer TiO{sub 2} junctions, and the best reproducibility reached for multi-layer junctions of the same material. Fabrication optimization has allowed us to improve the OFF/ON resistance ratio to about 10{sup 3}, but the sample-to-sample reproducibility is so far lower than that required for large-scale integration.

  19. Dilute doping, defects, and ferromagnetism in metal oxide systems.

    PubMed

    Ogale, Satishchandra B

    2010-08-01

    Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non-magnetic metal oxides such as TiO(2) and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto-transport and magneto-optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re-emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions. PMID:20535732

  20. Pseudopotentials for quantum Monte Carlo calculations of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron; Santana, Juan; Kent, Paul; Reboredo, Fernando

    2015-03-01

    Quantum Monte Carlo calculations of transition metal oxides are partially limited by the availability of high quality pseudopotentials that are both accurate in QMC and compatible with major electronic structure codes, e.g. by not being overly hard in the standard planewave basis. Following insight gained from recent GW calculations, a set of neon core pseudopotentials with small cutoff radii have been created for the early transition metal elements Sc to Zn within the local density approximation of DFT. The pseudopotentials have been tested for energy consistency within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (TM) atoms and the binding curve of each TM-O dimer. The vast majority of the ionization potentials fall within 0.3 eV of the experimental values, with exceptions occurring mainly for atoms with multiple unpaired d electrons where multireference effects are the strongest. The equilibrium bond lengths of the dimers are within 1% of experimental values and the binding energy errors are typically less than 0.3 eV. Given the uniform treatment of the core, the larger deviations occasionally observed may primarily reflect the limitations of a Slater-Jastrow trial wavefunction. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. DOE. Research by PRCK was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  1. Plasmonic nanostructured metal-oxide-semiconductor reflection modulators.

    PubMed

    Olivieri, Anthony; Chen, Chengkun; Hassan, Sa'ad; Lisicka-Skrzek, Ewa; Tait, R Niall; Berini, Pierre

    2015-04-01

    We propose a plasmonic surface that produces an electrically controlled reflectance as a high-speed intensity modulator. The device is conceived as a metal-oxide-semiconductor capacitor on silicon with its metal structured as a thin patch bearing a contiguous nanoscale grating. The metal structure serves multiple functions as a driving electrode and as a grating coupler for perpendicularly incident p-polarized light to surface plasmons supported by the patch. Modulation is produced by charging and discharging the capacitor and exploiting the carrier refraction effect in silicon along with the high sensitivity of strongly confined surface plasmons to index perturbations. The area of the modulator is set by the area of the incident beam, leading to a very compact device for a strongly focused beam (?2.5 ?m in diameter). Theoretically, the modulator can operate over a broad electrical bandwidth (tens of gigahertz) with a modulation depth of 3 to 6%, a loss of 3 to 4 dB, and an optical bandwidth of about 50 nm. About 1000 modulators can be integrated over a 50 mm(2) area producing an aggregate electro-optic modulation rate in excess of 1 Tb/s. We demonstrate experimentally modulators operating at telecommunications wavelengths, fabricated as nanostructured Au/HfO2/p-Si capacitors. The modulators break conceptually from waveguide-based devices and belong to the same class of devices as surface photodetectors and vertical cavity surface-emitting lasers. PMID:25730698

  2. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  3. Fabrication of hollow metal oxide nanocrystals by etching cuprous oxide with metal(II) ions: approach to the essential driving force.

    PubMed

    Sohn, Jong Hwa; Cha, Hyun Gil; Kim, Chang Woo; Kim, Do Kyoung; Kang, Young Soo

    2013-11-21

    Hollow metal oxide nanocrystals were prepared by etching cuprous oxide with metal ions and were applied as photoelectrodes. As a hard template, polyvinylpyrrolidone stabilized cuprous oxide (PVP-Cu2O) and non-stabilized cuprous oxide (nPVP-Cu2O) were synthesized by a precipitation method. Hollow iron oxide and cobalt oxide nanocrystals with a truncated octahedral morphology were fabricated by an etching reaction with transition metal(II) ions (Fe(2+) or Co(2+)). In the etching reaction process, a cationic exchange reaction occurs between the divalent metal ion and Cu(+) due to the higher Lewis acidity. Facet selective etching of cuprous oxide has been observed during the ionic exchange reaction of Cu(+) and O(2-) ions in PVP-Cu2O complexes with transition metal(II) ions (Fe(2+) or Co(2+)) at the surface of a (110) facet. Amorphous states of hollow metal oxide products were annealed to form ?-Fe2O3 (hematite) and Co3O4 and their crystal structure was examined with X-ray diffraction and HR-TEM. The optical absorption behavior of semiconductor nanocrystals was measured with UV-vis spectroscopy to define band gap energy. The hollow hematite structure has a 2.08 eV band gap and Co3O4 (Co(II,III) oxide) has a 1.80 eV indirect band gap. Using these hollow nanocrystals, a metal oxide monolayer film was fabricated with a secondary growth approach and was studied for its photocatalytic properties. PMID:24084833

  4. Molecular orbital studies in oxidation: Sulfate formation and metal-metal oxide adhesion

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1985-01-01

    The chemical mechanisms for sulfate formation from sodium chloride and sulfur trioxide, which is a product of jet fuel combustion was determined. Molten sodium sulfate leads to hot corrosion of the protective oxide layers on turbine blades. How yttrium dopants in nidkel-aluminum alloys used in turbine blades reduce the spalling rate of protective alumina films and enhance their adhesion was also determined. Two other fulfate mechanisms were deduced and structure of carbon monoxide on a clean chronium and clean platinum-titanium alloys surfaces was determined. All studies were by use of the atom superposition and electron delocalization molecular orbital (ASED-MO) theory. Seven studies were completed. Their titles and abstracts are given.

  5. Effect of Element Diffusion Through Metallic Networks During Oxidation of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Natesan, K.; Cai, Z.; Gosztola, D.; Cook, R.; Hiller, J.

    2014-04-01

    A detailed study was conducted on localized oxidation on Type 321 stainless steel (321ss) using synchrotron x-ray nanobeam analysis along with Raman microscopy. The results showed the presence of metallic nanonetworks in the oxide scales, which plays an important role in the continued oxidation of the alloy at 750 °C. A mechanism is proposed to explain the rapid oxidation of 321ss in complex gaseous environments at elevated temperature. Neutral metal atoms could diffuse outward, and carbon atoms could diffuse inward through the metallic nanonetworks in oxide layers. Alternately, diffusion tunnels can dramatically affect the phase composition of the oxide scales. Since the diffusion rate of neutral metal and carbon atoms through the metallic nanonetworks can be much faster than the diffusion of cations through Cr2O3, the metallic nanonetwork provides a path through the protective Cr2O3 layer for the rapid outward diffusion of metallic chromium and iron atoms to the nonprotective spinel layer. This diffusion process affects the solid-state reaction near the alloy-oxide boundary, and a dense Cr2O3 protective layer does not form. The classic stable structure of the oxide scales, with a dense Cr2O3 layer at the bottom, is damaged by the rapid diffusion through the tunnel at the reaction front, resulting in locally accelerated oxidation. This process can subsequently lead to "breakaway" oxidation and catastrophic failure of the alloy.

  6. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    SciTech Connect

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  7. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon germanium with various doping and Zintl phase materials. Such materials show promise for increased figures of merit, vital to making thermolectrics competitive with traditional power generation mechanisms.

  8. Synthesis and characterization of hierarchically porous metal, metal oxide, and carbon monoliths with highly ordered nanostructure

    NASA Astrophysics Data System (ADS)

    Grano, Amy Janine

    Hierarchically porous materials are of great interest in such applications as catalysis, separations, fuel cells, and advanced batteries. One such way of producing these materials is through the process of nanocasting, in which a sacrificial template is replicated and then removed to form a monolithic replica. This replica consists of mesopores, which can be ordered or disordered, and bicontinuous macropores, which allow flow throughout the length of the monolith. Hierarchically porous metal oxide and carbon monoliths with an ordered mesopores system are synthesized for the first time via nanocasting. These replicas were used as supports for the deposition of silver particles and the catalytic efficiency was evaluated. The ordered silica template used in producing these monoliths was also used for an in-situ TEM study involving metal nanocasting, and an observation of the destruction of the silica template during nanocasting made. Two new methods of removing the silica template were developed and applied to the synthesis of copper, nickel oxide, and zinc oxide monoliths. Finally, hollow fiber membrane monoliths were examined via x-ray tomography in an attempt to establish the presence of this structure throughout the monolith.

  9. Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures.

    PubMed

    Mattox, Tracy M; Ye, Xingchen; Manthiram, Karthish; Schuck, P James; Alivisatos, A Paul; Urban, Jeffrey J

    2015-10-01

    The field of plasmonics has grown to impact a diverse set of scientific disciplines ranging from quantum optics and photovoltaics to metamaterials and medicine. Plasmonics research has traditionally focused on noble metals; however, any material with a sufficiently high carrier density can support surface plasmon modes. Recently, researchers have made great gains in the synthetic (both intrinsic and extrinsic) control over the morphology and doping of nanoscale oxides, pnictides, sulfides, and selenides. These synthetic advances have, collectively, blossomed into a new, emerging class of plasmonic metal chalcogenides that complement traditional metallic materials. Chalcogenide and oxide nanostructures expand plasmonic properties into new spectral domains and also provide a rich suite of chemical controls available to manipulate plasmons, such as particle doping, shape, and composition. New opportunities in plasmonic chalcogenide nanomaterials are highlighted in this article, showing how they may be used to fundamentally tune the interaction and localization of electromagnetic fields on semiconductor surfaces in a way that enables new horizons in basic research and energy-relevant applications. PMID:26173628

  10. First principles analysis of metal and oxide-metal interfacial catalysis for hydrogen production

    NASA Astrophysics Data System (ADS)

    Greeley, Jeffrey

    2014-03-01

    Current and growing interest in the development of new catalytic materials for complex chemistries has challenged the methods traditionally employed by practitioners of computational catalysis. Explicit Density Functional Theory (DFT) analysis of all possible reaction pathways in biomass reaction networks, for example, is computationally prohibitive, and to make progress at a reasonable rate, strategies to accelerate the predictions made by DFT-based methods must be developed. In this talk, we will review some recent work in our group focusing on first principles analyses of the production of hydrogen from the decomposition of biomass-derived oxygenated hydrocarbons on heterogeneous catalytic surfaces. We will discuss, in particular, the development of accelerated DFT-based strategies to map the complex reaction networks associated with biomass decomposition at metal and oxide-metal interfaces, and we will show how these strategies can efficiently produce semi-quantitative predictions of activity and selectivity trends in hydrogen production on these surfaces. We will also briefly describe the development of reactivity trends for another chemical process that is relevant to biomass chemistry, the water-gas shift reaction, at metal-oxide interfaces, and will describe how bifunctional properties of these interfaces may promote this important chemistry.

  11. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  12. Facile synthesis of metal/metal oxide nanoparticles inside a nanoporous carbon matrix (M/MO@C) through the morphology-preserved transformation of metal-organic framework.

    PubMed

    Bak, Woojeong; Kim, Hee Soo; Chun, Hyungphil; Yoo, Won Cheol

    2015-04-28

    A facile method to transform metal-organic frameworks (MOFs) into metal/metal oxide@carbon (M/MO@C) composites with well-defined shapes is reported. The porosity of carbon and the particle sizes of M/MO are readily controlled by a simple two-step process that includes impregnation of the polymer precursors and a thermolysis reaction. PMID:25813137

  13. Electrical characterization of native-oxide InAlPGaAs metal-oxide-semiconductor heterostructures using

    E-print Network

    beam epitaxy,1 oxidized GaAs prepared by ultraviolet and ozone treatment,2 Al2O3 grown by atomic layer of a metal-insulator- semiconductor MIS gate structure. The inclusion of an in- sulator layer between

  14. Greener syntheses of metallic nanoparticles and zinc oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Samson, Jacopo

    In recent years, nanotechnology and nanomaterials synthesis have attracted a great deal of attention in the scientific community. Nanomaterials display size and morphology-related optical properties that differ from their bulk counterparts and therefore can be used for many applications in different fields such as biomedicine, electronics, antibacterial agents, and energy. Attempts to fabricate different morphologies of metallic and metal oxide nanoparticles (NPs) have successfully yielded attractive nanostructures such as particles, rods, helices, combs, tetra-pods, and flowers, all displaying properties mainly related to their enhanced surface area and/or aspect ratios. Most of the above mentioned nanomaterials productions have employed harsh synthetic routes such as high temperatures, low pressures, and the use of costly equipments. Here we show how a greener approach to nanomaterials synthesis is feasible with both minimization of aqueous precursors, energy and employment of a multi-block heater for temperature control. We present in this thesis several methods for the preparation of NPs of several materials that focus on minimizing the environmental impact of the synthesis itself. First, we describe the use of the toroidal form of plasmid DNA as a rigid narrowly dispersed bio-polymeric nanocavity, which mold the formation of disc-shaped nanoparticles of several types of metals. This approach exploits several properties of plasmid DNA: (a) DNA affinity for metal cations, (b) toroidal plasmid DNA structures which are favored by metal ionic binding, and (c) the ability to vary plasmid size. Herein, we present a complementary synthetic method based on a kinetic approach wherein the plasmid DNA acts as a template to initiate and control the formation of Au and other metallic NPs by incubation at elevated temperatures. Also reported herein is a simple, scalable hydrothermal method to make ZnO NPs that exploits temperature to precisely control the range of pH values of an organic amine buffer. The presence or absence of ethylenediaminetetraacetic acid in the tris(hydroxymethyl)aminomethane buffer further modulates the morphology of the ZnO nanomaterials since both compounds can serve as nucleating sites, and as stabilizing agents that prevents agglomeration.

  15. Using FISH-SIMS to Study Marine Methane Oxidation Coupled to the Reduction of Metal Oxides, a Plausible Microbial Metabolism for Subsurface Mars

    NASA Astrophysics Data System (ADS)

    House, C. H.; Beal, E. J.; Orphan, V. J.

    2010-04-01

    In the shallow martian subsurface, microbial life could be supported by methane oxidation coupled to the reduction of sulfate or metal oxides. Here, we report results of efforts to characterize the organisms involved in manganese-dependent marine methane oxidation.

  16. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    SciTech Connect

    Wickham, David; Cook, Ronald

    2008-10-28

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  17. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  18. Viscoelastic properties of oxide-coated liquid metals Ryan J. Larsena)

    E-print Network

    Viscoelastic properties of oxide-coated liquid metals Ryan J. Larsena) School of Engineering; final revision received 20 August 2009 Synopsis Many liquid metals exposed to air develop an oxide film on their outer surface. This film is sufficiently solid-like to provide mechanical stability to small liquid

  19. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders

    PubMed Central

    Lincoln, Kimberly M.; Gonzalez, Paulina; Richardson, Timothy E.; Julovich, David A.; Saunders, Ryker; Simpkins, James W.

    2015-01-01

    Metal-ion misregulation and oxidative stress have been linked to the progressive neurological decline associated with multiple neurodegenerative disorders. Transition metal-mediated oxidation of biomolecules via Fenton chemical reactions plays a role in disease progression. Herein we report the synthesis, characterization and antioxidant activity of 2; a pyclen derivative with enhanced antioxidant character. PMID:23437435

  20. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders.

    PubMed

    Lincoln, Kimberly M; Gonzalez, Paulina; Richardson, Timothy E; Julovich, David A; Saunders, Ryker; Simpkins, James W; Green, Kayla N

    2013-04-01

    Metal-ion misregulation and oxidative stress have been linked to the progressive neurological decline associated with multiple neurodegenerative disorders. Transition metal-mediated oxidation of biomolecules via Fenton chemical reactions plays a role in disease progression. Herein we report the synthesis, characterization and antioxidant activity of 2; a pyclen derivative with enhanced antioxidant character. PMID:23437435

  1. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density

    E-print Network

    Goddard III, William A.

    Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density leads to high-performance energy storage by realizing high capac- itance close to the theoretical reten- tion over 100,000 cycles. rescaled atomic clusters | metal oxide nanocrystals | energy storage

  2. Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis

    EPA Science Inventory

    Nanostructured metal (Fe, Co, Mn, Cr, Mo) oxides were fabricated under microwave irradiation conditions in pure water without using any reducing or capping reagent. The metal oxides self-assembled into octahedron, spheres, triangular rods, pine, and hexagonal snowflake-like thre...

  3. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  4. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  5. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOEpatents

    Horwitz, Earl P. (Argonne, IL); Chiarizia, Renato (Argonne, IL)

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  6. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (? < 400?nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20?nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with h? < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  7. Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor

    E-print Network

    Gilbert, Matthew

    Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor M. J-consistent ballistic quantum mechanical simulation of an indium arsenide InAs quantum wire metal oxide semiconductor: 10.1063/1.2179135 I. INTRODUCTION It has been a well established fact that the semiconductor industry

  8. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  9. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  10. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  11. Breakdown voltage of metal-oxide resistors in liquid argon

    E-print Network

    L. F. Bagby; S. Gollapinni; C. C. James; B. J. P. Jones; H. Jostlein; S. Lockwitz; D. Naples; J. L. Raaf; R. Rameika; A. Schukraft; T. Strauss; M. S. Weber; S. A. Wolbers

    2014-10-04

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131\\,kV pulses, the limit of the test setup.

  12. Mechanical stiffening and thermal softening of superionic alkali metal oxides

    NASA Astrophysics Data System (ADS)

    Chaudhary, S.; Shriya, S.; Kumar, J.; Ameri, M.; Varshney, Dinesh

    2015-06-01

    The mechanical (pressure) and thermal (temperature) dependent nature of superionic cubic M2O (M = Li, Na, K, and Rb) alkali metal oxides is studied. The model Hamiltonian in ab initio theory include long-range Coulomb, charge transfer, covalency, van der Waals interaction and the short-range repulsive interaction upto second-neighbor ions. The second order elastic constants as functions of pressure discern increasing trend, while to that they decreases with enhanced temperature. From the knowledge of elastic constants, Pugh ratio, Poisson's ratio, heat capacity and thermal expansion coefficient are calculated. It is noticed that cubic M2O is brittle on applied pressure and temperature and mechanically stiffened as a consequence of bond compression and bond strengthening and thermally softened due to bond expansion and bond weakening due to lattice vibrations.

  13. Synthesis of high purity metal oxide nanoparticles for optical applications

    NASA Astrophysics Data System (ADS)

    Baker, C.; Kim, W.; Friebele, E. J.; Villalobos, G.; Frantz, J.; Shaw, L. B.; Sadowski, B.; Fontana, J.; Dubinskii, M.; Zhang, J.; Sanghera, J.

    2014-09-01

    In this paper we present our recent research results in synthesizing various metal oxide nanoparticles for use as laser gain media (solid state as well as fiber lasers) and transparent ceramic windows via two separate techniques, co-precipitation and flame spray pyrolysis. The nanoparticles were pressed into ceramic discs that exhibited optical transmission approaching the theoretical limit and showed very high optical-to-optical lasing slope efficiency. We have also synthesized sesquioxide nanoparticles using a Flame Spray Pyrolysis (FSP) technique that leads to the synthesis of a metastable phase of sesquioxide which allows fabricating excellent optical quality transparent windows with very fine grain sizes. Finally, we present our research in the synthesis of rare earth doped boehmite nanoparticles where the rareearth ion is encased in a cage of aluminum and oxygen to prevent ion-ion proximity and energy transfer. The preforms have been drawn into fibers exhibiting long lifetimes and high laser efficiencies.

  14. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  15. Opportunities in nano-structured metal oxides based biosensors

    NASA Astrophysics Data System (ADS)

    Malhotra, B. D.; Das, Maumita; Solanki, Pratima R.

    2012-04-01

    Nanomaterials are presently at the critical stage of the next technological revolution in solid-state electronics and are emerging as new structural materials, to serve as systems for controlled drug delivery, biomolecular electronics and are considered to have considerable impact in practically all domains of science. Among the various types of nanomaterials that have been developed, nanostructured metal oxides (NSMOs) have recently aroused much interest as immobilizing matrices for biosensors development. The unique properties of NSMOs offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronics devices that may exhibit novel functions. Among the NSMOs, biocompatible zirconia (ZrO2) and its composite especially with chitosan and carbon nanotubes are technologically important exhibits high bioactivity for biomolecules with rapid rand enhanced electrochemical signal. Efforts are being continuously made to explore the prospects and future challenges of NSMOs for the development of biosensing devices.

  16. Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Kools, Jacques

    2002-05-01

    The physical properties of spin-valve films NiFe 25 Å/CoFe 10 Å/Cu(tCu)/CoFe 30 Å/IrMn 70 Å/Ta 20 Å with graded Cu layer thickness (tCu=18-45 Å) grown on the surface of metal nano-oxide layers (NOLs) were studied. The NOLs were formed from ultrathin Al, Cr, Cu, Nb, Ta, CoFe, NiFe, and NiFeCr layers by natural oxidation. The growth of the spin-valve films on NOLs has led to an enhancement in giant magnetoresistance value by up to 48%. A corresponding reduction in minimum film resistance by over 10% confirms that this enhancement originates from an increase in the mean free path of spin-polarized electrons due to the resultant specular reflection at the nano-oxide surfaces. A wide spectrum of oscillatory interlayer exchange coupling dependence on tCu for these NOL-bearing films suggests that a specular nano-oxide surface does not necessarily result in a smoother multilayer structure. The observation of an enhanced exchange biasing among these spin-valve films appears in contradiction to the observed deterioration of their crystallographic quality. As an important application, TaOx, CrOx, and NbOx could be employed as an alternative to AlOx as the barrier layer for magnetic tunnel junctions.

  17. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  18. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  19. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  20. New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    PubMed Central

    Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.

    2014-01-01

    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887

  1. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    SciTech Connect

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast to FeF{sub 2}, no continuous Cu network was observed in the lithiated CuF{sub 2}; rather, the converted Cu segregates to large particles (5-12 nm in diameter) during the first discharge, which may be partially responsible for the lack of reversibility in the CuF{sub 2} electrode.

  2. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  3. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  4. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-03-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg-1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents.

  5. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6?mgg?1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  6. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  7. OXIDATIVE STRESS 3 Is a Chromatin-Associated Factor Involved in Tolerance to Heavy Metals and Oxidative Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 (OXS3) or OXS3-Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemica...

  8. Synthesis, characterization and catalytic application of nanoscale metal and metal oxide heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Nanoscale metals or metal oxides with high surface area to volume ratios have been widely used as catalysts for various chemical reactions. A major challenge to utilize metal nanocatalysts commercially is their tendency to sinter under working reaction conditions. To overcome this, much research is being done to anchor metal nanocatalysts on various supports to prevent their agglomeration. Mesoporous silica, SBA-15 is an attractive support material candidate because of its high surface area, stable structure and chemical inertness. Scientists have anchored metal nanocatalysts onto the pore of SBA-15 and observed some improvement in the stability. However, the interactions between the nanocatalysts and SBA-15 are relatively weak and sintering still occurs resulting in a loss of activity. In order to impart enhanced robustness, a new type of stable metal/SBA-15 nanocomposite has been prepared by intercalating metal nanoparticles into the walls of mesoporous silica SBA-15 by a unique synthetic strategy using metal coordinating agents such as bis[3-(triethoxysilyl) propyl]-tetrasulfide (TESPTS). In this dissertation, systemic research on the preparation parameters and extension to other metals will be presented. The structure changes caused by addition of TESPTS to the preparation of mesoporous silica were investigated. The relationship between increasing amounts of TESPTS and the structural change was obtained. Afterwards, a new type of PdMS catalyst with Pd intercalated in the walls of SBA-15 was synthesized for the first time using a modified preparation pathway. These materials were characterized by N2 physisorption, X-ray diffraction, transmission electron microscopy and inductively coupled plasma. The PdMS system was utilized as an active and robust catalyst for Heck reactions. Notably, after the catalytic reaction, the PdMS catalysts maintained its reactivity and size without undergoing any agglomeration due to the stable nanocomposite structure. Carbon disulfide (CS2) was used to poison the catalyst to determine the relative number of active sites for the reduction of 4-nitrophenol. Moreover, the novel PdMS catalyst is recyclable and shows excellent stability after exposure to elevated temperatures. Additional, tentative PtMS and AgMS are synthesized based on the PdMS protocol. Besides, shape-controlled Pd nanocrystals are prepared aiming at to be intercalated into the wall of mesoporous silica and used as catalysts with certain selectivity.

  9. Materials discovery by crystal growth: Lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt) from molten alkali metal hydroxides

    SciTech Connect

    Mugavero, Samuel J.; Gemmill, William R.; Roof, Irina P.; Loye, Hans-Conrad zur

    2009-07-15

    This review addresses the process of materials discovery via crystal growth, specifically of lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt). It provides a detailed overview of the use of hydroxide fluxes for crystal growth. The melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals are described. Furthermore, a general methodology for the successful crystal growth of oxides is provided, including a discussion of experimental considerations, suitable reaction vessels, reaction profiles and temperature ranges. Finally, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts, focusing on their crystal growth and crystal structures, is included. - Graphical abstract: A review that addresses the process of materials discovery via crystal growth using hydroxide fluxes. It provides a detailed overview of the use of hydroxide fluxes for crystal growth and describes the melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals. In addition, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts is included.

  10. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    NASA Astrophysics Data System (ADS)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  11. Intrinsic Electronically Active Defects in Transition Metal Elemental Oxides

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerald; Seo, Hyungtak; Lee, Sanghyun; Fleming, Leslie B.; Ulrich, Marc D.; Lüning, Jan; Lysaght, Pat; Bersuker, Gennadi

    2007-04-01

    Densities of interfacial and bulk defects in high-? dielectrics are typically about two orders of magnitude larger than those in Si-SiO2 devices. An asymmetry in electron and hole trapping kinetics, first detected in test capacitor devices with nanocrystalline ZrO2 and HfO2 dielectrics, is a significant potential limitation for Si device operation and reliability in complementary metal oxide semiconductor applications. There are two crucial issues: i) are the electron and hole traps intrinsic defects, or are they associated with processed-introduced impurities?, and ii) what are the local atomic bonding arrangements and electronic state energies of these traps? In this study, thin film nanocrystalline high-? gate dielectrics, TiO2, ZrO2, and HfO2 (group IVB TM oxides), are investigated spectroscopically to identify the intrinsic electronic structures of valence and conduction band states, as well as those of intrinsic bonding defects. A quantitative/qualitative distinction is made between crystal field and Jahn-Teller (J-T) d-state energy differences in nanocrystralline TM elemental oxides, and noncrystalline TM silicates and Si oxynitrides. It is experimentally shown and theoretically supported that a length scale for nanocrystallite size <2-3 nm i) eliminates J-T d-state term splittings in band edge ?-bonded d-states, and ii) represents a transition from the observation of discrete band edge defects to band-tail defects. Additionally, ?-state bonding coherence can also be disrupted with similar effects on band edge and defect states in HfO2 films which have been annealed in NH3 at 700 °C, and display Hf-N bonds in N atom K1 edge X-ray absorption spectra.

  12. Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors

    E-print Network

    Gougousi, Theodosia

    ability of supercritical CO2 to deliver large concentrations of metal organic precursor and oxidizers of the metal atom and the ligand removal at low temperature. Supercritical CO2 is safe to handle and exhibits. Pressurized CO2 was delivered using an ISCO 260D syringe pump through a high- pressure manifold. Resistive

  13. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission...

  14. Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes

    E-print Network

    Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar, Syracuse, NY 13244, USA Received 31 October 1997; accepted 5 February 1998 Abstract Two new vanadium oxide compounds, which contain interlamellar transition metal complexes bound to vanadium oxide sheets, were

  15. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  16. Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis.

    PubMed

    Weng, Zhe; Liu, Wen; Yin, Li-Chang; Fang, Ruopian; Li, Min; Altman, Eric I; Fan, Qi; Li, Feng; Cheng, Hui-Ming; Wang, Hailiang

    2015-11-11

    Strong metal/oxide interactions have been acknowledged to play prominent roles in chemical catalysis in the gas phase, but remain as an unexplored area in electrocatalysis in the liquid phase. Utilization of metal/oxide interface structures could generate high performance electrocatalysts for clean energy storage and conversion. However, building highly dispersed nanoscale metal/oxide interfaces on conductive scaffolds remains a significant challenge. Here, we report a novel strategy to create metal/oxide interface nanostructures by growing mixed metal oxide nanoparticles on carbon nanotubes (CNTs) and then selectively promoting migration of one of the metal ions to the surface of the oxide nanoparticles and simultaneous reduction to metal. Employing this strategy, we have synthesized Ni/CeO2 nanointerfaces coupled with CNTs. The Ni/CeO2 interface promotes hydrogen evolution catalysis by facilitating water dissociation and modifying the hydrogen binding energy. The Ni/CeO2-CNT hybrid material exhibits superior activity for hydrogen evolution as a result of synergistic effects including strong metal/oxide interactions, inorganic/carbon coupling, and particle size control. PMID:26509583

  17. ROLE OF IRON AND MANGANESE OXIDES IN BIOSOLIDS AND BIOSOLIDS-AMENDED SOILS ON METAL BINDING

    EPA Science Inventory

    Biosolids contain high levels of Fe, Mn, and Al. Surfaces of freshly precipitated metal oxides, especially Fe and Mn, are known to be highly active sites for most dissolved metal ion species. We nw have metal sorption/desorption data that illustrate the importance of Fe and Mn fr...

  18. Base metal alloys with self-healing native conductive oxides for electrical contact materials

    E-print Network

    Alpay, S. Pamir

    Base metal alloys with self-healing native conductive oxides for electrical contact materials M 30 July 2010; accepted 15 September 2010; published online 12 October 2010 Base metals for electrical to unacceptably high contact resistances. Here we show that alloying base metals can lead to higher conductivity

  19. The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells

    PubMed Central

    Teske, Sondra S.; Detweiler, Corrella S.

    2015-01-01

    Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR) modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems. PMID:25648173

  20. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR).

    PubMed

    Testino, Andrea; Pilger, Frank; Lucchini, Mattia Alberto; Quinsaat, Jose Enrico Q; Stähli, Christoph; Bowen, Paul

    2015-01-01

    Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR), has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1-x)NixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape) and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO4)2 nanoparticles (NPs) can be obtained with a production rate of about 1-10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production. PMID:26060919