Science.gov

Sample records for binary metal oxides

  1. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    NASA Astrophysics Data System (ADS)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  2. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window.

    PubMed

    Xie, Jiangkun; Xu, Haomiao; Qu, Zan; Huang, Wenjun; Chen, Wanmiao; Ma, Yongpeng; Zhao, Songjian; Liu, Ping; Yan, Naiqiang

    2014-08-15

    A series of Sn-Mn binary metal oxides were prepared through co-precipitation method. The sorbents were characterized by powder X-ray diffraction (powder XRD), transmission electronic microscopy (TEM), H2-temperature-programmed reduction (H2-TPR) and NH3-temperature-programmed desorption (NH3-TPD) methods. The capability of the prepared sorbents for mercury adsorption from simulated flue gas was investigated by fixed-bed experiments. Results showed that mercury adsorption on pure SnO2 particles was negligible in the test temperature range, comparatively, mercury capacity on MnOx at low temperature was relative high, but the capacity would decrease significantly when the temperature was elevated. Interestingly, for Sn-Mn binary metal oxide, mercury capacity increased not only at low temperature but also at high temperature. Furthermore, the impact of SO2 on mercury adsorption capability of Sn-Mn binary metal oxides was also investigated and it was noted that the effect at low temperature was different comparing with that of high temperature. The mechanism was investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs). Moreover, a mathematic model was built to calculate mercury desorption activation energy from Sn to Mn binary metal oxides. PMID:24910043

  3. Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model

    NASA Astrophysics Data System (ADS)

    Sato, Yoshihiro; Kinoshita, Kentaro; Aoki, Masaki; Sugiyama, Yoshihiro

    2007-01-01

    The authors investigated the resistive switching of transition metal oxide (TMO) junctions by applying a short voltage pulse and found that the response time of the "reset" process was dependent on the resistance in the low resistive state. By using a thermal conductive equation to calculate the temperature of the filamentary conductive path in the TMO film, the temperature in the reset process was estimated to reach the same temperature grade in each reset. On this basis, the previous experimental relation is well explained by assuming a general thermal chemical reaction model for the reset process.

  4. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.

    PubMed

    Xie, Jiangkun; Qu, Zan; Yan, Naiqiang; Yang, Shijian; Chen, Wanmiao; Hu, Lingang; Huang, Wenjun; Liu, Ping

    2013-10-15

    To capture and recover mercury from coal-fired flue gas, a series of novel regenerable sorbents based on Zr-Mn binary metal oxides were prepared and employed at a relatively low temperature. PXRD, TEM, TPR, XPS, and N2-adsorption methods were employed to characterize the sorbents. The Hg(0) adsorption performance of the sorbents was tested, and the effects of the main operation parameters and the gas components on the adsorption were investigated. Zr significantly improved the sorbent's mercury capacity, which was nearly 5mg/g for Zr0.5Mn0.5Oy. Furthermore, the spent sorbent could be regenerated by heating to 350C, and the highly concentrated elemental mercury released could be facilely recycled. Therefore, a much greener process for mercury capture and recovery could be anticipated based on this regenerable sorbent. PMID:23933289

  5. Modeling Selective Intergranular Oxidation of Binary Alloys

    SciTech Connect

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-07

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 µm ahead of grain boundary crack tips were documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (~100s of nm). We present a mathematical kinetics model that adapts Wagner’s model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  6. Modeling selective intergranular oxidation of binary alloys

    NASA Astrophysics Data System (ADS)

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 μm ahead of grain boundary crack tips was documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (˜100 s of nm). We present a mathematical kinetics model that adapts Wagner's model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  7. Modeling selective intergranular oxidation of binary alloys.

    PubMed

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-01-01

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 ?m ahead of grain boundary crack tips was documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (?100 s of nm). We present a mathematical kinetics model that adapts Wagner's model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al. PMID:25573575

  8. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas. Evaluation of Binary Metal Oxides for Mercury Capture

    SciTech Connect

    Raja A. Jadhav; Howard Meyer

    2006-04-01

    Gas Technology Institute (GTI), in collaboration with Nanoscale Materials, Inc. (NanoScale), is developing and evaluating several nanocrystalline sorbents for capture of mercury from coal gasifier (such as IGCC) warm fuel gas. The focus of this study is on the understanding of fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. Detailed chemical and structural analysis of the sorbents will be carried out using an array of techniques, such as XPS, SEM, XRD, N{sub 2}-adsorption, to understand the mechanism of interaction between the sorbent and mercury. The proposed nanoscale oxides have significantly higher reactivities as compared to their bulk counterparts, which is a result of high surface area, pore volume, and nanocrystalline structure. These metal oxides/sulfides will be evaluated for their mercury-sorption potential in an experimental setup equipped with state-of-the-art analyzers. Initial screening tests will be carried out in N{sub 2} atmosphere, and two selected sorbents will be evaluated in simulated fuel gas containing H{sub 2}, H{sub 2}S, Hg and other gases. The focus will be on development of sorbents suitable for higher temperature (420-640 K) applications. In this Task, several formulations of binary metal oxide-based sorbents were prepared and evaluated for capture of mercury (Hg) in simulated fuel gas (SFG) atmosphere at temperatures in the range 423-533 K. The binary metal oxides with high surface area were found to be more effective, confirming the role of sorbent surface in mercury capture. These binary sorbents were found to be effective in capturing Hg at 473 and 533 K, with Hg capture decreasing at higher temperature. Based on the desorption studies, physical adsorption was found to be the dominant capture mechanism with lower temperatures favoring capture of Hg.

  9. An Acidity Scale for Binary Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  10. Semiconducting transition metal oxides

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2015-07-01

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO2, and the high levels of hole doping in Co2ZnO4 due to a self-doping mechanism that originates from the multivalence of Co.

  11. Semiconducting transition metal oxides.

    PubMed

    Lany, Stephan

    2015-07-22

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO(2), and the high levels of hole doping in Co(2)ZnO(4) due to a self-doping mechanism that originates from the multivalence of Co. PMID:26126022

  12. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites.

    PubMed

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-01-01

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co₃O₄ and TiO₂) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In general, ZnO NPs showed the strongest effect on microbial growth in all measurements, showing an EC50 value of 10.9 mg/L for ATP content. The ranking (EC50) of NPs based on their effect on microbial growth assessed by ATP content and VCC was ZnO > Co₃O₄ > NiO > TiO₂. Upon exposure to binary NP mixtures, synergistic and additive modes of action were observed for ATP content and VCC, respectively. The ranges of observed (P(O)) and expected (P(E)) activity were 83%-92% and 78%-82% of the control (p-value 0.0010) based on ATP content and 78%-95% and 72%-94% of the control (p-value 0.8813) based on VCC under the tested conditions, respectively. The results indicate that the effects of NP mixtures on microbial growth in the sandy soil matrix were as great, or greater, than those of single NPs. Therefore, understanding the effects of single NPs and NP mixtures is essential for proper ecological risk assessment. Additionally, these findings demonstrate that the evaluation of NP effects may be profoundly influenced by the method of microbial growth measurement. PMID:26610489

  13. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites

    PubMed Central

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-01-01

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co3O4 and TiO2) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In general, ZnO NPs showed the strongest effect on microbial growth in all measurements, showing an EC50 value of 10.9 mg/L for ATP content. The ranking (EC50) of NPs based on their effect on microbial growth assessed by ATP content and VCC was ZnO > Co3O4 > NiO > TiO2. Upon exposure to binary NP mixtures, synergistic and additive modes of action were observed for ATP content and VCC, respectively. The ranges of observed (P(O)) and expected (P(E)) activity were 83%–92% and 78%–82% of the control (p-value 0.0010) based on ATP content and 78%–95% and 72%–94% of the control (p-value 0.8813) based on VCC under the tested conditions, respectively. The results indicate that the effects of NP mixtures on microbial growth in the sandy soil matrix were as great, or greater, than those of single NPs. Therefore, understanding the effects of single NPs and NP mixtures is essential for proper ecological risk assessment. Additionally, these findings demonstrate that the evaluation of NP effects may be profoundly influenced by the method of microbial growth measurement. PMID:26610489

  14. Metal oxide films on metal

    DOEpatents

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  15. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  16. Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system.

    PubMed

    Gao, Shuang; Zeng, Fei; Wang, Minjuan; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-05-21

    The common nonpolar switching behavior of binary oxide-based resistive random access memory devices (RRAMs) has several drawbacks in future application, such as the requirements for a high forming voltage, a large reset current, and an additional access device to settle the sneak-path issue. Herein, we propose the tuning of the switching behavior of binary oxide-based RRAMs by inserting an ultra-thin chemically active metal nanolayer, and a case study on Ta2O5-Ta systems is provided. The devices are designed to be Pt/Ta2O5(5 - x/2)/Ta(x)/Ta2O5(5 - x/2)/Pt with x = 0, 2, or 4 nm. The reference devices without the Ta nanolayer exhibit an expected nonpolar switching behavior with a high forming voltage of ?-4.5 V and a large reset current of >10 mA. In contrast, a self-compliance bipolar switching behavior with a low forming voltage of ?-2 V and a small reset current of <1 mA is observed after inserting a 2 nm Ta nanolayer. When the Ta nanolayer is increased to 4 nm, a complementary resistive switching (CRS) behavior is found, which can effectively settle the sneak-path issue. The appearance of CRS behavior suggests that a thin Ta nanolayer of 4 nm is robust enough to act as an inner electrode. Besides, the behind switching mechanisms are thoroughly discussed with the help of a transmission electron microscope and temperature-dependent electrical measurements. All these results demonstrate the feasibility of tuning switching behavior of binary oxide-based RRAMs by inserting an ultra-thin chemically active metal nanolayer and might help to advance the commercialization of binary oxide-based RRAMs. PMID:25907552

  17. Stochastic learning in oxide binary synaptic device for neuromorphic computing

    PubMed Central

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  18. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    PubMed

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  19. Fundamentals of metal oxide catalysis

    NASA Astrophysics Data System (ADS)

    Nair, Hari

    The properties of metal oxide catalysts and hence, catalytic activity are highly dependent on the composition and structure of these oxides. This dissertation has 3 parts -- all directed towards understanding relationships between structure, composition and activity in metal oxide catalysts. The first part of this dissertation focuses on supported metal oxide catalysts of tungsten, vanadium and molybdenum. Mechanisms are proposed for ethanol oxidative dehydrogenation which is used to probe the acidity and reducibility of these oxide catalysts. These studies are then used to develop a novel method to quantify active redox sites and determine the nature of the active site on these catalysts -- our results show that the intrinsic redox turn-over frequency is independent of the nature of the metal oxide and its loading and that the actual rate obtained over an oxide is only a function of the number of removable oxygen atoms linking the metal to the support. The extension of Ultraviolet-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) to the study of active oxide domains in binary oxide catalysts is demonstrated for distinguishing between interacting and non-interacting domains in binary MoO x-WOx catalysts on alumina. We show also how the rigorous analysis of pre-edge features, absorption white-line intensity and the full width at half maximum of the white-line in X-ray Absorption Spectra provide determinants for metal atom coordination and domain size in supported metal oxide catalysts. The second part of this work looks at effects of structure variations on the activity of polyoxometalate catalysts that are promising for the production of Methacrylic Acid from Isobutane. The use of these catalysts is limited by structural changes that impact their performance -- an "activation" period is required before the catalysts become active for methacrylic acid production and structural changes also lead to degradation of the catalyst, which are also seen during thermal degradation. The affect of reaction conditions on the lifetime of these catalysts is investigated. The structural changes occurring in these catalysts are studied during thermal degradation at the bulk-scale (using UV-vis DRS, XAS and X-ray Diffraction) and at the atomic-scale (using High-Resolution Transmission Electron Microscopy). These studies show that the actual mechanism of structural reorganization occurs through a twinning process which eventually leads to MoO3, which is inactive for methacrylic acid production. This gives new insight into how to make these catalysts commercially attractive. Finally, the design and fabrication of a micro-reactor to perform complete spectroscopic and reactive characterization of supported metal oxide catalysts is presented; we aim to integrate semiconductor microfabrication technology with conventional spectroscopic tools to create cost-effective, simple and flexible tools for catalytic studies.

  20. Partial Coordination Numbers in Binary Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Miracle, Daniel B.; Laws, Kevin; Senkov, Oleg N.; Wilks, Garth B.

    2012-08-01

    A critical analysis of measured partial coordination numbers for binary metallic glasses as a function of composition shows a large scatter of 1.5 but clear trends. The current work uses two topological models to predict the influence of relative atomic size and concentration on partial coordination numbers. The equations for partial coordination numbers derived from these two models can reproduce measured data within experimental scatter, suggesting that chemical effects on local structure, although present, may be relatively small. Insights gained from these models show that structural site-filling rules are different for glasses with solute atoms that are smaller than solvent atoms and for glasses where solute atoms are larger than solvent atoms. Specifically, solutes may occupy both ? and ? intercluster sites when the solute-to-solvent radius ratio R is less than 1.26, but only ? sites can be occupied by solutes when R > 1.26. This distinction gives a simple topological explanation for the observed preference for binary metallic glasses with solutes smaller than solvent atoms. In addition to structure-specific equations, simplified phenomenological equations for partial coordination numbers are given as a convenience.

  1. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  2. Homogeneous crystal nucleation in binary metallic melts

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Spaepen, F.

    1983-01-01

    A method for calculating the homogeneous crystal nucleation frequency in binary metallic melts is developed. The free energy of crystallization is derived from regular solution models for the liquid and solid and is used, together with model-based estimates of the interfacial tension, to calculate the nucleation frequency from the classical theory. The method can account for the composition dependence of the maximum undercooling observed in a number of experiments on small droplet dispersions. It can also be used to calculate the driving force for crystal growth and to obtain more precise estimates of the homogeneous crystal nucleation frequency in glass-forming alloys. This method, although approximate, is simple to apply, and requires only knowledge of the phase diagram and a few readily available thermodynamic quantities as input data.

  3. Oxidation Behavior of Binary Niobium Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale, are masked by the overriding tendency for a porous scale.

  4. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  5. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  6. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  7. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  8. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu]. PMID:26744146

  9. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-01-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu].

  10. Diffusion and interdiffusion in binary metallic melts

    NASA Astrophysics Data System (ADS)

    Kuhn, P.; Horbach, J.; Kargl, F.; Meyer, A.; Voigtmann, Th.

    2014-07-01

    We discuss the dependence of self- and interdiffusion coefficients on temperature and composition for two prototypical binary metallic melts, Al-Ni and Zr-Ni, in molecular-dynamics computer simulations and the mode-coupling theory of the glass transition (MCT). Dynamical processes that are mainly entropic in origin slow down mass transport (as expressed through self-diffusion) in the mixture as compared to the ideal-mixing contribution. Interdiffusion of chemical species is a competition of slow kinetic modes with a strong thermodynamic driving force that is caused by nonentropic interactions. The combination of both dynamic and thermodynamic effects causes qualitative differences in the concentration dependence of self-diffusion and interdiffusion coefficients. At high temperatures, the thermodynamic enhancement of interdiffusion prevails, while at low temperatures, kinetic effects dominate the concentration dependence, rationalized within MCT as the approach to its ideal-glass transition temperature Tc. The Darken equation relating self- and interdiffusion qualitatively reproduces the concentration dependence in both Zr-Ni and Al-Ni, but quantitatively, the kinetic contributions to interdiffusion can be slower than the lower bound suggested by the Darken equation. As temperature is decreased, the agreement with Darken's equation improves, due to a strong coupling of all kinetic modes that is a generic feature predicted by MCT.

  11. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  12. Polymorphism Control in Nanostructured Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sood, Shantanu

    Polymorphic phase transformations are common to all nanocrystalline binary metal oxides. The polymorphic nature of such metal oxides makes available a large number of phases with differing crystal structures, each stable under certain conditions of temperature, pressure, and/or particle size. These different crystal structures translate to unique physical and chemical properties for each structural class of polymorphs. Thus predicting when polymorphic phase transitions are likely to occur becomes important to the synthesis of stable functional materials with desired properties. Theoretical calculations using a heuristic approach have resulted in an accurate estimation of the critical particle size predicting metastable to stable phase transitions. This formula is applied to different case studies: for anatase to rutile titania; gamma-Alumina to alpha-Alumina; and tetragonal to monoclinic zirconia. The theoretical values calculated have been seen to be very close to the experimental results from the literature. Manifestation of the effect of phase transitions in nanostructured metal oxides was provided in the study of metastable to stable phase transitions in WO3. Nanowires of tungsten trioxide have been synthesized in-situ inside an electron microscope. Such structure of tungsten trioxide result due to a metastable to stable phase transformation, from the cubic to the monoclinic phase. The transformation is massive and complete. The structures formed are unique one-dimensional nanowires. Such a method can be scaled inside any equipment equipped with an electron gun, for example lithography systems either using STEM or E-beam lithography. Another study on nanowire formation in binary metal oxides involved the synthesis of stable orthorhombic MoO3 by means of blend electrospinning. Both a traditional single jet electrospinning set up and a novel high-throughput process to get high aspect ratio nanowires. The latter is a jet-controlled and flow controlled electrospinning. The mechanism of the formation of nanowires of both tungsten trioxide and molybdenum trioxide are discussed in relation to the polymorphic nature of the oxides.

  13. M-Dwarf Metallicity through Analysis of Binary Partner

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Li, Ting

    2015-01-01

    We present work on determining the metallicity of M-dwarfs through analysis of M-star containing binary pairs and discuss its potential use with regards to exoplanet host star population studies. It is notoriously difficult to directly measure the metallicity of M-dwarf stars via their spectra due to the complexity of their composition; by study of the spectra of M-dwarfs and their binary partners, a technique to determine the metallicity of M-dwarfs via spectra analysis can be developed. Assuming that the metallicity of two stars in a binary pair is similar, by studying the metal content of the more easily measured solar type star and correlating that to various spectra line indices in the accompanying M-dwarf, we can indirectly measure the metal content of the M-dwarf. We use both high and low resolution spectra of 50+ halo binary stars in the northern hemisphere collected at McDonald Observatory to perform this analysis.

  14. Nucleosynthesis of Binary low mass zero-metallicity stars

    NASA Astrophysics Data System (ADS)

    Lau, Ho Bun Herbert; Stancliffe, R. J.; Tout, C. A.

    The Cambridge STARS code is used to model the evolution and nucleosynthesis of binary zero- metallicity low to intermediate mass stars. The surfaces of these stars are enriched in CNO ele- ments after second dredge up. During binary interaction metals can be released from these stars and the secondary enriched in CNO. The observed abundances of HE 0107-5240 can be repro- duced from enhanced wind accretion from a 7 M after second dredge up. HE 1327-2326, richer in nitrogen and Sr, can similarly be formed by wind accretion in a later AGB phase after third dredge up.

  15. Oxidation of SO{sub 2} over supported metal oxide catalysts

    SciTech Connect

    Dunn, J.P.; Stenger, H.G. Jr.; Wachs, I.E.

    1999-01-25

    A systematic catalytic investigation of the sulfur dioxide oxidation reactivity of several binary (M{sub x}O{sub y}/TiO{sub 2}) and ternary (V{sub 2}O{sub r}/M{sub x}O{sub y}/TiO{sub 2}) supported metal oxide catalysts was conducted. Raman spectroscopy characterization of the supported metal oxide catalysts revealed that the metal oxide components were essentially 100% dispersed as surface metal oxide species. Isolated fourfold coordinated metal oxide surface species are present for most oxides tested at low coverages, whereas at surface coverages approaching monolayer polymerized surface metal oxide species with sixfold coordination are present for some of the oxides. The sulfur dioxide oxidation turnover frequencies of the binary catalysts were all within an order of magnitude. An exception was the K{sub 2}O/TiO{sub 2} catalyst system, which is inactive for sulfur dioxide oxidation under the chosen reaction conditions. With the exception of K{sub 2}O, all of the surface metal oxide species present in the ternary catalysts (i.e., oxides of V, Fe, Re, Cr, Nb, Mo, and W) can undergo redox cycles and oxidize sulfur dioxide to sulfur trioxide. The turnover frequency for SO{sub 2} oxidation over all of these catalysts is approximately the same at both low and high surface coverages, despite structural differences in the surface metal oxide overlayers. This indicates that the mechanism of sulfur dioxide oxidation is not sensitive to the coordination of the surface metal oxide species. A comparison of the activities of the ternary catalysts with the corresponding binary catalysts suggests that the surface vanadium oxide and the additive surface oxide redox sites act independently without synergistic interactions: the sum of the individual activities of the binary catalysts quantitatively correspond to the activity of the corresponding ternary catalyst. The ability of potassium oxide to significantly retard the redox potential of the surface vanadia species is primarily responsible for lower catalytic reactivity.

  16. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    SciTech Connect

    Ogihara, Hitoshi; Masahiro, Sadakane; Nodasaka, Yoshinobu; Ueda, Wataru

    2009-06-15

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen. - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.

  17. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    NASA Astrophysics Data System (ADS)

    Ogihara, Hitoshi; Masahiro, Sadakane; Nodasaka, Yoshinobu; Ueda, Wataru

    2009-06-01

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen.

  18. Surface phases and their influence on metal-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Blakely, J.

    1993-01-01

    This project is concerned with adsorbed monolayers on metal surfaces and their effects on oxidation kinetics and metal-oxide adhesion; the proposed work is a study of the metallurgy of 2-dimensional systems with emphasis on binary adsorbed layers. Experimental techniques which can be used include electron diffraction, atomic force and tunneling microscopy, environmental SEM, and secondary electron spectroscopies. Our intent is to try to extract information on adsorbate interactions through comparison with model predictions; initially, only simple pair interaction potentials will be used. Atomic steps on single crystal surfaces, which affect the nucleation/growth of overlayers, will be extended to metal oxide systems to form atomic step arrays as preferential sites for surface nucleation of oxides. Adsorbed (or segregated) monolayers at metal/oxide interfaces also affect adhesion and further oxidation. S and O adsorption on Ni and NiFe alloy surfaces were studied and are discussed.

  19. SPECTROSCOPIC METALLICITY DETERMINATIONS FOR W UMa-TYPE BINARY STARS

    SciTech Connect

    Rucinski, Slavek M.; Pribulla, Theodor; Budaj, Jan E-mail: pribulla@ta3.sk

    2013-09-15

    This study is the first attempt to determine the metallicities of W UMa-type binary stars using spectroscopy. We analyzed about 4500 spectra collected at the David Dunlap Observatory. To circumvent problems caused by the extreme spectral line broadening and blending and by the relatively low quality of the data, all spectra were subject to the same broadening function (BF) processing to determine the combined line strength in the spectral window centered on the Mg I triplet between 5080 A and 5285 A. All individual integrated BFs were subsequently orbital-phase averaged to derive a single line-strength indicator for each star. The star sample was limited to 90 W UMa-type (EW) binaries with the strict phase-constancy of colors and without spectral contamination by spectroscopic companions. The best defined results were obtained for an F-type sub-sample (0.32 < (B - V){sub 0} < 0.62) of 52 binaries for which integrated BF strengths could be interpolated in the model atmosphere predictions. The logarithmic relative metallicities, [M/H], for the F-type sub-sample indicate metal abundances roughly similar to the solar metallicity, but with a large scatter which is partly due to combined random and systematic errors. Because of the occurrence of a systematic color trend resulting from inherent limitations in our approach, we were forced to set the absolute scale of metallicities to correspond to that derived from the m{sub 1} index of the Stroemgren uvby photometry for 24 binaries of the F-type sub-sample. The trend-adjusted metallicities [M/H]{sub 1} are distributed within -0.65 < [M/H]{sub 1} < +0.50, with the spread reflecting genuine metallicity differences between stars. One half of the F-sub-sample binaries have [M/H]{sub 1} within -0.37 < [M/H]{sub 1} < +0.10, a median of -0.04 and a mean of -0.10, with a tail toward low metallicities, and a possible bias against very high metallicities. A parallel study of kinematic data, utilizing the most reliable and recently obtained proper motion and radial velocity data for 78 binaries of the full sample, shows that the F-type sub-sample binaries (44 stars with both velocities and metallicity determinations) have similar kinematic properties to solar-neighborhood, thin-disk dwarfs with space velocity component dispersions: {sigma}U = 33 km s{sup -1}, {sigma}V = 23 km s{sup -1} and {sigma}W = 14 km s{sup -1}. FU Dra with a large spatial velocity, V{sub tot} = 197 km s{sup -1} and [M/H]{sub 1} = -0.6 {+-} 0.2, appears to be the only thick-disk object in the F-type sub-sample. The kinematic data indicate that the F-type EW binaries are typical, thin-disk population stars with ages about 3-5.5 Gyr. The F-type binaries that appear to be older than the rest tend to have systematically smaller mass ratios than most of the EW binaries of the same period.

  20. One the influence of metal lattice diffusion on oxidation of metals and alloys

    SciTech Connect

    Gibbs, G.B.

    1981-08-01

    The influence of metal lattice diffusion on oxidation kinetics is discussed for two single cases: (i) a pure metal, where vacancies generated at the scale-metal interface diffuse to sinks within the metal; and (ii) a binary alloy of metals A and B, with A forming the more stable oxide. In the first case it is shown that vacancy effects are generally negligible. Analyses suggesting the contrary have failed to replace atom concentration gradients by the more appropriate chemical potential gradients. For the alloy, Wagner's condition for breakdown of A oxide is confirmed. It is shown that growth of A oxide cannot be controlled by diffusion of A in the metal, if B atoms can react at the scale-metal interface; scale-breakdown intervenes.

  1. METAL OXIDE NANOPARTICLES

    SciTech Connect

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  2. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  3. An in situ study using anomalous wide angle X-ray scattering and X-ray absorption spectroscopy of the binary metal oxide catalytic system SnO2-ZnAI2O4 supported on alumina

    NASA Astrophysics Data System (ADS)

    Revel, R.; Bazin, D.; Bouchet-Fabre, B.; Seigneurin, A.; Kihn, Y.

    2002-07-01

    A fine structural description of the local order around zinc and tin atoms of a binary metal oxide catalyst, namely SnO2-ZnAl2O4/AI2O3 which can be used as a DeNOx catalyst, is achieved through XAS (X-ray absorption Spectroscopy) and AWAXS (Anomalous wide angle X-ray scattering). The analysis of the data was supported by ab initio calculations based on the multiple scattering processes for the XAS spectroscopy and ab initio calculations based on the Debye equation in the case of anomalous scattering. We found that the tetrahedral sites occupied by the zinc atoms are not completely filled and that part of the zinc atoms are engaged in a SnO2 like structure. Also, it seems that most of the tin atoms are engaged in tin dioxide clusters. For the set of in situ XAS experiments done at the K Zn edge and K Sn edge, no significant modification of the interatomic distances around each of the two metals versus the reactive gases are measured. Taking into account the previous results obtained on the monoxide metal supported catalyst ZnAl2O4/Al2O3, we can assume thus that only a dramatic lack of occupancy on the metal site favours an incursion of light atoms in the network. This structural property can explain in return the expansion of the crystallographic cell as well as a significant increased of the Debye-Waller factor associated to zinc-zinc pairs. Une description dtaille de l'ordre local autour du zinc et de l'tain est effectue sur un catalyseur SnO2-ZnAl2O4/AI2O3 par deux techniques spcifiques au rayonnement synchrotron, la spectroscopie d'absorption X et la diffraction anomale. Une attention particulire est porte sur l'analyse des donnes. En ce qui concerne la spectroscopie d'absorption X, celle-ci s'effectue par le biais de logiciels prenant en compte les processus de diffusion multiple du photolectron. La simulation numrique des diffrentielles obtenues par soustraction des diagrammes de diffraction s'effectue partir de l'quation de Debye en tenant compte des fluctuations du facteur de diffusion atomique en fonction de l'nergie du photon incident. Le jeu de rsultats ainsi recueilli permet une mesure prcise de l'tat lectronique du zinc, du taux d'occupation des sites ttradriques ainsi que de la taille du cristallite de l'oxyde tudi. Se basant sur des rsultats prcdents inhrents au monomtallique ZnAl2O4/Al2O3, nous discutons l'importance du caractre lacunaire en zinc du catalyseur et la relation existant entre cette spcificit et la modification des paramtres structuraux enregistrs haute temprature.

  4. Metal oxide analogue of metal alloy catalysts

    NASA Astrophysics Data System (ADS)

    Davis, Burtron H.

    1984-11-01

    Because of ion size, valence and oxide structure, hafnium and zirconium mixed oxide catalysts are ideal for study as a metal alloy analogue. Furthermore, hafnium oxide and zirconium oxide exhibit quite different selectivity for the conversion of 2-alcohols to alkene products. The alkene selectivity changed abruptly from that of pure HfO 2 to that of pure ZrO 2 at a composition with ca. 90 mol% Zr. Characterization of the catalysts by ESCA, Auger, and ISS spectroscopy show that the surface composition is very similar to the bulk composition and, thus, changes uniformly throughout the composition range rather than abruptly as does the alkene selectivity. Pure ZrO 2 impregnated with Hf to produce catalysts with the full range of Hf-Zr surface compositions showed a catalytic selectivity that paralleled the selectivity of the bulk composition catalysts. Zr or Th impregnated onto alumina serve as catalyst poisons; however, these two metals alter the selectivity in a quite different manner. The data indicate that the catalytic selectivity of these mixed oxide catalysts is determined by ligand, rather than bulk electronic, effects.

  5. Building a Colloidal Proxy for Binary Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kramb, Ryan; Jensen, Katharine; Ward, Logan; Vaia, Richard; Miracle, Daniel

    2012-02-01

    Current experimental techniques for determining the atomic structure of metallic glasses and testing structural theories such as the efficient cluster packing model are limited to diffraction and scattering. These techniques give only average structural information that could result from many different unique structures. Simulations of metallic glasses, on the other hand, give the exact structure of every atom in the system, but are limited by computing power to a few thousand atoms which are equilibrated over a few nanoseconds. This leads to uncertainties in the reliability of reproducing real metallic glass structures. To overcome these deficiencies, we have created a proxy experimental system that can be treated much like a simulation. We have synthesized suspensions of larger, colloidal scale particles (2-3um in diameter) to build pseudo binary metallic glasses. Using confocal microscopy imaging techniques, we determine the three dimensional position of hundreds of thousands of individual particles (atoms), and calculate structural information such as the radial distribution function, Voronoi volume, and partial coordination numbers. We compare these results to both theoretical calculations and experimental results of real metallic glasses. The focus here will be on a building a proxy for the CuZr binary system.

  6. Growth, characterization and reactivity studies: Oxide films, metal-oxide films and layered oxide films

    NASA Astrophysics Data System (ADS)

    Oh, Weon Sik

    This work presents studies of the growth, characterization and reactivity of oxide thin films, metal-oxide films and layered oxide films under vacuum conditions. The growth mode of the films, the geometric, electronic and chemical properties of overlayers and supports as well as the thermal stability of the overlayers were studied using the techniques and methodology of surface science. These model studies provide a convenient approach to understanding oxide surfaces and interfaces on the atomic scale. Epitaxial titanium oxide and calcium oxide films were synthesized on a refractory substrate, Mo(100), by vapor deposition of metals in the presence of an oxygen background and characterized by various surface analytical techniques. The 90 A thick titanium oxide film is stoichiometric. LEED and STM results show a (2sqrt{2}sqrt{2})R45sp reconstruction of the TiOsb2(001) film upon annealing. CaO films grow stoichiometrically on the Mo(100) with (100) orientation. The interfacial reactions between oxide thin films and refractory metal substrates were investigated. The thermal stability of an oxide overlayer is found to be mainly dependent upon the heat of formation and film thicknesses of the oxide. The growth mode, electronic and chemical properties of Au clusters supported on the TiOsb2(001)/Mo(100) surface were studied to understand the catalytic properties of Au supported catalysts. The bonding of Au on TiOsb2/Mo(100) is weak and Au clusters easily agglomerate upon annealing. Finally, layered binary thin-film oxides of NiO, MgO and CaO were studied as models to understand how the lattice constant mismatch influences the growth, thermal stability and chemical properties of the layered oxides. The influence of MgO and CaO on the NO adsorption on NiO was also studied and correlated to the growth mode of the mixed oxides.

  7. Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide.

    PubMed

    Cao, Hailiang; Zhou, Xufeng; Zheng, Chao; Liu, Zhaoping

    2015-06-10

    Novel two-dimensional (2D) porous metal oxides with micro-/nanoarchitecture have been successfully fabricated using graphene oxide (GO) as a typical sacrificial template. GO as a 2D template ensures that the growth and fusion of metal oxides nanoparticles is restricted in the 2D plane. A series of metal oxides (NiO, Fe2O3, Co3O4, Mn2O3, and NiFe2O4) with similar nanostructure were investigated using this simple method. Some of these special nanostructured materials, such as NiO, when being used as anode for lithium-ion batteries, can exhibit high specific capacity, good rate performance, and cycling stability. Importantly, this strategy of creating a 2D porous micro/nano architecture can be easily extended to controllably synthesize other binary/polynary metal oxides nanostructures for lithium-ion batteries or other applications. PMID:25996560

  8. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  9. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  10. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  11. Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation

    SciTech Connect

    Kang, YJ; Ye, XC; Chen, J; Qi, L; Diaz, RE; Doan-Nguyen, V; Xing, GZ; Kagan, CR; Li, J; Gorte, RJ; Stach, EA; Murray, CB

    2013-01-30

    Well-defined surface, such as surface of a single crystal, is being used to provide precise interpretation of catalytic processes, while the nanoparticulate model catalyst more closely represents the real catalysts that are used in industrial processes. Nanocrystal superlattice, which combines the chemical and physical properties of different materials in a single crystalline structure, is an ideal model catalyst, that bridge between conventional models and real catalysts. We identify the active sites for carbon monoxide (CO) oxidation on Au-FeOx catalysts by using Au-FeOx binary superlattices correlating the activity to the number density of catalytic contacts between Au and FeOx. Moreover, using nanocrystal superlattices, we propose a general strategy of keeping active metals spatially confined to enhance the stability of metal catalysts. With a great range of nanocrystal superlattice structures and compositions, we establish that nanocrystal superlattices are useful model materials through which to explore, understand, and improve catalytic processes bridging the gap between traditional single crystal and supported catalyst studies.

  12. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  13. Subthreshold swing minimization of cylindrical tunnel FET using binary metal alloy gate

    NASA Astrophysics Data System (ADS)

    Dash, Sidhartha; Sahoo, Girija Shankar; Mishra, Guru Prasad

    2016-03-01

    In this work, we have developed a two-dimensional (2-D) analytical drain current model for cylindrical-gate tunnel FET structure with linearly graded binary metal alloy gate. The surface potential of the proposed model is determined using the solution of 2-D Poisson's equation with suitable boundary conditions. Further it paves way for the calculation of other analog parameters such as shortest tunneling distance, drain current, threshold voltage and subthreshold swing (SS). The introduction of linearly modulated work-function of binary alloy optimizes the subthreshold swing by ∼10 mV/decade as compared to conventional cylindrical-gate tunnel FET devices without degrading the drain current and threshold voltage performance. Also the present model shows the reduction in SS with down-scaling of gate oxide thickness and silicon pillar diameter. The analytical results are found to be synonymous with the results of Synopsys TCAD device simulator.

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    SciTech Connect

    Coops, M.S.

    1992-06-02

    This patent describes a method for production of plutonium metal from plutonium oxide by metallic lithium reduction, with regeneration of lithium reactant. It comprises: reacting the plutonium oxide with metallic lithium; oxides and unreacted lithium; subliming the product lithium oxide and unreacted lithium from unreacted plutonium oxide with high heat and low pressure; recapturing the product lithium oxides; reacting the recaptured product lithium oxides with anhydrous hydrochloric acid to produce lithium chloride salt; and decomposing product lithium chloride salt by electrolysis to regenerate lithium metal.

  15. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  16. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  17. Metals, toxicity and oxidative stress.

    PubMed

    Valko, M; Morris, H; Cronin, M T D

    2005-01-01

    Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals. PMID:15892631

  18. Self-assembly of metal nanostructures on binary alloy surfaces

    PubMed Central

    Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.

    2011-01-01

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706

  19. Self-assembly of metal nanostructures on binary alloy surfaces.

    PubMed

    Duguet, T; Han, Yong; Yuen, Chad; Jing, Dapeng; Unal, Bar??; Evans, J W; Thiel, P A

    2011-01-18

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706

  20. Oxidation and reduction in irradiated binary crystals of resorcinol and progesterone

    SciTech Connect

    Box, H.C.; Budzinski, E.E.

    1985-12-01

    The binary single crystals of resorcinol and progesterone were x-irradiated at 4.2 K. The semiquinone of resorcinol was generated by radiation induced oxidation. The oxidation and reduction products were identified from ESR and ENDOR measurements. (AIP)

  1. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  2. Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature.

    PubMed

    Zhang, J; Liu, F; Cheng, J P; Zhang, X B

    2015-08-19

    Nickel-cobalt oxides were prepared by coprecipitation of their hydroxides precursors and a following thermal treatment under a moderate temperature. The preformed nickel-cobalt bimetallic hydroxide exhibited a flower-like morphology with single crystalline nature and composed of many interconnected nanosheets. The ratio of Ni to Co in the oxides could easily be controlled by adjusting the composition of the original reactants for the preparation of hydroxide precursors. It was found that both the molecular ratio of Ni to Co and the annealing temperature had significant effects on their porous structure and electrochemical properties. The effect of the Ni/Co ratio on the pseudocapacitive properties of the binary oxide was investigated in this work. The binary metal oxide with the exact molar ratio of Ni:Co = 0.8:1 annealed at 300 C, showing an optimum specific capacitance of 750 F/g. However, too high an annealing temperature would lead to a large crystal size, a low specific surface area, as well as a much lower pore volume. With the use of the binary metal oxide with Ni:Co = 0.8:1 and activated carbon as the positive and negative electrode, respectively, the assembled hybrid capacitor could exhibit a high-energy density of 34.9 Wh/kg at the power density of 875 W/kg and long cycling life (86.4% retention of the initial value after 10000 cycles). PMID:26204426

  3. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  4. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  5. Ammonia release method for depositing metal oxides

    SciTech Connect

    Silver, G.L.; Martin, F.S.

    1993-12-31

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  6. Glycothermal synthesis of metal oxides

    NASA Astrophysics Data System (ADS)

    Inoue, Masashi

    2004-04-01

    The author has been exploring the synthesis of inorganic materials in organic solvents at temperatures (200-300 C) higher than their boiling points (solvothermal reaction), and has developed various reaction methods for the synthesis of ultrafine particles of metal oxides. In this paper, the reactions of aluminium compounds (aluminium hydroxide (Al(OH)3; gibbsite), aluminium alkoxides, and aluminium salts) in various organic solvents (alcohols, glycols, aminoalcohols, and inert organic solvents) are first reviewed, and reaction mechanisms and effects of the starting materials and solvents on the products are discussed. Then, the specificity of the use of glycols, especially 1,4-butanediol (glycothermal reaction), is clarified, and glycothermal synthesis of crystalline mixed oxides such as yttrium aluminium garnet is described. Finally, the use of the solvothermally prepared products as the catalyst materials is described.

  7. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  8. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D. (Richland, WA)

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  9. Metal oxides for optoelectronic applications.

    PubMed

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio

    2016-03-23

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories. PMID:27005918

  10. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    PubMed

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3?NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. PMID:25662252

  11. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  12. Magnetochromism in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Musfeldt, Janice; Choi, Jongwoo; Haraldsen, Jason; Woodward, Jonathan; Wei, Xing; He, Jian; Mandrus, David; Landee, Chris; Turnbull, Mark; Suryanarayanan, Ramanathanan; Revcolevschi, Alex

    2004-03-01

    We discuss the discovery and mechanism of magnetic field-induced color changes in three different low-dimensional transition metal oxides: Li purple bronze, (CPA)_2CuBr_4, and Pr-substituted La_1.2Sr_1.8Mn_2O_7. In Li purple bronze, the field manipulates the density of states near E_F, altering O p to Mo d excitations. In the copper halide, the applied field rotates the CuBr4 chromophore units, yielding a strong magnetochromic effect. And in (La_0.4Pr_0.6_1.2Sr_1.8Mn_2O_7, the magnetic field acts on the Jahn-Teller-split Mn^3+ eg orbitals, with consequences of a substantial CMR effect, unusual magnetic relaxation behavior, and a change in orbital occupation.

  13. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (inventor); Gedwill, Michael G. (inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  14. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  15. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  16. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  17. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  18. Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects

    NASA Astrophysics Data System (ADS)

    Grover, Valerie Ann

    The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.

  19. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  20. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  1. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  2. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  3. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  4. Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide.

    PubMed

    Taujale, Saru; Zhang, Huichun

    2012-03-01

    Manganese oxides typically exist as mixtures with other metal oxides in soil-water environments; however, information is only available on their redox activity as single oxides. To bridge this gap, we examined three binary oxide mixtures containing MnO(2) and a secondary metal oxide (Al(2)O(3), SiO(2) or TiO(2)). The goal was to understand how these secondary oxides affect the oxidative reactivity of MnO(2). SEM images suggest significant heteroaggregation between Al(2)O(3) and MnO(2) and to a lesser extent between SiO(2)/TiO(2) and MnO(2). Using triclosan and chlorophene as probe compounds, pseudofirst-order kinetic results showed that Al(2)O(3) had the strongest inhibitory effect on MnO(2) reactivity, followed by SiO(2) and then TiO(2). Al(3+) ion or soluble SiO(2) had comparable inhibitory effects as Al(2)O(3) or SiO(2), indicating the dominant inhibitory mechanism was surface complexation/precipitation of Al/Si species on MnO(2) surfaces. TiO(2) inhibited MnO(2) reactivity only when a limited amount of triclosan was present. Due to strong adsorption and slow desorption of triclosan by TiO(2), precursor-complex formation between triclosan and MnO(2) was much slower and likely became the new rate-limiting step (as opposed to electron transfer in all other cases). These mechanisms can also explain the observed adsorption behavior of triclosan by the binary oxide mixtures and single oxides. PMID:22309023

  5. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  6. Removal of nickel and zinc from single and binary metal solutions by Sargassum angustifolium.

    PubMed

    Ahmady-Asbchin, Salman; Jafari, Naser

    2013-01-01

    The capability of Sargassum angustifolium in removing nickel (Ni) (II) and zinc (Zn) (II) from single and binary metal solution was determined. In binary solution the presence of the secondary metal inhibited the sorption of the primary metal by S. angustifolium but the inhibitory effect of Ni during sorption of Zn is stronger than the inhibitory effect of Zn in absorption of Ni. The total metal (Ni + Zn) sorbed from the binary metal solution by S. angustifolium cells always remained lower than the total sorption of individual metals from their respective single metal solutions, thereby suggesting competition between Ni(II) and Zn(II) for the common binding sites on S. angustifolium. The maximum uptake capacities of the S. angustifolium, which was collected near Bushehr, Persian Gulf, Iran in the natural form, at the optimal conditions for Ni(II) and Zn(II) ions in single metal solutions were approximately 0.71 and 0.93 mmol/g dry S. angustifolium, respectively. Under the binary system Ni(II) and Zn(II) uptake capacities were 0.41 mmol Ni/g and 0.36 mmol Zn/g, respectively. Better fitness of equilibrium metal sorption data to the Langmuir than the Freundlich model suggests multilayer adsorption of test metals onto the cell surface. PMID:24056438

  7. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  8. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  9. Amorphorized tantalum-nickel binary films for metal gate applications

    SciTech Connect

    Ouyang, Jiaomin; Wongpiya, Ranida; Clemens, Bruce M.; Deal, Michael D.; Nishi, Yoshio

    2015-04-13

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400 °C in RTA for 1 min and up to at least 700 °C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi{sub 3} phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12 nm and 1.2 nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500 °C. The resistivity of the films as-deposited are around 200 μΩ·cm. The work function of the alloy is fixed at close to the Ta work function of 4.6 eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  10. Amorphorized tantalum-nickel binary films for metal gate applications

    NASA Astrophysics Data System (ADS)

    Ouyang, Jiaomin; Wongpiya, Ranida; Deal, Michael D.; Clemens, Bruce M.; Nishi, Yoshio

    2015-04-01

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400 C in RTA for 1 min and up to at least 700 C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi3 phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12 nm and 1.2 nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500 C. The resistivity of the films as-deposited are around 200 ??.cm. The work function of the alloy is fixed at close to the Ta work function of 4.6 eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  11. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  12. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); Foran, Michael T. (Rocky Point, NY)

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  13. Surface and redox properties of cobalt-ceria binary oxides: On the effect of Co content and pretreatment conditions

    NASA Astrophysics Data System (ADS)

    Konsolakis, Michalis; Sgourakis, Michalis; Carabineiro, Sónia A. C.

    2015-06-01

    Ceria-based transition metal catalysts have recently received considerable attention both in heterogeneous catalysis and electro-catalysis fields, due to their unique physicochemical characteristics. Their catalytic performance is greatly affected by the surface local chemistry and oxygen vacancies. The present study aims at investigating the impact of Co/Ce ratio and pretreatment conditions on the surface and redox properties of cobalt-ceria binary oxides. Co-ceria mixed oxides with different Co content (0, 20, 30, 60, 100 wt.%) were prepared by impregnation method and characterized by means of N2 adsorption at -196 °C, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The results shown the improved reducibility of Co/CeO2 mixed oxides compared to single oxides, due to a synergistic interaction between cobalt and cerium. Oxidation pretreatment results in a preferential localization of cerium species on the outer surface. In contrast, a uniform distribution of cobalt and cerium species over the entire catalyst surface is obtained by the reduction process, which facilitates the formation of oxygen vacancies though Co3+/Co2+ and Ce3+/Ce4+ redox cycles. Fundamental insights toward tuning the surface chemistry of cobalt-ceria binary oxides are provided, paving the way for real-life industrial applications.

  14. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01binary metal oxides.

  15. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01binary metal oxides.

  16. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  17. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  18. Characterization of binary Uranuim oxides by infared spectroscopy

    SciTech Connect

    Allen, G.C.; Holmes, N.R.

    1994-04-01

    In this study, transmission infared spectra were recorded for 15 uranium oxides previously characterized by X-ray diffraction. The infared spectra obtained demonstrated that all the uranium oxides studied could be distinguished, even for the closely similiar structures of UO{sub 2} and U{sub 4}O{sub 9}. The infrared studies of U{sub 4}O{sub 9} near the temperature of the {alpha}-U{sub 4}O{sub 9} to {beta}-U{sub 4}O{sub 9} phase transition showed that an absorption at 670 cm{sup -1} could be related to the ordering of oxygen interstitials in the flourite lattice. A similiar absorption was observed for {beta}-U{sub 3}O{sub 7} but was found to be absent in {alpha}-U{sub 3}O{sub 7}. The local coordination of oxygen/metal clusters in {beta}-U{sub 4}O{sub 9} and {beta}-U{sub 3}O{sub 7} appeared to be similiar. 22 refs., 4 fig., 2 tab.

  19. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  20. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  1. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  2. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOEpatents

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  3. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  4. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  5. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  6. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, P.R.

    1999-09-28

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  7. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  8. Correlated oxides: Metals amassing transparency

    NASA Astrophysics Data System (ADS)

    Poeppelmeier, Kenneth R.; Rondinelli, James M.

    2016-02-01

    Conducting complex oxides with correlated electrons at room temperature offer a less explored materials platform for the high conductivity and optical transparency needed for ultrathin invisible circuitry.

  9. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    SciTech Connect

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  10. Investigations of the Anisotropic Optical Reflectivity of Binary and Ternary Nb-W Oxides Possessing Block-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Rscher, C. H.; Zimmermann, M.; Gtte, M.

    1993-02-01

    We have studied the anisotropic optical properties of binary NbO2.5-? (0 < ? ? 0.083) and ternary Nb18-?W8+?O69 (? = 0, 1,..., 9) compounds using the polarized regular-reflection method. We observed strong anisotropic behaviour for all reduced phases. The anisotropic effect can be related to the crystallographical structure principle and to the doping of charge carriers by the reduction of oxygen (?) or substitution of W for Nb (?) in the binary and ternary oxides, respectively. Our results indicate that the charge carriers are confined to the structural block units. For increasing ? and ?, metal-like properties occur (?? 0.1, ? > 8) in the infinite block direction only.

  11. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  12. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  13. Amorphous Ni-Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors.

    PubMed

    Long, Chao; Zheng, Mingtao; Xiao, Yong; Lei, Bingfu; Dong, Hanwu; Zhang, Haoran; Hu, Hang; Liu, Yingliang

    2015-11-11

    A simple and outstanding approach is provided to fabricate amorphous structure Ni-Co binary oxide as supercapacitors electrode materials. We can easily obtain porous Ni-Co oxides composite materials via chemical bath deposition and subsequent calcination without any template or complicate operation procedures. The amorphous porous Ni-Co binary oxide exhibits brilliant electrochemical performance: first, the peculiar porous structure can effectively transport electrolytes and shorten the ion diffusion path; second, binary composition and amorphous character introduce more surface defects for redox reactions. It shows a high specific capacitance up to 1607 F g(-1) and can be cycled for 2000 cycles with 91% capacitance retention. In addition, the asymmetric supercapacitor delivers superior energy density of 28 W h kg(-1), and the maximum power density of 3064 W kg(-1) with a high energy density of 10 W h kg(-1). PMID:26099689

  14. Metal oxide films from carboxylate precursors

    SciTech Connect

    Davison, W.W.; Shyu, S.G.; Roseman, R.D.; Buchanan, R.C.

    1988-01-01

    Zirconium oxide and Ba{sub 2}YCu{sub 3}O(7-X) metal oxide films were prepared from carboxylate precursors. The zirconia films were prepared from Zirconium octoate and the Ba-Y-Cu-O compound synthesized from a mixture of the metal neodecanoates. Dense, adherent ZrO{sub 2} films were obtained on silicon. Dense, superconducting Ba-Y-Cu-O films were also fabricated utilizing the octoate-derived ZrO{sub 2} as a bonding surface and diffusion buffer. Preparation methods for thin oxide films using metal carboxylate precursors have been demonstrated. Favorable superconducting properties were obtained with the (1,2,3) film deposited on the ZrO{sub 2}/Si films, showing ZrO{sub 2} to an effective diffusion barrier.

  15. Effect of surface-applied reactive element oxide on the oxidation of binary alloys containing Cr

    SciTech Connect

    Hou, P.Y.; Stringer, J.

    1987-07-01

    The influence of surface-applied Ca,Ce, Hf, La, Y, and Zr nitrate-converted oxides on the oxidation behavior of Co-15 weight percent (w/o) Cr, Co-25 w/o Cr, and Ni-25 w/o Cr alloys at 1000/sup 0/ and 1100/sup 0/C in 1 atm O/sub 2/ was studied. The surface oxides were most beneficial on the established Cr/sub 2/O/sub 3/ forming alloy. Surface-applied CeO/sub 2/,Y/sub 2/O/sub 3/, and La/sub 2/O/sub 3/ were effective in reducing the growth rate of the Cr/sub 2/O/sub 3/ scale and improving the scale adhesion. The presence of these surface oxides also prevented base metal oxide formation and changed the growth direction of the scale. All of these observed effects were similar to those found when the reactive element oxides were present within the alloys. However, the presence of surface HfO/sub 2/ made the oxide scales nonadherent causing a breakaway behavior at the early stage of the oxidation process. None of the surface-applied oxides showed any effects on the non-Cr/sub 2/O/sub 3/ forming alloy, and they acted as a semibarrier on the borderline Cr/sub 2/O/sub 3/ former. Unlike the case of dispersoids present in the alloy, these surface-applied as a semibarrier on the borderline Cr/sub 2/O/sub 3/ layer at alloy Cr levels lower than those normally required to form the Cr/sub 2/O/sub 3/ scale.

  16. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  17. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S. (Durham, NC); Gupta, Raghubir P. (Durham, NC)

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  18. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S. (Durham, NC); Gupta, Raghubir P. (Durham, NC)

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  19. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  20. Role of metal oxides in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kamaluddin

    2013-06-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  1. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  2. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  3. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve photocatalytic activity. Another disadvantageous property of semiconductors is that photocorrosion of metal chalcogenides such as CdS occurs. In an attempt to prevent this, these materials were coated with more stable oxides such as Cu2O and TiO2. The photocatalytic activity of these CdS multipods protected by the stable oxides was enhanced in comparison to CdS particles. The third section describes the synthesis and the use of mixed metal oxides for alcohol oxidation. Presently, Pt is the most active and efficient metal catalyst for alcohol oxidation in fuel cells. It is necessary to develop cheaper, earth abundant metals that can replace Pt. Mixed metal oxides based on Mo-V-(Te,Nb)-O were synthesized under hydrothermal conditions. These materials were incorporated into an electrochemical cell and used to oxidize cyclohexanol. At low temperatures of 60C, cyclohexanol was converted to cyclohexanone, cyclohexene, and adipic acid on Mo-V-O, Mo-V-Te-O, and Mo-V-Te-Nb-O respectively. The present work showed that these interesting materials might potentially be utilized as a catalyst in complex alcohol fuel cell technologies. In the final section, the electrochemical actuation in conducting polymers is studied. Conducting polymers, such as polypyrrole (PPy), and polythiophene (PTh), are often incorporated into actuators, sensors, and energy storage devices such as supercapacitors. The mechanism of the actuation in these polymers due to the insertion/removal of ions was studied. Electrochemical quartz crystal microbalance (EQCM) studies and in situ electrochemical stress measurements were the techniques used to study and to understand the observed actuation mechanism. The bilayer polypyrrole/polythiophene (PPy PTh) polymer film showed potential for enhancing the actuation and capacitance in energy storage devices.

  4. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures.

    PubMed

    Dew, William A; Veldhoen, Nik; Carew, Amanda C; Helbing, Caren C; Pyle, Greg G

    2016-03-01

    A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment. PMID:26775207

  5. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.

    PubMed

    Xie, Wenbo; Liang, Qiqi; Qian, Tianwei; Zhao, Dongye

    2015-03-01

    Stabilized Fe-Mn binary oxide nanoparticles were synthesized and tested for removal and in-situ immobilization of Se(IV) in groundwater and soil. A water-soluble starch or food-grade carboxymethyl cellulose (CMC) was used as a stabilizer to facilitate in-situ delivery of the particles into contaminated soil. While bare and stabilized nanoparticles showed rapid sorption kinetics, starch-stabilized Fe-Mn offered the greatest capacity for Se(IV). The Langmuir maximum capacity was determined to be 109 and 95 mg-Se/g-Fe for starch- and CMC-stabilized nanoparticles, respectively, and the high Se(IV) uptake was observed over the typical groundwater pH range of 5-8. Column breakthrough tests indicated that the stabilized nanoparticles were deliverable in a model sandy soil while non-stabilized particles were not. When a Se(IV)-spiked soil was treated in situ with the nanoparticles, >90% water leachable Se(IV) was transferred to the nanoparticle phase, and thereby immobilized as the particles were retained in the downstream soil matrix. The nanoparticle amendment reduced the TCLP (toxicity characteristic leaching procedure) leachability and the California WET (waste extraction test) leachability of Se(IV) by 76% and 71%, respectively. The technology holds the potential to fill a major technology gap in remediation of metals-contaminated soil and groundwater. PMID:25577492

  6. The Defect Chemistry of Metal Oxides

    NASA Astrophysics Data System (ADS)

    Smyth, D. M.

    2000-06-01

    The Defect Chemistry of Metal Oxides is a unique introduction to the equilibrium chemistry of solid inorganic compounds with a focus on metal oxides. Accessible to students with little or no background in defect chemistry, it explains how to apply basic principles and interpret the related behavior of materials. Topics discussed include lattice and electronic defects, doping effects, nonstoichiometry, and mass and charge transport. The text distinctly emphasizes the correlation between the general chemical properties of the constituent elements and the defect chemistry and transport properties of their compounds. It covers the types of defects formed, the effects of dopants, the amount and direction of nonstoichiometry, the depths of acceptor and donor levels, and more. Concluding chapters present up-to-date and detailed analyses of three systems: titanium dioxide, cobalt oxide and nickel oxide, and barium titanate. The Defect Chemistry of Metal Oxides is the only book of its kind that incorporates sample problems for students to solve. Suitable for a variety of courses in materials science and engineering, chemistry, and geochemistry, it also serves as a valuable reference for researchers and instructors.

  7. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  8. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A. (Madison, WI)

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  9. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  10. Binary metal sorption by pine bark: Study of equilibria and mechanisms

    SciTech Connect

    Al-Asheh, S.; Duvnjak, Z.

    1998-06-01

    Pine bark was able to sorb cadmium, copper, and nickel ions from aqueous solutions. Binary equilibrium data from the combination of these metals were collected in this work using the sorbent. These data were modeled using three types of binary component equilibrium isotherms, all of which resulted in good fitting of the experimental data, with the Langmuir-Freundlich model resulting in their best representation. In general, the capacity of bark for each metal in the binary system was lower than in the single metal systems. The study also examined the mechanisms of metal biosorption by bark. Scanning electron microscopy (SEM) and energy-dispersive c-ray (EDX) microanalyses revealed that metal ions were sorbed mainly at the cell wall of the bark and only a small amount of ions diffused into the cytoplasm. Both the EDX analysis and the atomic absorption spectrophotometry (AAS) measurements showed that ion exchange was an important mechanism in this sorption process. Electron spin resonance (ESR) tests demonstrated that free radicals from the sorbent also have a significant role in the sorption processes.

  11. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  12. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  13. Structural, electronic and magnetic properties of binary transition metal aluminum clusters: absence of electronic shell structure.

    PubMed

    Chauhan, Vikas; Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit

    2014-01-01

    Single Cr, Mn, Fe, Co and Ni doped Al clusters having up to 12 Al atoms are studied using density functional methods. The global minima of structure for all the clusters are identified, and their relative stability and electronic and magnetic properties are studied. FeAl4 and CoAl3 are found to have enhanced stability and aromatic behavior. In contrast to binary transition metal alkali and transition metal alkaline earth clusters, spherical shell models cannot describe the electronic structure of transition metal aluminum clusters. PMID:24275105

  14. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.

    PubMed

    Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping

    2015-11-15

    A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters. PMID:26210099

  15. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  16. Heterometallic M/Mn (M=Cu, Co, Zn) acetate complexes as precursors for binary oxides

    SciTech Connect

    Makhankova, Valeriya G.; Khavryuchenko, Oleksiy V.; Lisnyak, Vladyslav V.; Kokozay, Vladimir N.; Dyakonenko, Viktoriya V.; Shishkin, Oleg V.; Skelton, Brian W.; Jezierska, Julia

    2010-11-15

    A facile one-pot procedure, or so-called 'direct synthesis,' was used to prepare the novel heterometallic complexes [M{sub 2}Mn(OAc){sub 6}(bpy){sub 2}], where M=Cu (1), Co (2), Zn (3), bpy=2,2'-bipyridyl, with high yields via oxidative dissolution of pure metals in a liquid phase. The complexes were characterized by an elemental analysis, single crystal X-ray diffraction method and FTIR. These complexes are proposed as precursors, whose thermal degradation may lead to the formation of solids possessing nano- to microsize levels of dispersity. The thermal behavior of the complexes obtained was studied by thermal analysis (TG/DTA/DTG) in both air and N{sub 2} and also by TPD mass-spectrometry in vacuo. The FTIR, X-ray powder diffraction (PXRD) and thermoanalytical data were used for the identification of the solid products of thermal degradation. The morphology and microstructure of the solid residues were analyzed, using scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX) at mkm and sub-micro levels. -- Graphical abstract: The novel heterometallic complexes [M{sub 2}Mn(OAc){sub 6}(bpy){sub 2}] (M=Cu, Co, Zn, bpy=2,2'-bipyridyl) were isolated and used as precursors for low-temperature synthesis of binary oxides. Single crystal X-ray diffraction, FTIR, TG/DTA/DTG, TPD-MS, PXRD, SEM/EDX analysis was performed on complexes and powders. Display Omitted

  17. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  18. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  19. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  20. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  1. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  2. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  3. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  4. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  5. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  6. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  7. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  8. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  9. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  10. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  11. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  12. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  13. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  14. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  15. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  16. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  17. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  18. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  19. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A. (Madison, WI); Zeltner, Walter A. (Oregon, WI)

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  20. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip E-mail: phil.massey@lowell.edu

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  1. Mesoscopically structured nanocrystalline metal oxide thin films.

    PubMed

    Carretero-Genevrier, Adrian; Drisko, Glenna L; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO₂ films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO₂ thin films. PMID:25224841

  2. Irreversibility temperatures in oxide- and metallic superconductors

    SciTech Connect

    Suenaga, M.; Ghosh, A.K.; Xu, Youwen; Welch, D.O.

    1990-01-01

    We measured the irreversibility temperatures, T{sub r}(H) for both oxides (pure and alloyed Y(123) and Bi(2212, 2223)) and metallic (Nb, NbTi, and Nb{sub 3}Sn) superconductors. These results are compared and discussed in terms of T{sub r}(H) being the depinning line and/or the melting line of the flux line (crystalline or disordered) lattice in the H-T plane.

  3. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I.

    1993-07-01

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  4. Surface aspects of bismuth-metal oxide catalysts

    SciTech Connect

    Arora, N.; Deo, G.; Wachs, I.E.

    1996-03-01

    A series of conventional and model bismuth-metal oxide catalysts (vanadates, molybdates, tungstates, and niobates) were physically and chemically characterzied (Raman spectroscopy, BET, XPS, and methanol oxidation) to obtain additional insights into the structure-reactivity relationships of such catalytic materials. The reactivity for methanol oxidation over the conventional bismuth-metal oxide catalysts was found to be primarily related to the surface area of the oxide catalysts and was essentially independent of the near surface composition and the bulk structure. The selectivity for methanol oxidation over the conventional bismuth-metal oxide catalysts was essentially found not to be a function of the surface area, the near surface composition, and the bulk structure. A series of model bismuth-metal oxide catalysts was synthesized by depositing metal oxides on the surface of a bismuth oxide support. The model studies demonstrated that two-dimensional metal oxide overlayers are not stable on the bismuth oxide support and readily react to form bulk bismuth-metal oxide compounds upon heating. Furthermore, the model studies revealed that these bulk bismuth-metal oxide compounds are related to the active sites for the partial oxidation reaction. In situ Raman spectroscopy in methanol/oxygen, methanol, and oxygen reaction environments with helium as the diluent revealed no additional information regarding the nature of the active site. It was found that only highly crystalline bismuth-metal oxide phases are selective for the partial oxidation of methanol to formaldehyde. Thus, selective bismuth-metal oxide catalysts will always possess highly crystalline metal oxide phases containing extremely low surface areas which make it difficult to obtain fundamental surface information about the outermost layers. 48 refs., 11 figs., 9 tabs.

  5. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  6. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  7. Electrolysis of water on (oxidized) metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossmeisl, J.; Logadottir, A.; Nrskov, J. K.

    2005-12-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias directly from the electronic structure calculations. We consider electrodes of Pt(1 1 1) and Au(1 1 1) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become.

  8. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  9. Removal of Metallic Iron on Oxide Slags

    NASA Astrophysics Data System (ADS)

    Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman

    2009-10-01

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere ({p_{O2}} of approximately 10-4 atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 C and in 160 seconds at 1600 C.

  10. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Iveti?, T.B.; Fin?ur, N.L.; ?a?anin, Lj. R.; Abramovi?, B.F.; Luki?-Petrovi?, S.R.

    2015-02-15

    Highlights: Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  11. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  12. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions.

    PubMed

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)-Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. PMID:26398455

  13. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  14. Analytical modeling of stress and strain of symmetrically oxidized metal

    NASA Astrophysics Data System (ADS)

    Maharjan, S.; Zhang, X. C.; Wang, Z. D.

    2012-08-01

    During high temperature isothermal oxidation, a plane of oxide molecules is inserted in each oxide grain boundary. These oxide scales grow laterally and thicken in a columnar microstructure to generate a lateral growth strain. But as the oxide scales are constrained by the underlying metal, the metal constraint produces a net in plane compressive stress in the oxide scales. To balance a compressive stress in the oxide scales, a net in plane tensile stress is generated in the metal, which results creep elongation of an oxide/metal composite. Based on this mechanism, the present paper provides a simplified modeling approach to predict an evolution of the stresses and strains in the oxide/metal composite considering the lateral growth strain of the oxide and creep strain of the metal and oxide. Oxide stress variation due to the creep properties of the oxide/metal composite such as creep indexes (m and n) and creep constants (Aox and Am) is provided for the notional mechanical properties. Oxide stress variation due to the lateral growth constant Dox and oxide kinetics parabolic constant kp is also discussed. Finally, the modeling results are compared with the experimental results obtained for FeCrALY and Ni alloy to highlight the importance of the proposed modeling.

  15. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  16. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-01

    The hetero-epitaxial growth of the n-type semiconducting oxides ?-Ga2O3, In2O3, and SnO2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga2O, In2O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO2, somewhat lower for In2O3, and the lowest for Ga2O3. Our findings can be generalized to further oxides that possess related sub-oxides.

  17. A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template

    NASA Astrophysics Data System (ADS)

    Fuertes, Antonio B.

    2005-05-01

    Porous metal oxides with a large surface area are synthesised by means of a procedure based on the templating approach. An inexpensive porous silica xerogel synthesised at moderate temperatures (100 C) in order to preserve the silanol superficial groups was used as template. In a first step, the silica porosity was filled with a concentrated solution containing a metallic salt. Then, the impregnated sample was calcined in air at a temperature of 600 C. Under these conditions, the metal oxides were synthesised within the confined space provided by the silica pores. Finally, the product was recovered after dissolution of the silica framework in 2 M NaOH solution. The materials obtained by this procedure are made up of aggregates of nanoparticles and/or 3D solid structures containing confined pores. In this work, the synthetic route proposed is illustrated by the preparation of various binary metal oxides (i.e. Fe2O3, Cr2O3, NiO, CeO2, Mn2O3, Co2O3 and Al2O3). The BET surface areas measured for these materials are in the range of 100 270 m2 g-1. The proposed method is not restricted to the binary metal oxides. It can also be used in the preparation of other inorganic materials such as metal sulphides or mixed metal oxides.

  18. Metal oxide semiconductors for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah James

    The correlation between energy consumption and human development illustrates the importance of this societal resource. We will consume more energy in the future. In light of issues with the status quo, such as climate change, long-term supply and security, solar energy is an attractive source. It is plentiful, virtually inexhaustible, and can provide more than enough energy to power society. However, the issue with producing electricity and fuels from solar energy is that it is expensive, primarily from the materials (silicon) used in building the cells. Metal oxide semiconductors are an attractive class of materials that are extremely low cost and can be produced at the scale needed to meet widespread demand. An industrially attractive thin film synthesis process based on aerosol deposition was developed that relies on self-assembly to afford rational control over critical materials parameters such as film morphology and nanostructure. The film morphology and nanostructure were found to have dramatic effects on the performance of TiO2-based photovoltaic dye-sensitized solar cells. Taking a cue from nature, to overcome the spatial and temporal mismatch between the supply of sunlight and demand for energy consumption, it is desirable to produce solar fuels such as hydrogen from photoelectrochemical water splitting. The source of water is important---seawater is attractive. The fundamental reaction mechanism for TiO2-based cells is discussed in the context of seawater splitting. There are two primary issues with producing hydrogen by photoelectrochemical water splitting using metal-oxide semiconductors: visible light activity and spontaneous activity. To address the light absorption issue, a combined theory-experiment approach was taken to understand the fundamental role of chemical composition in determining the visible light absorption properties of mixed metal-oxide semiconductors. To address the spontaneous activity issue, self-biasing all oxide p/n bulk-heterojunctions were synthesized and the nanostructure was systematically varied to understand the fundamental role of various characteristic length scales in the nanostructured region of the device on performance. The conclusion of this work is that solar energy harvesting by metal oxide semiconductors is highly promising. All of the scientific concepts have been proven, and steady gains in efficiency are being achieved as researchers continue to tackle the problem.

  19. Biomarker sensing using nanostructured metal oxide sensors

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Krithika

    Resistive Chemical sensors are those gas sensitive materials, typically semiconducting metal oxides, that change their electrical properties in response to a change in the ambient. The key features of a chemosensor are sensitivity, selectivity, response time and sensor stability. The hypothesis of this work is that, since metal oxides are polymorphic compounds, the crystal structure of the specific polymorph determines the relative gas selectivity of the material; also that the morphology of the sensing element determines the gas sensitivity limit. This work focuses on the synthesis of nanostructured metal oxides for chemosensors used in selective 'biomarker' detection. Biomarkers are chemical compounds, products of human metabolism which act as specific disease markers. The biomarkers studied in this work include NO, isoprene, NH3, ethanol and acetone which can all be found in exhaled human breath and which allow the non-invasive detection of a range of diseases. Sensors based on three different metal oxides-MoO3, WO 3, and TiO2 were fabricated using sol-gel, electrospinning and spray pyrolysis techniques and tested both as single elements and in an array configuration (electronic nose). The effects of the processing method used, grain size and shape and crystal phase of the material produced, and temperature effects of postsynthesis processing and sensing have been evaluated. Structural characterization has been carried out using X-Ray Diffraction, Scanning and High Resolution Transmission Electron Microscopy, while spectroscopic measurements using XPS, Raman and In-situ FTIR provide valuable information about the surface-analyte interactions. This work has shown that the use of monoclinic polymorph of WO3 yields a selective response to NO, while the other phase of the same oxide give a non-selective chemical response. The orthorhombic phase of MoO 3 exhibits specificity to NH3. An explanation for the variable sensing properties is given based on the gas interactions with the given polymorph involving adsorption/reaction processes. Another major finding of this work is that there was orders of magnitude increase in gas sensitivity when high aspect ratio nanowires as opposed to nanoparticles of the same diameter were used.

  20. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE. II. Binary Fraction

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] \\lt -3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  1. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi E-mail: takuma.suda@nao.ac.jp E-mail: honda@nhao.jp

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  2. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    SciTech Connect

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  3. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  4. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  5. Ion impact desorption of binary noble metal adsorbates on the Si (1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Ishikawa, D.; Yuhara, J.; Soda, K.; Morita, K.

    1998-02-01

    The keV Ar + ion impact desorption technique has been applied to determine binding energies of binary noble metal adsorbates at Cu/Si (1 1 1)- 3 3-Ag, Si (1 1 1)- 2 32 3-(Au,Ag) and Si (1 1 1)- 3 3-(Au,Cu) surfaces. Decay profiles of surface coverages of the binary adsorbates as a function of Ar + ion fluence were measured by means of AES and RBS techniques. It is shown that the coverages measured by AES decrease rapidly and those by RBS become constant after they decrease at low Ar + ion fluences. Cross-sections for their recoil-implantation and desorption are determined from the analysis of their decay profiles. Layered structures and locations of the binary metal adsorbates are determined qualitatively from the obtained cross-sections. To analyse them, the most probable collision process is modelled, and the potential barrier heights for recoil-implantation and desorption (binding energies) are estimated from the experimental cross-sections.

  6. Orbital physics in transition-metal oxides

    PubMed

    Tokura; Nagaosa

    2000-04-21

    An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons. PMID:10775098

  7. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  8. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  9. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  10. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  11. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  12. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  13. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W. (Bolingbrook, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  14. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-01

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cuox-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cuox-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF. PMID:26587567

  15. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive. PMID:26787053

  16. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices

    NASA Astrophysics Data System (ADS)

    Shpotyuk, M. V.; Shpotyuk, O. I.; Cebulski, J.; Kozyukhin, S.

    2016-01-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  17. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite.

    PubMed

    Zhang, Huichun; Taujale, Saru; Huang, Jianzhi; Lee, Gang-Juan

    2015-03-10

    MnO2 typically coexists with iron oxides as either discrete particles or coatings in soils and sediments. This work examines the effect of Aldrich humic acid (AHA), alginate, and pyromellitic acid (PA) as representative natural organic matter (NOM) analogues on the oxidative reactivity of MnO2, as quantified by pseudo-first-order rate constants of triclosan oxidation, in mixtures with goethite or hematite. Adsorption studies showed that there was low adsorption of the NOMs by MnO2, but high (AHA and alginate) to low (PA) adsorption by the iron oxides. Based on the ATR-FTIR spectra obtained for the adsorbed PA on goethite or goethite + MnO2, the adsorption of PA occurred mainly through formation of outer-sphere complexes. The Fe oxides by themselves inhibited MnO2 reactivity through intensive heteroaggregation between the positively charged Fe oxides and the negatively charged MnO2; the low solubility of the iron oxides limited surface complexation of soluble Fe(3+) with MnO2. In ternary mixtures of MnO2, Fe oxides, and NOM analogues, the reactivity of MnO2 varied from inhibited to promoted as compared with that in the respective MnO2 + NOM binary mixtures. The dominant interaction mechanisms include an enhanced extent of homoaggregation within the Fe oxides due to formation of oppositely charged patches within the Fe oxides but an inhibited extent of heteroaggregation between the Fe oxide and MnO2 at [AHA] < 2-4 mg-C/L or [alginate/PA] < 5-10 mg/L, and an inhibited extent of heteroaggregation due to the largely negatively charged surfaces for all oxides at [AHA] > 4 mg-C/L or [alginate/PA] > 10 mg/L. PMID:25652230

  18. Atomic layer deposition of the aluminum oxide-yttrium oxide pseudo-binary system

    NASA Astrophysics Data System (ADS)

    Rowland, Jason Conrad

    The growth of thin films of selected phases from the pseudo-binary Al 2O3-Y2O3 material system was demonstrated using atomic layer deposition (ALD). Specifically ALD growth of Al2O 3, Y2O3, Ce2O3, Y2 Al4O12 (Yttrium Aluminum Monoclinic - YAM), and Y3Al5O12 (Yttrium Aluminum Garnet - YAG) was accomplished. All films were grown using the same precursors: AlCl 3 at 105C and H2O, Y(thd)3 [thd = 2,2,6,6-tetramethyl-3,5-heptanedione] at 140C and O3, and Ce(acac)3 [acac = acetylacetonate] at 140C, and O3. The Al2O3 films were grown at substrate temperatures from 295C to 515C. A surface-controlled growth temperature 'window' (ALD window) was found for Al 2O3 between 365C to 465C using AlCl3 and H2O. The resultant films grown at all temperatures were amorphous as characterized by X-ray diffraction, and showed a rough surface morphology. The growth rate was determined to be 1 A/cycle within the ALD 'window'. The thickness of films grown in the ALD 'window' varied linearly with the number of cycles. Films up to 1 microm thick were grown (10,000 cycles). The Y2O3 films were grown at substrate temperatures ranging from 200C to 500C. No surface-controlled growth temperature window could be determined using Y(thd)3 and O3. The resultant films were polycrystalline with a cubic structure and a smooth surface morphology. The growth rate was determined to be 3 pm/cycle at 350C. Films up to 30 nm thick were grown (10,000 cycles). Atomic layer deposition of Ce2O3 thin films were also studied because Ce3+ is often used as a luminescent rare earth dopant in YAG and YAM. The Ce2O3 films were grown at substrate temperatures from 200C to 500C. No surface-controlled growth temperature window could be found using Ce(acac)3 and O 3. The resultant films had a rough surface morphology. Using X-ray photoelectron spectroscopy (XPS), it was determined that the Ce3+ oxidation state was present in the as-deposited films rather than Ce4+. When included in the growth process for YAG and YAM, Ce2O 3 was found to create very rough surfaces. The ternary oxide phases of YAM and YAG were produced by ALD growth of alternating nano-scaled multilayer stacks of Al2O3 and Y2O3 and subsequent calcinations of these thin nano-scale stack structures. By adjusting the ratio of Al2O 3 deposition cycles to Y2O3 deposition cycles, stoichiometric amounts of material were deposited in an alternating fashion. A 300 nm YAG film was deposited using the ALD method at a substrate growth temperature of 350C. X-ray diffraction data showed that these films were amorphous as-deposited, but they were transformed to a polycrystalline cubic garnet structure when calcined at 975C for 12 hrs in air. The surface morphology was uniform and smooth. A 400 nm YAM thin film was also successfully deposited using the ALD method at a growth temperature of 350C. X-ray diffraction of the YAM film showed an amorphous film as-deposited and a polycrystalline monoclinic structure after calcining at 975C for 12 hrs in air. The surface morphology of this YAM film was rough and non-uniform.

  19. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  20. Metals, oxidative stress and neurodegenerative disorders.

    PubMed

    Jomova, Klaudia; Vondrakova, Dagmar; Lawson, Michael; Valko, Marian

    2010-12-01

    The neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39-42 residue peptide referred to as the amyloid-? protein (A?). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called ?-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (?-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed. PMID:20730621

  1. Sensing using nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Kiriakidis, G.; Dovinos, D.; Suchea, M.

    2006-10-01

    Metal oxides gas sensing properties particularly for In IIO 3 and ZnO nanostructures and nanostructured thin films are reviewed. Fabrication methods for these most commonly used metal oxides are presented, followed by a study on how growth techniques lead to nanostructures and nanostructured polycrystalline films with surface features of nanometer scale for film thickness bellow 1?m. The study continues with a discussion on how, a broad range of morphological parameters, affect the thin film response to various gases. After an overview, the study focus on thin films prepared by reactive dc magnetron sputtering and pulsed laser deposition in different growth conditions. In IIO 3 and ZnO thin films prepared for ozone sensing exhibit resistivity changes of five to eight orders of magnitude at room temperature after exposure to UV light and subsequent ozone treatment. Structural properties, i.e., crystallinity and microstructure investigated by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) are studied. The nanostructure and nanostructured surfaces are highly controlled by the deposition parameters, which, control the transport properties, and thus the sensing characteristics as measured by conductometric techniques. Analyses on the sensing response of nanostructures and nanostructured In IIO 3 and ZnO films for different gases are presented. Experiments on Surface Acoustic Wave (SAW) devices based on In IIO 3 and ZnO thin films fabricated on LiNbO3 substrates indicate the capability of achieving sensing levels in the low ppb range.

  2. Charge transport at the metal oxide and organic interface

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenhuan; Liu, Hong; Chen, Shaowei

    2012-11-01

    This review focuses on electron transfer at the interfaces between metal oxides and dye molecules within the context of the chemical nature of the anchoring functional groups, the structure of the dye molecules and the morphology of the metal oxides. In dye-sensitized metal oxides, the efficiency of interfacial charge separation and hence photon-to-current conversion may be sensitively manipulated by the interfacial bonding interactions whereby the dye molecules are adsorbed onto the oxide surface, as well as by the oxide surface morphologies. In these studies, it has been found that upon photoirradiation, the electron injection from the excited dye molecules into the conduction band of metal oxides and electron transport in the metal oxide are two of the most important steps. Therefore, a fundamental understanding of how the interfacial electron transfer dynamics is impacted by these structural parameters is critical for the design and optimization of dye-sensitized photocatalysis and photovoltaics.

  3. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Karakas, A. I.; Izzard, R. G.

    2015-04-01

    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process (s-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass (?0.85 M?) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and s-element-enhanced metal-poor (CEMP-s) halo stars that are found in binary systems with measured orbital periods. With our model of binary evolution and AGB nucleosynthesis, we determine the binary configuration that best reproduces, at the same time, the observed orbital period and surface abundances of each star of the sample. The observed periods provide tight constraints on our model of wind mass transfer in binary stars, while the comparison with the observed abundances tests our model of AGB nucleosynthesis. For most of the stars in our sample, we find that an episode of efficient wind mass transfer, combined with strong angular momentum loss, has occurred in the past. In some cases we find discrepancies between the observed and modelled abundances even if we adopt a fine-tuned set of parameters in our binary evolution model. These discrepancies are probably caused by missing physical ingredients in our models of AGB nucleosynthesis and they provide indications of how to improve our knowledge of the process of nucleosynthesis in AGB stars. Appendices are available in electronic form at http://www.aanda.org

  4. Photocatalytic activity of nanostructured ZnO-ZrO? binary oxide using fluorometric method.

    PubMed

    Ibrahim, M M

    2015-06-15

    Evaluation of the photocatalytic activity of ZnO-ZrO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, ZnO-ZrO2 mixed oxides coupled with various ZnO dosages (0, 10, 30, 50, 70wt%) were prepared by impregnation method. These nanomaterials were characterized by studying their structural, surface and optical properties. The photocatalytic activity in term of quantitative determination of the active oxidative species (OH) produced on the surface of binary oxide was evaluated using fluorescent probe method. The interaction between ZnO and ZrO2 was affected on the photocatalytic efficiency of mixture. The results show that, the addition of ZnO to ZrO2 decreased the electron-hole recombination and increased the rate of OH radicals formation. 50 wt% ZnO-ZrO2 photocatalyst exhibited much higher photocatalytic activity. The profound effect of binary oxide catalyst was generally considered due to the high surface area, small particle size, high monoclinic phase of ZrO2 content, low band gap and the presence of surface OH groups. PMID:25797223

  5. Photocatalytic activity of nanostructured ZnO-ZrO2 binary oxide using fluorometric method

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.

    2015-06-01

    Evaluation of the photocatalytic activity of ZnO-ZrO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, ZnO-ZrO2 mixed oxides coupled with various ZnO dosages (0, 10, 30, 50, 70 wt%) were prepared by impregnation method. These nanomaterials were characterized by studying their structural, surface and optical properties. The photocatalytic activity in term of quantitative determination of the active oxidative species (radOH) produced on the surface of binary oxide was evaluated using fluorescent probe method. The interaction between ZnO and ZrO2 was affected on the photocatalytic efficiency of mixture. The results show that, the addition of ZnO to ZrO2 decreased the electron-hole recombination and increased the rate of radOH radicals formation. 50 wt% ZnO-ZrO2 photocatalyst exhibited much higher photocatalytic activity. The profound effect of binary oxide catalyst was generally considered due to the high surface area, small particle size, high monoclinic phase of ZrO2 content, low band gap and the presence of surface OH groups.

  6. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  7. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  8. Oxidation of vanadium metal in oxygen plasma and their characterizations

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ? C and 7.5 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  9. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  10. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J. (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  11. The role of metal/transition metal oxide/organic interface

    NASA Astrophysics Data System (ADS)

    Lin, Chang-Ting; Lee, Guan-Ru; Wu, Chih-I.; Pi, Tun-Wen

    2008-03-01

    In this paper, we report a study with UPS and XPS data of metal/transition-metal-oxide/organic interfaces. Transition metal oxides are widely used in organic light- emitting (OLEDs) in recently years, such as Wo3, ReO3, MoO3, and V2O5. These metal oxides have been proven to be good hole injection layers in OLEDs, interlayers in tandem OLEDs, and nanocomposite electrodes. Although a large number of studies have been made, little is known about the mechanism of metal/transition-metal-oxide/organic interfaces. UPS and XPS data performed by synchrotron radiation research show that these oxides would catch electrons from organic and results in p-type doping in organic material. In addition, there is a significant structure transition from insulating metal oxide to metallic metal oxide. As a result of high work function metallic metal oxides in anode structures and p-type doping organic hole transport layers (HTLs), holes can easily be injected from anode to HTLs. Current-voltage characteristics (I-V) and quantum-efficiency (?-J) measurements also show the improvement of device performance with insertion of thin transition metal oxides between anodes HTLs.

  12. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  13. Peptide interactions with metal and oxide surfaces.

    PubMed

    Vallee, Anne; Humblot, Vincent; Pradier, Claire-Marie

    2010-10-19

    Increasing interest in bio-interfaces for medical, diagnostic, or biotechnology applications has highlighted the critical scientific challenge behind both the understanding and control of protein-solid surface interactions. In this context, this Account focuses on the molecular-level characterization of the interactions of peptides, ranging in size from a few amino acids to long sequences, with metal and oxide surfaces. In this Account, we attempt to fill the gap between the well-known basic studies of the interaction of a single amino acid with well-defined metal surfaces and the investigations aimed at controlling biocompatibility or biofilm growth processes. We gather studies performed with surface science tools and macroscopic characterization techniques along with those that use modeling methods, and note the trends that emerge. Sulfur drives the interaction of cysteine-containing peptides with metal surfaces, particularly gold. Moreover, intermolecular interactions, such as hydrogen bonds may induce surface self assembly and chiral arrangements of the peptide layer. Depending on the solvent pH and composition, carboxylates or amino groups may also interact with the surface, which could involve conformational changes in the adsorbed peptide. On oxide surfaces such as titania or silica, researchers have identified carboxylate groups as the preferential peptide binding groups because of their strong electrostatic interactions with the charged surface. In high molecular weight peptides, systematic studies of their interaction with various oxide surfaces point to the preferential interaction of certain peptide sequences: basic residues such as arginine assume a special role. Researchers have successfully used these observations to synthesize adhesive sequences and initiate biomineralization. Studies of the interaction of peptides with nanoparticles have revealed similar binding trends. Sulfur-containing peptides adhere preferentially to gold nanoparticles. Peptides containing aromatic nitrogen also display a high affinity for various inorganic nanoparticles. Finally, we describe a novel class of peptides, genetically engineered peptides for inorganics (GEPIs), which are selected from a phage display protocol for their high binding affinity for inorganic surfaces. Extended investigations have focused on the mechanisms of the molecular binding of these peptides to solid surfaces, in particular the high binding affinity of some sulfur-free sequences of GEPIs to gold or platinum surfaces. We expect that this clearer view of the possible preferential interactions between peptides and inorganic surfaces will facilitate the development of new, more focused research in various fields of biotechnology, such as biocompatibility, biomimetics, or tissue engineering. PMID:20672797

  14. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  15. METALLICITY EFFECT ON LOW-MASS X-RAY BINARY FORMATION IN GLOBULAR CLUSTERS

    SciTech Connect

    Kim, D.-W.; Fabbiano, G.; Fragos, T.; Ivanova, N.; Sivakoff, G. R.; Jordan, A.; Voss, R.

    2013-02-10

    We present comprehensive observational results of the metallicity effect on the fraction of globular clusters (GCs) that contain low-mass X-ray binaries (LMXB), by utilizing all available data obtained with Chandra for LMXBs and Hubble Space Telescope Advanced Camera for Surveys (ACS) for GCs. Our primary sample consists of old elliptical galaxies selected from the ACS Virgo and Fornax surveys. To improve statistics at both the lowest and highest X-ray luminosity, we also use previously reported results from other galaxies. It is well known that the fraction of GCs hosting LMXBs is considerably higher in red, metal-rich, GCs than in blue, metal-poor GCs. In this paper, we test whether this metallicity effect is X-ray luminosity-dependent and find that the effect holds uniformly in a wide luminosity range. This result is statistically significant (at {>=}3{sigma}) in LMXBs with luminosities in the range L {sub X} = 2 Multiplication-Sign 10{sup 37} to 5 Multiplication-Sign 10{sup 38} erg s{sup -1}, where the ratio of GC-LMXB fractions in metal-rich to metal-poor GCs is R = 3.4 {+-} 0.5. A similar ratio is also found at lower (down to 10{sup 36} erg s{sup -1}) and higher luminosities (up to the ULX regime), but with less significance ({approx}2{sigma} confidence). Because different types of LMXBs dominate in different luminosities, our finding requires a new explanation for the metallicity effect in dynamically-formed LMXBs. We confirm that the metallicity effect is not affected by other factors such as stellar age, GC mass, stellar encounter rate, and galacto-centric distance.

  16. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  17. Catalytic oxidation of dichloromethane, chloroform, and their binary mixtures over a platinum alumina catalyst

    SciTech Connect

    Papenmeier, D.M.; Rossin, J.A. . Gunpowder Branch)

    1994-12-01

    The complete catalytic oxidation of dichloromethane, chloroform, and their binary mixtures was examined over a 3% Pt/[kappa]-[delta] Al[sub 2]O[sub 3] catalyst at temperature between 300 and 400 C using a fixed bed catalytic reactor. The oxidation of chloroform and dichloromethane as pure compounds was nonlinear in the concentration of chloromethane and zeroth order in the concentration of oxygen. HCl, formed during the oxidation of each chloromethane, decreased the reaction rate. Kinetic rate expressions were developed to described the oxidation of dichloromethane and chloroform as pure compounds. These expressions were derived by assuming that the reaction occurred via adsorption and decomposition of the chloromethane into an oxygen covered platinum surface, with the reaction being inhibited by the presence of HCl. From the results of the pure compound studies, reaction rate expressions were developed to describe the oxidation of dichloromethane/chloroform mixtures. The resulting reaction rate expressions accurately predicted the catalyst's performance during the oxidation of dichloromethane/chloroform mixtures over a wide range of conditions.

  18. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bumer, Marcus; Wilkens, Henrik; Wollschlger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts. PMID:26355535

  19. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  20. Polarization-Mediated Thermal Stability of Metal/Oxide Heterointerface.

    PubMed

    Zhang, Qintong; You, Lu; Shen, Xi; Wan, Caihua; Yuan, Zhonghui; Zhang, Xuan; Huang, Li; Kong, Wenjie; Wu, Hao; Yu, Richeng; Wang, Junling; Han, Xiufeng

    2015-11-01

    A polarization-mediated heterointerface is designed to research the thermal stability of magnetic metal/oxide interfaces. Using polarization engineering, the thermal stability of the interface between BiFeO3 and CoFeB can be improved by about 100 °C. This finding provides new insight into the chemistry of the metal/oxide heterointerface. PMID:26421975

  1. Empirical correction for PM7 band gaps of transition-metal oxides.

    PubMed

    Liu, Xiang; Sohlberg, Karl

    2016-01-01

    A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3eV to ~1eV. The residual error after correction is shown to be uncorrelated to the Hartree-Fock method upon which PM7 is based. Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values. PMID:26740097

  2. Conductive metal oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F. (Kennewick, WA); Exarhos, Gregory J. (Richland, WA)

    1999-01-01

    The present invention is a method for reducing a dopant in a film of a metal oxide wherein the dopant is reduced and the first metal oxide is substantially not reduced. The method of the present invention relies upon exposing the film to reducing conditions for a predetermined time and reducing a valence of the metal from a positive valence to a zero valence and maintaining atoms with a zero valence in an atomic configuration within the lattice structure of the metal oxide. According to the present invention, exposure to reducing conditions may be achieved electrochemically or achieved in an elevated temperature gas phase.

  3. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  4. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  5. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  6. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  7. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.

    PubMed

    Todisco, Francesco; D'Agostino, Stefania; Esposito, Marco; Fernndez-Domnguez, Antonio I; De Giorgi, Milena; Ballarini, Dario; Dominici, Lorenzo; Tarantini, Iolena; Cuscun, Massimo; Della Sala, Fabio; Gigli, Giuseppe; Sanvitto, Daniele

    2015-10-27

    In this paper, we report on the effect of metal oxidation on strong coupling interactions between silver nanostructures and a J-aggregated cyanine dye. We show that metal oxidation can sensibly affect the plexcitonic system, inducing a change in the coupling strength. In particular, we demonstrate that the presence of oxide prevents the appearance of Rabi splitting in the extinction spectra for thick spacers. In contrast, below a threshold percentage, the oxide layer results in an higher coupling strength between the plasmon and the Frenkel exciton. Contrary to common belief, a thin oxide layer seems thus to act, under certain conditions, as a coupling mediator between an emitter and a localized surface plasmon excited in a metallic nanostructure. This suggests that metal oxidation can be exploited as a means to enhance light-matter interactions in strong coupling applications. PMID:26378956

  8. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  9. Joint effects of heavy metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation.

    PubMed

    Kong, In Chul

    2013-05-01

    This investigation was to assess the joint effects of metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation based on the one toxic unit (1 TU) approach. Different sensitivities and orders of toxicity of metal mixtures were observed among the bioassays. In general, mostly additive or antagonistic effects were observed, while almost no synergistic effects by the binary metal mixtures in all bioassays. Therefore, the combined effects of heavy metals in the different bioassays were difficult to generalize since they were dependent on both chemical type and the organism used in each bioassay. However, these results indicate that a battery of bioassays with mixture chemicals as opposed to just a single assay with single metal is a better strategy for the bioassessment of environmental pollutants. PMID:24218818

  10. The close binary properties of massive stars in the Milky Way and low-metallicity Magellanic Clouds

    SciTech Connect

    Moe, Maxwell; Di Stefano, Rosanne

    2013-12-01

    In order to understand the rates and properties of Type Ia and Type Ib/c supernovae, X-ray binaries, gravitational wave sources, and gamma-ray bursts as a function of galactic environment and cosmic age, it is imperative that we measure how the close binary properties of O- and B-type stars vary with metallicity. We have studied eclipsing binaries with early B main-sequence primaries in three galaxies with different metallicities: the Large and Small Magellanic Clouds (LMC and SMC, respectively) and the Milky Way (MW). The observed fractions of early B stars that exhibit deep eclipses 0.25 < Δm (mag) < 0.65 and orbital periods 2 < P (days) < 20 in the MW, LMC, and SMC span a narrow range of (0.7-1.0)%, which is a model-independent result. After correcting for geometrical selection effects and incompleteness toward low-mass companions, we find for early B stars in all three environments (1) a close binary fraction of (22 ± 5)% across orbital periods 2 < P (days) < 20 and mass ratios q = M {sub 2}/M {sub 1} > 0.1, (2) an intrinsic orbital period distribution slightly skewed toward shorter periods relative to a distribution that is uniform in log P, (3) a mass-ratio distribution weighted toward low-mass companions, and (4) a small, nearly negligible excess fraction of twins with q > 0.9. Our fitted parameters derived for the MW eclipsing binaries match the properties inferred from nearby, early-type spectroscopic binaries, which further validates our results. There are no statistically significant trends with metallicity, demonstrating that the close binary properties of massive stars do not vary across metallicities –0.7 < log(Z/Z {sub ☉}) < 0.0 beyond the measured uncertainties.

  11. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  12. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    PubMed

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates. PMID:22068318

  13. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  14. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    PubMed

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  15. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces

    SciTech Connect

    Lad, R.J.

    1992-11-01

    Studies of structural, electronic, and chemical properties of metal/oxide and oxide/oxide interfaces were performed on well-defined interfaces that created by depositing ultra-thin potassium and aluminum films and their oxides onto single crystal TiO[sub 2] and NiO surfaces. Work focused on determining the structure, growth mechanisms, and morphologies of metal and oxide films as they are deposited an single crystal oxide surfaces using RHEED and atomic force microscopy probing electronic structure, bonding and chemical interactions at the interfaces using x-ray and uv photoelectron spectroscopies (XPS, UPS) and Auger electron spectroscopy (AES), and understanding factors affecting stability and reactivity of the interface regions including the role of defects and impurities. Results indicate that kinetic effects have an important influence on interface structure and composition, and they also show that defects in the oxide substrate induce new electronic states at the interface which play a major role in cation-anion bonding and interface interactions. The results establish a link between electronic and chemical bonding properties and the interface structure and morphology, which is required to successfully manipulate the interfacial properties of advanced ceramic materials.

  16. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  17. Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Khalilzade-Rezaie, Farnood; Peale, Robert E.; Panjwani, Deep; Smith, Christian W.; Nath, Janardan; Lodge, Michael; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Yannuzzi, Mark; Cleary, Justin W.

    2015-09-01

    An electronic detector of surface plasmon polaritons (SPP) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-semiconductor capacitor. Semitransparent metal and graphene gates function similarly. We report the dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing.

  18. Nonaqueous cell using mixed metal oxide positive electrode

    SciTech Connect

    Cava, R. J.; Murphy, D. W.

    1985-09-17

    It has been found that mixed metal oxides such as vanadium tungsten oxides or titanium niobium oxides, having the stoichiometry xM /SUP A/ O/sub 2/ . Y/sub 2/ /SUP B/ O/sub 5/ . zM /SUP C/ O/sub 3/ constitute useful active positive electrode material in nonaqueous cells.

  19. Activation of flue gas nitrogen oxides by transition metal complexes

    SciTech Connect

    Miller, M.E.; Finseth, D.H.; Pennline, H.W.

    1987-01-01

    Sulfur and nitrogen oxides are major flue gas pollutants released by coal-fired electric power plants. In the atmosphere these oxides are converted to sulfuric and nitric acids, which contribute to the acid rain problem. Most of the nitrogen oxides (90%-95%) present in coal-derived flue gas exist as the relatively inert and water-insoluble nitric oxide (NO), thus presenting a difficult removal problem. A practical strategy for nitrogen oxides removal might utilize a solid support that has been impregnated with an active transition metal complex. Some supported transition metals are expected to remove NO/sub x/ by sorption, with regeneration of the sorbent being a necessary property. Others catalyze NO oxidation to the more soluble NO/sub 2/ and N/sub 2/O/sub 5/, which has been demonstrated for certain transition metal species. These activated nitrogen oxides can be more efficiently removed along with SO/sub 2/ in conventional scrubbing or spray-drying processes, in which an aqueous slurry of sorbent, such as hydrated lime, is injected into the hot flue gas. We present here preliminary studies intended to establish basic homogeneous chemistry of transition metal complexes with nitrogen oxides. The transition metals considered in this work are volatile carbonyl complexes. This work is the first step in the development of supported metal species for enhanced nitrogen oxides removal.

  20. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  1. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM); Stohl, Frances V. (Albuquerque, NM)

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  3. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  4. Technetium dichloride : a new binary halide containing metal-metal multiple bonds.

    SciTech Connect

    Poineau, F.; Malliakas, C. D.; Weck, P. F.; Scott, B. L.; Johnstone, E. V.; Forster, P. M.; Kim, E.; Kanatzidis, M. G.; Czerwinski, K. R.; Sattelberger, A. P.

    2011-06-15

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

  5. Technetium Dichloride: A New Binary Halide Containing Metal-Metal Multiple Bonds

    SciTech Connect

    Poineau, Frederic; Malliakas, Christos D.; Weck, Philippe F.; Scott, Brian L.; Johnstone, Erik V.; Forster, Paul M.; Kim, Eunja; Kanatzidis, Mercouri G.; Czerwinski, Kenneth R.; Sattelberge, Alfred P.

    2011-10-19

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

  6. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. Electronic supplementary information (ESI) available: XRD and EDS analysis of the prepared metal oxides, EDS analysis of nanoparticles adsorbed on the surface of metal oxides and SEM micrographs of metal oxides are included. See DOI: 10.1039/c3nr34221b

  7. CuO-CeO{sub 2} binary oxide nanoplates: Synthesis, characterization, and catalytic performance for benzene oxidation

    SciTech Connect

    Hu, Chaoquan; Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 ; Zhu, Qingshan; Chen, Lin; Wu, Rongfang; Graduate School of Chinese Academy of Sciences, Beijing 100049

    2009-12-15

    This work reports the first synthesis of CuO-CeO{sub 2} binary oxides with a plate-like morphology by a solvothermal method. The as-prepared CuO-CeO{sub 2} nanoplates calcined at 400 {sup o}C were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrum, and tested for catalytic oxidation of dilute benzene in air. Various structural characterizations showed that large amounts of copper species were exposed on the CuO-CeO{sub 2} nanoplate surface. The effect of the synthesis conditions on the structure of the product, as well as the growth process of the nanoplates, has been studied and discussed. The CuO-CeO{sub 2} nanoplates exhibited an excellent catalytic activity for benzene oxidation despite its relatively low surface area and could catalyze the complete oxidation of benzene at a temperature as low as 240 {sup o}C.

  8. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical resistance of these SnO2 nanomaterials towards reducing gases. With regard to the sensitivity of the different nascent nanostructures, the electrospun nanofibers appear preferable

  9. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces

    SciTech Connect

    Lad, R.J.

    1991-01-01

    During the past six months, we have begun our studies of the fundamental properties of metal/oxide and oxide/oxide heterogeneous interfaces which are being prepared by epitaxial growth of ultra-thin-films on single crystal TiO{sub 2} and NiO surfaces. A new ultra-high vacuum film growth chamber was assembled and coupled to an existing surface analysis chamber; a sample transfer system, metal deposition sources, and a RHEED systems with microchannel plate detection were constructed and implemented. Atomic Force Microscopy was used to characterize and refine the preparation procedures for the single crystal surfaces. The electronic structure of stoichiometric, oxygen-deficient, and potassium-covered TiO{sub 2} (110) surfaces was investigated. Preliminary results on the Al/TiO{sub 2} (110) system have been obtained. Two graduate students have begun thesis research on the project. 6 figs.

  10. Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Stancliffe, R. J.; Izzard, R. G.; Karakas, A. I.; Beers, T. C.; Lee, Y. S.

    2015-09-01

    The stellar population in the Galactic halo is characterised by a large fraction of carbon-enhanced metal-poor (CEMP) stars. Most CEMP stars have enhanced abundances of s-process elements (CEMP-s stars), and some of these are also enriched in r-process elements (CEMP-s/r stars). In one formation scenario proposed for CEMP stars, the observed carbon excess is explained by invoking wind mass transfer in the past from a more massive thermally-pulsing asymptotic giant branch (AGB) primary star in a binary system.In this work we generate synthetic populations of binary stars at metallicity Z = 0.0001 ([Fe/H] ? - 2.3), with the aim of reproducing the observed fraction of CEMP stars in the halo. In addition, we aim to constrain our model of the wind mass-transfer process, in particular the wind-accretion efficiency and angular-momentum loss, and investigate under which conditions our model populations reproduce observed distributions of element abundances.We compare the CEMP fractions determined from our synthetic populations and the abundance distributions of many elements with observations. Several physical parameters of the binary stellar population of the halo are uncertain, in particular the initial mass function, the mass-ratio distribution, the orbital-period distribution, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population.The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The resulting fractions are more than a factor of three higher than those determined with default assumptions in previous population-synthesis studies, which typically underestimated the observed CEMP fraction. We find that most CEMP stars in our simulations are formed in binary systems with periods longer than 10 000 days. Few CEMP stars have measured orbital periods, but all that do have periods up to a few thousand days. Our results are consistent only if this small subpopulation represents the short-period tail of the underlying period distribution. The results of our comparison between the modelled and observed abundance distributions are significantly different for CEMP-s/r stars and for CEMP-s stars without strong enrichment in r-process elements. For the latter, our simulations qualitatively reproduce the observed distributions of carbon, sodium, and heavy elements such as strontium, barium, europium, and lead. Contrarily, for CEMP-s/r stars our model cannot reproduce the large abundances of neutron-rich elements such as barium, europium, and lead. This result is consistent with previous studies, and suggests that CEMP-s/r stars experienced a different nucleosynthesis history to CEMP-s stars.

  11. Formation of metal oxides by cathodic arc deposition

    SciTech Connect

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  12. Method for converting uranium oxides to uranium metal

    SciTech Connect

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  13. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  14. Development of a regenerable metal oxide CO removal system

    NASA Technical Reports Server (NTRS)

    Cusick, Robert J.

    1990-01-01

    A regenerable metal oxide carbon dioxide (CO2) removal system was developed to replace the current means of a nonreusable chemical, lithium hydroxide, for removing the metabolic CO2 of an astronaut in a space suit. Testing indicates that a viable low-volume metal oxide concept can be used in the portable life support system for CO2 removal during Space Station extravehicular activity (EVA). A canister of nearly the same volume as that used for the Space Shuttle, containing 0.10 cu ft of silver-oxide-based pellets, was tested; test data analysis indicates that 0.18 cu ft of the metal oxide will result in an 8-hour EVA capability. The testing suggests that the metal oxide technology offers a low-volume approach for a reusable CO2 removal concept applicable for at least 40 EVA missions. The development and testing of the breadboard regeneration package is also described.

  15. Metal oxide nanostructures for gas detection

    NASA Astrophysics Data System (ADS)

    Maziarz, Wojciech; Pisarkiewicz, Tadeusz; Rydosz, Artur; Wysocka, Kinga; Czyrnek, Grzegorz

    2013-07-01

    Currently, most of gas sensors on the market are produced in thin or thick film technologies with the use of ceramic substrates. It is expected that the miniature sensors needed in portable applications will be based on one-dimensional structures due to their low power consumption, fast and stable time response, small dimensions and possibility of embedding in integrated circuit together with signal conditioning electronics. The authors manufactured resistance type gas sensors based on ZnO and WO3 nanostructures. ZnO:Al nanorods with good cristallinity were obtained with electrodeposition method, while ZnO:Al nanofibres with varying diameters were obtained by electrospinning method. The sensors were built as a nanowire network. WO3 films with nanocrystalline surface were manufactured by deposition of a three layer WO3/W/WO3 structure by RF sputtering and successive annealing of the structure in appropriate temperature range. In effect a uniform nanostructurized metal oxide layer was formed. Investigation of sensors characteristics revealed good sensitivity to nitrogen dioxide at temperatures lower than these for conventional conductometric type sensors.

  16. Cluster synthesis via ligand-arrested solid growth: triethylphosphine-capped fragments of binary metal chalcogenides.

    PubMed

    Crawford, Nathan R M; Hee, Allan G; Long, Jeffrey R

    2002-12-18

    A new and potentially highly generalizable technique for synthesizing molecular fragments of binary solids is demonstrated through application to selected transition metal chalcogenides. Employing a metal atom reactor, the solids are evaporated with a tungsten heating boat, and the resulting vapor is co-condensed with triethylphosphine. Major cluster products identified from a survey of first-row transition metal sulfides include the known species Cr6S8(PEt3)6, Co6S8(PEt3)6, and Cu12S6(PEt3)8, as well as the unprecedented species Fe4S4(PBun3)4, Ni4S4(PEt3)8, and Cu6S4(PEt3)4. Reactions utilizing Cu2Se resulted in the much larger clusters Cu26Se13(PEt3)14 and Cu70Se35(PEt3)21. The core of the former has a Th-symmetry structure featuring a body-centered icosahedron of Se2- anions, while the latter adopts a triangular structure based on three hexagonal closest packed layers of Se2- anions. In both cases, the Cu+ cations occupy distorted tetrahedral or trigonal planar sites similar to those encountered in Cu2Se; however, emergence of the face-centered cubic anion lattice of the bulk solid is not yet apparent at these cluster sizes. PMID:12475314

  17. Determination of Systems Suitable for Study as Monotectic Binary Metallic Alloy Solidification Models

    NASA Technical Reports Server (NTRS)

    Smith, J. E., Jr.

    1983-01-01

    Succinonitrile-water and diethylene glycol-ethyl salicylate are two transparent systems which have been studied as monotectic binary metallic alloy solidification models. Being transparent, these systems allow for the direct observations of phase transformations and solidification reactions. The objective was to develop a screening technique to find systems of interest and then experimentally measure those systems. The succinonitrile-water system was used to check the procedures. To simulate the phase diagram of the system, two computer programs which determine solid-liquid and liquid-liquid equilibria were obtained. These programs use the UNIFAC method to determine activity coefficients and together with several other programs were used to predict the phase diagram. An experimental apparatus was developed and the succinonitrile-water phase diagram measured. The diagram was compared to both the simulation and literature data. Substantial differences were found in the comparisons which serve to demonstrate the need for this procedure.

  18. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    NASA Astrophysics Data System (ADS)

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-01

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  19. Membranes prepared by radiation grafting of binary monomers for adsorption of heavy metals from industrial wastes

    NASA Astrophysics Data System (ADS)

    Hegazy, El-Sayed A.; Kamal, H.; Maziad, N.; Dessouki, A. M.

    1999-05-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) as individually and in binary monomer mixture onto low density polyethylene (LDPE) has been carried out. The effect of preparation conditions such as irradiation dose, monomer concentration, comonomer composition, and solvent on the grafting yield was investigated. Characterization and some properties of the prepared membranes using different analytical techniques are studied, accordingly the possibility of its practical use in industrial waste treatment is determined. The swelling behavior, electrical conductivity, thermal stability, and mechanical properties of the membranes were investigated as a function of the grafting degree. The prepared cation-exchange membranes possessed good electrical and mechanical properties, high thermal stability and possess good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ and Pb 2+ ions either in mixture containing other metals or if exists alone in the waste solution.

  20. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  1. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  2. Fabrication and applications of metal-oxide nano-tubes

    NASA Astrophysics Data System (ADS)

    Lee, Mingun; Kim, Taewook; Bae, Changdeuck; Shin, Hyunjung; Kim, Jiyoung

    2010-04-01

    Metal-oxide nanotubes can be used for a wide range of applications, such as selective chemical and biological sensors, dye-sensitized solar cells and photo-catalysts. The fabrication methods can be categorized into a directed method using nanotemplates (sol-gel method and atomic layer deposition) and a non-directed method (anodization). This review article describes the recent progress made in the field of oxide nanotube synthesis and applications. We begin this review with a comprehensive study on the research activities in the oxide nanotube fabrication. We then focus on pristine metal oxide applications as well as surface-modified metal oxide nanotube applications. Finally, we summarize this article with future direction in the oxide nanotube applications.

  3. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    PubMed

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong ? stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. PMID:23994942

  4. Stimulated oxidation of metals (laser, electric field, etc.): Comparative studies

    NASA Astrophysics Data System (ADS)

    Nnai, Lszl; Fle, Mikls

    2014-11-01

    In this report we demonstrate the importance of metal oxides, e.g. thin films and nanostructures, in modern science and technology. The basic laws of oxide thickness on base of diffusion of specimens versus time in different circumstances (Cabrera-Mott and Wagner laws) under the influence of external fields, e.g. electromagnetic field, static electric and magnetic field, are demonstrated. We give experimental results for various metal oxide layers over a wide range of different metals. Theoretical explanations are provided as well for the most reliable circumstances.

  5. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  6. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.

  7. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L. Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.

  8. Multiscale model of metal alloy oxidation at grain boundaries.

    PubMed

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales. PMID:26049486

  9. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  10. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  11. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    PubMed

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the ? and ? bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the ? network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp(2)-derived unoccupied states ?* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  12. Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC

    NASA Astrophysics Data System (ADS)

    Tan, J.; Das, M. K.; Cooper, J. A., Jr.; Melloch, M. R.

    1997-04-01

    A method to form SiO2/SiC metal-oxide-semiconductor structures by oxidation of a thin polycrystalline silicon (polysilicon) layer deposited on SiC is demonstrated. The oxidation time used is sufficient to oxidize all the polysilicon while short enough at 1050 C to insure insignificant oxidation of the underlying SiC. Since the oxidation of SiC is highly anisotropic, this method allows uniform oxide formation on a nonplanar SiC surface. The SiO2/SiC interface quality is comparable to that obtained with thermal oxidation.

  13. Metal oxide semiconductor structure using oxygen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Chicot, G.; Marchal, A.; Motte, R.; Muret, P.; Gheeraert, E.; Pernot, J.

    2013-06-01

    Metal-oxide-semiconductor structures with aluminum oxide as insulator and p-type (100) mono-crystalline diamond as semiconductor have been fabricated and investigated by capacitance versus voltage and current versus voltage measurements. The aluminum oxide dielectric was deposited using low temperature atomic layer deposition on an oxygenated diamond surface. The capacitance voltage measurements demonstrate that accumulation, depletion, and deep depletion regimes can be controlled by the bias voltage, opening the route for diamond metal-oxide-semiconductor field effect transistor. A band diagram is proposed and discussed.

  14. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation.

    PubMed

    Chang, Fangfang; Qu, Jiuhui; Liu, Huijuan; Liu, Ruiping; Zhao, Xu

    2009-10-15

    Fe-Mn binary oxide incorporated into diatomite (FMBO-diatomite) was prepared by a simple coating method, and exhibited high oxidation and adsorption ability for arsenite [As(III)]. After being incorporated by Fe-Mn binary oxide, the surface area of diatomite increased 36%, and the pore volume increased five times. The pHzpc of FMBO-diatomite was determined to be 8.1. These characteristics are responsible for the increased As(III) adsorption efficiency. The adsorption equilibria of As(III) on FMBO-diatomite were described well by a Langmuir isotherm model due to the homogeneous distribution of Fe-Mn binary oxide on a diatomite surface. As(III) was oxidized into As(V), and then adsorbed by FMBO-diatomite. The oxidation and adsorption efficiencies for As(III) depended deeply on the pH of solution. When the pH was raised to 8.1, the As(III) adsorption efficiency of FMBO-diatomite was almost equal to the As(III) oxidation efficiency. Silicate and phosphate had negative effects on As(III) adsorption. Also the influence of silicate and phosphate with the pH variation was different. PMID:19665722

  15. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C. (4745 Trinity Dr., Los Alamos, NM 87544); Kodas, Toivo T. (5200 Noreen Dr. NE., Albuquerque, NM 87111)

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  16. Surface Stabilization Mechanisms in Metal Oxides

    NASA Astrophysics Data System (ADS)

    Becerra Toledo, Andres Enrique

    2011-07-01

    Metal oxide surfaces play a central role in modern applications, ranging from heterogeneous catalysis to electronic devices, yet little is known about the processes determining their structural stabilization. Several such stabilization mechanisms are explored via a combination of theoretical and experimental methods. The processes of periodic reconstruction, adsorption and segregation are studied through case studies of model material systems. The evaluation of structural models of periodic SrTiO3(001) reconstructions via bonding analysis and simulated scanning tunneling microscopy images supports the family of "DL" models terminating in two consecutive layers of TiO2 composition, and discards alternative proposals such as the models based on periodic Sr adatoms. Experimental and simulated scanning tunneling microscopy images and complementary spectroscopic data are used to determine the structure of linear Ti-rich SrTiO 3(001) nanostructures. The structural solution exemplifies the recurrence of locally stable motifs across numerous surfaces. In particular, the arrangement of edge-sharing TiO5 surface polyhedra is a trait is shared by (001) nanostructures and DL reconstructions. This is a flexible framework which allows for optimal bonding in surface atoms. Modeling of water adsorption on reconstructed SrTiO3(001) surfaces reveals that water plays two major roles in the stabilization of oxide surfaces: it may mediate the formation of certain ordered structures, or it may be part of the ultimately stable structures themselves. This can be understood in terms of the inevitable presence of chemisorbed water on defective surfaces. Since the surface mobility of cationic species is relatively low, the kinetics associated to water diffusion and desorption dominate the surface ordering process. High-temperature annealing of SrLaAlO4 single crystals leads to the segregation of SrO to the surfaces, in the form of islands. This process is in fact a bulk stabilization mechanism, due initially to the increasing number of bulk Sr-O vacancy pairs. This material enables a second accommodation mechanism for further surface segregation and increasing bulk non-stoichiometry, consisting of the formation of low-energy stacking faults. In spite of previous speculation of a similar fault-based compensation process taking place in SrTiO3, this is found to be decidedly unviable in perovskite systems.

  17. A rapid microwave-assisted solvothermal approach to lower-valent transition metal oxides.

    PubMed

    Moorhead-Rosenberg, Zachary; Harrison, Katharine L; Turner, Travis; Manthiram, Arumugam

    2013-11-18

    A green, rapid microwave-assisted solvothermal process using tetraethylene glycol (TEG) as a reducing agent has been explored as a soft-chemistry route for the preparation of various lower-valent transition metal oxides. To demonstrate the feasibility of the approach, lower-valent binary oxides such as V4O9, Mn3O4 or MnO, CoO, and Cu2O have been obtained within a short reaction time of 30 min by reducing, respectively, V2O5, MnO2, Co3O4, and CuO with TEG at <300 C. Moreover, the approach has been used to extract oxygen from ternary oxides such as LaFeO3, SrMnO3, LaCoO3, LaNiO3, and La4Ni3O10. The oxidation state of the transition metal ions and the oxygen content in these ternary oxides could be tuned by precisely controlling the reaction temperatures from 160 to 300 C. The products have been characterized by X-ray powder diffraction and iodometric titration. The versatility of this novel technique is demonstrated by the facile synthesis of V4O9, which has only been produced recently in single-phase form. PMID:24191765

  18. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  19. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    SciTech Connect

    Jing, Dapeng

    2010-12-15

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.

  20. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    PubMed

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. PMID:23571113

  1. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  2. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  3. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  4. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular reaction, I found that Pd nanoparticles supported on mesoporous TiO2 exhibit the best catalytic performance. The demonstrated low-cost and high-productivity preparation method can be extended to other catalysts, which can contain various metals and oxide substrates and will have high potential for industrial applications. Our preparation method also provides a platform for the studies of the synergetic catalytic effects between different oxide substrates and metals. I further fabricated hollow mesoporous microspheres containing differently shaped noble metal nanocrystals. Hollow structures are strongly desired in many applications because of their high pore volumes, surface areas, and possible light-trapping effect. In my study, the hollow structures were obtained by simply dispersing polystyrene (PS) nanospheres into the precursor solution for aerosol spray. The PS spheres were removed by thermal calcination to produce hollow mesoporous microspheres. In my first study, the noble metal salts were dissolved in the precursor solutions, and the noble metal nanoparticles were obtained through thermal calcination. In this way, the size and shape of the metal nanoparticles cannot be well controlled. In my second study, I first grew noble metal nanocrystals and then incorporated them into the oxide supports. This preparation route allowed me to incorporate metal nanocrystals with controlled sizes, shapes, and compositions into the oxide matrices. The metal nanocrystals I used in this experiment included Pd nanocubes, Au nanorods, and Au core--Pd shell nanorods. These nanocrystals were functionalized with thiol-terminated methoxypoly(ethylene glycol) . The surface functionalization allowed them to adsorb on the PS spheres. After thermal calcination, the noble metal nanocrystals were left inside and adsorbed on the inner surface of the hollow mesoporous metal oxide microspheres. I investigated the catalytic activities of the Pd nanocube-embedded hollow mesoporous TiO2 and ZrO2 microspheres for the reduction of 4-nitrophenol to 4-aminophenol. I also examined the recyclability of the Pd nanocube-embedded hollow mesoporous ZrO2 microsphere catalysts. The results showed that the combination of the noble metal nanocrystals and oxides prevents the aggregation of the nanostructures and reduces the loss of the catalysts during the recycling processes, leading to the remarkable recyclability of the hybrid catalyst. This method for the preparation of noble metal nanostructure-embedded hollow mesoporous oxide microspheres can greatly facilitate the investigation on the catalytic properties of noble metal nanocrystal and metal oxide hybrid nanostructures and therefore guide the design and fabrication of high-performance catalysts. Last but not least, I investigated the magnetic mesoporous microspheres to enable a better recyclability of the mesoporous oxide catalysts. Both magnetic nanoparticle-included mesoporous metal oxides and mesoporous magnetic oxides were presented. The successfully syntheses of these microspheres will greatly improve the catalytic performance of the noble metal nanoparticle-loaded mesoporous oxide microspheres.

  5. Synthesis and applications of hierarchically porous metal and metal oxide monolithic materials

    NASA Astrophysics Data System (ADS)

    Sayler, Franchessa Maddox

    A nanocasting method for synthesizing a broad range of hierarchically porous, high surface area metal and metal oxide monolithic materials was developed. The importance of a well-connected hard template was established based on conductivity measurements. A hierarchically porous, silica monolith prepared with 7% ocadecyltrimethylammonium bromide was found to be the optimum silica template. Several different factors were found to regulate how well the silica template was replicated. When the connectivity of the silica template, contents of the metal salt solution, impregnation method, temperature, atmosphere, and template removal are all controlled, a good replica of the original silica monolith can be attained in different metals or metal oxides. These metal and metal oxide monoliths were used in catalysis and liquid chromatography.

  6. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  7. Mesoporous Mn- and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation.

    PubMed

    Vickers, Susan M; Gholami, Rahman; Smith, Kevin J; MacLachlan, Mark J

    2015-06-01

    New precious-metal-free mesoporous materials were investigated as catalysts for the complete oxidation of methane to carbon dioxide. Mesoporous cobalt oxide was first synthesized using KIT-6 mesoporous silica as a hard template. After removal of the silica, the cobalt oxide was itself used as a hard template to construct cerium oxide/cobalt oxide composite materials. Furthermore, cerium oxide/cobalt oxide composite materials doped with manganese and lanthanum were also prepared. All of the new composite materials retained the hierarchical long-range order of the original KIT-6 template. Temperature-programmed oxidation measurements showed that these cerium oxide/cobalt oxide and doped cerium oxide/cobalt oxide materials are effective catalysts for the total oxidation of methane, with a light-off temperature (T50%) of ?400 C observed for all of the nanostructured materials. PMID:26000732

  8. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  9. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  10. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

    PubMed

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-04-15

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance. PMID:22018872

  11. Absolute Dimensions of the Metallic-line Eclipsing Binary V501 Monocerotis

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Sandberg Lacy, Claud H.; Pavlovski, Kreimir; Fekel, Francis C.; Muterspaugh, Matthew W.

    2015-11-01

    We report extensive high-resolution spectroscopic observations and V-band differential photometry of the slightly eccentric 7.02 day detached eclipsing binary V501 Mon (A6m+F0), which we use to determine its absolute dimensions to high precision (0.3% for the masses and 1.8% for the radii, or better). The absolute masses, radii, and temperatures are MA = 1.6455 0.0043 M?, RA = 1.888 0.029 R?, and {T}{{eff}}{{A}} = 7510 100 K for the primary and MB = 1.4588 0.0025 M?, RB = 1.592 0.028 R?, and TeffB = 7000 90 K for the secondary. Apsidal motion has been detected, to which General Relativity contributes approximately 70%. The primary star is found to be a metallic-line A star. A detailed chemical analysis of the disentangled spectra yields abundances for more than a dozen elements in each star. Based on the secondary, the system metallicity is near solar: [Fe/H] = +0.01 0.06. Lithium is detected in the secondary but not in the primary. A comparison with current stellar evolution models shows a good match to the measured properties at an age of about 1.1 Gyr.

  12. Ion beam mixing of selected binary systems of metals of different crystalline structures

    NASA Astrophysics Data System (ADS)

    Meissner, J.; Kopitzki, K.; Mertler, G.; Peiner, E.

    Multilayered samples of 9 binary metal systems of different overall composition were irradiated at LN 2-temperature by 400 keV Kr +-ions to doses ranging from 1 10 15 to 2 10 16 ions/cm 2. Each metal combination was chosen to consist of components of different crystalline structure. The samples were analyzed by in situ X-ray diffraction using a Seemann-Bohlin arrangement. The experiments lead to the following results: he systems Ag-Cr and Cu-W which are immiscible in a conventional manner were found to be immiscible by ion beam mixing, too. The same behaviour was observed for the systems Ag-Nb and Cu-Os with a vanishingly small solid solubility of one of the components in the other one. The systems Au-Ru and Au-W for which a negligible small miscibility is reported, form Ru-rich and W-rich metastable phases during irradiation, respectively.- The "Structural Difference Rule for Amorphous Alloy Formation" by Liu, Johnson, and Nicolet was verified for systems which form intermetallic compounds.

  13. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    SciTech Connect

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  14. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide.

  15. Activation of flue gas nitrogen oxides by transition metal complexes

    SciTech Connect

    Miller, M.E.; Finseth, D.H.; Pennline, H.W.

    1987-01-01

    Sulfur and nitrogen oxides are major flue gas pollutants released by coal-fired electric power plants. In the atmosphere these oxides are converted to sulfuric and nitric acids, which contribute to the acid rain problem. Most of the nitrogen oxides present in coal-derived flue gas exist as the relatively inert and water-insoluble nitric oxide (NO), thus presenting a difficult removal problem. We present preliminary studies intended to establish basic homogeneous chemistry of transition metal complexes with nitrogen oxides. The transition metals considered in this work are volatile carbonyl complexes. The metal carbonyls took up nitric oxide homogeneously in the gas phase. Iron required uv light for reaction with NO, but the same result is expected with the application of heat. Metal carbonyls also reacted with nitrogen dioxide but produced polynuclear metal species. Oxygen did not attack the carbonyl or nitrosyl complexes. Results indicate high potential for NO/sub x/ removal from stack gases by sorption onto supported metal carbonyl complexes. The solid form allows ease in separation from the flue gas. Regeneration of the sorbent might be achieved by treating with CO to liberate NO/sub x/ by displacement or by heating to decompose and drive off NO/sub x/.

  16. Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.

    1977-01-01

    Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.

  17. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  18. Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior

    NASA Astrophysics Data System (ADS)

    Goldfarb, I.; Miao, F.; Yang, J. Joshua; Yi, W.; Strachan, J. P.; Zhang, M.-X.; Pickett, M. D.; Medeiros-Ribeiro, G.; Williams, R. Stanley

    2012-04-01

    We characterized the conduction mechanisms in thin sputtered films of three representative binary Me-O (Me=Ta, W, and Nb) systems as a function of oxygen content, by combining in situ chemical state and electronic band structure studies from X-ray photoemission with temperature-dependent transport measurements. Despite certain differences, these amorphous films all displayed Fermi glass behavior following an oxidation-induced transition from metallic to hopping conduction, down to a sub-percolation threshold. The electron localization estimated from the band structure was in good agreement with that from the transport measurements, and the two were used to construct phase diagrams of conduction in the degree of oxidation-conductivity coordinates, which should prove important in the design of resistive switching and other electronic devices.

  19. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  20. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  1. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  2. FUNCTIONALIZED METAL OXIDE NANOPARTICLES: ENVIRONMENTAL TRANSFORMATIONS AND ECOTOXICITY

    EPA Science Inventory

    This study will provide fundamental information on alterations in the surface chemistry of commercially important functionalized metal oxide NPs under environmentally relevant oxidative and reductive conditions, as well as needed data on the inherent and photo-enhanced toxicit...

  3. Adsorption/Oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite.

    PubMed

    Kong, Shuqiong; Wang, Yanxin; Zhan, Hongbin; Yuan, Songhu; Yu, Mei; Liu, Mingliang

    2014-02-01

    Nanoscale Fe-Mn binary oxides loaded on zeolite (NIMZ) is synthesized and characterized. The as-synthesized adsorbent is amorphous with 126 m2/g surface area; it is effective for the adsorption of both As(III) and As(V) in synthetic groundwater. It has high adsorption capacities of 296.23 and 201.10 mg/g for As(III) and As(V), respectively. For the adsorption of 2 mg/L arsenic, the aqueous concentration quickly decreases to less than 10 /microg/L within 30 min. During the adsorption of As(III), the in-aqueous measurement of As(V) shows a low concentration in the initial stage and disappears afterward. The fraction of As(V) on NIMZ gradually increases with time, proving the oxidation of As(III). The adsorption of As(III) and As(V) decreases with increasing pH. The anions of SiO3(2-), H2PO4(-), and HCO3(-) significantly compete with arsenic for the adsorption sites. The innersphere surface complexes are formed by As(III) or As(V) with the hydroxyl groups on the surface of NIMZ. PMID:24645545

  4. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1991-01-01

    We have completed a large number of experiments which examine the release of MnO{sub 2}-bound Co, Ni, and Cu. Our work has focused upon the following areas: (1) competitive adsorption among the three toxic metals and Mn(II); (2) toxic metal release upon addition of low MW organic reductants and complexants; and (3) toxic metal release upon addition of natural organic matter-rich surface waters and IHSS organic matter reference material.

  5. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.

    PubMed

    Shan, Chao; Tong, Meiping

    2013-06-15

    Magnetic nanoparticles (MNPs) modified simultaneously with amorphous Fe and Mn oxides (Mag-Fe-Mn) were synthesized to remove arsenite [As(III)] from water. Mag-Fe-Mn particles were fabricated through heterogeneous nucleation technique by employing the maghemite as the magnetic core and Fe-Mn binary oxide (FMBO) as the coating materials. Powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy were utilized to characterize the hybrid material. With a saturation magnetization of 23.2 emu/g, Mag-Fe-Mn particles with size of 20-50 nm could be easily separated from solutions with a simple magnetic process in short time (within 5 min). At pH 7.0, 200 ?g/L of As(III) could be easily decreased to below 10 ?g/L by Mag-Fe-Mn particles (0.1 g/L) within 20 min. As(III) could be effectively removed by Mag-Fe-Mn particles at initial pH range from 4 to 8 and the residual As was completely oxidized to less toxic arsenate [As(V)]. The co-occurring redox reactions between Mn oxide and As(III) was confirmed by XPS analysis. Chloride, sulfate, bicarbonate, and nitrate at common concentration range had negligible influence on As(III) removal, whereas, silicate and phosphate reduced the As(III) removal by competing with arsenic species for adsorption sites. As(III) removal was not obviously affected by natural organic matter (up to 8 mg/L as TOC). Mag-Fe-Mn could be regenerated with ternary solution of NaOH, NaCl, and NaClO. Throughout five consecutive cycles, the adsorption and desorption efficiencies maintained above 98% and 87%, respectively. Mag-Fe-Mn had a larger adsorption capacity for As(III) (47.76 mg/g) and could remove trace As(III) more thoroughly than MNPs modified solely with either Fe or Mn oxide due to the synergistic effect of the coating Fe and Mn oxides. This research extended the potential applicability of FMBO to a great extent and provided a convenient approach to efficiently remove trace As(III) from water. PMID:23587265

  6. Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability

    NASA Technical Reports Server (NTRS)

    Baird, J.; Havemann, R. H.; Fults, R. D.

    1973-01-01

    The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.

  7. Interactions of hydrogen isotopes and oxides with metal tubes

    SciTech Connect

    Longhurst, G. R.; Cleaver, J.

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  8. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  9. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  10. Catalytic oxidation of dye wastewater by metal oxide catalyst and granular activated carbon

    SciTech Connect

    Li, S.H.; Lai, C.L.

    1999-05-01

    Bench experiments were conducted to investigate the catalytic oxidation of dye wastewater by metal oxides. The catalytic oxidation was carried out in an air fluidized-bed reactor and was assisted by V{sub 2}O{sub 5} as catalyst, granular activated carbon (GAC), and hydrogen peroxide. The experimental results indicated that, in the present oxidation process, both chemical and physical actions took place which are distinctly different from the decomposition of dyes involved in previous research. This may account for the high efficiency of the GAC catalytic oxidation method in color and chemical oxygen demand (COD) reductions of dye wastewater. An adsorption/oxidation hypothesis was proposed to account for the catalytic oxidation. Test runs were performed to determine the optimal operating conditions and amounts of metal oxide catalyst, GAC, and H{sub 2}O{sub 2}.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  12. Fuel management studies of small metal and oxide LMR's

    SciTech Connect

    Khalil, H.; Fujita, E.K.; Yang, S.; Orechwa, Y.

    1986-01-01

    Fuel-cycle analyses performed at Argonne National Laboratory to evaluate and compare the neutronic performance characteristics of small oxide- and metal-fueled LMR's are described. Specific consideration is given to those analyses concerned with optimization of core and blanket configurations, selection of fuel residence time and refueling interval, determination of control rod worths and requirements, development of in-core fuel management strategy, and evaluation of performance characteristics both for startup cycles and for the equilibrium state reached via repeated recycle of discharged fuel. Differences in the computed performance parameters of oxide and metal cores, arising from basic differences in their neutronic characteristics, are identified and discussed. Metal-fueled cores are shown to offer some important performance advantages over oxide cores for small LMR's because of their harder spectrum, superior neutron economy, and greater breeding capacity. These advantages include smaller fissile and heavy metal loadings, lower control-system requirements, and greater adaptability to changes in fuel management scenarios.

  13. Emerging applications of liquid metals featuring surface oxides.

    PubMed

    Dickey, Michael D

    2014-11-12

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide "skin" enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  14. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  15. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces. PMID:26423076

  16. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  17. Multilayer metal/metal-oxide diffractive structure for photonic temperature sensing.

    PubMed

    Athanasekos, Loukas; Vasileiadis, Miltiadis; Tsigara, Anna; Kaminska, Eliana; Piotrowska, Anna; Alexandropoulos, Dimitris; Sigalas, Michail M; Vainos, Nikos A

    2010-12-01

    We designed and fabricated multilayer metal/metal-oxide surface relief diffractive grating structures by growing alternating Pt and SnO(x) layers. Optical interrogation at 633 nm reveals the temperature dependence of their reflection and transmission diffractive effects. This function is explored here in the context of a remote, spatially localized, photonic temperature sensing operation, achieving sensitivity of 10% per C for the zeroth-order in the transmission mode. The experimental demonstration is found to be in good agreement with the results of rigorous coupled wave analysis of the composite metal/metal-oxide element. PMID:21124593

  18. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W. (Oak Ridge, TN); Holder, John D. (Knoxville, TN); Pasto, Arvid E. (Oak Ridge, TN)

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  19. A high throughput approach to quantify protein adsorption on combinatorial metal/metal oxide surfaces using electron microprobe and spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Byrne, T.; Lohstreter, L.; Filiaggi, M. J.; Bai, Zhijun; Dahn, J. R.

    2008-09-01

    Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary films of Al 1-xTi x and Al 1-xNb x (0 ? x ? 1) and corresponding pure element films were produced on glass substrates using a unique magnetron sputtering technique. Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. X-ray diffraction revealed that the binary films have crystalline phases present near the ends of the compositional gradient with an amorphous region throughout the interior of the gradient. X-ray photoelectron spectroscopy provided the surface chemistry along the binary films and showed that Al 2O 3 preferentially formed at the surface. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in excellent agreement for all films. This suggests that this combinatorial materials approach combined with these state-of-the-art, automated high throughput instruments provides a novel way to accurately monitor protein adsorption taking place at the surfaces of these metal/metal oxide materials.

  20. Refined Metallicity Indices for M Dwarfs Using the SLoWPoKES Catalog of Wide, Low-mass Binaries

    NASA Astrophysics Data System (ADS)

    Dhital, Saurav; West, Andrew A.; Stassun, Keivan G.; Bochanski, John J.; Massey, Angela P.; Bastien, Fabienne A.

    2012-03-01

    We report the results from spectroscopic observations of 113 ultra-wide, low-mass binary systems, largely composed of M0-M3 dwarfs, from the SLoWPoKES catalog of common proper motion pairs identified in the Sloan Digital Sky Survey. Radial velocities of each binary member were used to confirm that they are comoving and, consequently, to further validate the high fidelity of the SLoWPoKES catalog. Ten stars appear to be spectroscopic binaries based on broad or split spectral features, supporting previous findings that wide binaries are likely to be hierarchical systems. We measured the H? equivalent width of the stars in our sample and found that components of 81% of the observed pairs have similar H? levels. The difference in H? equivalent width among components with similar masses was smaller than the range of H? variability for individual objects. We confirm that the Lpine et al. ?-index traces iso-metallicity loci for most of our sample of M dwarfs. However, we find a small systematic bias in ?, especially in the early-type M dwarfs. We use our sample to recalibrate the definition of ?. While representing a small change in the definition, the new ? is a significantly better predictor of iso-metallicity for the higher-mass M dwarfs.

  1. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  2. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  3. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    SciTech Connect

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast to FeF{sub 2}, no continuous Cu network was observed in the lithiated CuF{sub 2}; rather, the converted Cu segregates to large particles (5-12 nm in diameter) during the first discharge, which may be partially responsible for the lack of reversibility in the CuF{sub 2} electrode.

  4. Metastable phases formed by ion beam mixing of binary metal systems with positive heats of formation

    NASA Astrophysics Data System (ADS)

    Peiner, E.; Kopitzki, K.

    1988-08-01

    Multilayered samples of ten binary metal systems of different overall compositions were bombarded at 77 K by 400 keV Kr +-ions. All systems have positive heats of formation, which means that in thermal equilibrium the miscibility in the solid state is small. The samples were analysed by in situ X-ray diffraction using a Seemann-Bohlin arrangement. The experiments led to the following results: - For the systems Au-Rh, Cu-Rh, and Cu-Ir, whose components all have fee structures, continuous series of single phase metastable fcc solid solutions are produced by ion beam mixing. - For the systems Au-Ir, Ag-Ir, and Ag-Rh, whose components all have fee-structures, and for the systems Au-Os, Au-Ru, Ag-Os, and Ag-Ru, where one component has fcc and the other has hcp structure, an extension of the terminal solid solubilities is obtained by ion irradiation. - Amorphous phase formation occurred during irradiation of the samples Au 50Ir 50, Au 70Os 30, and Au 49Ru 51. The dependence of the ion induced miscibility on the magnitude of the heat of formation is discussed.

  5. Total oxidation catalysis over supported metals

    SciTech Connect

    Carberry, J.J.

    1985-12-01

    In 1962 the author selected Pt-catalyzed CO oxidation as a model catalytic reaction to evaluate the spinning basket catalytic reactor concept. That simple oxidation reaction was, then, incidental to the major objective. The spinning basket catalytic reactor is now a rather conventional reality. The simple test reaction has proved to be of awesome complexity, revealing as it does pathological kinetic behavior, apparent structure sensitivity, and oscillatory phenomena of evident diversity of form, frequency, and amplitude. 37 references, 8 figures.

  6. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine residues through ROS scavenging. The present results suggest that MTs are excellent markers of metal stress, but not of oxidative stress. PMID:22854745

  7. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  8. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  9. Deposition of Metal Oxide Films from Metal-EDTA Complexes by Flame Spray Technique

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sekiya, Tetsuo; Toyama, Ayumu; Hasebe, Yasuhiro; Nakamura, Atsushi; Noguchi, Masahiro; Li, Yu; Ohshio, Shigeo; Akasaka, Hiroki; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2014-06-01

    R2O3 (R = Y, Eu, Er) metal oxides were synthesized from metal-ethylenediaminetetraacetic acid (EDTA) complexes using a flame spray technique. As this technique enables high deposition rates, films with thickness of several tens of micrometers were obtained. Films of yttria, europia, and erbia phase were synthesized on stainless-steel substrates with reaction assistance by H2-O2 combustion gas. The oxide films consisted of the desired crystalline phase with micropores. The porosity of the films was in the range of 6-15%, varying with the metal used. These results suggest that the true density of the metal oxide obtained from metal-EDTA powder through the thermal reaction process plays an important role in achieving film with the desired porosity.

  10. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  11. Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three-Layer Perovskite Structure.

    PubMed

    Oshima, Takayoshi; Eguchi, Miharu; Maeda, Kazuhiko

    2016-02-01

    Metal oxide nanosheets having a three-layer perovskite structure were studied as photocatalysts for water oxidation in the presence of IO3 (-) as a reversible electron acceptor. This work examined the effects of the lateral dimensions and composition of the nanosheets as well as metal oxide co-catalysts deposited on the restacked nanosheets. Depositing metal oxides capable of promoting reduction reactions on the nanosheets were found to promote the water oxidation activity. In contrast, the lateral dimensions and the degree of crystallinity of the nanosheets had little effect on the activity. Experimental results demonstrated that the reduction of IO3 (-) is the rate-limiting step in this reaction and that nanosheets with less distorted structures are advantageous with regard to increasing both light absorption and the mobility of photoexcited charge carriers. PMID:26733314

  12. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  13. A novel method for metal oxide nanowire synthesis.

    PubMed

    Rackauskas, Simas; Nasibulin, Albert G; Jiang, Hua; Tian, Ying; Kleshch, Victor I; Sainio, Jani; Obraztsova, Elena D; Bokova, Sofia N; Obraztsov, Alexander N; Kauppinen, Esko I

    2009-04-22

    Nanowires (NWs) of metal oxides (Fe(2)O(3), CuO, V(2)O(5) and ZnO) were grown by an efficient non-catalytic economically favorable method based on resistive heating of pure metal wires or foils at ambient conditions. The growth rate of iron oxide NWs exceeds 100 nm s(-1). Produced NWs were typically 1-5 microm long with diameters from 10 to 50 nm. The produced metal oxide NWs were characterized by means of SEM, TEM, EDX, XPS and Raman techniques. The field emission measurements from the as-produced CuO NWs were found to have a threshold field as low as 4 V microm(-1) at 0.01 mA cm(-2). The formation mechanism of the NWs is discussed. PMID:19420573

  14. Engineering metal oxide structures for efficient photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Concina, Isabella; Selopal, Gurpreet S.; Milan, Riccardo; Vomiero, Alberto; Sberveglieri, Giorgio

    2014-03-01

    Metal oxide-based photoanodes are critical components of dye sensitized solar cells (DSSCs), which are photoelectrochemical cells for the conversion of solar energy, promising to have several benefits as compared with their traditional counterparts. A careful engineering of the wide band gap metal oxide composing the photoanode, as well as their process design, is strategic for improving device performances and for planning a near future production scale up, especially devoted to reducing the environmental impact of the device fabrication. Herein, we present the application of ZnO hierarchical structures as efficient materials to be applied as photoanodes in DSSC, in the perspective of looking for alternative to TiO2 nanoparticles, currently the most exploited metal oxide in these devices.

  15. Electronic structures of two-dimensional metallic oxides and bronzes

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Motta, N.; Marcus, J.; Drouard, S.; Balaska, B.

    2001-06-01

    The electronic structures of some molybdenum and tungsten oxides or bronzes exhibiting Peierls transitions are investigated at room temperature. The detection of a weak conduction band, well separated from a large valence band, evidences the metallic character of each oxide. The distributions of the valences of the different transition metals are analyzed by XPS. In each oxide, the presence of atleast two contributive components to the main core levels reveals a mixed valence state of the transition metal. But the proportions of the different components do not reflect the distribution of the cationic valences, as expected from the crystallographic structures. To understand this disagreement, we suggest that two alternative ways, including or rejecting a screening effect generated by the conduction electrons contribute to the photoemission processes and alter the real distribution of the cationic charges.

  16. ON THE ORIGIN OF THE METALLICITY DEPENDENCE IN DYNAMICALLY FORMED EXTRAGALACTIC LOW-MASS X-RAY BINARIES

    SciTech Connect

    Ivanova, N.; Avendano Nandez, J. L.; Sivakoff, G. R.; Fragos, T.; Kim, D.-W.; Fabbiano, G.; Lombardi, J. C.; Voss, R.

    2012-12-01

    Globular clusters (GCs) effectively produce dynamically formed low-mass X-ray binaries (LMXBs). Observers detect {approx}100 times more LMXBs per stellar mass in GCs compared to stars in the fields of galaxies. Observationally, metal-rich GCs are about three times more likely to contain an X-ray source than their metal-poor counterparts. Recent observations have shown that this ratio holds in extragalactic GCs for all bright X-ray sources with L{sub X} between 2 Multiplication-Sign 10{sup 37} and 5 Multiplication-Sign 10{sup 38} erg s{sup -1}. In this Letter, we propose that the observed metallicity dependence of LMXBs in extragalactic GCs can be explained by the differences in the number densities and average masses of red giants in populations of different metallicities. Red giants serve as seeds for the dynamical production of bright LMXBs via two channels-binary exchanges and physical collisions-and the increase of the number densities and masses of red giants boost LMXB production, leading to the observed difference. We also discuss a possible effect of the age difference in stellar populations of different metallicities.

  17. Fluoride removal from aqueous solution by Al(III)-Zr(IV) binary oxide adsorbent

    NASA Astrophysics Data System (ADS)

    Zhu, Jiuya; Lin, Xiaoyan; Wu, Pengwei; Zhou, Qiusheng; Luo, Xuegang

    2015-12-01

    In this study, a novel binary oxide adsorbent of Al2O3-ZrO2 was prepared via coprecipitation followed by calcination method, and the calcination temperatures were investigated. The adsorbent was characterized by XRD, EDX and XPS. The batch adsorption experiments were carried out at different parameters, such as solution pH, adsorbent dose, contact time, initial fluoride concentration and adsorption temperature, to evaluate the fluoride removal performance. The results showed that the adsorption isotherm was better described by the linear Langmuir model, and a maximum adsorption capacity was 114.54 mg/g. The adsorption kinetics was well fitted by the linear pseudo-second-order, and the correlation coefficient value (R2) was 0.997. The thermodynamic parameters of ?H0, ?S0 and ?G0 were calculated, which showed that the fluoride adsorption process was spontaneous and exothermic. And the possible adsorption mechanism of the adsorbent for fluoride could involve the ligand-exchange and ion-exchange based on the results in the study.

  18. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    NASA Astrophysics Data System (ADS)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 ?M) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 ?M U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 ?M U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 ?M) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (?G'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 ?M) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain TPSY, was also capable of nitrate- dependent U(IV) oxidation (8 ?M over 24 hours, pseudo first order rate constant of 0.12 0.02 hr-1) in washed cell suspensions. Further biochemical investigation of nitrate-dependent U(IV) oxidation in strain TPSY revealed the expression of several putative high molecular weight proteins specific to this metabolism. Together with the previously described metabolic ability of Geobacter metallireducens (Finneran et al. 2002) and Thiobacillus denitrificans (Beller 2005), these data indicate that anaerobic, metal oxidation may be a ubiquitous microbial metabolism.

  19. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  20. OXIDATION BEHAVIOR OF WELDED AND BASE METAL UNS N06025

    SciTech Connect

    Pint, Bruce A; Paul, Larry D.

    2007-01-01

    The oxidation behavior of specimens containing tungsten inert gas welds of UNS N06025 (NiCrFeAlY) was investigated in air for up to 5,000h at 900 -1000 C and 1,000h at 1100 -1200 C. In general, the microstructure was very homogeneous in the weld with smaller carbides and the Al2O3 penetrations were similar or smaller compared to those formed in the base metal. Above 1000 C, significant spallation was observed and Al and Cr depletion in the metal was observed to a similar extent in the weld and base metal. The maximum internal oxidation depth of the base metal at 900 and 1100 C was lower than several other commercial Ni-base alloys.

  1. Progress in base-metal water oxidation catalysis.

    PubMed

    Parent, Alexander Rene; Sakai, Ken

    2014-08-01

    This minireview provides a brief overview of the progress that has been made in developing homogeneous water oxidation catalysts based on base metals (manganese, iron, cobalt, nickel, and copper) from the 1990s to mid-2014. The impact of each contribution is analyzed, and opportunities for further improvement are noted. In addition, the relative stabilities of the base-metal catalysts that have been reported are compared to illustrate the importance of developing more robust catalytic systems by using these metals. This manuscript is intended to provide a firm foundation for researchers entering the field of water oxidation based on base metals and a useful reference for those currently involved in the field. PMID:25066264

  2. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  3. Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles.

    PubMed

    Jimnez-Rojo, Noemi; Lete, Marta G; Rojas, Elena; Gil, David; Valle, Mikel; Alonso, Alicia; Moya, Sergio E; Goi, Flix M

    2015-10-01

    We have studied the effect of adding lipid nanovesicles (liposomes) on the aggregation of commercial titanium oxide (TiO2), zinc oxide (ZnO), or cerium oxide (CeO2) nanoparticles (NPs) suspensions in Hepes buffer. Liposomes were prepared with pure phospholipids or mixtures of phospholipids and/or cholesterol. Changes in turbidity were recorded as a function of time, either of metal nanoparticles alone, or for a mixture of nanoparticles and lipidic nanovesicles. Lipid nanovesicles markedly decrease the NPs tendency to sediment irrespective of size or lipid compositions, thus keeping the metal oxide NPs in suspension. Cryo-electron microscopy, fluorescence anisotropy of TMA-DPH and general polarization of laurdan failed to reveal any major effect of the NPs on the lipid bilayer structure or phase state of the lipids. The above data may help in developing studies of the interaction of inhaled particles with lung surfactant lipids and alveolar macrophages. PMID:26301898

  4. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Mor, Ren; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La1-xSrxBO3 perovskites and La2-xSrxBO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  5. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  6. The Strength of the Metal. Aluminum Oxide Interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1984-01-01

    The strength of the interface between metals and aluminum oxide is an important factor in the successful operation of devices found throughout modern technology. One finds the interface in machine tools, jet engines, and microelectronic integrated circuits. The strength of the interface, however, should be strong or weak depending on the application. The diverse technological demands have led to some general ideas concerning the origin of the interfacial strength, and have stimulated fundamental research on the problem. Present status of our understanding of the source of the strength of the metal - aluminum oxide interface in terms of interatomic bonds are reviewed. Some future directions for research are suggested.

  7. Pb(II) distributions at biofilm-metal oxide interfaces.

    PubMed

    Templeton, A S; Trainor, T P; Traina, S J; Spormann, A M; Brown, G E

    2001-10-01

    The distribution of aqueous Pb(II) sorbed at the interface between Burkholderia cepacia biofilms and hematite (alpha-Fe(2)O(3)) or corundum (alpha-Al(2)O(3)) surfaces has been probed by using an application of the long-period x-ray standing wave technique. Attached bacteria and adsorbed organic matter may interfere with sorption processes on metal oxide surfaces by changing the characteristics of the electrical double layer at the solid-solution interface, blocking surface sites, or providing a variety of new sites for metal binding. In this work, Pb L(alpha) fluorescence yield profiles for samples equilibrated with 10(-7) to 10(-3.8) M Pb(II) were measured and modeled to determine quantitatively the partitioning of Pb(II) at the biofilm-metal oxide interface. Our data show that the reactive sites on the metal oxide surfaces were not passivated by the formation of a monolayer biofilm. Instead, high-energy surface sites on the metal oxides form the dominant sink for Pb(II) at submicromolar concentrations, following the trend alpha-Fe(2)O(3) (0001) > alpha-Al(2)O(3) (1102) > alpha-Al(2)O(3) (0001), despite the greater site density within the overlying biofilms. At [Pb] > 10(-6) M, significant Pb uptake by the biofilms was observed. PMID:11572932

  8. Method for continuous synthesis of metal oxide powders

    SciTech Connect

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  9. Sonochemical water splitting in the presence of powdered metal oxides.

    PubMed

    Morosini, Vincent; Chave, Tony; Virot, Matthieu; Moisy, Philippe; Nikitenko, Sergey I

    2016-03-01

    Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20 kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362 kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20 kHz, micrometric particles slowdown the sonolysis of water at 362 kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects. PMID:26558997

  10. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Wei; Li, Sheng-Han; Chen, Chieh-Wei; Shrotriya, Vishal; Yang, Yang

    2005-11-01

    We demonstrate bilayer source-drain (S-D) electrodes for organic thin film transistors (OTFT). The bilayer consists of a transition metal oxide (MoO3,WO3, or V2O5) layer and a metal layer. The metal oxide layer, directly contacting the organic semiconducting layer, serves as the charge-injection layer. The overcoated metal layer is responsible for the conduction of charge carriers. We found that the metal oxide layer coupled between pentacene and metal layers played an important role in improving the field-effect transistor characteristics of OTFTs. Devices with the bilayer S-D electrodes showed enhanced hole-injection compared to those with only metal electrode. High field-effect mobility of 0.4cm2/Vs and on/off current ratios of 104 were obtained in the pentacene based TFTs using the bilayer S-D electrodes at a gate bias of -40V. The improvement is attributed to the reduction in the contact barrier and the prevention of metal diffusion into the organic layer and/or unfavorable chemical reaction between the organic layer and the metal electrode.

  11. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  12. Structural characterization and photocatalytic activity of hollow binary ZrO 2/TiO 2 oxide fibers

    NASA Astrophysics Data System (ADS)

    Wu, Baochao; Yuan, Rusheng; Fu, Xianzhi

    2009-03-01

    The formation of hollow binary ZrO 2/TiO 2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO 2 and tetragonal phase of ZrO 2, and the introduction of ZrO 2 notably inhibits the growth of TiO 2 nanocrystallites. Although calcined at 575 C, all hollow ZrO 2/TiO 2 fibers exhibit higher surface areas (>113 m 2/g) than pure TiO 2 hollow fibers. The Pyridine adsorption on ZrO 2/TiO 2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO 2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.

  13. Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by metallic substrates.

    PubMed

    Fleming, Christopher; Long, De-Liang; McMillan, Nicola; Johnston, Jacqueline; Bovet, Nicolas; Dhanak, Vin; Gadegaard, Nikolaj; Kgerler, Paul; Cronin, Leroy; Kadodwala, Malcolm

    2008-04-01

    Transition metal oxides exhibit a rich collection of electronic properties and have many practical applications in areas such as catalysis and ultra-high-density magnetic data storage. Therefore the development of switchable molecular transition metal oxides has potential for the engineering of single-molecule devices and nanoscale electronics. At present, the electronic properties of transition metal oxides can only be tailored through the irreversible introduction of dopant ions, modifying the electronic structure by either injecting electrons or core holes. Here we show that a molybdenum(VI) oxide 'polyoxometalate' molecular nanocluster containing two embedded redox agents is activated by a metallic surface and can reversibly interconvert between two electronic states. Upon thermal activation two electrons are ejected from the active sulphite anions and delocalized over the metal oxide cluster cage, switching it from a fully oxidized state to a two-electron reduced state along with the concomitant formation of an S-S bonding interaction between the two sulphur centres inside the cluster shell. PMID:18654509

  14. Container Prevents Oxidation Of Metal Powder

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.

    1992-01-01

    Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.

  15. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 C and 100 C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  16. Modifying the catalytic and adsorption properties of metals and oxides

    NASA Astrophysics Data System (ADS)

    Yagodovskii, V. D.

    2015-11-01

    A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

  17. Dextran templating for the synthesis of metallic and metal oxide sponges

    NASA Astrophysics Data System (ADS)

    Walsh, Dominic; Arcelli, Laura; Ikoma, Toshiyuki; Tanaka, Junzo; Mann, Stephen

    2003-06-01

    Silver or gold-containing porous frameworks have been used extensively in catalysis, electrochemistry, heat dissipation and biofiltration. These materials are often prepared by thermal reduction of metal-ion-impregnated porous insoluble supports (such as alumina and pumice), and have surface areas of about 1 m2 g-1, which is typically higher than that obtained for pure metal powders or foils prepared electrolytically or by infiltration and thermal decomposition of insoluble cellulose supports. Starch gels have been used in association with zeolite nanoparticles to produce porous inorganic materials with structural hierarchy, but the use of soft sacrificial templates in the synthesis of metallic sponges has not been investigated. Here we demonstrate that self-supporting macroporous frameworks of silver, gold and copper oxide, as well as composites of silver/copper oxide or silver/titania can be routinely prepared by heating metal-salt-containing pastes of the polysaccharide, dextran, to temperatures between 500 and 900 C. Magnetic sponges were similarly prepared by replacing the metal salt precursor with preformed iron oxide (magnetite) nanoparticles. The use of dextran as a sacrificial template for the fabrication of metallic and metal oxide sponges should have significant benefits over existing technologies because the method is facile, inexpensive, environmentally benign, and amenable to scale-up and processing.

  18. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks

    PubMed Central

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  19. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe2 + and Fe3 + in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe2 + and Fe3 +), particularly for the case of pyrrhotite minerals.

  20. LDL oxidation by activated monocytes: characterization of the oxidized LDL and requirement for transition metal ions.

    PubMed

    Xing, X; Baffic, J; Sparrow, C P

    1998-11-01

    Monocytes can be activated by incubation with opsonized zymosan (Zop), and under these conditions can oxidize low density lipoprotein (LDL). We have characterized the biochemical changes in the lipoprotein after this oxidation. We found that monocyte-oxidized LDL has increased mobility on agarose gels, increased absorbance at 234 nm, increased content of lysophosphatidylcholine, and fluorescence at 430 nm when excited at 350 nm. All these features were somewhat less pronounced in monocyte-oxidized LDL than in LDL oxidized by 5 micrometer CuSO4. Under appropriate conditions, Zop-stimulated monocytes oxidized LDL to a form recognized by macrophage scavenger receptors. Monocytes stimulated by Zop produced superoxide and also oxidized LDL, whereas monocytes stimulated by phorbol ester produced slightly more superoxide but did not oxidize LDL. We found that the chelators EDTA and diethylenetriaminepentaacetic acid inhibited LDL oxidation by Zop-stimulated monocytes, implying a requirement for transition metal ions. We found that Zop contained approximately 5 nmol iron per mg, probably as Fe3+. Zop stripped of its iron supported superoxide production by monocytes, but did not support LDL oxidation. Furthermore, Fe2+ appeared in the medium when monocytes were incubated with Zop, but not with iron-stripped Zop. Taken together, these results imply that monocytes stimulated by Zop are able to oxidize LDL only because of contaminating iron in the commercial zymosan preparations. and requirement for transition metal ions. PMID:9799806

  1. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, G G

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  2. Stabilisation of metal ions in unusual oxidation states and electron dynamics in oxide glasses

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. I.; Prokof'ev, Alexandr I.; Bubnov, Nikolai N.

    1996-06-01

    The results of studies on the stabilisation of metal ions in unusual oxidation states in oxide glasses are surveyed. Attention is concentrated on the relation between the stabilisation of these ions and redistribution of the electron density, and on the disproportionation reactions accompanying it. The effect of reversible low-temperature disproportionation on niobium, titanium, vanadium, molybdenum, tungsten, and other ions is considered. The formation of metal clusters in oxide glasses is shown also to be associated with disproportionation. The bibliography includes 108 references.

  3. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  4. A novel microstructured metal-supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Fernández-González, R.; Hernández, E.; Savvin, S.; Núñez, P.; Makradi, A.; Sabaté, N.; Esquivel, J. P.; Ruiz-Morales, J. C.

    2014-12-01

    An innovative design, alternative to the conventional metal supported fuel cells (MSC) is proposed. This new design of Solid Oxide Fuel Cell (SOFC), comprises a 200 μm layer of a honeycomb-metallic framework with hexagonal cells which supports a 250 μm layer of electrolyte. Each hexagonal cell is further functionalized with a thin 5-10 μm of Ni-YSZ anode. This new design allows a reduction of ˜65% of the metallic supporting material, rendering performances over 300 mW cm-2 under pure hydrogen at 850 °C, with an OCV of ˜1.1 V.

  5. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  6. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    SciTech Connect

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  7. Dissolution of metal and metal oxide nanoparticles in aqueous media.

    PubMed

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-08-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. PMID:24832924

  8. Activation of carbon dioxide on metal and metal oxide surfaces

    SciTech Connect

    Tan, C.D.; Chuang, S.S.C.

    1995-12-31

    The environmental concern about the impact of CO{sub 2} has grown recently due to its rapidly increasing concentration. Deforestation strongly affects the natural reduction of CO{sub 2} by water into carbohydrates by photosynthesis. Industrial utilization of CO{sub 2} by heterogeneous catalytic reactions can be one of the effective ways to cut the CO{sub 2} level. The first step in catalytic reaction of CO{sub 2} is the adsorption. The objective of this study is to investigate the adsorption of CO{sub 2} on the Rh/Al{sub 2}O{sub 3} surfaces. Rh is selected for this study because of its unique activity to catalyze a number of CO{sub 2} related reactions. In situ infrared results show that CO{sub 2} adsorbed on the alumina oxide support as bidentate carbonate and non-coordinated carbon which are the dominant species during the CO{sub 2} adsorption.

  9. Effects of binary mixtures of inducers (toluene analogs) and of metals on bioluminescence induction of a recombinant bioreporter strain.

    PubMed

    Kong, In Chul

    2014-01-01

    This paper investigated the effects of binary mixtures of bioluminescence inducers (toluene, xylene isomers, m-toluate) and of metals (Cu, Cd, As(III), As(V), and Cr) on bioluminescence activity of recombinant (Pm-lux) strain KG1206. Different responses and sensitivities were observed depending on the types and concentrations of mixtures of inducers or metals. In the case of inducer mixtures, antagonistic and synergistic modes of action were observed, whereas metal mixtures showed all three modes of action. Antagonistic mode of action was most common for mixtures of indirect inducers, which showed bioluminescence ranging from 29% to 62% of theoretically expected effects (P(E)). On the other hand, synergistic mode of action was observed for mixtures of direct and indirect inducers, which showed bioluminescence between 141% and 243% of P(E). In the case of binary metal mixtures, bioluminescence activities were ranged from 62% to 75% and 113% to 164% of P(E) for antagonistic and synergistic modes of action, respectively (p-values 0.0001-0.038). Therefore, mixture effects could not be generalized since they were dependent on both the types and concentrations of chemicals, suggesting that biomonitoring may constitute a better strategy by investigating types and concentrations of mixture pollutants at contaminated sites. PMID:25313497

  10. Effects of Binary Mixtures of Inducers (Toluene Analogs) and of Metals on Bioluminescence Induction of a Recombinant Bioreporter Strain

    PubMed Central

    Kong, In Chul

    2014-01-01

    This paper investigated the effects of binary mixtures of bioluminescence inducers (toluene, xylene isomers, m-toluate) and of metals (Cu, Cd, As(III), As(V), and Cr) on bioluminescence activity of recombinant (Pm-lux) strain KG1206. Different responses and sensitivities were observed depending on the types and concentrations of mixtures of inducers or metals. In the case of inducer mixtures, antagonistic and synergistic modes of action were observed, whereas metal mixtures showed all three modes of action. Antagonistic mode of action was most common for mixtures of indirect inducers, which showed bioluminescence ranging from 29% to 62% of theoretically expected effects (P(E)). On the other hand, synergistic mode of action was observed for mixtures of direct and indirect inducers, which showed bioluminescence between 141% and 243% of P(E).In the case of binary metal mixtures, bioluminescence activities were ranged from 62% to 75% and 113% to 164% of P(E) for antagonistic and synergistic modes of action, respectively (p-values 0.00010.038). Therefore, mixture effects could not be generalized since they were dependent on both the types and concentrations of chemicals, suggesting that biomonitoring may constitute a better strategy by investigating types and concentrations of mixture pollutants at contaminated sites. PMID:25313497

  11. Metal Permeation into Multi-layered Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Ogata, Chikako; Koinuma, Michio; Hatakeyama, Kazuto; Tateishi, Hikaru; Asrori, Mohamad Zainul; Taniguchi, Takaaki; Funatsu, Asami; Matsumoto, Yasumichi

    2014-01-01

    Understanding the chemical and physical properties of metal/graphene oxide (M/GO) interfaces is important when GO is used in electronic and electrochemical devices because the metal layer must be firmly attached to GO. Here, permeation of metal from the surface into GO paper bulk at the M/GO interface was observed at room temperature for metals such as Cu, Ag, Ni, Au, and Pt. Cu, Ag, and Ni quickly permeated GO as ions into the bulk under humid conditions. At first, these metals changed to hydrated ions as a result of redox reactions (with reduction of GO) at the surface, and then permeated the interlayers. Au and Pt were observed to permeate GO as atoms into the GO bulk at room temperature, although the permeation rates were low. These surprising results are considered to be due to the presence of many defects and/or edges with oxygenated groups in the GO paper.

  12. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.

    PubMed

    Zhang, Gaosheng; Liu, Fudong; Liu, Huijuan; Qu, Jiuhui; Liu, Ruiping

    2014-09-01

    In our previous studies, a synthesized Fe-Mn binary oxide was found to be very effective for both As(V) and As(III) removal in aqueous phase, because As(III) could be easily oxidized to As(V). As(III) oxidation and As(V) sorption by the Fe-Mn binary oxide may also play an important role in the natural cycling of As, because of its common occurrence in the environment. In the present study, the respective role of Fe and Mn contents present in the Fe-Mn binary oxide on As(III) removal was investigated via a direct in situ determination of arsenic speciation using X-ray absorption spectroscopy. X-ray absorption near edge structure results indicate that Mn atoms exist in a mixed valence state of +3 and +4 and further confirm that MnOx (1.5 < x < 2) content is mainly responsible for oxidizing As(III) to As(V) through a two-step pathway [reduction of Mn(IV) to Mn(III) and subsequent Mn(III) to Mn(II)] and FeOOH content is dominant for adsorbing the formed As(V). No significant As(III) oxidation by pure FeOOH had been observed during its sorption, when the system was exposed to air. The extended X-ray absorption fine structure results reveal that the As surface complex on both the As(V)- and As(III)-treated sample surfaces is an inner-sphere bidentate binuclear corner-sharing complex with an As-M (M = Fe or Mn) interatomic distance of 3.22-3.24 . In addition, the MnOx and FeOOH contents exist only as a mixture, and no solid solution is formed. Because of its high effectiveness, low cost, and environmental friendliness, the Fe-Mn binary oxide would play a beneficial role as both an efficient oxidant of As(III) and a sorbent for As(V) in drinking water treatment and environmental remediation. PMID:25093452

  13. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  14. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  15. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  16. ADSORPTION OF TRACE METALS BY HYDROUS FERRIC OXIDE IN SEAWATER

    EPA Science Inventory

    The adsorption of trace metals by amorphous hydrous ferric oxide in seawater is studied with reference to simple model systems designed to isolate the factors which may have an effect on the isotherms. Results show that the complex system behaves in a remarkably simple way and th...

  17. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  18. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  19. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  20. CMOS array design automation techniques. [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  1. Molten-Metal Electrodes for Solid Oxide Fuel Cells

    SciTech Connect

    Jayakumar, A.; Vohs, J. M.; Gorte, R. J.

    2010-11-03

    Molten In, Pb, and Sb were examined as anodes in solid oxide fuel cells (SOFC) that operate between 973 and 1173 K. The results for these metals were compared with those reported previously for molten Sn electrodes. Cells were operated under “battery” conditions, with dry He or N2 flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the yttria-stabilized zirconia (YSZ)-electrolyte interface. In most cases, the open-circuit voltages (OCVs) were close to that based on equilibrium between the metals and their oxides. With Sn and In, the cell impedances increased dramatically at all temperatures after drawing current due to formation of insulating, oxide barriers at the electrolyte interface. Similar results were observed for Pb at 973 and 1073 K, but the impedance remained low even after PbO formation at 1173 K because this is above the melting temperature of PbO. Similarly, the impedances of molten Sb electrodes at 973 K were low and unaffected by current flow because of the low melting temperature of Sb{sub 2}O{sub 3}. The potential of using molten-metal electrodes for direct-carbon fuel cells and for energy-storage systems is discussed.

  2. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore »when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  3. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  4. Surface oxidation of metals by oxygen ion bombardment

    NASA Astrophysics Data System (ADS)

    Alov, Nikolai V.

    2007-03-01

    Surface oxidation of molybdenum, tungsten, niobium and tantalum by low-energy oxygen ion beams is investigated using X-ray photoelectron spectroscopy (XPS). Oxygen ion bombardment of molybdenum and tungsten surfaces leads to the formation of thin oxide films containing metals in oxidation states 4+, 5+ and 6+. At the initial stage of irradiation, rapid surface oxidation of molybdenum and tungsten was observed. At higher fluences the oxidation reaches saturation and the surface composition remains almost unchanged with increasing fluence. Oxygen ion bombardment of niobium and tantalum surfaces leads to the formation of thin oxide films containing niobium and tantalum in oxidation states 2+, 4+ and 5+. At the initial stage of irradiation, again rapid surface oxidation of niobium and tantalum was observed. At higher fluences the population of Nb2+ and Nb4+, Ta2+ and Ta4+ reaches a maximum and then begins to decrease. The population of Nb5+ and Ta5+ continues to increase and finally the entire oxide films consists of only Nb5+ and Ta5+, respectively.

  5. Investigation of Switching Phenomenon in Metal-Tantalum Oxide Interface.

    PubMed

    Yawar, Abbas; Park, Mi Ra; Hu, Quanli; Song, Woo Jin; Yoon, Tae-Sik; Choi, Young Jin; Kang, Chi Jung

    2015-10-01

    To investigate the nature of the switching phenomenon at the metal-tantalum oxide interface, we fabricated a memory device in which a tantalum oxide amorphous layer acted as a switching medium. Different metals were deposited on top of the tantalum oxide layer to ensure that they will react with some of the oxygen contents already present in the amorphous layer of the tantalum oxide. This will cause the formation of metal oxide (MOx) at the interface. Two devices with Ti and Cu as the top electrodes were fabricated for this purpose. Both devices showed bipolar switching characteristics. The SET and RESET voltages for the Ti top electrode device were ~+1.7 V and ~-2 V, respectively, whereas the SET and RESET voltages for the Cu top electrode device were ~+0.9 V and ~-0.9 V, respectively. In the high-resistance state (HRS) conduction, the mechanisms involved in the devices with Ti and Cu top electrodes were space-charge limited conduction (SCLC) and ohmic, respectively. On the other hand, in the low-resistance state (LRS), the Ti top electrode device undergoes SCLC at a high voltage and ohmic conduction at a low voltage, and the Cu top electrode again undergoes ohmic conduction. From the consecutive sweep cycles, it was observed that the SET voltage gradually decreased with the sweeps for the Cu top electrode device, whereas for the Ti top electrode device, the set voltage did not vary with the sweeps. PMID:26726372

  6. Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes.

    PubMed

    Rettie, Alexander J E; Chemelewski, William D; Emin, David; Mullins, C Buddie

    2016-02-01

    Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:?-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed. PMID:26758715

  7. Oxidic or metallic palladium: which is the active phase in pd-catalyzed aerobic alcohol oxidation?

    PubMed

    Grunwaldt, Jan-Dierk; Caravati, Matteo; Baiker, Alfons

    2006-12-28

    In situ X-ray absorption spectroscopy combined with on-line catalytic measurements using FT-IR spectroscopy unequivocally identified that metallic palladium is the more active phase in the aerobic oxidation of benzyl alcohol than palladium oxide. The aerobic oxidation of benzyl alcohol in cyclohexane at 50 degrees C was low over oxidized 0.5%Pd/Al2O3 and 5%Pd/Al2O3 catalysts. XANES and EXAFS showed that the catalysts in the as-received state were almost fully oxidized and no reduction of the palladium constituent was observed during time-on-stream. After in situ reduction by hydrogen-saturated cyclohexane, the catalysts were much more active (over 50 times) than before reduction. Both XANES and EXAFS uncovered that the palladium constituent was mainly in a reduced state under these conditions of high catalytic activity. This demonstrates that metallic palladium is the active phase for alcohol dehydrogenation. PMID:17181190

  8. Oxidative Dissolution of Transition Metals in a Liquid Phase. Role of Oxygen and of the Surface Oxide Layer

    NASA Astrophysics Data System (ADS)

    Lavrent'ev, I. P.; Khidekel', M. L.

    1983-04-01

    The results of recent studies of the oxidative dissolution of transition metals in a liquid phase are generalised, and an analysis of the role of molecular oxygen and of the oxide film on the metal surface in oxidation processes in donor-acceptor organic media is proposed. The prospects of oxidative dissolution as a direct (single-stage) method of preparation of transition metal complexes are examined. 115 references.

  9. Acute tellurium toxicity from ingestion of metal-oxidizing solutions.

    PubMed

    Yarema, Mark C; Curry, Steven C

    2005-08-01

    Tellurium is an element used in the vulcanization of rubber and in metal-oxidizing solutions to blacken or tarnish metals. Descriptions of human toxicity from tellurium ingestion are rare. We report the clinical course of 2 children who ingested metal-oxidizing solutions containing substantial concentrations of tellurium. Clinical features included vomiting, black discoloration of the oral mucosa, and a garlic odor to the breath. One patient developed corrosive injury to the esophagus secondary to the high concentration of hydrochloric acid in the solution. Both patients recovered without serious sequelae, which is typical of tellurium toxicity. An awareness of situations in which children may be exposed to tellurium and its clinical presentation may assist clinicians in the diagnosis of this rare poisoning. PMID:15995006

  10. Silatranes for binding inorganic complexes to metal oxide surfaces.

    PubMed

    Materna, Kelly L; Brennan, Bradley J; Brudvig, Gary W

    2015-12-21

    A ruthenium complex containing silatrane functional groups has been synthesized and covalently bound to a conductive metal oxide film composed of nanoparticulate ITO (nanoITO). The silatrane-derived siloxane surface anchors were found to be stable in the examined range of pH 2 to 11 in aqueous phosphate buffer, and the ruthenium complex was found to have stable electrochemical features with repeated electrochemical cycling. The non-coordinating properties of the silatrane group to metals, which facilitates synthesis of silatrane-labeled coordination complexes, together with the facile surface-binding procedure, robustness of the surface linkages, and stability of the electrochemical properties suggest that incorporating silatrane motifs into ligands for inorganic complexes provides superior properties for attachment of catalysts to metal oxide surfaces under aqueous conditions. PMID:26506505

  11. Integrated fab process for metal oxide EUV photoresist

    NASA Astrophysics Data System (ADS)

    Grenville, Andrew; Anderson, Jeremy T.; Clark, Benjamin L.; De Schepper, Peter; Edson, Joseph; Greer, Michael; Jiang, Kai; Kocsis, Michael; Meyers, Stephen T.; Stowers, Jason K.; Telecky, Alan J.; De Simone, Danilo; Vandenberghe, Geert

    2015-03-01

    Inpria is developing directly patternable, metal oxide hardmasks as robust, high-resolution photoresists for EUV lithography. Targeted formulations have achieved 13nm half-pitch at 35 mJ/cm2 on an ASML's NXE:3300B scanner. Inpria's second-generation materials have an absorbance of 20/μm, thereby enabling an equivalent photon shot noise compared to conventional resists at a dose lower by a factor of 4X. These photoresists have ~40:1 etch selectivity into a typical carbon underlayer, so ultrathin 20nm films are possible, mitigating pattern collapse. In addition to lithographic performance, we review progress in parallel advances required to enable the transition from lab to fab for such a metal oxide photoresist. This includes considerations and data related to: solvent compatibility, metals cross-contamination, coat uniformity, stability, outgassing, and rework.

  12. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (? Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  13. Phisicochemistry of alkaline-earth metals oxides surface

    NASA Astrophysics Data System (ADS)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  14. A metallic room-temperature oxide ion conductor.

    PubMed

    Heise, Martin; Rasche, Bertold; Isaeva, Anna; Baranov, Alexey I; Ruck, Michael; Schfer, Konrad; Pttgen, Rainer; Eufinger, Jens-Peter; Janek, Jrgen

    2014-07-01

    Nanoparticles of Bi3 Ir, obtained from a microwave-assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3 Ir and Bi3 IrOx (x?2) were investigated by X-ray diffraction, electron microscopy, and quantum-chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time- and temperature-dependent monitoring of the oxygen uptake in an oxygen-filled chamber shows that the activation energy for oxide diffusion (84?meV) is one order of magnitude smaller than that in any known material. Bi3 IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature. PMID:24866268

  15. Spectroscopic investigations of complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Cao, Jinbo

    In this dissertation, I present spectroscopic studies of several model electronic and magnetic materials. Compounds of interest include VO x nanoscrolls, VOHPO4·1/2H2O, and (La0:4Pr0:6)1:2Sr1:8Mn 2O7. These materials are attractive systems for the investigation of optical gap tuning, lattice and charge dynamics, spin-lattice-charge coupling, and hydrogen bonding effects. I measured the optical properties of VO x nanoscrolls and the ion-exchanged derivatives to investigate the lattice and charge degrees of freedom. Selected V-O-V stretching modes sharpen and redshift with increasing amine size, which are microscopic manifestations of strain. We observed bound carrier localization in the metal exchanged nanoscrolls, indicating they are weakly metallic in their bulk form. I also investigated the variable temperature vibrational properties of single crystals of the S = 1/2 Heisenberg antiferromagnet VOHPO4·1/2H 2O. In order to explain the activation and polarization dependence of the singlet-to-triplet gap in the far-infrared response, we invoke a dynamic Dzyaloshinskii-Moriya mechanism and we identify the low-energy phonons that likely facilitate this coupling. Vibrational mode splitting of VOHPO 4·1/2H2O also points toward a weak local symmetry breaking near 180 K, and the low-temperature redshift of V-O and H-O related modes demonstrates enhanced low-temperature hydrogen bonding. Finally, I measured the magneto-optical response of (La0:4Pr0:6)1:2 Sr1:8Mn2O7 to investigate the microscopic aspects of the magnetic field driven spin-glass insulator to ferromagnetic metal transition. Application of a magnetic field recovers the ferromagnetic state with an overall redshift of the electronic structure, growth of the bound carrier localization associated with ferromagnetic domains, development of a pseudogap, and softening of the Mn-O stretching and bending modes that indicate a structural change. By exploiting the electronic mechanisms, we can induce large high energy magnetodielectric contrast in (La0:4Pr 0:6)1:2Sr1:8Mn2O7. The dielectric contrast is over 100% near 0.8 eV at 4.2 K. Remnants of the transition also drive the high energy magnetodielectric effect at room temperature.

  16. Controlling phosphate releasing from poultry litter using stabilized Fe-Mn binary oxide nanoparticles.

    PubMed

    Xie, Wenbo; Zhao, Dongye

    2016-01-15

    Animal wastes contain high concentrations of phosphorus (P), most of which is lost into the environment due to uncontrolled release rates. Polysaccharide stabilized Fe-Mn binary oxide nanoparticles were prepared and tested for phosphate adsorption from water and for controlling leachability of P from poultry litter. A water soluble starch and carboxymethyl cellulose (CMC) were used as a stabilizer. Both the Freundlich and Langmuir models were able to adequately interpret the isotherm data. The Langmuir maximum capacity was determined at 252, 298 and 313mg-P/g for bare, CMC- and starch-stabilized nanoparticles, respectively. The presence of the stabilizers not only enhanced the sorption capacity, but facilitated delivery and dispersion of the nanoparticles in poultry litter (PL) and in soil. High phosphate sorption capacity was observed over a broad pH range of 4-9. FTIR analyses indicated that inner sphere surface complexation (Fe-O-P) was the key mechanism for the enhanced uptake of P. When applied to poultry litter, the stabilized nanoparticles reduced water leachable phosphate by >86% at a dose of 0.2g/L as Fe, and simultaneously, water leachable arsenic by >87-95%. Under conditions of simulated land application of PL, the nanoparticle amendment of PL reduced the water soluble P from 66% (for untreated PL) to 4.4%, and lowered the peak soluble P concentration from 300 to <20mg/L. By transferring the peak soluble P to the nanoparticle-bound P, the nanoparticles not only greatly reduce the potential runoff loss of P from PL, but also provide a long-term slow-releasing nutrient source. Fortuitously, the nanoparticle treatment was able to immobilize arsenic from PL. With excellent adsorption capacity, easy deliverability, low cost and environmental innocuousness, the stabilized Fe-Mn nanoparticles appear promising for controlling P releases from poultry litter or other animal wastes and for phosphate recovery from water. PMID:26442720

  17. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Niyogi, Som; Nadella, Sunita R; Wood, Chris M

    2015-08-01

    Metal binding to fish gills forms the basis of the biotic ligand model (BLM) approach, which has emerged as a useful tool for conducting site-specific water quality assessments for metals. The current BLMs are designed to assess the toxicity of individual metals, and cannot account for the interactive effects of metal mixtures to aquatic organisms including fish. The present study was designed mainly to examine the interactive effects of waterborne metals (Cd, Zn, Cu, Ag, and Ni) in specific binary combinations on short-term (3h) gill-metal binding and essential ion (Ca(2+) and Na(+)) uptake (a physiological index of toxicity) in fish, using juvenile freshwater rainbow trout (Oncorhynchus mykiss) as the model species. We hypothesized that binary mixtures of metals that share a common mode of uptake and toxicity (e.g., Cd and Zn - Ca(2+) antagonists, Cu and Ag - Na(+) antagonists) would reduce the gill binding of each other via competitive interactions and induce less than additive effects on ion transport. In addition, the mixture of metals that have different modes of uptake and toxicity (e.g., Cd and Cu, or Cd and Ni) would not exhibit any interactive effects either on gill-metal binding or ion transport. We found that both Zn and Cu reduced gill-Cd binding and vice versa, however, Ni did not influence gill-Cd binding in fish. Surprisingly, Ag was found to stimulate gill-Cu binding especially at high exposure concentrations, whereas, Cu had no effect on gill-Ag binding. The inhibitory effect of Cd and Zn in mixture on branchial Ca(2+) uptake was significantly greater than that of Cd or Zn alone. Similarly, the inhibitory effect of Cu and Ag in mixture on branchial Na(+) uptake was significantly greater than that of Cu or Ag alone. The inhibitory effects of Cd and Zn mixture on Ca(2+) uptake as well as Cu and Ag mixture on Na(+) uptake were found to follow the principles of simple additivity. In contrast, no significant additive effect on either Ca(2+) or Na(+) uptake was recorded in fish exposed to the mixture of Cd and Cu. Overall, we found that although the effects of metal mixture interactions on gill-metal binding did not always match with our original assumptions, the effects of metal mixtures on toxicity in fish were generally consistent with our predictions. The findings of the present study have important implications for improving the BLM approach to assess metal mixture toxicity in fish. PMID:26057931

  18. Solvated Electrons on Metal Oxide Surfaces

    SciTech Connect

    Zhao, Jin; Li, Bin; Onda, Ken; Feng, Min; Petek, Hrvoje

    2006-09-13

    An electron added to a solvent polarizes its surrounding medium to minimize the free energy. Such an electron with its polarization cloud, which we refer to as the solvated electron, is one of the most fundamental chemical reagents of significant experimental and theoretical interest. The structure and dynamics of solvated electrons in protic solvents have been explored ever since the discovery of intense blue coloration in solutions of alkali metals in ammonia.1-3 Because solvated electrons are the most fundamental chemical reagents as well as carriers of negative charge, substantial experimental and theoretical efforts have focused on elucidating their equilibrium structure and solvation dynamics in a variety of neat liquids.4,5 One of the most important but least explored environments for solvated electrons, namely, the two-dimensional liquid/solid and liquid/vacuum interfaces, is the subject of this review.

  19. Reactivity of platinum metal with organic radical anions from metal to negative oxidation states.

    PubMed

    Ghilane, Jalal; Guilloux-Viry, Maryline; Lagrost, Corinne; Simonet, Jacques; Hapiot, Philippe

    2007-05-23

    The reaction of platinum metal with an organic molecular radical anion leads to the formation of iono-metallic phases where Pt exists under negative oxidation states. This puzzling transformation of a "noncorrodible metal" was examined using localized electrochemical techniques in dimethylformamide containing different tetra-alkylammonium salts chosen as test systems. Our experiments demonstrate that the platinum metal is locally reduced as soon as the Pt faces relatively moderate reducing conditions, for example, when the Pt is used as a negative electrode or when the metal is in the presence of a reducing agent such as an organic radical anion. Scanning electrochemical microscopy (SECM) analysis, current-distance curves, and transient mode responses provide detailed descriptions of the reactivity of Pt to form negative oxidation states (the key step is the reaction of the metal with a molecular reducing agent), of the insulating nature of the "reduced" solid phases of the thermodynamics and kinetics conditions of the Pt conversion. The passage from the conductor to insulator states controlled the spatial development of the reaction that always remains in competition with the other "natural" roles of a metallic electrode. Formally, the phenomena can be treated by analogy with the C. Amatore's model previously developed for the mediated reduction of the poly(tetrafluoroethylene). Consequences of this general reactivity of Pt are discussed in view of a wide utilization of this metal in reductive conditions and the possible applications of such processes in the micropatterning of metallic surfaces. PMID:17461588

  20. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect

    Das, Supriyo

    2010-05-16

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

  1. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-01

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. PMID:26351175

  2. The growth of one-dimensional oxide nanostructures by thermal oxidation of metals

    NASA Astrophysics Data System (ADS)

    Yuan, Lu

    Fundamental understanding of metals and alloys oxidation and reduction is important for the next generation technology. A detailed study on the oxide nanostructures growth from the oxidation of model metal systems, Cu, Fe, Zn and brass has been investigated to bridge the information gap between the oxidation mechanisms of buck metals and alloys to metal oxide nanostructures. It is observed that CuO nanowires have a bicrystal structure and form directly on top of underlying CuO grains. The driving force for the oxide nanowire growth is attributed to the compressive stresses generated during the oxidation. To verify this growth mechanism, Cu foils are bent or sandblasted to create stresses. We show that the oxide nanowire formation can be effectively promoted by surface bending tensile stresses or surface roughening via sandblasting. The formation of alpha-Fe2O3 nanowires by oxidation of Fe also follows the same stress driven mechanism as Cu. It is also found that decreasing the oxygen pressure or modifying the surface roughness by sandblasting can be employed to tune the hematite nanostructures from nanowires to nanobelts or nanoblades. The growth of ZnO nanowires by direct oxidation of pure Zn follows different mechanisms depending on the temperatures: the oxidation below the melting point of Zn is dominated by a solid-solid transformation process, a liquid-solid process between the melting and boiling points of Zn, and a vapor-solid process above the boiling point of Zn. ZnO nanowires can also be synthesized by thermal oxidation of brass (Cu0.7Zn0.3). With increasing the oxidation temperature or exerting sandblasting onto brass, the formation of ZnO nanowires can be effectively suppressed. The thermally induced reduction of CuO nanowires are studied by in situ transmission electron microscopy. Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the lower oxide (Cu2O) nanoparticles partially embedded into the parent oxide phase (CuO). For the CuO nanowires sheathed by a carbon shell, we show that confined nanoscale geometry leads to changes in the oxide reduction mechanism from a surface dominated process to the bulk dominated process.

  3. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-01

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality. PMID:26308184

  4. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides.

    SciTech Connect

    Shkrob, I. A.; Marin, T. M.; Sevilla, M. D.; Chemerisov, S.

    2011-03-24

    Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition-metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO{sub 2}, {alpha}-FeOOH, and {alpha}-Fe{sub 2}O{sub 3} particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO{sub 2} oxidizes all of the carbohydrates and polyols, whereas {alpha}-FeOOH oxidizes some of the carbohydrates, and {alpha}-Fe{sub 2}O{sub 3} is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

  5. Degradation of C-hordein by metal-catalysed oxidation.

    PubMed

    Huang, Xin; Kanerva, Päivi; Salovaara, Hannu; Sontag-Strohm, Tuula

    2016-04-01

    C-hordein is a monomeric prolamin protein in barley. The unusual primary structure of C-hordein has highly repetitive sequences and forms a secondary structure of beta-turns. C-hordein structure is similar to that of collagen protein, whose degradation by metal-catalysed oxidation has been intensively studied. No information exists on the metal catalysed oxidation of C-hordein, however. In this study, copper-catalysed hydrogen peroxide induced oxidation of C-hordein caused substantial degradation and formed some insoluble compounds. The use of a gliadin standard in R5 ELISA determinations causes an overestimation of hordeins in a sample. A C-hordein standard was therefore directly used as a standard, thus allowing the C-hordein to be analysed as its oxidised prolamin product. After 48 h of oxidation, the prolamin concentration of oxidised C-hordein decreased to 20% of its original amount for competitive ELISA, and to 3% for sandwich ELISA methods. Carbonyl groups were formed during the oxidation. Backbone fragmentation and side-chain modification suggested structural changes of R5 epitopes in C-hordein. Oxidation is an alternative to enzymatic hydrolysis when degrading and modifying C-hordein. PMID:26593614

  6. Transition metal dioxygen complexes as intermediates in homogeneous catalytic oxidations

    NASA Astrophysics Data System (ADS)

    Simndi, Lszl I.

    The formation and main structural properties of superoxo and peroxo complexes are briefly described. These complexes are involved in catalytic oxidations (oxygenations) by dioxygen occurring under mild conditions in the presence of iron, cobalt, manganese, rhodium and other transition metal complexes. Examples of catalytic systems are taken from cytochrome P-450 models with specific reference to the mechanisms involved. Metalloporphyrin-catalysed oxidations of hydrocarbons involve free-radical chain processes in most cases. Added reducing agents modify the mechanism of oxidation by pumping electrons into key intermediates. They help the formation of oxometal species, which may transfer oxygen atoms to substrates, thereby improving the selectivity. Olefin oxidation is a difficult task for the homogeneous catalysts described: only a few working systems are available, based mainly on rhodium phosphine complexes. Peroxometalacycles are presumably formed, whose decomposition involves co-oxidation of a phosphine molecule. The oxidation of hindered phenols catalysed by cobalt (II) Schiff-base complexes points to the involvement of superoxocobalt species abstracting a H-atom from the phenol. Complex reaction patterns emerge from the oxidation of o-disubstituted phenols. The synthetic potential of homogeneous catalytic oxidation is illustrated on examples including various types of organic compounds.

  7. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  8. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  9. Monolayered nanodots of transition metal oxides.

    PubMed

    Nakamura, Keisuke; Oaki, Yuya; Imai, Hiroaki

    2013-03-20

    Monolayered nanodots of titanium, tungsten, and manganese oxides were obtained by exfoliation of the nanocrystals through aqueous solution processes at room temperature. The precursor nanocrystals of the layered compounds, such as sodium titanate (Na(0.80)Ti(1.80)?(0.2)O4xH2O, ?: vacancy (x < 1.17)), cesium tungstate (Cs4W11O35yH2O (y < 10.5)), and sodium manganate (Na0.44MnO2zH2O (z < 0.85)), were synthesized in an aqueous solution. These nanocrystals of the layered compounds were delaminated into the monolayered nanodots through introduction of a bulky organic cation in the interlayer space. The resultant monolayered nanodots of the titanate and tungstate 2-5 nm in lateral size showed a remarkable blueshift of the bandgap energies. The calculation studies supported the blueshifts of the bandgap energies. The results suggest that syntheses of monolayered nanodots can expand the tuning range of the properties based on size effect. The present approaches for generation of ultrathin tiny objects can be applied to a variety of nanomaterials. PMID:23441590

  10. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  11. Surface plasmon dispersion analysis in the metal-oxide-metal tunnel diode

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Wang, E. Y.

    1987-01-01

    A detailed model of surface plasmon dispersion in the metal-oxide-metal tunnel diode is presented in order to clarify the spectral emission from this diode. The model predicts the location of the spectral peaks and the emission between the peaks by considering the effects of retardation on the surface plasmon. A nonradiative mode is found to play a major role in the transition from the visible to UV peaks in the diode spectra.

  12. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, Andr E.; Mdler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ? 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  13. A molecular catalyst for water oxidation that binds to metal oxide surfaces.

    PubMed

    Sheehan, Stafford W; Thomsen, Julianne M; Hintermair, Ulrich; Crabtree, Robert H; Brudvig, Gary W; Schmuttenmaer, Charles A

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  14. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  15. Experimental bandstructure of the 5 d transition metal oxide IrO2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  16. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion.

    PubMed

    Yang, Yu; Zhang, Chiqian; Hu, Zhiqiang

    2013-01-01

    Metallic and metal oxide nanomaterials have been increasingly used in consumer products (e.g. sunscreen, socks), the medical and electronic industries, and environmental remediation. Many of them ultimately enter wastewater treatment plants (WWTPs) or landfills. This review paper discusses the fate and potential effects of four types of nanoparticles, namely, silver nanoparticles (AgNPs), nano ZnO, nano TiO2, and nano zero valent iron (NZVI), on waste/wastewater treatment and anaerobic digestion. The stabilities and chemical properties of these nanoparticles (NPs) result in significant differences in antimicrobial activities. Analysis of published data of metallic and metal oxide NPs suggests that oxygen is often a prerequisite for the generation of reactive oxygen species (ROS) for AgNPs and NZVI, while illumination is necessary for ROS generation for nano TiO2 and nano ZnO. Furthermore, such nanoparticles are capable of being oxidized or dissolved in water and can release metal ions, leading to metal toxicity. Therefore, AgNPs and nano TiO2 are chemically stable NPs that have no adverse effects on microbes under anaerobic conditions. Although the toxicity of nanomaterials has been studied intensively under aerobic conditions, more research is needed to address their fate in anaerobic waste/wastewater treatment systems and their long-term effects on the environment. PMID:24592426

  17. Band engineering of metal oxide heterostructures for catalysis applications

    NASA Astrophysics Data System (ADS)

    Nandakumar, Navaneetha Krishnan

    Supported metal oxides are used as catalysts for a wide variety of industrially and environmentally important reactions such as the selective oxidation of hydrocarbons and alcohols and the selective catalytic reduction of nitrogen oxides. The support often plays an important role in the activity and selectivity of such catalysts, beyond just the provision of mechanical support and large surface area. V2O5 supported on TiO2 is an example of a catalyst that is widely used, where the synergy between the support and the overlayer is taken advantage of. The support effect has often been ascribed to the electronegativity of the support cation which affects the electron density on the metal--oxygen bond in the overlayer. However, this effect may not hold for thicker overlayers and for doped supports. In the current work, a model is proposed in which the supported catalyst is considered as a heterostructure. Most metal oxides are (wide band-gap) semiconductors and hence a semiconductor heterojunction is formed when one oxide is deposited on another. This conception of supported oxide catalysts allows for the use of heterojunction physics to predict the electron richness at the surface of the catalyst. Moreover, effect of overlayer thickness and support doping can be easily determined using such a model. Thus quantitative estimates of surface electron richness were obtained for the system of V 2O5/TiO2. It is shown that modification of overlayer thickness and the carrier concentration in the support can lead to modification of the surface electron richness (represented by the surface Fermi level) of the catalyst. A semi-empirical model was also developed to relate the Fermi level of oxide catalysts to their activity. Using these models, the quantitative variation of catalytic activity with the heterostructure parameters (overlayer thickness, support carrier concentration) was determined, for the test reaction of partial oxidation of methanol to formaldehyde. Results from experiments using thin films of polycrystalline oxides (V 2O5 supported on TiO2) and methanol oxidation as the test reaction, matched qualitatively with the model predictions. The quantitative enhancement (> 10x) in rate obtained by reducing the overlayer thickness was better than the model predictions. Surface potential measurements combined with kinetic data proved the validity of the model relating Fermi level and catalytic activity, and showed directions for further development of the heterojunction model to predict the surface electron richness.

  18. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  19. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  20. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  1. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  2. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  3. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  4. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  5. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  6. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  7. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  8. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  9. Reaction of ethanol on oxidized and metallic cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Hyman, Matthew P.; Vohs, John M.

    2011-02-01

    The reaction of ethanol on metallic and oxidized cobalt surfaces was studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) in order to determine the dependence of the reaction pathways on the cobalt oxidation state. The primary reaction for ethoxide species on metallic cobalt surfaces was decarbonylation producing CO, H 2 and carbon. This reaction was facile and occurred below 400 K. In contrast, CoO x surfaces which predominantly contained Co 2+ were selective for the dehydrogenation of ethoxide groups to produce acetaldehyde at 400 K. A fraction of the acetaldehyde molecules produced by this pathway were further oxidized to acetate which decomposed to produce CO 2 at 495 K. More highly oxidized Co surfaces that contained both CO 2+ and Co 3+ were active for the complete oxidation of ethanol producing CO, CO 2, and H 2O as the primary products. The insights that these results provide for understanding the mechanism of the steam reforming of ethanol on cobalt catalysts is discussed.

  10. Nearly free electrons in a 5d delafossite oxide metal.

    PubMed

    Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J W; Bawden, Lewis; Riley, Jonathon M; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P; Arnold, Frank; Hassinger, Elena; Kim, Timur K; Hoesch, Moritz; Mackenzie, Andrew P; King, Phil D C

    2015-10-01

    Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit-assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhmcm (??-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along k z . Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14m e. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below E F, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free-electron system in a 5d delafossite transition-metal oxide. PMID:26601308

  11. Nearly free electrons in a 5d delafossite oxide metal

    PubMed Central

    Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J. W.; Bawden, Lewis; Riley, Jonathon M.; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P.; Arnold, Frank; Hassinger, Elena; Kim, Timur K.; Hoesch, Moritz; Mackenzie, Andrew P.; King, Phil D. C.

    2015-01-01

    Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit–assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (μΩ-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along kz. Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14me. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below EF, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free–electron system in a 5d delafossite transition-metal oxide. PMID:26601308

  12. Operation and design of metal-oxide tunnel transistors

    NASA Astrophysics Data System (ADS)

    Rendell, R. W.; Buot, F. A.; Snow, E. S.; Campbell, P. M.; Park, D.; Marrian, C. R. K.; Magno, R.

    1998-11-01

    The current-voltage (I-V) characteristics in the ballistic limit of metal-oxide tunnel transistors are calculated as a function of temperature, potential barrier height, gate insulator thickness, aspect ratio, and oxide-channel shape. The saturation (`knee') point and three modes of current transport across the device are discussed. For a given aspect ratio, the output impedance improves with increase in tunnel-oxide width, accompanied by slight decrease of gate transconductance. The net result is a significant improvement in the transistor gain. The gate transconductance improves with decrease in gate-insulator thickness, while approximately maintaining the output impedance. The net result is also a significant improvement in the transistor gain. Thus for a given aspect ratio, further device optimization to increase the transistor gain can be carried out by either increasing the tunnel oxide width or decreasing the gate insulator thickness. In practice, one preferably does both. A numerical study of the device performance of tapered-oxide devices is undertaken. We find that uniform-oxide channel design is generally superior to tapered-oxide channel designs.

  13. Metal-Induced Oxidative Stress and Plant Mitochondria

    PubMed Central

    Keunen, Els; Remans, Tony; Bohler, Sacha; Vangronsveld, Jaco; Cuypers, Ann

    2011-01-01

    A general status of oxidative stress in plants caused by exposure to elevated metal concentrations in the environment coincides with a constraint on mitochondrial electron transport, which enhances ROS accumulation at the mitochondrial level. As mitochondria are suggested to be involved in redox signaling under environmental stress conditions, mitochondrial ROS can initiate a signaling cascade mediating the overall stress response, i.e., damage versus adaptation. This review highlights our current understanding of metal-induced responses in plants, with focus on the production and detoxification of mitochondrial ROS. In addition, the potential involvement of retrograde signaling in these processes will be discussed. PMID:22072926

  14. Catalytic oxidation of carbon nanotubes with noble metal nanoparticles.

    PubMed

    Yoshida, Kaname; Arai, Shigeo; Sasaki, Yukichi; Tanaka, Nobuo

    2015-09-01

    Catalytic oxidation of multi-walled carbon nanotubes (MWNCTs) with some noble metal nanoparticles was observed by environmental transmission electron microscopy (E-TEM). Amoeba-like movement of the nanoparticles was observed even at a temperature of ?400C, which is much lower than the melting points of any of the metals. In particular, rhodium particles reacted intensely with MWCNTs, and assumed a droplet-like shape. On the other hand, gold particles caused very little erosion of the MWCNTs under the conditions of this study. PMID:26025589

  15. Transport phenomena of aluminium oxide in metal halide lamps

    NASA Astrophysics Data System (ADS)

    Fischer, S.; Niemann, U.; Markus, T.

    2008-07-01

    A better understanding of the transport phenomena observed in metal halide lamps can be achieved using computer-based model calculations. The chemical transport of aluminium oxide in advanced high-pressure discharge vessels was calculated as a function of temperature and composition of the salt mixture relevant to the lamp. Below 1773 K chemical transport is the prevailing process; above this temperature the vaporization and condensation of the envelope materialaluminium oxidebecome more important. The results of the calculations show that the amount of transported alumina increases linearly with the number of iteration cycles and exponentially with the temperature gradient.

  16. Field-induced resistive switching in metal-oxide interfaces

    SciTech Connect

    Tsui, S.; Baikalov, A.; Cmaidalka, J.; Sun, Y.Y.; Wang, Y.Q.; Xue, Y.Y.; Chu, C.W.; Chen, L.; Jacobson, A.J.

    2004-07-12

    We investigate the polarity-dependent field-induced resistive switching phenomenon driven by electric pulses in perovskite oxides. Our data show that the switching is a common occurrence restricted to an interfacial layer between a deposited metal electrode and the oxide. We determine through impedance spectroscopy that the interfacial layer is no thicker than 10 nm and that the switch is accompanied by a small capacitance increase associated with charge accumulation. Based on interfacial I-V characterization and measurement of the temperature dependence of the resistance, we propose that a field-created crystalline defect mechanism, which is controllable for devices, drives the switch.

  17. Microelectronic components and metallic oxide studies and applications

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1976-01-01

    The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.

  18. Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals.

    PubMed

    Abrahamson, John

    2002-01-15

    The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball lightning energy release, and argued to be the result of a normal lightning strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to lightning strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model predicted the important properties of "average" observed ball lightning, and the extension in this paper also covers high-energy examples of ball lightning. Laboratory checks of the theory are described, and predictions given of what conditions are necessary for observing ball lightning in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball lightning through a sheet of building material, including glass, and its occasional charring of flesh on close contact. PMID:16210171

  19. Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals.

    TOXLINE Toxicology Bibliographic Information

    Abrahamson J

    2002-01-15

    The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball lightning energy release, and argued to be the result of a normal lightning strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to lightning strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model predicted the important properties of "average" observed ball lightning, and the extension in this paper also covers high-energy examples of ball lightning. Laboratory checks of the theory are described, and predictions given of what conditions are necessary for observing ball lightning in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball lightning through a sheet of building material, including glass, and its occasional charring of flesh on close contact.

  20. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  1. Noble Metal-Iron Oxide Hybrid Nanomaterials: Emerging Applications.

    PubMed

    Leung, Ken Cham-Fai; Xuan, Shouhu

    2016-02-01

    This account provides an overview of current research activities that focus on the synthesis and applications of nanomaterials from noble metal (e.g., Au, Ag, Pd) and iron oxide (Fe3 O4 ) hybrids. An introduction to the synthetic strategies that have been developed for generating M-Fe3 O4 nanomaterials with different novel structures is presented. Surface functionalization and bioconjugation of these hybrid nanoparticles and nanocomposites are also reviewed. The utilization of the advantageous properties of both noble metals and iron oxide for a variety of applications, such as theranostics, gene delivery, biosensing, cell sorting, bioseparation, and catalysis, is discussed and highlighted. Finally, future trends and perspectives of these sophisticated nanocomposites are outlined. The fundamental requirements underpinning the effective preparation of M-Fex Oy hybrid nanomaterials shed light on the future development of heterogeneous catalysts, nanotheranostics, nanomedicines, and other chemical technologies. PMID:26805951

  2. Multichannel Multiphoton Imaging of Metal Oxides Nanoparticles in Biological System

    SciTech Connect

    Zheng, Yuangang; Holtom, Gary R.; Colson, Steve D.; Periasamy, A. and So, S.T.C.

    2004-09-15

    Near-IR ultrafast pulse laser and confocal microscope are combined to create a multiphoton multichannel non-linear imaging technique, which allows in situ 3-D characterization of nonfluorescent nanoparticles in biological systems. We observed intense CARS signals generated from various metal oxides due to their high third-order nonlinear susceptibilities (x(3)), which do not depend on the vibrational resonance but on the electronic resonance. We show that fine and ultrafine particles of metal oxides in alveolar macrophage cells may be imaged in vitro using CARS and multiphoton fluorescence microscopy with highest optical resolution for extended periods without photobleaching effects. The advantage of the epidetection over the forward detection for imaging sub-micron particles has been investigated.

  3. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  4. Two-Dimensional Polaronic Behavior in the Binary Oxides m-HfO2 and m-ZrO2

    SciTech Connect

    McKenna, K. P.; Wolf, M. J.; Shluger, A. L.; Lany, S.; Zunger, A.

    2012-03-16

    We demonstrate that the three-dimensional (3D) binary monoclinic oxides HfO{sub 2} and ZrO{sub 2} exhibit quasi-2D polaron localization and conductivity, which results from a small difference in the coordination of two oxygen sublattices in these materials. The transition between a 2D large polaron into a zero-dimensional small polaron state requires overcoming a small energetic barrier. These results demonstrate how a small asymmetry in the lattice structure can determine the qualitative character of polaron localization and significantly broaden the realm of quasi-2D polaron systems.

  5. Two-Dimensional Polaronic Behavior in the Binary Oxides m-HfO2 and m-ZrO2

    SciTech Connect

    Mckenna, Keith P.; Wolf, Matthew J.; Shluger, Alexander L.; Lany, Stephan; Zunger, Alex

    2012-03-14

    We demonstrate that the three-dimensional (3D) binary monoclinic oxides HfO2 and ZrO2 exhibit quasi-2D polaron localization and conductivity, which results from a small difference in the coordination of two oxygen sublattices in these materials. The transition between a 2D large polaron into a zerodimensional small polaron state requires overcoming a small energetic barrier. These results demonstrate how a small asymmetry in the lattice structure can determine the qualitative character of polaron localization and significantly broaden the realm of quasi-2D polaron systems.

  6. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    PubMed

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation. PMID:26018624

  7. Voltage oxide removal for plating: A new method of electroplating oxide coated metals in situ

    SciTech Connect

    Gutfeld, R. J. von; West, A. C.

    2007-03-15

    A novel in situ method for electroplating oxide coated metals is described. Termed VORP, for voltage oxide removal for plating, the process utilizes a voltage pulse {approx}20-200 V, {approx}2 ms in duration, applied between working and counterelectrodes while both are immersed in a copper electrolyte. The pulse is almost immediately followed by galvanostatic plate-up. Adherent copper deposits up to {approx}4 {mu}m in height on stainless steel 316 coupons have been obtained. Temperature testing up to 260 deg. C in air does not affect the copper adhesion. A preliminary model for oxide removal is proposed utilizing concepts of dielectric breakdown.

  8. Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules.

    PubMed

    Sun, Xue-Fei; Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Bao, Nan; Gao, Bao-Yu

    2008-08-01

    The biosorption process for removal of cobalt(II) and zinc(II) by aerobic granules was characterized. Single component and binary equimolar systems were studied at different pH values. The equilibrium was well described by Redlich-Peterson adsorption isotherm. The maximal adsorption capacity of the granules, in single systems (55.25 mg g(-1) Co; 62.50 mg g(-1) Zn) compared with binary systems (54.05 mg g(-1) Co; 56.50 mg g(-1) Zn) showed reduction in the accumulation of these metals onto aerobic granules. The kinetic modelling of metal sorption by granules has been carried out using Lagergren equations. The regression analysis of pseudo second-order equation gave a higher R(2) value, indicating that chemisorption involving valent forces through the sharing or exchange of electrons between sorbent and sorbate may be the rate limiting step. The initial biosorption rate indicated that aerobic granules can adsorb Co(II) more rapidly than Zn(II) from aqueous solutions. Meanwhile, FTIR and XPS analyses revealed that chemical functional groups (e.g., alcoholic and carboxylate) on aerobic granules would be the active binding sites for biosorption of Co(II) and Zn(II). PMID:18495142

  9. Shape evolution of zinc oxide from twinned disks to single spindles through solvothermal synthesis in binary solvents

    NASA Astrophysics Data System (ADS)

    Huang, Aisheng; Caro, Jürgen

    2010-10-01

    Shape evolution of ZnO crystals from twinned disks to single spindles was studied through solvothermal synthesis in binary solvents N,N-diethylformamide (DEF) and methanol (MeOH). The MeOH content in DEF had large influence on the morphology of the obtained ZnO crystals. In MeOH-free DEF, well-shaped ZnO twinned disks with perfect mirror symmetry could be formed through the assembly of ZnO 46--julolidinium-ZnO 46- growth units on the (0 0 0 1) growth interfaces. For small amounts of MeOH (MeOH/DEF=0.04), elongated twinned disks were formed since the growth along the polar c-axis was enhanced. With increasing MeOH content (MeOH/DEF=0.1), twinned rods with reduced mirror symmetry were formed. When a large amount of MeOH was added to DEF (MeOH/DEF=0.5), single spindles rather than twinned disks or twinned rods were obtained. A similar shape evolution of zinc oxide was observed in binary solvents DEF and N,N-dimethylformamide (DMF), suggesting that the growth of ZnO crystals with tuneable shape and size can be controlled by the composition of the binary solvent mixture.

  10. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  11. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  12. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  13. Nanomechanical switches based on metal-insulator-metal capacitors from a standard complementary-metal-oxide semiconductor technology

    NASA Astrophysics Data System (ADS)

    Muoz-Gamarra, J. L.; Uranga, A.; Barniol, N.

    2014-06-01

    We report experimental demonstrations of contact-mode nano-electromechanical switches obtained using a capacitor module based on metal-insulator-metal configuration of a standard commercial complementary metal oxide semiconductor technology. The developed 2 terminals Titanium Nitride switches operate at low voltages (10 V) thanks to its small gap (27 nm), showing an excellent ION/IOFF ratio (104) and abrupt behavior (5 mV/decade, one decade of current change is achieved with a 5 mV voltage variation). A switch configuration is also presented where using two electrodes three different contact mode states can be obtained, adding functionalities to mechanical switches configurations.

  14. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  15. Single-crystal-like nanoporous spinel oxides: a strategy for synthesis of nanoporous metal oxides utilizing metal-cyanide hybrid coordination polymers.

    PubMed

    Zakaria, Mohamed B; Hu, Ming; Imura, Masataka; Salunkhe, Rahul R; Umezawa, Naoto; Hamoudi, Hicham; Belik, Alexei A; Yamauchi, Yusuke

    2014-12-22

    Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal-cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well-retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe-Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co- and Fe-contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single-crystal-like nanoporous Fe-Co oxide shows a stable magnetic property at room temperature compared to poly-crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core-shell heterostructures consisting of different metal-cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant-templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures. PMID:25359496

  16. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2016-02-01

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results also compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  17. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGESBeta

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  18. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  19. Molecular-level assemblies on metal oxide surfaces

    SciTech Connect

    Schoonover, J.R.; Bignozzi, C.; Meyer, T.

    1996-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). The objective of this project was to explore molecular-level assemblies based on polypyridyl transition metal complexes attached to metal oxide surfaces to provide the basis for applications such as energy conversion and electricity generation, photoremediation of hazardous waste, chemical sensors, and optical storage and photorefractive devices for communications and optical computing. We have elucidated the fundamental factors that determine the photochemistry and photophysics of a series of these photoactive inorganic complexes in solution and on metal oxide substrates by exploiting our unique transient laser capabilities. This data is being utilized to design and fabricate molecular-level photonic devices. The rich chemistry of transition metal polypyridyl complexes can be utilized to prepare molecular assemblies having well-defined redox or excited-state properties that can be finely tuned to produce desired materials properties. We plan to explore other novel applications such as photorefractive switches and optical sensors using this molecular engineering approach.

  20. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    SciTech Connect

    Cahalan, J.; Wigeland, R. ); Friedel, G. , Bergisch Gladbach ); Kussmaul, G.; Royl, P. ); Moreau, J. ); Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs.

  1. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhnyi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Bchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-06-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

  2. Tunable and responsive plasmonic properties of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Milliron, Delia

    2015-03-01

    Degenerately doped metal oxide semiconductors, like ITO, exhibit plasmonic resonance at near and mid-infrared wavelengths tunable by varying their composition. Nanocrystals of many such materials have now been synthesized and applications are emerging that leverage the responsiveness of their localized surface plasmon resonance (LSPR) to electronic charging and discharging. For example, electrochromic glass that can dynamically control heat loads in buildings is under development. In biological systems, plasmonic oxide nanocrystals can act as remote sensors, where changes in their optical absorption indicates biochemical redox has occurred. Nonetheless, significant fundamental questions remain open regarding the nature of the infrared optical response in these doped oxides. Dopant impurities influence the optoelectronic properties beyond simply donating free carriers. For example, the distribution of Sn in ITO was found to dramatically influence the line shape of the LSPR and the effective electron mobility. In addition, by post-synthetically modifying carrier concentrations (through photodoping or electrochemical doping), we have observed that aliovalent doping and electronic doping each modify LSPR spectra, providing access to a broad range of tunable optical properties. Heterogeneous broadening, uncovered by single nanocrystal spectroscopy, also contributes to ensemble line shapes, complicating direct interpretation of LSPR spectra. Finally, the possibility of electric field enhancement by metal oxide LSPRs is critically examined to suggest what future applications might be on the horizon.

  3. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhnyi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Bchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  4. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhnyi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Bchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  5. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  6. Dual-environment effects on the oxidation of metallic interconnects

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.; Covino, B.S., Jr.; Bullard, S.J.

    2006-08-01

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

  7. Rapid Thermal Post-Metallization Annealing in Thin Gate Oxides

    NASA Astrophysics Data System (ADS)

    Jeng, Ming-Jer; Lin, Huang-Sheng; Hwu, Jenn-Gwo

    1995-11-01

    Rapid thermal technique was used in the post-metallization annealing (PMA) of thin gate oxide devices. A suitable choice of the rise rate, the setting temperature, and the hold time in the rapid thermal PMA (RTPMA) process is helpful to improve the oxide quality. It was found that the samples subjected to appropriate RTPMA conditions exhibit almost the same initial characteristic in flatband voltage V FB and midgap interface trap density D itm as those subjected to conventional furnace PMA (FPMA). However, the RTPMA samples exhibit longer time-to-breakdown t BD and higher time-zero-dielectric-breakdown (TZDB) field E BD than the FPMA ones. In addition to the known spiking effect caused by aluminum penetration into silicon, which seriously degrades the breakdown property, formation of aluminum oxide near the Al/SiO2 interface in the early stage and then aluminum silicon alloy in the later stage was proposed to explain the experimental observation.

  8. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  9. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  10. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  11. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  12. The Development of Metal Oxide Chemical Sensing Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.

    2008-01-01

    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.

  13. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  14. Differential genotoxicity of chemical properties and particle size of rare metal and metal oxide nanoparticles.

    PubMed

    Hasegawa, Go; Shimonaka, Motoyuki; Ishihara, Yoko

    2012-01-01

    Nanoparticles of rare metal compounds are used in various products. However, their carcinogenicity and genotoxicity have not been sufficiently evaluated. The tumor-initiating and -promoting potentials of four rare metals, indium oxide (In2O3), dysprosium oxide (Dy2O3), tungsten oxide (WO3) and molybdenum (Mo), with a well-defined particle diameter were evaluated. The mutagenicity of these rare metals was investigated by Ames test using five bacteria strains, and transformability of these rare metals was investigated by cell-transformation assay using v-Ha-ras-transfected BALB/c 3T3 cells (Bhas 42 cells). Nano-sized Dy2O3 showed strong mutagenesis in all five bacteria strains tested with and without metabolic activation, while micro-sized particles showed weak mutagenesis in two bacterial strains. Dy2O3 induced transformation colonies of Bhas 42 cell dose-dependently, although there was no difference in the number of transformed foci between nano-sized and micro-sized particles. Nano-sized In2O3 and WO3 showed positive mutagenic response in TA1537 and TA98, respectively, whereas the micro-sized metal oxide particles showed no mutagenesis in the test bacterial strains. Both nano-sized and micro-sized In2O3 showed similar levels of transformability. However, nano-sized and micro-sized WO3 did not show any transformability. Both nano-sized and micro-sized Mo particles showed neither mutagenesis nor transformability. These results suggest that mutagenicity of rare metals depends on their particle size, although transformability depends on their chemical components but not on their particle size. PMID:22162085

  15. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.

    PubMed

    Liu, Ruiping; Xu, Wei; He, Zan; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui; Prasai, Tista

    2015-11-01

    Manganese(IV) oxide [Mn(IV)] potentially oxidizes antimony(III) [Sb(III)] to antimony(V) [Sb(V)] and improves Sb removal by FeMn binary oxide (FMBO) through an oxidation-adsorption mechanism. This study focused on the effect of Mn(IV) reductive dissolution by potassium sulfite (K2SO3) on Sb(V) adsorption onto manganese oxide (Mn-oxide) and FMBO. The maximum Sb(V) adsorption (Qmax,Sb(V)) increased from 1.0 to 1.1 mmol g(-1) for FMBO and from 0.4 to 0.6 mmol g(-1) for Mn-oxide after pretreatment with 10 mmol L(-1) K2SO3. The addition of 2.5 mmol L(-1) Mn(2+) also significantly improved Sb(V) adsorption, and the observed Qmax,Sb(V) increased to 1.4 and 1.0 mmol g(-1) for FMBO and Mn-oxide, respectively, with pre-adsorbed Mn(2+). Neither K2SO3 nor Mn(2+) addition had any effect on Sb(V) adsorption onto iron oxide (Fe-oxide). Mn(2+) introduced by either Mn(IV) dissolution or addition tended to form outer-sphere surface complexes with hydroxyl groups on Mn-oxide surfaces (MnOOH). Mn(2+) at 2.5 mmol L(-1) shifted the isoelectric point (pHiep) from 7.5 to 10.2 for FMBO and from 4.8 to 9.2 for Mn-oxide and hence benefited Sb(V) adsorption. The adsorption of Sb(V) onto Mn(2+)-enriched surfaces contributed to the release of Mn(2+), and the X-ray photoelectron spectra also indicated increased binding energy of Mn 2p3/2 after the adsorption of Sb(V) onto K2SO3-pretreated FMBO and Mn-oxide. Sb(V) adsorption involved the formation of inner-sphere complexes and contributed to the release of Mn(2+). In the removal of Sb(III) by Mn-based oxides, the oxidation of Sb(III) to Sb(V) by Mn(IV) oxides had an effect; however, Mn(IV) dissolution and Mn(2+)-enrichment also played an important role. PMID:26218341

  16. Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust MetalOrganic Framework

    SciTech Connect

    Fei, Honghan; Shin, JaeWook; Meng, Ying Shirley; Adelhardt, Mario; Sutter, Jrg; Meyer, Karsten; Cohen, Seth M.

    2014-04-02

    An isolated metal-monocatecholato moiety has been achieved in a highly robust metalorganic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and ??Fe Mssbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = University of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.51 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for green chemistry processes.

  17. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators.

    PubMed

    Moilanen, Johanna; Karonen, Maarit; Tähtinen, Petri; Jacquet, Rémi; Quideau, Stéphane; Salminen, Juha-Pekka

    2016-05-01

    Ellagitannins are a subclass of hydrolysable tannins that have been suggested to function as defensive compounds of plants against herbivores. However, it is known that the conditions in the digestive tracts of different herbivores are variable, so it seems reasonable to anticipate that the reactivities and modes of actions of these ingested defensive compounds would also be different. A previous study on a few ellagitannins has shown that these polyphenolic compounds are highly oxidizable at high pH and that their bioactivity can be attributed to certain structural features. Herein, the activities of 13 ellagitannins using the deoxyribose assay were measured. The results provided information about the anti-oxidant, pro-oxidant and metal chelating properties of ellagitannins. Surprisingly, many of the tested ellagitannins exhibited pro-oxidant activities even at neutral pH and only moderate to low radical scavenging activities, although the metal chelating capacities of all tested ellagitannins were relatively high. PMID:26899362

  18. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents

    NASA Astrophysics Data System (ADS)

    Engates, Karen Elizabeth

    Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster adsorption rates for nanoparticles compared to bulk particles. Isotherms were best fit with most correlations of r=0.99 or better using the Langmuir-Freundlich equation which describes a heterogeneous surface with monolayer adsorption. Calculated rate constants and distribution coefficients (Kd) showed TiO2 nanoparticles were very good sorbents and more rapid in removing metals than other nanoparticles studied here and reported in the literature. Desorption studies concluded Pb, Cd, and Zn appear to be irreversibly sorbed to TiO2 surfaces at pH 8. TiO2 and Fe2O3 nanoparticles were capable of multiple metal loadings, with exhaustion for both adsorbents at pH 6. Exhaustion studies at pH 8 showed hematite exhausted after four consecutive cycles while anatase showed no exhaustion after 8 cycles. Their bulk counterparts exhausted in earlier cycles indicating the lack of ability to adsorb much of the multiple metals in solution. The increased surface area of TiO2 and Fe 2O3 nanoparticles, coupled with strong adsorption at the pH of most natural waters and resistance to desorption of some metals, may offer a potential remediation method for removal of metals from water in the future.

  19. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  20. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  1. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01533e

  2. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOEpatents

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  3. Thin Films of Metal Oxides on Metal Single Crystals: Structure and Growth by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Galloway, Heather Claire

    1995-11-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(111) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing the structures of different oxides. For the iron oxide system the first monolayer grows as FeO(111) with a lateral lattice constant of 3.09 +/- 0.02 A as compared to the bulk value of 3.04 A. The surface is oxygen terminated with a strongly contracted FeO bond distance of 1.90 A as compared to the bulk value of 2.15 A. At higher coverages Fe _3O_4(111) and alpha-Fe_2rm O_3 (0001) structures can be identified by their symmetry with respect to the FeO monolayer. The Fe_3 O_4(111) has a simple 2 x 2 unit cell and the alpha-Fe _2O_3(0001) is surd3 x surd3R30 ^circ. The FeO(111) exhibits a large three fold symmetric unit cell (26 A) due to the lattice mismatch with the Pt(111) surface and the alpha -Fe_2O_3(0001) has an even larger unit cell (43 A) due to the lattice mismatch with the FeO monolayer. The large unit cells are images as Moire patterns (modulations in the average current and atomic corrugation) in the STM images. For titanium oxide the first monolayer grows as Ti _2O_3(0001) under reducing conditions and TiO_2(111) structures are formed at higher oxygen pressures and higher coverages. Both ordered structures also exhibit Moire pattern images in the STM experiments. A second goal of these studies is to advance the understanding of the tunneling process in metal oxides and to better determine the relationship between the experimental STM results and the surface atomic positions. For this purpose Electron Scattering Quantum Chemistry (ESQC) calculations have been applied to the case of an FeO monolayer on Pt(111) to simulate the experimental images. The correspondence between surface structure and STM image features has been determined. In particular, the maxima observed in the experimental images spaced by 3.1 A are due to the positions of the oxygen atoms. The atomic corrugation has a simple relationship with the tip-surface distance and therefore with the surface buckling. Namely, the atomic corrugation increases with decreasing tip-surface distance. However, there is no simple relationship between the average tunneling current and topography. This is the first calculation of an STM image for a metal oxide surface as well as the first STM modeling of a Moire structure. Other studies include an investigation of the coadsorption of oxygen and sulfur on the Ni(110) surface. The results of the coadsorption experiments will be included in the last chapter. Further STM calculations using the ESQC method to compare the chemisorbed oxygen system to the metal oxide structures would enhance the understanding of tunneling in metal-oxygen systems.

  4. Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina.

    PubMed

    Khobragade, Moni U; Pal, Anjali

    2015-01-01

    Batch adsorption was carried out to investigate the possibility of utilizing surfactant-modified alumina (SMA) as an adsorbent for the removal of Cu(II) and Ni(II) from single-metal and binary-metal solutions. Scanning electron microscopic (SEM) images of SMA before and after metal removal from single-metal matrix, showed no significant changes, whereas energy dispersive X-ray (EDX) studies confirmed the incorporation of Cu(II) (? 0.74 atomic%) and Ni(II) (? 0.64 atomic%) on the adsorbent surface. The removal of Cu(II) and Ni(II), using SMA depends on contact time, adsorbent dose and medium pH. The sorption kinetics followed pseudo-second-order model for Cu(II). However, for Ni(II), either pseudo-first-order or pseudo-second-order model is applicable. The batch experimental data were fitted to Langmuir and Freundlich isotherm, and based on the correlation coefficient value (R(2)), the adsorption could be described more precisely by the Freundlich isotherm. The maximum adsorption capacity from Langmuir isotherm of Cu(II) was 9.34mg g(-1) and for Ni(II) 6.87mg g(-1). In a synthetic binary mixture of Cu(II) and Ni(II), having a concentration of 10mg L(-1) each, removal of Cu(II) was better. The treatment method was further applied to real wastewater from an electroplating industry. The batch experiment results showed that SMA was effective in the simultaneous removal of Cu(II) and Ni(II) to a significant extent, with additional improvement of water quality of the industrial effluent considered. PMID:25723065

  5. Transtion metal oxides for solar water splitting devices

    NASA Astrophysics Data System (ADS)

    Smith, Adam M.

    Although the terrestrial flux of solar energy is enough to support human endeavors, storage of solar energy remains a significant challenge to large-scale implementation of solar energy production. One route to energy storage involves the capture and conversion of sunlight to chemical species such as molecular hydrogen and oxygen via water splitting devices. The oxygen evolution half-reaction particularly suffers from large kinetic overpotentials. Additionally, a photoactive material that exhibits stability in oxidizing conditions present during oxygen evolution represents a unique challenge for devices. These concerns can be potentially addressed with a metal oxide photoanode coupled with efficient water oxidation electrocatalysts. Despite decades of research, structure-composition to property relationships are still needed for the design of metal oxide oxygen evolution materials. This dissertation investigates transition metal oxide materials for the oxygen evolution portion of water splitting devices. Chapter I introduces key challenges for solar driven water splitting. Chapter II elucidates the growth mechanism of tungsten oxide (WOX) nanowires (NWs), a proposed photoanode material for water splitting. Key findings include (1) a planar defect-driven pseudo-one-dimensional growth mechanism and (2) morphological control through the supersaturation of vapor precursors. Result 1 is significant as it illustrates that common vapor-phase syntheses of WOX NWs depend on the formation of planar defects through NWs, which necessitates reconsideration of WOX as a photoanode. Chapter III presents work towards (1) single crystal WOX synthesis and characterization and (2) WOX NW device fabrication. Chapter IV makes use of the key result that WOX NWs are defect rich and therefore conductive in order to utilize them as a catalyst scaffold for oxygen evolution in acidic media. Work towards utilizing NW scaffolds include key results such as stability under anodic potentials and strongly acidic conditions used for oxygen evolution. Chapter V includes work characterizing nickel oxide/oxyhydroxide oxygen evolution catalysts at near-neutral pH. Key findings include (1) previous reports of anodic conditioning resulting in greater catalytic activity are actually due to incidental incorporation of iron impurities from solution and (2) through intentional iron incorporation via electrochemical co-deposition, catalytic activity is increased ~50-fold over Fe-free catalysts. This dissertation contains previously published coauthored material.

  6. The metal-inslator transition in oxides and sulfides of 3d metals

    NASA Astrophysics Data System (ADS)

    Loseva, G. V.; Ovchinnikov, S. G.

    Experimental data on the metal-insulator transition in oxides and sulfides of transition metals are interpreted from the standpoint of zone concepts. Both ideal and disordered solids are considered; the experimental data examined cover changes in the lattice, electrical, and magnetic properties of the compounds studied. The cases discussed include those where the metal-insulator transition is associated with changes in the electrical properties only (e.g., Ti2O3) and those where the transition also involves changes in the lattice (VO2, NbO2, and CrS) or in the magnetic structure (NiS). Practical applications of compounds with a metal-insulator transition are briefly examined.

  7. Probing M subdwarf metallicity with an esdK5+esdM5.5 binary

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.; Zhang, Z. H.; Gálvez-Ortiz, M. C.; Kushniruk, I. O.; Jones, H. R. A.

    2015-10-01

    Context. We present a spectral analysis of the binary G 224-58 AB, which consists of the coolest M extreme subdwarf (esdM5.5) and a brighter primary (esdK5). This binary may serve as a benchmark for metallicity measurement calibrations and as a test bed for atmospheric and evolutionary models for esdM objects. Aims: We perform the analysis of optical and infrared spectra of both components to determine their parameters. Methods: We determine abundances primarily using high-resolution optical spectra of the primary. Other parameters were determined from the fits of synthetic spectra computed with these abundances to the observed spectra from 0.4 to 2.5 microns for both components. Results: We determine Teff = 4625 ± 100 K, log g = 4.5 ± 0.5 for the A component and Teff = 3200 ± 100 K, log g = 5.0 ± 0.5, for the B component. We obtained abundances of [ Mg / H ] = + - 1.51 ± 0.08, [Ca/H] = - 1.39 ± 0.03, [Ti/H] = - 1.37 ± 0.03 for alpha group elements and [CrH] = - 1.88 ± 0.07, [Mn/H] = - 1.96 ± 0.06, [ Fe / H ] = - 1.92 ± 0.02, [Ni/H] = - 1.81 ± 0.05 and [Ba/H] = - 1.87 ± 0.11 for iron group elements from fits to the spectral lines observed in the optical and infrared spectral regions of the primary. We find consistent abundances with fits to the secondary albeit at lower signal to noise. Conclusions: Abundances of different elements in G 224-58 A and G 224-58 B atmospheres cannot be described by one metallicity parameter. The offset of ˜0.4 dex between the abundances derived from alpha element and iron group elements corresponds with our expectation for metal-deficient stars. We thus clarify that some indices used to date to measure metallicities for establishing esdM stars, based on CaH, MgH, and TiO band system strength ratios in the optical and H2O in the infrared, relate to abundances of alpha-element group rather than to iron peak elements. For metal deficient M dwarfs with [ Fe / H ] < - 1.0, this provides a ready explanation for apparently inconsistent metallicities derived with different methods.

  8. First stars XI. Chemical composition of the extremely metal-poor dwarfs in the binary CS 22876-032

    NASA Astrophysics Data System (ADS)

    Gonzlez Hernndez, J. I.; Bonifacio, P.; Ludwig, H.-G.; Caffau, E.; Spite, M.; Spite, F.; Cayrel, R.; Molaro, P.; Hill, V.; Franois, P.; Plez, B.; Beers, T. C.; Sivarani, T.; Andersen, J.; Barbuy, B.; Depagne, E.; Nordstrm, B.; Primas, F.

    2008-03-01

    Context: Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars. Aims: The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known. Methods: We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the turbospectrum spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the CO^5BOLD model atmosphere code to compute the 3D abundance corrections, notably for Li and O. Results: We find a metallicity of [Fe/H] ~ -3.6 for both stars, using 1D models with 3D corrections of ~-0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] ~ 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [ ?/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] ? 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small. Conclusions: The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A(Li) at the lowest metallicities.

  9. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    ?ern, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials. PMID:26634719

  10. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water.

    PubMed

    Cui, Hao-Jie; Cai, Jie-Kui; Zhao, Huan; Yuan, Baoling; Ai, Cui-Ling; Fu, Ming-Lai

    2014-08-30

    Magnetic porous Fe-Mn binary oxide nanowires were successfully fabricated to efficient removal of As(III) from water. The adsorption capacity of the porous nanowires for As(III) obviously increased with increasing of manganese oxide in the composite, accompanying decrease of the saturation magnetization of the adsorbents. Magnetic porous Fe-Mn binary oxide nanowires with an initial Fe:Mn molar ratio of 1:3 exhibited the highest absorption capacity for As(III) and enable magnetic separation from water. The maximal adsorption capacity value is 171mgg(-1) at pH 7.0. In the initial pH range from 3 to 9, 200?gL(-1) of As(III) could be easily decreased to below 10?gL(-1) by the magnetic porous Fe-Mn binary oxide nanowires (0.05gL(-1)) within 75min, and the corresponding residual As was completely oxidized to less toxic As(V). The coexisting chloride, nitrate and sulfate had no significant effect on arsenic removal, whereas, phosphate and humic acid reduced the removal of As(III) by competing with arsenic species for adsorption sites. The resulting magnetic porous Fe-Mn binary oxide nanowires could be a promising adsorbent for As(III) removal from water. PMID:25036997

  11. Method for preparing a group IVb, Vb or VIb metal oxide on inorganic refractory oxide support catalyst and the product prepared by said method

    SciTech Connect

    Grenoble, D. C.; Kim, C. J.; Murrell, L. L.

    1981-05-26

    An acid catalyst comprising a catalytic component selected from the group consisting of oxides of tungsten, niobium and mixtures thereof and tungsten or niobium oxides in combination with one or more additional metal oxides selected from the group consisting of tantalum oxide, hafnium oxide, chromium oxide, titanium oxide and zirconium oxide on an inorganic refractory oxide support is prepared by depositing by means known in the art a metal oxide precursor salt on an inorganic refractory metal oxide which is not itself an acid cracking catalyst or by intimately mixing a metal oxide precursor salt with a refractory metal oxide support precursor salt, converting the salt or salts to the respective metal oxides and subjecting the resultant combination to steaming at elevated temperatures prior to use. Catalysts prepared in this manner exhibit enhanced activity and selectivity as compared to conventional acid catalysts. They also exhibit remarkable resistance to coke make.

  12. Mixed-metal oxide nanopowders for structural and photonic applications

    NASA Astrophysics Data System (ADS)

    Hinklin, Thomas Ray

    This dissertation uses liquid feed flame spray pyrolysis (LF-FSP) to synthesize and process mixed-metal nano oxides with well-defined structural and photonic properties. LF-FSP combusts a metal oxide precursor solution and oxygen aerosol to produce nanoparticles with the same metal ratio as the precursor solution. The ability to tailor compositions and morphologies of the resultant nanopowders through the use of multiple liquid based metal-oxide precursors lends itself to combinatorial studies of composition and morphology, which is highly useful in property optimization. We first chose to investigate the effects of different aluminum oxide precursors on the morphology of the resulting alumina nanoparticles. This study showed that the metal ligand strongly influences the particle morphology based on the mechanisms of ligand decomposition. We successfully applied flame spray pyrolysis for the first time to synthesize combinatorially MgO:Al 2O3 with MgO concentrations in the range 0.005--50 mol%. The investigation provide a complete picture of the physical phase structure and associated native defect content over the full concentration range allowed by thermodynamics, but controlled by kinetics resulting in novel metastable phase formation and optimization the novel UV emission behavior. To demonstrate how the choice of ligand depends on the desired property, two different ceria ligands were used to alter the ceria doping mechanism of the alumina nanoparticles. The use of combustible, cerium propionate increased in the theta-alumina phase stability through increased dopant homogeneity and nano-domain development compared to the nitrite derived nanopowder. While the inorganic, cerium nitrate appears to favor Ce3+ in the Ce3+/4+ redox couple providing novel incoherent lasing. Previous combinatorial upconversion emission studies on co-doped yttria (Y0.86Yb0.11Er0.03)2O3 provided nanopowders that could be densified to give the first example of a submicron transparent upconversion ceramic sintered at 1400C with unprecedented dopant concentrations of > 10 mol% allowing new photonic application to be realized. In addition, these sintering studies demonstrated the exceptional sinterability of LF-FSP powders. In toto, this dissertation demonstrates many experimental firsts that have only been predicted previously; including, the furthest extension of the magnesium spinel phase field, incoherent lasing, submicron transparent upconversion ceramics and reduced sintering parameters due to unaggregated nanocrystalline powders.

  13. Vanadium removal by metal (hydr)oxide adsorbents.

    PubMed

    Naeem, A; Westerhoff, P; Mustafa, S

    2007-04-01

    Vanadium is listed on the United States Environment Protection Agency (USEPA) candidate contaminant list # 2 (CCL2), and regulatory guidelines for vanadium exist in some US states. The USEPA requires treatability studies before making regulatory decisions on CCL2 contaminants. Previous studies have examined vanadium adsorption onto some metal hydroxides but not onto commercially available adsorbents. This paper briefly summarizes known vanadium occurrence in North American groundwater and assesses vanadium removal by three commercially available metal oxide adsorbents with different mineralogies. GTO (Dow) is TiO2 based and E-33 (Seven Trents) and GFH (US Filter) are iron based. Preliminary vanadate adsorption kinetics onto GFH, E-33 and GTO has been studied and the homogenous surface diffusion model (HSDM) is used to describe the adsorption kinetics data. The effects of pH, vanadium concentration, and volume/mass ratio are assessed. Vanadium adsorption decreases with increasing pH, with maximum adsorption capacities achieved in at pH 3-4. Results indicate that all adsorbents remove vanadium; GFH has the highest adsorption capacity, followed by GTO and E-33. Data are best fit with the Langmuir model rather than Freundlich isotherms. Both the sorption maxima (Xm) and binding energy constant (b) follow the trend GFH>GTO>E-33. Naturally occurring vanadium is also removed from Arizona ground water in rapid small-scale column tests (RSSCTs). Metal oxide adsorption technologies currently used for arsenic removal may also remove vanadium but not always with the same effectiveness. PMID:17303211

  14. Miniaturized metal oxide pH sensors for bacteria detection.

    PubMed

    Uria, Naroa; Abramova, Natalia; Bratov, Andrey; Muñoz-Pascual, Francesc-Xavier; Baldrich, Eva

    2016-01-15

    It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfu mL(-1) in undiluted culture medium in just 5h. PMID:26592620

  15. [Synthesis and characterization of mixed metal oxide pigments].

    PubMed

    Ding, Jie; Yue, Shi-juan; Liu, Cui-ge; Wei, Yong-ju; Meng, Tao; Jiang, Han-jie; Shi, Yong-zheng; Xu, Yi-zhuang; Yu, Jiang; Wu, Jin-guang

    2012-03-01

    In the present work, aluminum chloride and various soluble salts of doping ions were dissolved in water. In addition, urea and polyvinyl pyrrolidone (PVP) were also dissolved in the above aqueous solution under supersonic treatments. Then the solutions were heated to induce the hydrolysis of urea so that soluble aluminum and doping ions convert into insoluble hydroxide or carbonate gels. After calcinations, the obtained gels change to mixed metal oxide pigments whose color is related to type and concentrations of the doping ions. XRD characterization demonstrates that the diffraction patterns of the products are the same as that of alpha-alumina. Diffuse reflectance spectra of samples of the samples in UV-Vis regions show that the absorption bands for d-d transitions of the doping ions undergo considerable change as the coordinate environments change. In addition, L*, a* and b* values of the pigments were measured by using UV-Vis densitometer. SEM results indicate that the size of the pigment powders is in the range 200-300 nm. The pigments are quite stable since no evidence of dissolution was observed after the synthesized pigment is soaked for 24 hours. ICP test shows that very little amount of doped metal occurs in the corresponding filtrate. The above results suggest that these new kinds of mixed metal oxide pigments are stable, non-toxic, environmental friendly and they may be applicable in molten spinning process and provide a new chance for non-aqueous printing and dyeing industry. PMID:22582641

  16. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  17. Wannier function analysis of charge states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren

    2015-03-01

    The charge (or oxidation) state of a cation has been a crucial concept in analyzing the electronic and magnetic properties of oxides as well as interpreting ``charge ordering'' metal-insulator transitions. In recent years a few methods have been proposed for the objective identification of charge states, beyond the conventional (and occasionally subjective) use of projected densities of states, weighted band structures (fatbands), and Born effective charges. In the past two decades Wannier functions (WFs) and particularly maximally localized WFs (MLWFs), have become an indispensable tool for several different purposes in electronic structure studies. These developments have motivated us to explore the charge state picture from the perspective of MLWFs. We will illustrate with a few transition metal oxide examples such as AgO and YNiO3 that the shape, extent, and location of the charge centers of the MLWFs provide insights into how cation-oxygen hybridization determines chemical bonding, charge distribution, and ``charge ordering.'' DOE DE-FG02-04ER46111.

  18. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  19. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    SciTech Connect

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-03-09

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr{sup 1+}, Zr{sup 2+}, and Zr{sup 3+} as non-equilibrium oxidation states, in addition to Zr{sup 4+} in the stoichiometric ZrO{sub 2}. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr{sup 0} and Zr{sup 4+} at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.

  20. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    DOE PAGESBeta

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; Yildiz, Bilge

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields andmore » the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less