Science.gov

Sample records for binary stochastic medium

  1. A Hybrid Monte Carlo-Deterministic Method for Global Binary Stochastic Medium Transport Problems

    SciTech Connect

    Keady, K P; Brantley, P

    2010-03-04

    Global deep-penetration transport problems are difficult to solve using traditional Monte Carlo techniques. In these problems, the scalar flux distribution is desired at all points in the spatial domain (global nature), and the scalar flux typically drops by several orders of magnitude across the problem (deep-penetration nature). As a result, few particle histories may reach certain regions of the domain, producing a relatively large variance in tallies in those regions. Implicit capture (also known as survival biasing or absorption suppression) can be used to increase the efficiency of the Monte Carlo transport algorithm to some degree. A hybrid Monte Carlo-deterministic technique has previously been developed by Cooper and Larsen to reduce variance in global problems by distributing particles more evenly throughout the spatial domain. This hybrid method uses an approximate deterministic estimate of the forward scalar flux distribution to automatically generate weight windows for the Monte Carlo transport simulation, avoiding the necessity for the code user to specify the weight window parameters. In a binary stochastic medium, the material properties at a given spatial location are known only statistically. The most common approach to solving particle transport problems involving binary stochastic media is to use the atomic mix (AM) approximation in which the transport problem is solved using ensemble-averaged material properties. The most ubiquitous deterministic model developed specifically for solving binary stochastic media transport problems is the Levermore-Pomraning (L-P) model. Zimmerman and Adams proposed a Monte Carlo algorithm (Algorithm A) that solves the Levermore-Pomraning equations and another Monte Carlo algorithm (Algorithm B) that is more accurate as a result of improved local material realization modeling. Recent benchmark studies have shown that Algorithm B is often significantly more accurate than Algorithm A (and therefore the L-P model

  2. Levermore-Pomraning Model Results for an Interior Source Binary Stochastic Medium Benchmark Problem

    SciTech Connect

    Brantley, P S; Palmer, T S

    2009-02-24

    The accuracy of the Levermore-Pomraning model for particle transport through a binary stochastic medium is investigated using an interior source benchmark problem. As in previous comparisons of the model for incident angular flux benchmark problems, the model accurately computes the leakage and the scalar flux distributions for optically thin slabs. The model is less accurate for more optically thick slabs but has a maximum relative error in the leakage of approximately 10% for the problems examined. The maximum root-mean-squared relative errors for the total and material scalar flux distributions approach 65% for the more optically thick slabs. Consistent with previous benchmark comparisons, the results of these interior source benchmark comparisons demonstrate that the Levermore-Pomraning model produces qualitatively correct and semi-quantitatively correct results for both leakage values and scalar flux distributions.

  3. Impact of Spherical Inclusion Mean Chord Length and Radius Distribution on Three-Dimensional Binary Stochastic Medium Particle Transport

    SciTech Connect

    Brantley, P S; Martos, J N

    2011-03-02

    We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used.

  4. Langevin equation with stochastic damping - Possible application to critical binary fluid

    NASA Technical Reports Server (NTRS)

    Jasnow, D.; Gerjuoy, E.

    1975-01-01

    We solve the familiar Langevin equation with stochastic damping to represent the motion of a Brownian particle in a fluctuating medium. A connection between the damping and the random driving forces is proposed which preserves quite generally the Einstein relation between the diffusion and mobility coefficients. We present an application to the case of a Brownian particle in a critical binary mixture.

  5. Stochastic learning in oxide binary synaptic device for neuromorphic computing

    PubMed Central

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  6. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    PubMed

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  7. Memory Capacity of Networks with Stochastic Binary Synapses

    PubMed Central

    Dubreuil, Alexis M.; Amit, Yali; Brunel, Nicolas

    2014-01-01

    In standard attractor neural network models, specific patterns of activity are stored in the synaptic matrix, so that they become fixed point attractors of the network dynamics. The storage capacity of such networks has been quantified in two ways: the maximal number of patterns that can be stored, and the stored information measured in bits per synapse. In this paper, we compute both quantities in fully connected networks of N binary neurons with binary synapses, storing patterns with coding level , in the large and sparse coding limits (). We also derive finite-size corrections that accurately reproduce the results of simulations in networks of tens of thousands of neurons. These methods are applied to three different scenarios: (1) the classic Willshaw model, (2) networks with stochastic learning in which patterns are shown only once (one shot learning), (3) networks with stochastic learning in which patterns are shown multiple times. The storage capacities are optimized over network parameters, which allows us to compare the performance of the different models. We show that finite-size effects strongly reduce the capacity, even for networks of realistic sizes. We discuss the implications of these results for memory storage in the hippocampus and cerebral cortex. PMID:25101662

  8. Binaries in a medium of fast low-mass objects

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    1991-09-01

    The effect of dynamical friction on binaries in a medium of fast low-mass objects is determined. Results are obtained for an arbitrary particle distribution and for any value of Eb/m(sigma squared). Heggie's Law is confirmed and made more precise. The error in the calculation of Hills (1990) is traced to the very specialized and atypical choice of phase space for performing numerical simulations. The efforts of Bekenstein and Zamir (1990) are traced to inconsistencies in their use of the Vlasov equation. It is found that both the hardening and softening terms are generated by the action of objects with speeds relative to the binary center of mass which are greater than the orbital speed. For binaries at rest with respect to isotropic distribution, this contradicts a standard result, namely, that the viscous effect of fast objects vanishes identically. This paradox is resolved by deriving a more accurate dynamical friction formula. It is shown that a term which is usually dropped is in fact the dominant one.

  9. Evolution of Compact Binary Populations in Globular Clusters: A Boltzmann Study. II. Introducing Stochasticity

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Ghosh, Pranab

    2008-06-01

    We continue the exploration that we began in Paper I of using the Boltzmann scheme to study the evolution of compact binary populations of globular clusters, introducing in this paper our method of handling the stochasticity inherent in the dynamical processes of binary formation, destruction, and hardening in globular clusters. We describe these stochastic processes as "Wiener processes," whereupon the Boltzmann equation becomes a stochastic partial differential equation, the solution of which involves the use of "Itō calculus" (this use being the first, to our knowledge, in this subject), in addition to ordinary calculus. As in Paper I, we focus on the evolution of (1) the number of X-ray binaries NXB in globular clusters and (2) the orbital period distribution of these binaries. We show that, although the details of the fluctuations in the above quantities differ from one "realization" to another of the stochastic processes, the general trends follow those found in the continuous-limit study of Paper I, and the average result over many such realizations is very close to the continuous-limit result. We investigate the dependence of NXB found by these calculations on two essential globular cluster properties, namely, the star-star and star-binary encounter rate parameters Γ and γ, for which we coined the name "Verbunt parameters" in Paper I. We compare our computed results with those from Chandra observations of Galactic globular clusters, showing that the expected scalings of NXB with the Verbunt parameters are in good agreement with those observed. We indicate additional features that can be incorporated into the scheme in the future, as well as how more elaborate problems can be tackled.

  10. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity. PMID:27081965

  11. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  12. Implementation of Chord Length Sampling for Transport Through a Binary Stochastic Mixture

    SciTech Connect

    T.J. Donovan; T.M. Sutton; Y. Danon

    2002-11-18

    Neutron transport through a special case stochastic mixture is examined, in which spheres of constant radius are uniformly mixed in a matrix material. A Monte Carlo algorithm previously proposed and examined in 2-D has been implemented in a test version of MCNP. The Limited Chord Length Sampling (LCLS) technique provides a means for modeling a binary stochastic mixture as a cell in MCNP. When inside a matrix cell, LCLS uses chord-length sampling to sample the distance to the next stochastic sphere. After a surface crossing into a stochastic sphere, transport is treated explicitly until the particle exits or is killed. Results were computed for a simple model with two different fixed neutron source distributions and three sets of material number densities. Stochastic spheres were modeled as black absorbers and varying degrees of scattering were introduced in the matrix material. Tallies were computed using the LCLS capability and by averaging results obtained from multiple realizations of the random geometry. Results were compared for accuracy and figures of merit were compared to indicate the efficiency gain of the LCLS method over the benchmark method. Results show that LCLS provides very good accuracy if the scattering optical thickness of the matrix is small ({le} 1). Comparisons of figures of merit show an advantage to LCLS varying between factors of 141 and 5. LCLS efficiency and accuracy relative to the benchmark both decrease as scattering is increased in the matrix.

  13. Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities

    PubMed Central

    Artyomov, Maxim N.; Das, Jayajit; Kardar, Mehran; Chakraborty, Arup K.

    2007-01-01

    Detection of different extracellular stimuli leading to functionally distinct outcomes is ubiquitous in cell biology, and is often mediated by differential regulation of positive and negative feedback loops that are a part of the signaling network. In some instances, these cellular responses are stimulated by small numbers of molecules, and so stochastic effects could be important. Therefore, we studied the influence of stochastic fluctuations on a simple signaling model with dueling positive and negative feedback loops. The class of models we have studied is characterized by single deterministic steady states for all parameter values, but the stochastic response is bimodal; a behavior that is distinctly different from models studied in the context of gene regulation. For example, when positive and negative regulation is roughly balanced, a unique deterministic steady state with an intermediate value for the amount of a downstream signaling product is found. However, for small numbers of signaling molecules, stochastic effects result in a bimodal distribution for this quantity, with neither mode corresponding to the deterministic solution; i.e., cells are in “on” or “off” states, not in some intermediate state. For a large number of molecules, the stochastic solution converges to the mean-field result. When fluctuations are important, we find that signal output scales with control parameters “anomalously” compared with mean-field predictions. The necessary and sufficient conditions for the phenomenon we report are quite common. So, our findings are expected to be of broad relevance, and suggest that stochastic effects can enable binary cellular decisions. PMID:18025473

  14. Bit corruption correlation and autocorrelation in a stochastic binary nano-bit system

    NASA Astrophysics Data System (ADS)

    Sa-nguansin, Suchittra

    2014-10-01

    The corruption process of a binary nano-bit model resulting from an interaction with N stochastically-independent Brownian agents (BAs) is studied with the help of Monte-Carlo simulations and analytic continuum theory to investigate the data corruption process through the measurement of the spatial two-point correlation and the autocorrelation of bit corruption at the origin. By taking into account a more realistic correlation between bits, this work will contribute to the understanding of the soft error or the corruption of data stored in nano-scale devices.

  15. Stochastic histories of dust grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt; Clayton, D. D.

    1989-01-01

    The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size.

  16. The Ising Decision Maker: a binary stochastic network for choice response time.

    PubMed

    Verdonck, Stijn; Tuerlinckx, Francis

    2014-07-01

    The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2 pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other, whereas between pools, neurons inhibit each other. The perceptual input is represented by an external excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons (microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically tractable multiple attractor network model of information accumulation. In this article, the properties of the IDM are studied, the relations to existing models are discussed, and it is shown that the most important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is shown to predict a variety of observed psychophysical relations such as Piéron's law, the van der Molen-Keuss effect, and Weber's law. Using Bayesian methods, the model is fitted to both simulated and real data, and its performance is compared to the Ratcliff diffusion model. PMID:25090426

  17. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    DOE PAGESBeta

    Olson, Gordon L.

    2015-09-24

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less

  18. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    SciTech Connect

    Olson, Gordon L.

    2015-09-24

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.

  19. Stochastic Background from Coalescences of Neutron Star-Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; de Freitas Pacheco, J. A.

    2006-05-01

    In this work, numerical simulations were used to investigate the gravitational stochastic background produced by coalescences of double neutron star systems occurring up to z~5. The cosmic coalescence rate was derived from Monte Carlo methods using the probability distributions for massive binaries to form and for a coalescence to occur in a given redshift. A truly continuous background is produced by events located only beyond the critical redshift z*=0.23. Events occurring in the redshift interval 0.027

  20. Singularity of influence of stochastic and order phase structures on optical quality of gas-dynamic laser active medium flow

    NASA Astrophysics Data System (ADS)

    Kovalevsky, Valery O.; Lobachev, Vitaly V.

    2002-02-01

    Detail analysis of active medium flow structure is presented. Schlieren method photography of flow is processed to reconstruct parameters both stochastic and order phase components. Properties of random part including correlation function, spectrum of spatial frequency, scale of turbulence, are determined by digital filtering. It was possible to compare influence of random and regular phase distortions on radiation divergence structure.

  1. Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt; Clayton, Donald D.

    1989-01-01

    The evolution course of refractoary interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies.

  2. Effective-medium theory of surfaces and metasurfaces containing two-dimensional binary inclusions.

    PubMed

    Alexopoulos, A

    2010-04-01

    The paper extends one-body effective-medium theory to incorporate the correct second-order interactions in a two-dimensional Maxwell-Garnett theory. The two-body inclusion problem is solved using the averaged dipole moments that are induced by the scattering electromagnetic field on the medium/inclusion system. By incorporating the appropriate polarizability factor in the solutions, conventional right-handed media with binary embeddings are analyzed while a different form for the polarizability term allows the study of the effective properties of a metasurface. In both cases, it is shown that the two-body coefficient to second order in the low area fraction of inclusions is exact, while the corresponding results of the Maxwell-Garnett and Bruggeman theories are incorrect. This is especially true in the superconducting and holes limits, respectively. In the study of metasurfaces, the requirement for electromagnetic screening of the inclusions as well as the requirement needed to achieve the Fröhlich condition are stated. Negative permittivity and permeability are presented for strong-scattering showing negative resonances for a given frequency spectrum. It is shown that these resonances disappear when we derive the weak-scattering limit. The possibility of obtaining doubly negative effective permittivity and permeability is discussed by using an appropriate polarization for the applied electromagnetic field propagating in the metasurface. Finally, the potential difference and hence voltage and capacitance between binary inclusions is determined for surfaces/metasurfaces which allows, in the case of metasurfaces, the behavior of split-ring-type resonators to be investigated. PMID:20481853

  3. Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran

    2014-07-01

    We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.

  4. Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim N.; Das, Jayajit; Kardar, Mehran; Chakraborty, Arup

    2009-03-01

    Detection of different extra-cellular stimuli leading to functionally distinct outcomes is common in cell biology, and is often mediated by differential regulation of positive and negative feedback loops that are a part of the signaling network. For cellular responses stimulated by small numbers of molecules, the stochastic effects are important. Therefore, we studied the influence of stochastic fluctuations on a simple signaling model with dueling positive and negative feedback loops. The class of models we have studied is characterized by single deterministic steady states for all parameter values, but the stochastic response is bimodal; a behavior that is distinctly different from models studied in the context of gene regulation. For small numbers of signaling molecules, stochastic effects result in a bimodal distribution for this quantity, with neither mode corresponding to the deterministic solution; i.e., cells are in ``on'' or ``off'' states, not in some intermediate state. For a large number of molecules, the stochastic solution converges to the mean-field result. When fluctuations are important, we find that signal output scales with control parameters ``anomalously'' compared to mean-field predictions.

  5. Towards constructing one-bit binary adder in excitable chemical medium

    NASA Astrophysics Data System (ADS)

    Lacy Costello, Ben De; Adamatzky, Andy; Jahan, Ishrat; Zhang, Liang

    2011-03-01

    The light-sensitive modification (ruthenium catalysed) of the Belousov-Zhabotinsky reaction exhibits various excitability regimes depending on the level of illumination. Within a narrow range of applied illumination levels the medium is in a sub-excitable state. When in this state an asymmetric perturbation of the medium leads to formation of a travelling localized excitation (wave-fragment) which moves along a predetermined trajectory, ideally preserving its shape and velocity over an extended time period. Collision-based computing can be implemented with these wave-fragments whereby values of Boolean variables are represented as the presence/absence of a wave-fragment at specific sites. When two wave-fragments collide they either annihilate, or form new wave-fragments. The trajectories of the wave-fragments after the collision represent the result of a computation, e.g. construction of a simple logical gate. However, wave-fragments in sub-excitable chemical media are difficult to control. Therefore, we adopted a hybrid procedure in order to construct collision-based logical gates. We used channels of low light intensity projected onto the excitable media in order to subtly tune and stabilise the propagating wave-fragments allowing them to collide at the junctions between channels. Using this methodology we were able to implement both in theoretical models (using the Oregonator) and in experiment two interaction-based logical gates and assemble the gates into a basic one-bit binary adder. We present the first ever experimental approach towards constructing arithmetic circuits in spatially-extended excitable chemical systems where light is used to impart functionality.

  6. Binaries Traveling through a Gaseous Medium: Dynamical Drag Forces and Internal Torques

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Chametla, Raul O.

    2014-10-01

    Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity {\\boldsymbol {V}}_cm against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.

  7. Binaries traveling through a gaseous medium: dynamical drag forces and internal torques

    SciTech Connect

    Sánchez-Salcedo, F. J.; Chametla, Raul O.

    2014-10-20

    Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.

  8. Experimental evidence of dynamical propagation for solitary waves in ultra slow stochastic non-local Kerr medium.

    PubMed

    Louis, H; Tlidi, M; Louvergneaux, E

    2016-07-11

    We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z3/2 up to ten times the power threshold for solitary wave generation. PMID:27410886

  9. Experimental evidence of dynamical propagation for solitary waves in ultra slow stochastic non-local Kerr medium.

    PubMed

    Louis, H; Tlidi, M; Louvergneaux, E

    2016-07-11

    We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z3/2 up to ten times the power threshold for solitary wave generation. PMID:27410887

  10. STOCHASTIC VARIABILITY IN X-RAY EMISSION FROM THE BLACK HOLE BINARY GRS 1915+105

    SciTech Connect

    Polyakov, Yuriy S.; Neilsen, Joseph; Timashev, Serge F.

    2012-06-15

    We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic timescales, for each observation based on multiple 2500 s continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.

  11. Polarization of an electromagnetic wave in a randomly birefringent medium: A stochastic theory of the Stokes parameters

    SciTech Connect

    Botet, Robert; Kuratsuji, Hiroshi

    2010-03-15

    We present a framework for the stochastic features of the polarization state of an electromagnetic wave propagating through the optical medium with both deterministic (controlled) and disordered birefringence. In this case, the Stokes parameters obey a Langevin-type equation on the Poincare sphere. The functional integral method provides for a natural tool to derive the Fokker-Planck equation for the probability distribution of the Stokes parameters. We solve the Fokker-Planck equation in the case of a random anisotropic active medium submitted to a homogeneous electromagnetic field. The possible dissipation and relaxation phenomena are studied in general and in various cases, and we give hints about how to validate experimentally the corresponding phenomenological equations.

  12. Stochastic growth dynamics and composite defects in quenched immiscible binary condensates

    NASA Astrophysics Data System (ADS)

    Liu, I.-K.; Pattinson, R. W.; Billam, T. P.; Gardiner, S. A.; Cornish, S. L.; Huang, T.-M.; Lin, W.-W.; Gou, S.-C.; Parker, N. G.; Proukakis, N. P.

    2016-02-01

    We study the sensitivity of coupled condensate formation dynamics on the history of initial stochastic domain formation in the context of instantaneously quenched elongated harmonically trapped immiscible two-component atomic Bose gases. The spontaneous generation of defects in the fastest condensing component, and subsequent coarse-graining dynamics, can lead to a deep oscillating microtrap into which the other component condenses, thereby establishing a long-lived composite defect in the form of a dark-bright solitary wave. We numerically map out diverse key aspects of these competing growth dynamics, focusing on the role of shot-to-shot fluctuations and global parameter changes (initial state choices, quench parameters, and condensate growth rates), with our findings also qualitatively confirmed by realistic finite-duration quenches. We conclude that phase-separated structures observable on experimental time scales are likely to be metastable states whose form is influenced by the stability and dynamics of the spontaneously emerging dark-bright solitary wave.

  13. Probability distributions of ancestries and genealogical distances on stochastically generated rooted binary trees.

    PubMed

    Mulder, Willem H

    2011-07-01

    The stationary birth-only, or Yule-Furry, process for rooted binary trees has been analysed with a view to developing explicit expressions for two fundamental statistical distributions: the probability that a randomly selected leaf is preceded by N nodes, or "ancestors", and the probability that two randomly selected leaves are separated by N nodes. For continuous-time Yule processes, the first of these distributions is presented in closed analytical form as a function of time, with time being measured with respect to the moment of "birth" of the common ancestor (which is essentially inaccessible to phylogenetic analysis), or with respect to the instant at which the first bifurcation occurred. The second distribution is shown to follow in an iterative manner from a hierarchy of second-order ordinary differential equations. For Yule trees of a given number n of tips, expressions have been derived for the mean and variance for each of these distributions as functions of n, as well as for the distributions themselves. In addition, it is shown how the methods developed to obtain these distributions can be employed to find, with minor effort, expressions for the expectation values of two statistics on Yule trees, the Sackin index (sum over all root-to-leaf distances), and the sum over all leaf-to-leaf distances. PMID:21527261

  14. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  15. Improving enzymatic production of diglycerides by engineering binary ionic liquid medium system.

    PubMed

    Guo, Zheng; Kahveci, Derya; Ozçelik, Beraat; Xu, Xuebing

    2009-10-01

    The tunable property of ionic liquids (ILs) offers tremendous opportunity to rethink the strategy of current efforts to resolve technical challenges that occurred in many production approaches. To establish an efficient glycerolysis approach for enzymatic production of diglycerides (DG), this work reported a novel concept to improve DG yield by applying a binary IL system that consisted of one IL with better DG production selectivity and another IL being able to achieve higher conversion of triglycerides (TG). The candidates for combination were determined by individually examining lipase-catalyzed glycerolysis in different ILs, as a result, promising ones are divided into two groups based on their reaction specificities. The effects of parametric variables were then preliminarily evaluated, following a further investigation of the reaction performance in different binary IL systems from cross-group combinations. The combination of TOMA.Tf(2)N/Ammoeng 102 was employed for optimization by Response Surface Methodology. Eighty to eighty-five percent (mol%) of oil conversion and up to 90% (mol%) of total DG yield (73%, wt%) were obtained, which are markedly higher than those previously reported. This work demonstrated the practical feasibility to couple the technical advantage (high TG conversion and high DG production selective in this work) of individual ILs into a binary system to over-perform the reaction. It is believed that binary IL system could be also applicable to other enzymatic reaction systems for establishment of more efficient reaction protocols. PMID:19426844

  16. DETERMINISTIC AND STOCHASTIC ANALYSES OF DISPERSION IN AN UNBOUNDED STRATIFIED POROUS MEDIUM

    EPA Science Inventory

    The dispersion of a conservative solute released instantaneously from a finite or point source in an unbounded, nonrandom periodically stratified porous medium is examined theoretically by applying the moment method of R. Aris (1956) and P.G. Saffman (1962). The governing moment ...

  17. A medium-term, stochastic forecast model to support sustainable, mixed fisheries management in the Mediterranean Sea.

    PubMed

    Rätz, H-J; Charef, A; Abella, A J; Colloca, F; Ligas, A; Mannini, A; Lloret, J

    2013-10-01

    A medium-term (10 year) stochastic forecast model is developed and presented for mixed fisheries that can provide estimations of age-specific parameters for a maximum of 10 stocks and 10 fisheries. Designed to support fishery managers dealing with complex, multi-annual management plans, the model can be used to quantitatively test the consequences of various stock-specific and fishery-specific decisions, using non-equilibrium stock dynamics. Such decisions include fishing restrictions and other strategies aimed at achieving sustainable mixed fisheries consistent with the concept of maximum sustainable yield (MSY). In order to test the model, recently gathered data on seven stocks and four fisheries operating in the Ligurian and North Tyrrhenian Seas are used to generate quantitative, 10 year predictions of biomass and catch trends under four different management scenarios. The results show that using the fishing mortality at MSY as the biological reference point for the management of all stocks would be a strong incentive to reduce the technical interactions among concurrent fishing strategies. This would optimize the stock-specific exploitation and be consistent with sustainability criteria. PMID:24090555

  18. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  19. A Stochastic Employment Problem

    ERIC Educational Resources Information Center

    Wu, Teng

    2013-01-01

    The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…

  20. Design and study of a thermal infrared camera for an adaptive optics instrument. Circumstellar medium around PMS binaries.

    NASA Astrophysics Data System (ADS)

    Geoffray, H.

    1998-10-01

    This thesis work provides a complete study of a 1-5 μm infrared camera designed to be used with the adaptive optics system installed at the European Southern Observatory (ESO) 3.6 m telescope, from the laboratory characterization of the IRCCD 128x128 HgCdTe Focal Plane Array, to astronomical results obtained on a sample of Pre-Main-Sequence binaries.

  1. Evaluation of a binary optimization approach to find the optimum locations of energy storage devices in a power grid with stochastically varying loads and wind generation

    NASA Astrophysics Data System (ADS)

    Dar, Zamiyad

    The prices in the electricity market change every five minutes. The prices in peak demand hours can be four or five times more than the prices in normal off peak hours. Renewable energy such as wind power has zero marginal cost and a large percentage of wind energy in a power grid can reduce the price significantly. The variability of wind power prevents it from being constantly available in peak hours. The price differentials between off-peak and on-peak hours due to wind power variations provide an opportunity for a storage device owner to buy energy at a low price and sell it in high price hours. In a large and complex power grid, there are many locations for installation of a storage device. Storage device owners prefer to install their device at locations that allow them to maximize profit. Market participants do not possess much information about the system operator's dispatch, power grid, competing generators and transmission system. The publicly available data from the system operator usually consists of Locational Marginal Prices (LMP), load, reserve prices and regulation prices. In this thesis, we develop a method to find the optimum location of a storage device without using the grid, transmission or generator data. We formulate and solve an optimization problem to find the most profitable location for a storage device using only the publicly available market pricing data such as LMPs, and reserve prices. We consider constraints arising due to storage device operation limitations in our objective function. We use binary optimization and branch and bound method to optimize the operation of a storage device at a given location to earn maximum profit. We use two different versions of our method and optimize the profitability of a storage unit at each location in a 36 bus model of north eastern United States and south eastern Canada for four representative days representing four seasons in a year. Finally, we compare our results from the two versions of our

  2. Medium-range icosahedral order in quasicrystal-forming Zr{sub 2}Pd binary metallic glass

    SciTech Connect

    Huang Li; Fang, X. W.; Wang, C. Z.; Ho, K. M.; Kramer, M. J.; Ding, Z. J.

    2011-06-06

    Medium-range order in Zr{sub 2}Pd metallic glass was studied using a combination of x-ray diffraction experiment and atomistic simulations. We show that, in contrast to earlier experimental interpretations, the icosahedral-like polyhedron is centered around Pd, rather than Zr. Furthermore, we find that the ordered icosahedral packing around Pd extends to the third shell in the way similar to that in the Bergman-type clusters. The existence of Bergman-type clusters sheds interesting light into the formation of nanoquasicrystal phase during crystallization process of Zr{sub 2}Pd metallic glass.

  3. FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA

    SciTech Connect

    Power, Chris; James, Gillian; Wynn, Graham; Combet, Celine

    2013-02-10

    Massive stars at redshifts z {approx}> 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultraviolet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray-luminous (L{sub X} {approx} 10{sup 38} erg s{sup -1}) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy ({sigma}{proportional_to}E {sup -3}), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z {approx}> 6 using a Monte Carlo model for a coeval stellar population of main-sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of blackbody and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray-luminous HMXBs and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high-redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of {approx}100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high-redshift galaxy formation.

  4. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  5. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  6. Stochastic games

    PubMed Central

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883

  7. Stochastic Turing patterns on a network.

    PubMed

    Asslani, Malbor; Di Patti, Francesca; Fanelli, Duccio

    2012-10-01

    The process of stochastic Turing instability on a scale-free network is discussed for a specific case study: the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium. PMID:23214650

  8. Stochastic Turing patterns on a network

    NASA Astrophysics Data System (ADS)

    Asslani, Malbor; Di Patti, Francesca; Fanelli, Duccio

    2012-10-01

    The process of stochastic Turing instability on a scale-free network is discussed for a specific case study: the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium.

  9. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  10. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  11. Stochastic cooling

    SciTech Connect

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  12. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  13. Propagation of ultra-short solitons in stochastic Maxwell's equations

    SciTech Connect

    Kurt, Levent; Schäfer, Tobias

    2014-01-15

    We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

  14. Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Pravec, P.

    2006-06-01

    There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.

  15. The Formation of Contact and Very Close Binaries

    SciTech Connect

    Kisseleva-Eggleton, L; Eggleton, P P

    2007-08-10

    We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).

  16. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  17. Stochastic Quantum Gas Dynamics

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Cockburn, Stuart P.

    2010-03-01

    We study the dynamics of weakly-interacting finite temperature Bose gases via the Stochastic Gross-Pitaevskii equation (SGPE). As a first step, we demonstrate [jointly with A. Negretti (Ulm, Germany) and C. Henkel (Potsdam, Germany)] that the SGPE provides a significantly better method for generating an equilibrium state than the number-conserving Bogoliubov method (except for low temperatures and small atom numbers). We then study [jointly with H. Nistazakis and D.J. Frantzeskakis (University of Athens, Greece), P.G.Kevrekidis (University of Massachusetts) and T.P. Horikis (University of Ioannina, Greece)] the dynamics of dark solitons in elongated finite temperature condensates. We demonstrate numerical shot-to-shot variations in soliton trajectories (S.P. Cockburn et al., arXiv:0909.1660.), finding individual long-lived trajectories as in experiments. In our simulations, these variations arise from fluctuations in the phase and density of the underlying medium. We provide a detailed statistical analysis, proposing regimes for the controlled experimental demonstration of this effect; we also discuss the extent to which simpler models can be used to mimic the features of ensemble-averaged stochastic trajectories.

  18. New binary systems: beaming binaries

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Weingrill, J.; Mazeh, T.; Ribas, I.

    2011-11-01

    Exoplanet missions such as COROT and Kepler are providing precise photometric follow-up data of new kinds of variable stars undetected till now. Beaming binaries are among these objects. On these binary systems, the orbital motion of their components is fast enough to produce a detectable modulation on the received flux due to relativistic effects (Zucker et al. 2007). The great advantage of these systems is that it is possible to reconstruct the radial velocity curve of the system from this photometric modulation and thus, orbital parameters such as the mass ratio and the semi-major axis can be estimated from photometry without the necessity of spectroscopic follow-up. In this poster, we briefly introduce the analysis of this kind of binary systems and in particular, the eclipsing cases.

  19. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  20. Rényi entropy measure of noise-aided information transmission in a binary channel

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès

    2010-05-01

    This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission.

  1. Gravitational wave background from binary systems

    SciTech Connect

    Rosado, Pablo A.

    2011-10-15

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.

  2. Discrete analysis of stochastic NMR.II

    NASA Astrophysics Data System (ADS)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  3. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  4. Tsallis entropy measure of noise-aided information transmission in a binary channel

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François; Delahaies, Agnès; Rousseau, David

    2011-06-01

    Noise-aided information transmission via stochastic resonance is shown and analyzed in a binary channel by means of information measures based on the Tsallis entropy. The analysis extends the classic reference of binary information transmission based on the Shannon entropy, and also parallels a recent study based on the Rényi entropy. The conditions for a maximally pronounced stochastic resonance identify optimal Tsallis measures. The study involves a correspondence between Tsallis and Rényi information measures, specially relevant to the characterization of stochastic resonance, and establishing that for such effects identical properties are shared in common by both Tsallis and Rényi measures.

  5. Stochastic monotony signature and biomedical applications.

    PubMed

    Demongeot, Jacques; Galli Carminati, Giuliana; Carminati, Federico; Rachdi, Mustapha

    2015-12-01

    We introduce a new concept, the stochastic monotony signature of a function, made of the sequence of the signs that indicate if the function is increasing or constant (sign +), or decreasing (sign -). If the function results from the averaging of successive observations with errors, the monotony sign is a random binary variable, whose density is studied under two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a simple statistical test allowing the comparison between the monotony signatures of two functions (e.g., one observed and the other as reference) and we apply the test to four biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis. PMID:26563556

  6. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  7. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  8. Stochastic template placement algorithm for gravitational wave data analysis

    SciTech Connect

    Harry, I. W.; Sathyaprakash, B. S.; Allen, B.

    2009-11-15

    This paper presents an algorithm for constructing matched-filter template banks in an arbitrary parameter space. The method places templates at random, then removes those which are 'too close' together. The properties and optimality of stochastic template banks generated in this manner are investigated for some simple models. The effectiveness of these template banks for gravitational wave searches for binary inspiral waveforms is also examined. The properties of a stochastic template bank are then compared to the deterministically placed template banks that are currently used in gravitational wave data analysis.

  9. Numerical tests of stochastic tomography

    NASA Astrophysics Data System (ADS)

    Ru-Shan, Wu; Xiao-Bi, Xie

    1991-05-01

    The method of stochastic tomography proposed by Wu is tested numerically. This method reconstructs the heterospectra (power spectra of heterogeneities) at all depths of a non-uniform random medium using measured joint transverse-angular coherence functions (JTACF) of transmission fluctuations on an array. The inversion method is based on a constrained least-squares inversion implemented via the singular value decomposition. The inversion is also applicable to reconstructions using transverse coherence functions (TCF) or angular coherence functions (ACF); these are merely special cases of JTACF. Through the analysis of sampling functions and singular values, and through numerical examples of reconstruction using theoretically generated coherence functions, we compare the resolution and robustness of reconstructions using TCF, ACF and JTACF. The JTACF can `focus' the coherence analysis at different depths and therefore has a better depth resolution than TCF and ACF. In addition, the JTACF contains much more information than the sum of TCF and ACF, and has much better noise resistance properties than TCF and ACF. Inversion of JTACF can give a reliable reconstruction of heterospectra at different depths even for data with 20% noise contamination. This demonstrates the feasibility of stochastic tomography using JTACF.

  10. Stochastic Processes in Electrochemistry.

    PubMed

    Singh, Pradyumna S; Lemay, Serge G

    2016-05-17

    Stochastic behavior becomes an increasingly dominant characteristic of electrochemical systems as we probe them on the smallest scales. Advances in the tools and techniques of nanoelectrochemistry dictate that stochastic phenomena will become more widely manifest in the future. In this Perspective, we outline the conceptual tools that are required to analyze and understand this behavior. We draw on examples from several specific electrochemical systems where important information is encoded in, and can be derived from, apparently random signals. This Perspective attempts to serve as an accessible introduction to understanding stochastic phenomena in electrochemical systems and outlines why they cannot be understood with conventional macroscopic descriptions. PMID:27120701

  11. Monte Carlo Hybrid Applied to Binary Stochastic Mixtures

    Energy Science and Technology Software Center (ESTSC)

    2008-08-11

    The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.

  12. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  13. Quantum Stochastic Processes

    SciTech Connect

    Spring, William Joseph

    2009-04-13

    We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].

  14. Dynamics of Double Stochastic Operators

    NASA Astrophysics Data System (ADS)

    Saburov, Mansoor

    2016-03-01

    A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.

  15. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  16. DEPTH-AVERAGING EFFECTS ON HYDRAULIC HEAD FOR MEDIA WITH STOCHASTIC HYDRAULIC CONDUCTIVITY.

    USGS Publications Warehouse

    Naff, R.L.; Vecchia, A.V.

    1987-01-01

    Hydraulic conductivity of a porous medium frequently is considered to be a single realization of a three-dimensional spatial stochastic process. The most common observation of flow in porous media are hydraulic-head measurements obtained from wells which are screened over extensive sections of the medium. These measurements represent, approximately, a one-dimensional spatial average of the actual three-dimensional head distribution, the actual head distribution being a stochastic process resulting from flow through a random hydraulic-conductivity field. This paper examines, via ensemble averages, the effect of such spatial averages of groundwater flow on the spatial autocovariance function for a simple, yet viable, stochastic model of a bounded medium. The model is taken to be three-dimensional flow in a medium that is bounded above and below and in which the hydraulic conductivity is a second-order stationary stochastic process.

  17. Overview of medium heterogeneity and transport processes

    SciTech Connect

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ``point`` measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions.

  18. Stochastic Thermal Convection

    NASA Astrophysics Data System (ADS)

    Venturi, Daniele

    2005-11-01

    Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.

  19. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  20. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  1. Stochastic Gauss equations

    NASA Astrophysics Data System (ADS)

    Pierret, Frédéric

    2016-02-01

    We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

  2. Stochastic modeling of rainfall

    SciTech Connect

    Guttorp, P.

    1996-12-31

    We review several approaches in the literature for stochastic modeling of rainfall, and discuss some of their advantages and disadvantages. While stochastic precipitation models have been around at least since the 1850`s, the last two decades have seen an increased development of models based (more or less) on the physical processes involved in precipitation. There are interesting questions of scale and measurement that pertain to these modeling efforts. Recent modeling efforts aim at including meteorological variables, and may be useful for regional down-scaling of general circulation models.

  3. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  4. Stochastic entrainment of a stochastic oscillator.

    PubMed

    Wang, Guanyu; Peskin, Charles S

    2015-11-01

    In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs. PMID:26651734

  5. Evolution of weak disturbances in inert binary mixtures

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.

    1977-01-01

    The evolution of weak disturbances in inert binary mixtures is determined for the one-dimensional piston problem. The interaction of the dissipative and nonlinear mechanisms is described by Burgers' equation. The binary mixture diffusion mechanisms enter as an additive term in an effective diffusivity. Results for the impulsive motion of a piston moving into an ambient medium and the sinusoidally oscillating piston are used to illustrate the results and elucidate the incorrect behavior pertaining to the associated linear theory.

  6. Stochastic Models of Human Growth.

    ERIC Educational Resources Information Center

    Goodrich, Robert L.

    Stochastic difference equations of the Box-Jenkins form provide an adequate family of models on which to base the stochastic theory of human growth processes, but conventional time series identification methods do not apply to available data sets. A method to identify structure and parameters of stochastic difference equation models of human…

  7. Focus on stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo

    2016-02-01

    We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.

  8. Elementary stochastic cooling

    SciTech Connect

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  9. ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1986-01-01

    A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.

  10. Effects of potential functions on stochastic resonance

    NASA Astrophysics Data System (ADS)

    Li, Jian-Long; Zeng, Ling-Zao

    2011-01-01

    In this paper, the effects of a bistable potential function U(x) = —ax2/2 + b|x|2γ/(2γ) on stochastic resonance (SR) is discussed. We investigate the effects of index γ on the performance of the SR system with fixed parameters a and b, and with fixed potential barriers, respectively. To measure the performance of the SR system in the presence of an aperiodic input, the bit error rate is employed, as is commonly used in binary communications. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the shape of potential functions on SR and give a guidance of nonlinear systems in the application of information processing.

  11. Adaptive stochastic cellular automata: Applications

    NASA Astrophysics Data System (ADS)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  12. Stochastic computing with biomolecular automata

    NASA Astrophysics Data System (ADS)

    Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud

    2004-07-01

    Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.

  13. Origin of the computational hardness for learning with binary synapses

    NASA Astrophysics Data System (ADS)

    Huang, Haiping; Kabashima, Yoshiyuki

    2014-11-01

    Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.

  14. Binary fish passage models for uniform and nonuniform flows

    SciTech Connect

    Neary, Vincent S

    2011-01-01

    Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow

  15. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  16. Another thread in the tapestry of stellar feedback: X-ray binaries

    NASA Astrophysics Data System (ADS)

    Justham, Stephen; Schawinski, Kevin

    2012-06-01

    We consider X-ray binaries (XBs) as potential sources of stellar feedback. XBs observationally appear able to deposit a high fraction of their power output into their local interstellar medium, which may make them a non-negligible source of energy input. The formation rate of the most luminous XBs rises with decreasing metallicity, which should increase their significance during galaxy formation in the early Universe. We also argue that stochastic effects are important to XB feedback (XBF) and may dominate the systematic changes due to metallicity in many cases. Large stochastic variation in the magnitude of XBF at low absolute star formation rates provides a natural reason for diversity in the evolution of dwarf galaxies which were initially almost identical, with several per cent of such haloes experiencing energy input from XBs roughly two orders of magnitude above the most likely value. These probability distributions suggest that the effect of XBF is most commonly significant for total stellar masses between approximately 107 and 108 M⊙, which might resolve a current problem with modelling populations of such galaxies. We explain how XBs might inject energy before luminous supernovae (SNe) contribute significantly to feedback and how XBs can assist in keeping gas hot long after the last core-collapse SN has exploded. Energy input from XBs produces different behaviour to that from SNe, partly since the peak energy input from a mean XB population continues for ≈100 Myr after the start of a starburst. XBF could be especially important to some dwarf galaxies, potentially heating gas without expelling it; the properties of XBF also match those previously derived as allowing episodic star formation. We also argue that the efficiency of SN feedback (SNF) might be reduced when XBF has had the opportunity to act first. In addition, we note that the effect of SNF is unlikely to be scale-free; galaxies smaller than ≈100 pc might well experience less effective SNF.

  17. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  18. Binary synchronous simulator

    NASA Technical Reports Server (NTRS)

    Rogers, J. R., III

    1980-01-01

    Flexible simulator for trouble-shooting data transmission system uses binary synchronous communications protocol to produce error-free transmission of data between two points. Protocol may be used to replace display generator or be directly fed to display generator.

  19. Binary pattern deflectometry.

    PubMed

    Butel, Guillaume P; Smith, Greg A; Burge, James H

    2014-02-10

    Deflectometry is widely used to accurately calculate the slopes of any specular reflective surface, ranging from car bodies to nanometer-level mirrors. This paper presents a new deflectometry technique using binary patterns of increasing frequency to retrieve the surface slopes. Binary Pattern Deflectometry allows almost instant, simple, and accurate slope retrieval, which is required for applications using mobile devices. The paper details the theory of this deflectometry method and the challenges of its implementation. Furthermore, the binary pattern method can also be combined with a classic phase-shifting method to eliminate the need of a complex unwrapping algorithm and retrieve the absolute phase, especially in cases like segmented optics, where spatial algorithms have difficulties. Finally, whether it is used as a stand-alone or combined with phase-shifting, the binary patterns can, within seconds, calculate the slopes of any specular reflective surface. PMID:24663273

  20. Stochastic speculative price.

    PubMed

    Samuelson, P A

    1971-02-01

    Because a commodity like wheat can be carried forward from one period to the next, speculative arbitrage serves to link its prices at different points of time. Since, however, the size of the harvest depends on complicated probability processes impossible to forecast with certainty, the minimal model for understanding market behavior must involve stochastic processes. The present study, on the basis of the axiom that it is the expected rather than the known-for-certain prices which enter into all arbitrage relations and carryover decisions, determines the behavior of price as the solution to a stochastic-dynamic-programming problem. The resulting stationary time series possesses an ergodic state and normative properties like those often observed for real-world bourses. PMID:16591903

  1. Stochastic ice stream dynamics.

    PubMed

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  2. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  3. VAWT stochastic wind simulator

    SciTech Connect

    Strickland, J.H.

    1987-04-01

    A stochastic wind simulation for VAWTs (VSTOC) has been developed which yields turbulent wind-velocity fluctuations for rotationally sampled points. This allows three-component wind-velocity fluctuations to be simulated at specified nodal points on the wind-turbine rotor. A first-order convection scheme is used which accounts for the decrease in streamwise velocity as the flow passes through the wind-turbine rotor. The VSTOC simulation is independent of the particular analytical technique used to predict the aerodynamic and performance characteristics of the turbine. The VSTOC subroutine may be used simply as a subroutine in a particular VAWT prediction code or it may be used as a subroutine in an independent processor. The independent processor is used to interact with a version of the VAWT prediction code which is segmented into deterministic and stochastic modules. Using VSTOC in this fashion is very efficient with regard to decreasing computer time for the overall calculation process.

  4. STOCHASTIC COOLING FOR RHIC.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

    2003-05-12

    Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

  5. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  6. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  7. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  8. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  9. Ultimate open pit stochastic optimization

    NASA Astrophysics Data System (ADS)

    Marcotte, Denis; Caron, Josiane

    2013-02-01

    Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.

  10. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I

  11. Quantum Spontaneous Stochasticity

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore; Eyink, Gregory

    Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.

  12. Rényi entropy measure of noise-aided information transmission in a binary channel.

    PubMed

    Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès

    2010-05-01

    This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission. PMID:20866190

  13. Influence of binary fraction on the fragmentation of young massive clusters—a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanuka; Sinha, Abisa; Chattopadhyay, Asis Kumar

    2016-04-01

    A stochastic model has been developed to study the hierarchical fragmentation process of young massive clusters in external galaxies considering close binary components along with individual ones. Stellar masses for individual ones have been generated from truncated Pareto distribution and stellar masses for close binary components have been generated from a truncated Bi-variate Gumbel Exponential distribution. The above distribution is identified by fitting the observed bi-variate distribution of masses of eclipsing binary stars computed from the light curves catalogued in the package Binary Maker 3.0. The resulting mass spectra computed at different projected distances, show signature of mass segregation. Degree of mass segregation becomes reduced due to the inclusion of binary fraction. This might be due to the reduction of massive stars and inclusion of less massive stars rather than inclusion of single massive stars and the effect of line of sight length projected to an observer.

  14. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    NASA Astrophysics Data System (ADS)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  15. A retrodictive stochastic simulation algorithm

    SciTech Connect

    Vaughan, T.G. Drummond, P.D.; Drummond, A.J.

    2010-05-20

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  16. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules

    PubMed Central

    Kim, Sung-Yon; Cho, Jae Hun; Murray, Evan; Bakh, Naveed; Choi, Heejin; Ohn, Kimberly; Ruelas, Luzdary; Hubbert, Austin; McCue, Meg; Vassallo, Sara L.; Keller, Philipp J.; Chung, Kwanghun

    2015-01-01

    Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1–3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion. PMID:26578787

  17. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules.

    PubMed

    Kim, Sung-Yon; Cho, Jae Hun; Murray, Evan; Bakh, Naveed; Choi, Heejin; Ohn, Kimberly; Ruelas, Luzdary; Hubbert, Austin; McCue, Meg; Vassallo, Sara L; Keller, Philipp J; Chung, Kwanghun

    2015-11-17

    Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1-3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion. PMID:26578787

  18. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  19. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  20. Low cost paths to binary optics

    NASA Technical Reports Server (NTRS)

    Nelson, Arthur; Domash, Lawrence

    1993-01-01

    Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.

  1. Commission 42: Close Binaries

    NASA Astrophysics Data System (ADS)

    Giménez, Alvaro; Rucinski, Slavek; Szkody, P.; Gies, D.; Kang, Y.-W.; Linsky, J.; Livio, M.; Morrell, N.; Hilditch, R.; Nordström, B.; Ribas, I.; Sion, E.; Vrielman, S.

    2007-03-01

    The triennial report from Commission 42 covers various topics like massive binaries, contact systems, cataclysmic variables and low-mass binary stars. We try in a number of sections to provide an update on the current status of the main research areas in the field of close binaries. It is not a formal review, even complete or comprehensive, but an attempt to bring the main topics on recent research to astronomers working in other fields. References are also not comprehensive and simply added to the text to help the reader looking for deeper information on the subject. For this reason, we have chosen to include references (sometimes incomplete for ongoing work) not in a list at the end but integrated with the main text body. Complete references and additional sources can be easily obtained through web access of ADS or SIMBAD. Furthermore, the summary of papers on close-binary research contained in the Bibliography of Close Binaries (BCB) can be accessed from the web site of Commission 42. I would like to express the gratitude of the commission for the careful work of Colin Scarfe as Editor-in-Chief of BCB and Andras Holl and Attila Sragli for maintaining the web pages of the Commission within the structure of Division V. Finally, K. Olah and J. Jurcsik are gratefully acknowledged for their continued support as editors of the Information Bulletin on Variable Stars (IBVS), also accessible through the commission web page.

  2. Stochastic calculus in physics

    SciTech Connect

    Fox, R.F.

    1987-03-01

    The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations.

  3. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  4. Stochastic thermodynamics of resetting

    NASA Astrophysics Data System (ADS)

    Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo

    2016-03-01

    Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.

  5. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Mingarelli, C. M. F.; Gair, J. R.; Sesana, A.; Theureau, G.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Lentati, L.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S. A.; Smits, R.; Stappers, B.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.; EPTA Collaboration

    2015-07-01

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ˜2 - 90 nHz band shows consistency with isotropy, with the strain amplitude in l >0 spherical harmonic multipoles ≲40 % of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.

  6. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.

    PubMed

    Taylor, S R; Mingarelli, C M F; Gair, J R; Sesana, A; Theureau, G; Babak, S; Bassa, C G; Brem, P; Burgay, M; Caballero, R N; Champion, D J; Cognard, I; Desvignes, G; Guillemot, L; Hessels, J W T; Janssen, G H; Karuppusamy, R; Kramer, M; Lassus, A; Lazarus, P; Lentati, L; Liu, K; Osłowski, S; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S A; Smits, R; Stappers, B; Tiburzi, C; van Haasteren, R; Vecchio, A; Verbiest, J P W

    2015-07-24

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations. PMID:26252674

  7. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  8. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  9. Simulating Contact Binaries

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Tohline, Joel E.; Staff, Jan E.; Motl, Patrick M.; Marcello, Dominic

    2014-06-01

    About one in every 150 stars is a contact binary system of WUMa type and it was thought for a long time that such a binary would naturally proceed towards merger, forming a single star. In September 2008 such a merger was observed in the eruption of a “red nova", V1309 Sco. We are developing a hydrodynamics simulation for contact binaries using Self Consistent Field (SCF) techniques, so that their formation, structural, and merger properties could be studied. This model can also be used to probe the stability criteria such as the large-scale equatorial circulations and the minimum mass ratio. We also plan to generate light curves from the simulation data in order to compare with the observed case of V1309 Sco. A comparison between observations and simulations will help us better understand the nova-like phenomena of stellar mergers.

  10. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  11. Identification list of binaries

    NASA Astrophysics Data System (ADS)

    Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.

    The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.

  12. Stochastic power flow modeling

    SciTech Connect

    Not Available

    1980-06-01

    The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  13. Stochastic blind motion deblurring.

    PubMed

    Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

    2015-10-01

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941

  14. Test of Optical Stochastic Cooling in the IOTA Ring

    SciTech Connect

    Lebedev, V. A.; Tokpanov, Yu.; Zolotorev, M. S.

    2013-09-26

    A new 150 MeV electron storage ring is being built at Fermilab. The construction of a new machine pursues two goals a test of highly non-linear integrable optics and a test of optical stochastic cooling. This paper discusses details of OSC arrangements, choice of major parameters of the cooling scheme and incoming experimental tests of the optical amplifier prototype which uses highly doped Ti-sapphire crystal as amplification medium.

  15. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGESBeta

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  16. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    SciTech Connect

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.

  17. Variance decomposition in stochastic simulators

    SciTech Connect

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  18. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  19. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  20. Binary concatenated coding system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1973-01-01

    Coding, using 3-bit binary words, is applicable to any measurement having integer scale up to 100. System using 6-bit data words can be expanded to read from 1 to 10,000, and 9-bit data words can increase range to 1,000,000. Code may be ''read'' directly by observation after memorizing simple listing of 9's and 10's.

  1. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  2. Binary primitive alternant codes

    NASA Technical Reports Server (NTRS)

    Helgert, H. J.

    1975-01-01

    In this note we investigate the properties of two classes of binary primitive alternant codes that are generalizations of the primitive BCH codes. For these codes we establish certain equivalence and invariance relations and obtain values of d and d*, the minimum distances of the prime and dual codes.

  3. Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kato, Ryo; Soda, Jiro

    2016-03-01

    We study the detectability of circular polarization in a stochastic gravitational wave background from various sources such as supermassive black hole binaries, cosmic strings, and inflation in the early universe with pulsar timing arrays. We calculate generalized overlap reduction functions for the circularly polarized stochastic gravitational wave background. We find that the circular polarization cannot be detected for an isotropic background. However, there is a chance to observe the circular polarization for an anisotropic gravitational wave background. We also show how to separate polarized gravitational waves from unpolarized gravitational waves.

  4. Hunting for brown dwarf binaries with X-Shooter

    NASA Astrophysics Data System (ADS)

    Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.

    2015-05-01

    The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.

  5. Interacting binaries. Lecture notes 1992.

    NASA Astrophysics Data System (ADS)

    Nussbaumer, H.; Orr, A.

    These lecture notes represent a unique collection of information and references on current research on interacting binaries: S. N. Shore puts the emphasis on observations and their connection to relevant physics. He also discusses symbiotic stars. Cataclysmic variables are the subject of M. Livio's course, whereas E. P. J. van den Heuvel concentrates on more massive binaries and X-ray binaries.

  6. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches

    PubMed Central

    2009-01-01

    Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097

  7. Stochastic reconstruction of sandstones

    PubMed

    Manwart; Torquato; Hilfer

    2000-07-01

    A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples. PMID:11088546

  8. DOES A ''STOCHASTIC'' BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND?

    SciTech Connect

    Ravi, V.; Wyithe, J. S. B.; Hobbs, G.; Shannon, R. M.; Manchester, R. N.; Yardley, D. R. B.; Keith, M. J.

    2012-12-20

    We investigate the effects of gravitational waves (GWs) from a simulated population of binary supermassive black holes (SMBHs) on pulsar timing array data sets. We construct a distribution describing the binary SMBH population from an existing semi-analytic galaxy formation model. Using realizations of the binary SMBH population generated from this distribution, we simulate pulsar timing data sets with GW-induced variations. We find that the statistics of these variations do not correspond to an isotropic, stochastic GW background. The ''Hellings and Downs'' correlations between simulated data sets for different pulsars are recovered on average, though the scatter of the correlation estimates is greater than expected for an isotropic, stochastic GW background. These results are attributable to the fact that just a few GW sources dominate the GW-induced variations in every Fourier frequency bin of a five-year data set. Current constraints on the amplitude of the GW signal from binary SMBHs will be biased. Individual binary systems are likely to be detectable in five-year pulsar timing array data sets where the noise is dominated by GW-induced variations. Searches for GWs in pulsar timing array data therefore need to account for the effects of individual sources of GWs.

  9. Generalization Learning in a Perceptron with Binary Synapses

    NASA Astrophysics Data System (ADS)

    Baldassi, Carlo

    2009-09-01

    We consider the generalization problem for a perceptron with binary synapses, implementing the Stochastic Belief-Propagation-Inspired (SBPI) learning algorithm which we proposed earlier, and perform a mean-field calculation to obtain a differential equation which describes the behaviour of the device in the limit of a large number of synapses N. We show that the solving time of SBPI is of order Nsqrt{log N} , while the similar, well-known clipped perceptron (CP) algorithm does not converge to a solution at all in the time frame we considered. The analysis gives some insight into the ongoing process and shows that, in this context, the SBPI algorithm is equivalent to a new, simpler algorithm, which only differs from the CP algorithm by the addition of a stochastic, unsupervised meta-plastic reinforcement process, whose rate of application must be less than sqrt{2/(π N)} for the learning to be achieved effectively. The analytical results are confirmed by simulations.

  10. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  11. A Stochastic Cratering Model for Asteroid Surfaces

    NASA Technical Reports Server (NTRS)

    Richardson, J. E.; Melosh, H. J.; Greenberg, R. J.

    2005-01-01

    The observed cratering records on asteroid surfaces (four so far: Gaspra, Ida, Mathilde, and Eros [1-4]) provide us with important clues to their past bombardment histories. Previous efforts toward interpreting these records have led to two basic modeling styles for reproducing the statistics of the observed crater populations. The first, and most direct, method is to use Monte Carlo techniques [5] to stochastically populate a matrix-model test surface with craters as a function of time [6,7]. The second method is to use a more general, parameterized approach to duplicate the statistics of the observed crater population [8,9]. In both methods, several factors must be included beyond the simple superposing of circular features: (1) crater erosion by subsequent impacts, (2) infilling of craters by impact ejecta, and (3) crater degradation and era- sure due to the seismic effects of subsequent impacts. Here we present an updated Monte Carlo (stochastic) modeling approach, designed specifically with small- to medium-sized asteroids in mind.

  12. Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis

    NASA Astrophysics Data System (ADS)

    Li, Bofeng

    2016-07-01

    Stochastic models are important in global navigation satellite systems (GNSS) estimation problems. One can achieve reliable ambiguity resolution and precise positioning only by use of a suitable stochastic model. The BeiDou system has received increased research focus, but based only on empirical stochastic models from the knowledge of GPS. In this paper, we will systematically study the estimation, assessment and impacts of a triple-frequency BeiDou stochastic model. In our estimation problem, a single-difference, geometry-free functional model is used to extract pure random noise. A very sophisticated structure of unknown variance matrix is designed to allow the estimation of satellite-specific variances, cross correlations between two arbitrary frequencies, as well as the time correlations for phase and code observations per frequency. In assessing the stochastic models, six data sets with four brands of BeiDou receivers on short and zero-length baselines are processed, and the results are compared. In impact analysis of stochastic model, the performance of integer ambiguity resolution and positioning are numerically demonstrated using a realistic stochastic model. The results from ultrashort (shorter than 10 m) and zero-length baselines indicate that BeiDou stochastic models are affected by both observation and receiver brands. The observation variances have been modeled by an elevation-dependent function, but the modeling errors for geostationary earth orbit (GEO) satellites are larger than for inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites. The stochastic model is governed by both the internal errors of the receiver and external errors at the site. Different receivers have different capabilities for resisting external errors. A realistic stochastic model is very important for achieving ambiguity resolution with a high success rate and small false alarm and for determining realistic variances for position estimates. To

  13. Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis

    NASA Astrophysics Data System (ADS)

    Li, Bofeng

    2016-03-01

    Stochastic models are important in global navigation satellite systems (GNSS) estimation problems. One can achieve reliable ambiguity resolution and precise positioning only by use of a suitable stochastic model. The BeiDou system has received increased research focus, but based only on empirical stochastic models from the knowledge of GPS. In this paper, we will systematically study the estimation, assessment and impacts of a triple-frequency BeiDou stochastic model. In our estimation problem, a single-difference, geometry-free functional model is used to extract pure random noise. A very sophisticated structure of unknown variance matrix is designed to allow the estimation of satellite-specific variances, cross correlations between two arbitrary frequencies, as well as the time correlations for phase and code observations per frequency. In assessing the stochastic models, six data sets with four brands of BeiDou receivers on short and zero-length baselines are processed, and the results are compared. In impact analysis of stochastic model, the performance of integer ambiguity resolution and positioning are numerically demonstrated using a realistic stochastic model. The results from ultrashort (shorter than 10 m) and zero-length baselines indicate that BeiDou stochastic models are affected by both observation and receiver brands. The observation variances have been modeled by an elevation-dependent function, but the modeling errors for geostationary earth orbit (GEO) satellites are larger than for inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites. The stochastic model is governed by both the internal errors of the receiver and external errors at the site. Different receivers have different capabilities for resisting external errors. A realistic stochastic model is very important for achieving ambiguity resolution with a high success rate and small false alarm and for determining realistic variances for position estimates. To

  14. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise

    SciTech Connect

    Hong, Jialin; Zhang, Liying

    2014-07-01

    In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.

  15. Gravitational radiation from primordial solitons and soliton-star binaries

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo

    1989-01-01

    The possibility that both the formation of nontopological solitons in a primordial second-order phase transition and binary systems of soliton stars could generate a stochastic gravitational-wave background is examined. The present contribution of gravitational radiation to the energy density of the universe from these processes is estimated for a number of different models. The detectability of such contributions from the timing measurements of the millisecond pulsar and spaceborne laser interferometry is briefly discussed and compared to other cosmological and local sources of background gravitational waves.

  16. The Abelian Sandpile Model on a Random Binary Tree

    NASA Astrophysics Data System (ADS)

    Redig, F.; Ruszel, W. M.; Saada, E.

    2012-06-01

    We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar and Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of n random transfer matrices.

  17. Comparison of Two Statistical Approaches to a Solution of the Stochastic Radiative Transfer Equation

    NASA Astrophysics Data System (ADS)

    Kirnos, I. V.; Tarasenkov, M. V.; Belov, V. V.

    2016-04-01

    The method of direct simulation of photon trajectories in a stochastic medium is compared with the method of closed equations suggested by G. A. Titov. A comparison is performed for the model of the stochastic medium in the form of a cloudy field of constant thickness comprising rectangular clouds whose boundaries are determined by a stationary Poisson flow of points. It is demonstrated that the difference between the calculated results can reach 20-30%; however, in some cases (for some sets of initial data) the difference is limited by 5% irrespective of the cloud cover index.

  18. Medium-Frequency Pseudonoise Georadar

    NASA Technical Reports Server (NTRS)

    Arendt, G. Dickey; Carl, J. R.; Byerly, Kent A.; Amini, B. Jon

    2005-01-01

    Ground-probing radar systems featuring medium-frequency carrier signals phase-modulated by binary pseudonoise codes have been proposed. These systems would be used to locate and detect movements of subterranean surfaces; the primary intended application is in warning of the movement of underground water toward oil-well intake ports in time to shut down those ports to avoid pumping of water. Other potential applications include oil-well logging and monitoring of underground reservoirs. A typical prior georadar system operates at a carrier frequency of at least 50 MHz in order to provide useable range resolution. This frequency is too high for adequate penetration of many underground layers of interest. On the other hand, if the carrier frequency were to be reduced greatly to increase penetration, then bandwidth and thus range resolution would also have to be reduced, thereby rendering the system less useful. The proposed medium-frequency pseudonoise georadar systems would offer the advantage of greater penetration at lower carrier frequencies, but without the loss of resolution that would be incurred by operating typical prior georadar systems at lower frequencies.

  19. Binary Love relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-07-01

    When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.

  20. Contact binary stars

    NASA Astrophysics Data System (ADS)

    Mochnacki, S. W.

    1981-04-01

    Densities, corrected primary colors, minimum periods, inferred masses, luminosities, and specific angular momenta are computed from data on 37 W Ursae Majoris systems. A-type systems, having lower densities and angular momenta than the W-type systems, are shown to be evolved, and a new class of contact binary is identified, the OO Aquilae systems, whose members have evolved into contact. Evolutionary grids based on the contact condition agree with observation, except in that the evolved A-type systems have lost more angular momentum than predicted by gravitational radiation alone. This is accounted for by stellar wind magnetic braking, which is shown to be effective on a shorter time scale and to be important in other kinds of binaries containing a cool, tidally coupled component.

  1. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  2. Binary Optics Toolkit

    Energy Science and Technology Software Center (ESTSC)

    1996-04-02

    This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.

  3. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  4. Multiscale Hy3S: Hybrid stochastic simulation for supercomputers

    PubMed Central

    Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N

    2006-01-01

    Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems

  5. Evolutionary models of binaries

    NASA Astrophysics Data System (ADS)

    van Rensbergen, Walter; Mennekens, Nicki; de Greve, Jean-Pierre; Jansen, Kim; de Loore, Bert

    2011-07-01

    We have put on CDS a catalog containing 561 evolutionary models of binaries: J/A+A/487/1129 (Van Rensbergen+, 2008). The catalog covers a grid of binaries with a B-type primary at birth, different values for the initial mass ratio and a wide range of initial orbital periods. The evolution was calculated with the Brussels code in which we introduced the spinning up and the creation of a hot spot on the gainer or its accretion disk, caused by impacting mass coming from the donor. When the kinetic energy of fast rotation added to the radiative energy of the hot spot exceeds the binding energy, a fraction of the transferred matter leaves the system: the evolution is liberal during a short lasting era of rapid mass transfer. The spin-up of the gainer was modulated using both strong and weak tides. The catalog shows the results for both types. For comparison, we included the evolutionary tracks calculated with the conservative assumption. Binaries with an initial primary below 6 Msolar show hardly any mass loss from the system and thus evolve conservatively. Above this limit differences between liberal and conservative evolution grow with increasing initial mass of the primary star.

  6. Stochastic roots of growth phenomena

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.

    2014-05-01

    We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.

  7. Stochastic superparameterization in quasigeostrophic turbulence

    SciTech Connect

    Grooms, Ian; Majda, Andrew J.

    2014-08-15

    In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and

  8. Binary-Signal Recovery

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  9. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  10. Detecting compact galactic binaries using a hybrid swarm-based algorithm

    NASA Astrophysics Data System (ADS)

    Bouffanais, Yann; Porter, Edward K.

    2016-03-01

    Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources and the extraction of the signal parameters in a noisy environment are real challenges for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work, we present the first application of a swarm-based algorithm combining Particle Swarm Optimization and Differential Evolution. These algorithms have been shown to converge faster to global solutions on complicated likelihood surfaces than other stochastic methods. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1-mHz search bandwidth. This interesting problem gave the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low-frequency source, as well as the verification binary RXJ 0806.3 +1527 , we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources and recover the true parameters within a 99% credible interval.

  11. Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity.

    PubMed

    Qian, Hong; Shi, Pei-Zhe; Xing, Jianhua

    2009-06-28

    We present a simple, unifying theory for stochastic biochemical systems with multiple time-scale dynamics that exhibit noise-induced bistability in an open-chemical environment, while the corresponding macroscopic reaction is unistable. Nonlinear stochastic biochemical systems like these are fundamentally different from classical systems in equilibrium or near-equilibrium steady state whose fluctuations are unimodal following Einstein-Onsager-Lax-Keizer theory. We show that noise-induced bistability in general arises from slow fluctuations, and a pitchfork bifurcation occurs as the rate of fluctuations decreases. Since an equilibrium distribution, due to detailed balance, has to be independent of changes in time-scale, the bifurcation is necessarily a driven phenomenon. As examples, we analyze three biochemical networks of currently interest: self-regulating gene, stochastic binary decision, and phosphorylation-dephosphorylation cycle with fluctuating kinase. The implications of bistability to biochemical complexity are discussed. PMID:19506761

  12. Diffusion of test particles in stochastic magnetic fields in the percolative regime

    SciTech Connect

    Neuer, Marcus; Spatschek, Karl H.

    2006-09-15

    For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions.

  13. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  14. SHAPING THE BROWN DWARF DESERT: PREDICTING THE PRIMORDIAL BROWN DWARF BINARY DISTRIBUTIONS FROM TURBULENT FRAGMENTATION

    SciTech Connect

    Jumper, Peter H.; Fisher, Robert T.

    2013-05-20

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.

  15. Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins

    NASA Astrophysics Data System (ADS)

    Ajith, P.; Fotopoulos, N.; Privitera, S.; Neunzert, A.; Mazumder, N.; Weinstein, A. J.

    2014-04-01

    We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (nonprecessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semianalytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m2≲12M⊙) binaries, this template bank achieves effective fitting factors ˜0.92- 0.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black-hole neutron-star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black holes (neutron stars) are uniformly distributed between 0-0.98 [0-0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is ˜20%-52%, as compared to a search using a nonspinning bank.

  16. The Search for Trojan Binaries

    NASA Astrophysics Data System (ADS)

    Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.

    2007-10-01

    We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.

  17. Evolution of Close Binary Systems

    SciTech Connect

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  18. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  19. BINARY STORAGE ELEMENT

    DOEpatents

    Chu, J.C.

    1958-06-10

    A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.

  20. Low autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  1. The ζ Aurigae Binaries

    NASA Astrophysics Data System (ADS)

    Griffin, R. Elizabeth; Ake, Thomas B.

    This opening chapter provides a brief historical overview of the ζ Aur stars, with a focus on what K.O. Wright, his predecessors and colleagues at the Dominion Astrophysical Observatory, and his contemporaries further afield, achieved during the era of pre-electronic data. It places the topic within the framework of modern observing, data management and computing, outlines the principal features of the chromospheric-eclipse phenomena which single out the ζ Aur binaries for special study, and describes the considerable potential which this remarkable yet very select group of stars offers for increasing our understanding of stellar physics.

  2. A Stochastic Collocation Algorithm for Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Mathelin, Lionel; Hussaini, M. Yousuff; Zang, Thomas A. (Technical Monitor)

    2003-01-01

    This report describes a stochastic collocation method to adequately handle a physically intrinsic uncertainty in the variables of a numerical simulation. For instance, while the standard Galerkin approach to Polynomial Chaos requires multi-dimensional summations over the stochastic basis functions, the stochastic collocation method enables to collapse those summations to a one-dimensional summation only. This report furnishes the essential algorithmic details of the new stochastic collocation method and provides as a numerical example the solution of the Riemann problem with the stochastic collocation method used for the discretization of the stochastic parameters.

  3. Enhanced algorithms for stochastic programming

    SciTech Connect

    Krishna, A.S.

    1993-09-01

    In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean of a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.

  4. Stochastic models: theory and simulation.

    SciTech Connect

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  5. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  6. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models. PMID:26133418

  7. Optimization of Monte Carlo transport simulations in stochastic media

    SciTech Connect

    Liang, C.; Ji, W.

    2012-07-01

    This paper presents an accurate and efficient approach to optimize radiation transport simulations in a stochastic medium of high heterogeneity, like the Very High Temperature Gas-cooled Reactor (VHTR) configurations packed with TRISO fuel particles. Based on a fast nearest neighbor search algorithm, a modified fast Random Sequential Addition (RSA) method is first developed to speed up the generation of the stochastic media systems packed with both mono-sized and poly-sized spheres. A fast neutron tracking method is then developed to optimize the next sphere boundary search in the radiation transport procedure. In order to investigate their accuracy and efficiency, the developed sphere packing and neutron tracking methods are implemented into an in-house continuous energy Monte Carlo code to solve an eigenvalue problem in VHTR unit cells. Comparison with the MCNP benchmark calculations for the same problem indicates that the new methods show considerably higher computational efficiency. (authors)

  8. Some variance reduction methods for numerical stochastic homogenization.

    PubMed

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. PMID:27002065

  9. Koronis binaries and the role of families in binary frequency

    NASA Astrophysics Data System (ADS)

    Merline, W. J.; Tamblyn, P. M.; Nesvorny, D.; Durda, D. D.; Chapman, C. R.; Dumas, C.; Owen, W. M.; Storrs, A. D.; Close, L. M.; Menard, F.

    2005-08-01

    Our ground-based adaptive optics observations of many larger Koronis members show no binaries, while our HST survey of smaller Koronis members (say smaller than 10 km) shows a surprising 20% binary fraction. Admittedly, this is from small-number statistics, but we nonetheless calculate a 99% confidence that the binary fraction is different from the 2% we observe among the larger (over 20km) main belt asteroids as a whole. In addition, we estimate that among the two young families (Karin and Veritas) that we surveyed for binaries in our HST Cy 13 program, the binary fraction appears to be less than 5%. These young families both have significantly smaller progenitors than the Koronis family. We have speculated that progenitor size may be a more important factor than age in determination of binary frequency. But here we suggest an alternative idea, that the binary fraction may be more related to what part of the family's size distribution is sampled. Our HST program targeted objects of the same physical sizes, but was clearly sampling further down the size distribution (to smaller sizes, relative to the largest remnant) in the Koronis sample than was the case for Karin and Veritas, which we sampled mostly at the larger sizes, relatively. Our SPH collision models are estimating the typical size-frequency distributions to be expected from catastrophic and non-catastrophic impact events. But they are also appear to be showing that the largest fragments from a collision are less likely to form binaries (as co-orbiting ejecta pairs) than are the smaller fragments. Thus, it might be expected that we would have found fewer binaries among Karin and Veritas than among the Koronis sample. In fact, models of the Karin breakup show binary formation to be unlikely in the size range measured. It some might be tempted to tie the small end of the main-belt binary population to the binaries seen among the NEAs (also small and also showing about 20% fraction), given the 20% fraction

  10. Modeling Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  11. Stochastic decision analysis

    NASA Technical Reports Server (NTRS)

    Lacksonen, Thomas A.

    1994-01-01

    Small space flight project design at NASA Langley Research Center goes through a multi-phase process from preliminary analysis to flight operations. The process insures that each system achieves its technical objectives with demonstrated quality and within planned budgets and schedules. A key technical component of early phases is decision analysis, which is a structure procedure for determining the best of a number of feasible concepts based upon project objectives. Feasible system concepts are generated by the designers and analyzed for schedule, cost, risk, and technical measures. Each performance measure value is normalized between the best and worst values and a weighted average score of all measures is calculated for each concept. The concept(s) with the highest scores are retained, while others are eliminated from further analysis. This project automated and enhanced the decision analysis process. Automation of the decision analysis process was done by creating a user-friendly, menu-driven, spreadsheet macro based decision analysis software program. The program contains data entry dialog boxes, automated data and output report generation, and automated output chart generation. The enhancements to the decision analysis process permit stochastic data entry and analysis. Rather than enter single measure values, the designers enter the range and most likely value for each measure and concept. The data can be entered at the system or subsystem level. System level data can be calculated as either sum, maximum, or product functions of the subsystem data. For each concept, the probability distributions are approximated for each measure and the total score for each concept as either constant, triangular, normal, or log-normal distributions. Based on these distributions, formulas are derived for the probability that the concept meets any given constraint, the probability that the concept meets all constraints, and the probability that the concept is within a given

  12. Correlation functions in stochastic inflation

    NASA Astrophysics Data System (ADS)

    Vennin, Vincent; Starobinsky, Alexei A.

    2015-09-01

    Combining the stochastic and formalisms, we derive non-perturbative analytical expressions for all correlation functions of scalar perturbations in single-field, slow-roll inflation. The standard, classical formulas are recovered as saddle-point limits of the full results. This yields a classicality criterion that shows that stochastic effects are small only if the potential is sub-Planckian and not too flat. The saddle-point approximation also provides an expansion scheme for calculating stochastic corrections to observable quantities perturbatively in this regime. In the opposite regime, we show that a strong suppression in the power spectrum is generically obtained, and we comment on the physical implications of this effect.

  13. Stochastic determination of matrix determinants

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Enßlin, Torsten A.

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  14. Nonlinear optimization for stochastic simulations.

    SciTech Connect

    Johnson, Michael M.; Yoshimura, Ann S.; Hough, Patricia Diane; Ammerlahn, Heidi R.

    2003-12-01

    This report describes research targeting development of stochastic optimization algorithms and their application to mission-critical optimization problems in which uncertainty arises. The first section of this report covers the enhancement of the Trust Region Parallel Direct Search (TRPDS) algorithm to address stochastic responses and the incorporation of the algorithm into the OPT++ optimization library. The second section describes the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC) suite of systems analysis tools and motivates the use of stochastic optimization techniques in such non-deterministic simulations. The third section details a batch programming interface designed to facilitate criteria-based or algorithm-driven execution of system-of-system simulations. The fourth section outlines the use of the enhanced OPT++ library and batch execution mechanism to perform systems analysis and technology trade-off studies in the WMD detection and response problem domain.

  15. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination. PMID:26274302

  16. Mechanical autonomous stochastic heat engines

    NASA Astrophysics Data System (ADS)

    Serra-Garcia, Marc; Foehr, Andre; Moleron, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara; . Team

    Stochastic heat engines extract work from the Brownian motion of a set of particles out of equilibrium. So far, experimental demonstrations of stochastic heat engines have required extreme operating conditions or nonautonomous external control systems. In this talk, we will present a simple, purely classical, autonomous stochastic heat engine that uses the well-known tension induced nonlinearity in a string. Our engine operates between two heat baths out of equilibrium, and transfers energy from the hot bath to a work reservoir. This energy transfer occurs even if the work reservoir is at a higher temperature than the hot reservoir. The talk will cover a theoretical investigation and experimental results on a macroscopic setup subject to external noise excitations. This system presents an opportunity for the study of non equilibrium thermodynamics and is an interesting candidate for innovative energy conversion devices.

  17. Stochastic Control of Pharmacokinetic Systems

    PubMed Central

    Schumitzky, Alan; Milman, Mark; Katz, Darryl; D'Argenio, David Z.; Jelliffe, Roger W.

    1983-01-01

    The application of stochastic control theory to the clinical problem of designing a dosage regimen for a pharmacokinetic system is considered. This involves defining a patient-dependent pharmacokinetic model and a clinically appropriate therapeutic goal. Most investigators have attacked the dosage regimen problem by first estimating the values of the patient's unknown model parameters and then controlling the system as if those parameter estimates were in fact the true values. We have developed an alternative approach utilizing stochastic control theory in which the estimation and control phases of the problem are not separated. Mathematical results are given which show that this approach yields significant potential improvement in attaining, for example, therapeutic serum level goals over methods in which estimation and control are separated. Finally, a computer simulation is given for the optimal stochastic control of an aminoglycoside regimen which shows that this approach is feasible for practical applications.

  18. Binary stars can provide the `missing photons' needed for reionization

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Kasen, Daniel; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Murray, Norman; Strom, Allison

    2016-07-01

    Empirical constraints on reionization require galactic ionizing photon escape fractions fesc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ˜1-5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged `effective' escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ˜4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.

  19. Spatio-temporal fluctuations in immiscible polymeric binary mixtures: towards the realization of a signal/information processing device with hierarchical instabilities

    NASA Astrophysics Data System (ADS)

    Maruyama, Ryota; Asakawa, Naoki

    2014-09-01

    A design of a bio-inspired signal/information processing device and the fabrication of a stochastic delay-derivative element (SDDE) using an immiscible polymer binary mixture of poly(L-lactic acid) with poly(ɛ-caprolactone) are described. A functional aspect of bio-inspired signal/information processing using both analogue electric circuits and numerical simulations are shown. Nano-thin films of polymeric binary mixtures were explored to realize the SDDE.

  20. Multilevel Models for Binary Data

    ERIC Educational Resources Information Center

    Powers, Daniel A.

    2012-01-01

    The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…

  1. Stochastic kinetic mean field model

    NASA Astrophysics Data System (ADS)

    Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.

    2016-07-01

    This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on

  2. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  3. Stochastic modeling of Lagrangian accelerations

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  4. Stochastic Cooling Developments at GSI

    SciTech Connect

    Nolden, F.; Beckert, K.; Beller, P.; Dolinskii, A.; Franzke, B.; Jandewerth, U.; Nesmiyan, I.; Peschke, C.; Petri, P.; Steck, M.; Caspers, F.; Moehl, D.; Thorndahl, L.

    2006-03-20

    Stochastic Cooling is presently used at the existing storage ring ESR as a first stage of cooling for secondary heavy ion beams. In the frame of the FAIR project at GSI, stochastic cooling is planned to play a major role for the preparation of high quality antiproton and rare isotope beams. The paper describes the existing ESR system, the first stage cooling system at the planned Collector Ring, and will also cover first steps toward the design of an antiproton collection system at the planned RESR ring.

  5. Stochastic Optimization of Complex Systems

    SciTech Connect

    Birge, John R.

    2014-03-20

    This project focused on methodologies for the solution of stochastic optimization problems based on relaxation and penalty methods, Monte Carlo simulation, parallel processing, and inverse optimization. The main results of the project were the development of a convergent method for the solution of models that include expectation constraints as in equilibrium models, improvement of Monte Carlo convergence through the use of a new method of sample batch optimization, the development of new parallel processing methods for stochastic unit commitment models, and the development of improved methods in combination with parallel processing for incorporating automatic differentiation methods into optimization.

  6. Some remarks on Nelson's stochastic field

    NASA Astrophysics Data System (ADS)

    Lim, S. C.

    1980-09-01

    An attempt to extend Nelson's stochastic quantization procedure to tensor fields indicates that the results of Guerra et al. on the connection between a euclidean Markov scalar field and a stochastic scalar field fails to hold for tensor fields.

  7. Theory, technology, and technique of stochastic cooling

    SciTech Connect

    Marriner, J.

    1993-10-01

    The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques.

  8. Partial ASL extensions for stochastic programming.

    Energy Science and Technology Software Center (ESTSC)

    2010-03-31

    partially completed extensions for stochastic programming to the AMPL/solver interface library (ASL).modeling and experimenting with stochastic recourse problems. This software is not primarily for military applications

  9. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  10. Contact Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Rieger, Samantha

    2015-05-01

    Recent observations have found that some contact binaries are oriented such that the secondary impacts with the primary at a high inclination. This research investigates the evolution of how such contact binaries came to exist. This process begins with an asteroid pair, where the secondary lies on the Laplace plane. The Laplace plane is a plane normal to the axis about which the pole of a satellites orbit precesses, causing a near constant inclination for such an orbit. For the study of the classical Laplace plane, the secondary asteroid is in circular orbit around an oblate primary with axial tilt. This system is also orbiting the Sun. Thus, there are two perturbations on the secondarys orbit: J2 and third body Sun perturbations. The Laplace surface is defined as the group of orbits that lie on the Laplace plane at varying distances from the primary. If the secondary is very close to the primary, the inclination of the Laplace plane will be near the equator of the asteroid, while further from the primary the inclination will be similar to the asteroid-Sun plane. The secondary will lie on the Laplace plane because near the asteroid the Laplace plane is stable to large deviations in motion, causing the asteroid to come to rest in this orbit. Assuming the secondary is asymmetrical in shape and the bodys rotation is synchronous with its orbit, the secondary will experience the BYORP effect. BYORP can cause secular motion such as the semi-major axis of the secondary expanding or contracting. Assuming the secondary expands due to BYORP, the secondary will eventually reach the unstable region of the Laplace plane. The unstable region exists if the primary has an obliquity of 68.875 degrees or greater. The unstable region exists at 0.9 Laplace radius to 1.25 Laplace radius, where the Laplace radius is defined as the distance from the central body where the inclination of the Laplace plane orbit is half the obliquity. In the unstable region, the eccentricity of the orbit

  11. The Hamiltonian Mechanics of Stochastic Acceleration

    SciTech Connect

    Burby, J. W.

    2013-07-17

    We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  12. Binaries and distances

    NASA Astrophysics Data System (ADS)

    Pourbaix, D.; Arenou, F.; Halbwachs, J.-L.; Siopis, C.

    2013-02-01

    Gaia's five-year observation baseline might naively lead to the expectation that it will be possible to fit the parallax of any sufficiently nearby object with the default five-parameter model (position at a reference epoch, parallax and proper motion). However, simulated Gaia observations of a `model Universe' composed of nearly 107 objects, 50% of which turn out to be multiple stars, show that the single-star hypothesis can severely affect parallax estimation and that more sophisticated models must be adopted. In principle, screening these spurious single-star solutions is rather straightforward, for example by evaluating the quality of the fits. However, the simulated Gaia observations also reveal that some seemingly acceptable single-star solutions can nonetheless lead to erroneous distances. These solutions turn out to be binaries with an orbital period close to one year. Without auxiliary (e.g., spectroscopic) data, they will remain unnoticed.

  13. Stochastically forced zonal flows

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kaushik

    an approximate equation for the vorticity correlation function that is then solved perturbatively. The Reynolds stress of the pertubative solution can then be expressed as a function of the mean-flow and its y-derivatives. In particular, it is shown that as long as the forcing breaks mirror-symmetry, the Reynolds stress has a wave-like term, as a result of which the mean-flow is governed by a dispersive wave equation. In a separate study, Reynolds stress induced by an anisotropically forced unbounded Couette flow with uniform shear gamma, on a beta-plane, is calculated in conjunction with the eddy diffusivity of a co-evolving passive tracer. The flow is damped by linear drag on a time scale mu--1. The stochastic forcing is controlled by a parameter alpha, that characterizes whether eddies are elongated along the zonal direction (alpha < 0), the meridional direction (alpha > 0) or are isotropic (alpha = 0). The Reynolds stress varies linearly with alpha and non-linearly and non-monotonically with gamma; but the Reynolds stress is independent of beta. For positive values of alpha, the Reynolds stress displays an "anti-frictional" effect (energy is transferred from the eddies to the mean flow) and a frictional effect for negative values of alpha. With gamma = beta =0, the meridional tracer eddy diffusivity is v'2/(2mu), where v' is the meridional eddy velocity. In general, beta and gamma suppress the diffusivity below v'2/(2mu).

  14. Stability of stochastic switched SIRS models

    NASA Astrophysics Data System (ADS)

    Meng, Xiaoying; Liu, Xinzhi; Deng, Feiqi

    2011-11-01

    Stochastic stability problems of a stochastic switched SIRS model with or without distributed time delay are considered. By utilizing the Lyapunov methods, sufficient stability conditions of the disease-free equilibrium are established. Stability conditions about the subsystem of the stochastic switched SIRS systems are also obtained.

  15. Stochastic architecture for Hopfield neural nets

    NASA Technical Reports Server (NTRS)

    Pavel, Sandy

    1992-01-01

    An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.

  16. VLSI binary updown counter

    NASA Technical Reports Server (NTRS)

    Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Reed, Irving S. (Inventor)

    1989-01-01

    A pipeline binary updown counter is comprised of simple stages that may be readily replicated. Each stage is defined by the Boolean logic equation: A(sub n)(t) = A(sub n)(t - 1) exclusive OR (U AND P(sub n)) inclusive OR (D AND Q(sub n)), where A(sub n)(t) denotes the value of the nth bit at time t. The input to the counter has three values represented by two binary signals U and D such that if both are zero, the input is zero, if U = 0 and D = 1, the input is -1 and if U = 1 and D = 0, the input is +1. P(sub n) represents a product of A(sub k)'s for 1 is less than or equal to k is less than or equal to -1, while Q(sub n) represents the product of bar A's for 1 is less than or equal to K is less than or equal to n - 1, where bar A(sub k) is the complement of A(sub k) and P(sub n) and Q(sub n) are expressed as the following two equations: P(sub n) = A(sub n - 1) A(sub n - 2)...A(sub 1) and Q(sub n) = bar A(sub n - 1) bar A(sub n - 2)...bar A(sub 1), which can be written in recursive form as P(sub n) = P(sub n - 1) AND bar A(sub n - 1) and Q(sub n) = Q(sub n - 1) AND bar A(sub n - 1) with the initial values P(sub 1) = 1 and Q(sub 1) = 1.

  17. CBI: Systems or Medium?

    ERIC Educational Resources Information Center

    Higginbotham-Wheat, Nancy L.

    This paper addresses one area of conflict in decisionmaking in computer-based instruction (CBI) research: the relationship between the researcher's definition of CBI either as a medium or as an integrated system and the design of meaningful research questions. (A medium is defined here as a device for the delivery of instruction, while an…

  18. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  19. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  20. Stochastic Resonance and Information Processing

    NASA Astrophysics Data System (ADS)

    Nicolis, C.

    2014-12-01

    A dynamical system giving rise to multiple steady states and subjected to noise and a periodic forcing is analyzed from the standpoint of information theory. It is shown that stochastic resonance has a clearcut signature on information entropy, information transfer and other related quantities characterizing information transduction within the system.

  1. Stochastic-field cavitation model

    SciTech Connect

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-15

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  2. Stochastic resonance on a circle

    SciTech Connect

    Wiesenfeld, K. ); Pierson, D.; Pantazelou, E.; Dames, C.; Moss, F. )

    1994-04-04

    We describe a new realization of stochastic resonance, applicable to a broad class of systems, based on an underlying excitable dynamics with deterministic reinjection. A simple but general theory of such single-trigger'' systems is compared with analog simulations of the Fitzhugh-Nagumo model, as well as experimental data obtained from stimulated sensory neurons in the crayfish.

  3. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth. PMID:25062238

  4. Stochastic cooling: recent theoretical directions

    SciTech Connect

    Bisognano, J.

    1983-03-01

    A kinetic-equation derivation of the stochastic-cooling Fokker-Planck equation of correlation is introduced to describe both the Schottky spectrum and signal suppression. Generalizations to nonlinear gain and coupling between degrees of freedom are presented. Analysis of bunch beam cooling is included.

  5. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  6. BINARIES AMONG DEBRIS DISK STARS

    SciTech Connect

    Rodriguez, David R.; Zuckerman, B.

    2012-02-01

    We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.

  7. Algorithmic advances in stochastic programming

    SciTech Connect

    Morton, D.P.

    1993-07-01

    Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.

  8. Stochastic resonance in visual sensitivity.

    PubMed

    Kundu, Ajanta; Sarkar, Sandip

    2015-04-01

    It is well known from psychophysical studies that stochastic resonance, in its simplest threshold paradigm, can be used as a tool to measure the detection sensitivity to fine details in noise contaminated stimuli. In the present manuscript, we report simulation studies conducted in the similar threshold paradigm of stochastic resonance. We have estimated the contrast sensitivity in detecting noisy sine-wave stimuli, with varying area and spatial frequency, as a function of noise strength. In all the cases, the measured sensitivity attained a peak at intermediate noise strength, which indicate the occurrence of stochastic resonance. The peak sensitivity exhibited a strong dependence on area and spatial frequency of the stimulus. We show that the peak contrast sensitivity varies with spatial frequency in a nonmonotonic fashion and the qualitative nature of the sensitivity variation is in good agreement with human contrast sensitivity function. We also demonstrate that the peak sensitivity first increases and then saturates with increasing area, and this result is in line with the results of psychophysical experiments. Additionally, we also show that critical area, denoting the saturation of contrast sensitivity, decreases with spatial frequency and the associated maximum contrast sensitivity varies with spatial frequency in a manner that is consistent with the results of psychophysical experiments. In all the studies, the sensitivities were elevated via a nonlinear filtering operation called stochastic resonance. Because of this nonlinear effect, it was not guaranteed that the sensitivities, estimated at each frequency, would be in agreement with the corresponding results of psychophysical experiments; on the contrary, close agreements were observed between our results and the findings of psychophysical investigations. These observations indicate the utility of stochastic resonance in human vision and suggest that this paradigm can be useful in psychophysical studies

  9. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  10. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen

    2015-04-01

    It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.

  11. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832

  12. On the impact of stochastic parametrisations in the ECMWF seasonal forecasting system

    NASA Astrophysics Data System (ADS)

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-05-01

    Seasonal climate predictions several months ahead based on dynamical atmosphere-ocean GCMs are part of the routinely operational forecasts issued by the European Centre for Medium-Range Weather Forecasts (ECMWF). Here, the seasonal forecasting system is a seamless extension of ECMWF's medium-range ensemble weather forecasting system for the atmosphere coupled to a state-of-the-art ocean model. Model uncertainty in the atmosphere is represented by two schemes, the Stochastically Perturbed Physical Tendency (SPPT) scheme and the Stochastic Kinetic Energy Backscatter (SKEB) scheme. This contributions looks at the impact of these two stochastic parametrisation schemes on the model performance for seasonal forecasts. It is found that these schemes reduce long-standing model biases in the Indonesian warm pool area dominated by intense convection. The simulation of MJO events in the seasonal forecasts has improved due to the stochastic parametrisations. Both schemes substantially increase the ensemble spread for El Niño SST forecasts and thus make the ensemble forecasting system better calibrated. In addition, the stochastic parametrisations also have a positive effect on the simulation of atmospheric quasi-stationary circulation regimes over the extratropical Pacific-North America region.

  13. Stochastic modeling of sunshine number data

    NASA Astrophysics Data System (ADS)

    Brabec, Marek; Paulescu, Marius; Badescu, Viorel

    2013-11-01

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar

  14. Stochastic modeling of sunshine number data

    SciTech Connect

    Brabec, Marek; Paulescu, Marius; Badescu, Viorel

    2013-11-13

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar

  15. Dynamic option pricing with endogenous stochastic arbitrage

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Montalva, Rodrigo; Pellicer, Rely; Villena, Marcelo

    2010-09-01

    Only few efforts have been made in order to relax one of the key assumptions of the Black-Scholes model: the no-arbitrage assumption. This is despite the fact that arbitrage processes usually exist in the real world, even though they tend to be short-lived. The purpose of this paper is to develop an option pricing model with endogenous stochastic arbitrage, capable of modelling in a general fashion any future and underlying asset that deviate itself from its market equilibrium. Thus, this investigation calibrates empirically the arbitrage on the futures on the S&P 500 index using transaction data from September 1997 to June 2009, from here a specific type of arbitrage called “arbitrage bubble”, based on a t-step function, is identified and hence used in our model. The theoretical results obtained for Binary and European call options, for this kind of arbitrage, show that an investment strategy that takes advantage of the identified arbitrage possibility can be defined, whenever it is possible to anticipate in relative terms the amplitude and timespan of the process. Finally, the new trajectory of the stock price is analytically estimated for a specific case of arbitrage and some numerical illustrations are developed. We find that the consequences of a finite and small endogenous arbitrage not only change the trajectory of the asset price during the period when it started, but also after the arbitrage bubble has already gone. In this context, our model will allow us to calibrate the B-S model to that new trajectory even when the arbitrage already started.

  16. BDB: The Binary Star Database

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O.; Kaygorodov, P.; Kovaleva, D.; Malkov, O.

    2014-05-01

    Description of the Binary star DataBase (BDB, http://bdb.inasan.ru), the world's principal database of binary and multiple systems of all observational types, is presented in the paper. BDB contains data on physical and positional parameters of 100,000 components of 40,000 systems of multiplicity 2 to 20, belonging to various observational types: visual, spectroscopic, eclipsing, etc. Information on these types of binaries is obtained from heterogeneous sources of data - astronomical and. Organization of the information is based on the careful cross-identification of the objects. BDB can be queried by star identifier, coordinates, and other parameters.

  17. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision.

    PubMed

    Perry, Michael; Kinoshita, Michiyo; Saldi, Giuseppe; Huo, Lucy; Arikawa, Kentaro; Desplan, Claude

    2016-07-14

    Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove

  18. Two-state approach to stochastic hair bundle dynamics

    NASA Astrophysics Data System (ADS)

    Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2008-04-01

    Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski , Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model.

  19. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  20. MCdevelop - a universal framework for Stochastic Simulations

    NASA Astrophysics Data System (ADS)

    Slawinska, M.; Jadach, S.

    2011-03-01

    We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http

  1. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  2. A comparison of two- and three-dimensional stochastic models of regional solute movement

    USGS Publications Warehouse

    Shapiro, A.M.; Cvetkovic, V.D.

    1990-01-01

    Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.

  3. Efficient stochastic simulations of complex reaction networks on surfaces.

    PubMed

    Barzel, Baruch; Biham, Ofer

    2007-10-14

    Surfaces serve as highly efficient catalysts for a vast variety of chemical reactions. Typically, such surface reactions involve billions of molecules which diffuse and react over macroscopic areas. Therefore, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations, which are based on the mean-field approximation. However, in case that the surface is partitioned into a large number of disconnected microscopic domains, the number of reactants in each domain becomes small and it strongly fluctuates. This is, in fact, the situation in the interstellar medium, where some crucial reactions take place on the surfaces of microscopic dust grains. In this case rate equations fail and the simulation of surface reactions requires stochastic methods such as the master equation. However, in the case of complex reaction networks, the master equation becomes infeasible because the number of equations proliferates exponentially. To solve this problem, we introduce a stochastic method based on moment equations. In this method the number of equations is dramatically reduced to just one equation for each reactive species and one equation for each reaction. Moreover, the equations can be easily constructed using a diagrammatic approach. We demonstrate the method for a set of astrophysically relevant networks of increasing complexity. It is expected to be applicable in many other contexts in which problems that exhibit analogous structure appear, such as surface catalysis in nanoscale systems, aerosol chemistry in stratospheric clouds, and genetic networks in cells. PMID:17935419

  4. Cryptography with DNA binary strands.

    PubMed

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'. PMID:10963862

  5. Separation in 5 Msun Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  6. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    SciTech Connect

    Shevchenko, Ivan I.

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  7. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  8. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  9. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  10. Stochastic daily precipitation model with a heavy-tailed component

    NASA Astrophysics Data System (ADS)

    Neykov, N. M.; Neytchev, P. N.; Zucchini, W.

    2014-02-01

    Stochastic daily precipitation models are commonly used to generate scenarios of climate variability or change on a daily time scale. The standard models consist of two components describing the occurrence and intensity series, respectively. Binary logistic regression is used to fit the occurrence data, and the intensity series is modeled by a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal. The precipitation series is then modeled using the joint density and standard software for generalized linear models can be used to perform the computations. A drawback of these precipitation models is that they do not produce a sufficiently heavy upper tail for the distribution of daily precipitation amounts; they tend to underestimate the frequency of large storms. In this study we adapted the approach of Furrer and Katz (2008) based on hybrid distributions in order to correct for this shortcoming. In particular we applied hybrid gamma - generalized Pareto (GP) and hybrid Weibull-GP distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in western Bulgaria. We report the results of simulations designed to compare the models based on the hybrid distributions and those based on the standard distributions. Some potential difficulties are outlined.