Science.gov

Sample records for binary thermodynamic cycles

  1. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  2. The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air

    NASA Astrophysics Data System (ADS)

    Kovalevskii, V. P.

    2011-09-01

    The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three loops with different pressure levels and equipped with a GTE-160 (V94.2) gas turbine unit, and with preheating of cycle air are analyzed by way of comparison in a wide range of initial steam pressures. The variation of the combined-cycle plant efficiency, stream wetness, conditional overall heating surface of the heat-recovery boiler, and other parameters is presented.

  3. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  4. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  5. Modeling and analysis of advanced binary cycles

    SciTech Connect

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  6. Thermodynamic Cycles--One More Time.

    ERIC Educational Resources Information Center

    Nolan, Michael J.

    1995-01-01

    Discusses interesting aspects of the Carnot cycle and other thermodynamic cycles that are generally not dealt with in elementary physics texts. Presents examples that challenge the student to think about the extraction of net work from a cycle. (JRH)

  7. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  8. Some Considerations about Thermodynamic Cycles

    ERIC Educational Resources Information Center

    da Silva, M. F. Ferreira

    2012-01-01

    After completing their introductory studies on thermodynamics at the university level, typically in a second-year university course, most students show a number of misconceptions. In this work, we identify some of those erroneous ideas and try to explain their origins. We also give a suggestion to attack the problem through a systematic and…

  9. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  10. Quantum Maxwell's demon in thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Dong, H.; Xu, D. Z.; Cai, C. Y.; Sun, C. P.

    2011-06-01

    We study the physical mechanism of Maxwell’s demon (MD), which helps do extra work in thermodynamic cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD with quantum coherence or one at a temperature lower than the molecule’s heat bath can enhance the ability of the whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work between two heat baths with different effective temperatures. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense on a Szilard heat engine (SHE). The quantum SHE’s efficiency is evaluated in detail to prove the validity of the second law of thermodynamics.

  11. Quantum Maxwell's demon in thermodynamic cycles.

    PubMed

    Dong, H; Xu, D Z; Cai, C Y; Sun, C P

    2011-06-01

    We study the physical mechanism of Maxwell's demon (MD), which helps do extra work in thermodynamic cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD with quantum coherence or one at a temperature lower than the molecule's heat bath can enhance the ability of the whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work between two heat baths with different effective temperatures. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense on a Szilard heat engine (SHE). The quantum SHE's efficiency is evaluated in detail to prove the validity of the second law of thermodynamics. PMID:21797303

  12. Thermodynamic analysis of adsorption refrigeration cycles

    SciTech Connect

    Saha, B.B.; Akisawa, Atsushi; Kashiwagi, Takao

    1997-12-31

    High- and mid-temperature waste heat can be recovered by using existing heat pump technologies. However, heat utilization near environmental temperatures still faces technical hurdles. Silica gel-water adsorption cycles have a distinct advantage over other systems in their ability to be driven by near-ambient temperature heat. Waste heat (above 60 C) can be exploited by using conventional silica gel-water adsorption chiller. The advanced silica gel-water adsorption chiller can operate effectively by utilizing low-grade waste heat ({approximately}50 C) as the driving source with a cooling source of 30 C. In this paper, the effect of operating temperatures on cycle performance is discussed from the thermodynamic viewpoint. The temperature effectiveness and the entropy generation number on cycle time are analyzed. For a comparatively short cycle time, adsorber/desorber heat exchanger temperature effectiveness reaches up to 92% after only 200 sec. The entropy generation number N{sub s} is defined by the ratio between irreversibility generated during a cycle and availability of the heat transfer fluid. The result showed that for the advanced adsorption cycle the entropy generation number N{sub s} is smaller for hot water temperature between 45 to 55 C with a cooling source of 30 C, while for the conventional cycle N{sub s} is smaller for hot water temperature between 65 to 75 C /with the same cooling source temperature.

  13. Thermodynamic cycle analysis for capacitive deionization.

    PubMed

    Biesheuvel, P M

    2009-04-01

    Capacitive deionization (CDI) is an ion removal technology based on temporarily storing ions in the polarization layers of two oppositely positioned electrodes. Here we present a thermodynamic model for the minimum work required for ion separation in the fully reversible case by describing the ionic solution as an ideal gas of pointlike particles. The work input is fully utilized to decrease the entropy of the outflowing streams compared to that of the inflow. Based on the Gouy-Chapman-Stern (GCS) model for planar diffuse polarization layers-with and without including additional ion volume constraints in the diffuse part of the double layer-we analyze the electric work input during charging and the work output during discharging, for a reversible charging-discharging cycle. We present a graphical thermodynamic cycle analysis for the reversible net work input during one full cycle of batchwise operation of CDI based on the charge-voltage relations for different ionic strengths. For the GCS model, an analytical solution is derived for the charge efficiency Lambda, which is the number of salt molecules removed per electron transferred from one electrode to the other. Only in the high voltage limit and for an infinite Stern layer capacity does Lambda approach unity. PMID:19167009

  14. Reversible thermodynamic cycle for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Williams, Roger M.; Underwood, Mark L.; Ryan, M. A.; Suitor, Jerry W.

    1992-01-01

    The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6 percent of Carnot efficiency for heat input and rejection temperatures (900-1300 K and 400-800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.

  15. Application of the Thermodynamic Solution Model of Dilute Binary Systems

    NASA Astrophysics Data System (ADS)

    Luáek, J.

    1997-12-01

    The thermodynamic solution model by Tanaka et al. for liquid binary systems was extended to solid binary systems. On the basis of this extension the activity coefficients of solute elements in the solid phase in infinite dilution for transition metals were calculated in Part I of this paper. The determination of the activity coefficients in both solid and liquid phases can enable one to predict the equilibrium segregation coefficient of the solute elements in transition metal base alloys without the knowledge of equilibrium binary phase diagrams. The model was applied on Ti, Zr and Hf-base dilute alloys at their melting points. The calculated values of equilibrium segregation coefficients are compared with values derived by other methods. The effect of the model parameters on the value of equilibrium segregation coefficients was discussed. Das thermodynamische Modell für flüssige binäre Systeme nach Tanaka wurde auf feste binäre Systeme ausgedehnt. Auf dieser Grundlage wurden die Aktivitätskoeffizienten der gelösten Elemente in der Solidusphase für die Übergangsmetalle in Teil I dieser Arbeit berechnet. Die Bestimmung der Aktivitätskoeffizienten in der Solidus- und Liquidusphase ermöglicht die Vorhersage des Gleichgewichtsverteilungskoeffizienten der gelösten Elemente in den Legierungen der Übergangsmetalle ohne Kenntnis ihrer Zustandsdiagramme. Das Modell wurde auf Ti, Zr und Hf-Legierungen im Bereich der Schmelztemperatur der Hauptkomponente angewandt. Die berechneten Werte der Gleichgewichtsverteilungskoeffizienten wurden mit den Werten anderer Methoden verglichen. Der Einfluss der Eingangsparameter in unserem Modell auf die Werte der Gleichgewichtsverteilungskoeffizienten wurde diskutiert.

  16. Importance of the specific heat anomaly in the design of binary Rankine cycle power plants

    SciTech Connect

    Pope, W.L.; Doyle, P.A.; Fulton, R.L.; Silvester, L.F.

    1980-05-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of working fluids and turbine states for geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for specified source and sink conditions, turbine inlet states consistently lie adjacent to the working fluids' TPCT line for all resource temperatures, constraints, and cost and efficiency factors investigated.

  17. Thermodynamic design of natural gas liquefaction cycles for offshore application

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  18. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan

    2016-08-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.

  19. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  20. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  1. Thermodynamics of combined-cycle electric power plants

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2012-06-01

    Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology, modern gas and steam turbines can be coupled, to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

  2. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  3. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-01

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  4. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    SciTech Connect

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  5. The Otto thermodynamic cycle using the magnetic molecule Ni2

    NASA Astrophysics Data System (ADS)

    Hübner, Wolfgang; Dong, Chuanding; Lefkidis, Georgios

    2012-02-01

    In order to design realistic molecular heat engines, the study of quantum thermodynamics is essential since classical thermodynamics does not apply in this extreme miniaturization limit [1,2]. Realizing a thermodynamic cycle on an existing magnetic molecule embodies a novel and unique approach to understand and exploit the thermodynamic properties of spin at the molecular level.Here we propose an Otto cycle in the Ni2 dimer based on a fully ab-initio calculation of the electronic states and the perturbative inclusion of spin-orbit coupling. A laser pulse, described by the time-dependent Schr"odinger equation, is used to heat the Ni2 dimer. The pulse not only excites the electrons to higher, many-body electronic states, but also influences the spin of the system due to spin-orbit coupling. Using a low-temperature thermal bath the system is cooled back to the ground state. The adiabatic work exchange between the Ni2 and the environment is described by the quasi-static expansion or compression of the bond length of the dimer. The calculated efficiency of the cycle is up to 34%.[1] T. D. Kieu, Phys. Rev. Lett. 93 140403 (2004)[2] H. T. Quan, Phys. Rev. E 79 041129 (2009)[3] T. Zhang et al., Phys. Rev. A 75 062102 (2007)

  6. Thermodynamics of phase equilibrium of binary alloys containing nanprecipitates

    NASA Astrophysics Data System (ADS)

    L'vov, P. E.; Svetukhin, V. V.; Obukhov, A. V.

    2011-02-01

    A model of phase equilibrium in binary alloys has been developed taking into account the formation of phase precipitates of arbitrary (including nanometer) size. It has been shown that the phase composition of alloys substantially depends on the size of phase precipitates and, in the case of the formation of nano-precipitates, the phase composition can differ by a factor of several times from the phase composition of macroscopic precipitates. The proposed model has been used for calculating the dependence of the phase composition of some binary alloys (α-Fe-Cr at the temperature T = 773 K and Zr-Nb at the temperature T = 853-873 K) on the size of precipitates. The results of the calculation agree with experimental data obtained by other authors.

  7. Thermodynamic properties and diffusion of water + methane binary mixtures.

    PubMed

    Shvab, I; Sadus, Richard J

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298-650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions. PMID:24628180

  8. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  9. Temperature-entropy formulation of thermoelectric thermodynamic cycles.

    PubMed

    Chua, H T; Ng, K C; Xuan, X C; Yap, C; Gordon, Jeffrey M

    2002-05-01

    A temperature-entropy formulation is derived for thermoelectric devices. Thermoelectric chiller and generator cycles can then be cast in the same irreversible thermodynamics framework commonly applied to conventional large-scale cooling and power generation equipment, including a transparent identification of the principal energy flows and performance bottlenecks (dissipation). Distinct differences in chiller versus generator mode are highlighted and illustrated with data from commercial thermoelectric units. PMID:12059651

  10. Binary Magnesium Alloys: Searching for Novel Compounds by Computational Thermodynamics

    NASA Astrophysics Data System (ADS)

    Taylor, Richard; Curtarolo, Stefano; Hart, Gus

    2011-03-01

    Magnesium alloys are among the lightest structural materials and are of considerable technical interest. We use the high-throughput framework AFLOW to make T = 0 K ground state predictions by scanning a large set of known candidate structures for thermodynamic minima. The study presented here encompasses 34 Mg-X systems of interest (X=Al, Au, Ca, Cd, Cu, Fe, Ge, Hg, Ir, K, La, Pb, Pd, Pt, Mo, Na, Nb, Os, Rb, Re, Rh, Ru, Sc, Si, Sn, Sr, Ta, Tc, Ti, V, W, Y, Zn, Zr). Avenues for further investigation revealed by this study include stable phases found in addition to experimental phases and compound forming systems thought to be either immiscible or non-compound forming. The existence of potentially novel ordered phases presents new opportunities for materials design.

  11. Two binary cycles of GX 301-2

    NASA Technical Reports Server (NTRS)

    Rothschild, Richard E.; Soong, Yang

    1987-01-01

    The slow X-ray pulsar, GX 301-2, has been observed throughout two full binary cycles of 41.5 days in the energy range 13-170 keV by the UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO 1. Increased intensity and variability was observed for about four days near periastron during the two binary cycles, which were separated by six months in 1978. The spectral shape was not observed to vary with binary phase, with the possible exception of a steepening of the continuum above 20 keV near superior conjunction in one of the two observing epochs. Evidence for a spectral line was found in the data at the 1-percent confidence level, but not confirmed in the remaining data. The temporal variability of GX 301-2 was not consistent with simple models of X-ray production by interaction of the stellar wind with the neutron star, implying that future modeling must include effects on wind density and speed caused by shocks in the wind, the X-ray flux from the neutron star, the gravitational influence of the neutron star, and possible mass accumulation near the neutron star.

  12. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  13. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  14. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    SciTech Connect

    Delage-Santacreu, Stephanie; Galliero, Guillaume Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  15. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    NASA Astrophysics Data System (ADS)

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  16. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures.

    PubMed

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule. PMID:25956107

  17. Thermodynamic modelling of the C-U and B-U binary systems

    NASA Astrophysics Data System (ADS)

    Chevalier, P. Y.; Fischer, E.

    2001-02-01

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.

  18. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  19. Internal dissipation and heat leaks in quantum thermodynamic cycles.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel

    2015-09-01

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices. PMID:26465455

  20. Internal dissipation and heat leaks in quantum thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel

    2015-09-01

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.

  1. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    NASA Astrophysics Data System (ADS)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  2. Thermodynamics of natural selection II: Chemical Carnot cycles.

    PubMed

    Smith, Eric

    2008-05-21

    This is the second in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and to their relations to the thermodynamics of computation. In the first paper of the series, it was shown that a general-form dimensional argument from the second law of thermodynamics captures a number of scaling relations governing growth and development across many domains of life. It was also argued that models of physiology based on reversible transformations provide sensible approximations within which the second-law scaling is realized. This paper provides a formal basis for decomposing general cyclic, fixed-temperature chemical reactions, in terms of the chemical equivalent of Carnot's cycle for heat engines. It is shown that the second law relates the minimal chemical work required to perform a cycle to the Kullback-Leibler divergence produced in its chemical output ensemble from that of a Gibbs equilibrium. Reversible models of physiology are used to create reversible models of natural selection, which relate metabolic energy requirements to information gain under optimal conditions. When dissipation is added to models of selection, the second-law constraint is generalized to a relation between metabolic work and the combined energies of growth and maintenance. PMID:18367209

  3. Estimation of thermodynamic properties of Cu-La binary alloy with modified Miedema's theory

    NASA Astrophysics Data System (ADS)

    Li, Hai-hong; Zhang, Shi-hong; Chen, Yan; Cheng, Ming; Song, Hong-wu; Liu, Jin-song

    2016-01-01

    According to modified Miedema's theory, mixing enthalpies (Δ H), excess entropies ( S E), excess Gibbs free energy ( G E), and component activities ( a) of Cu-La binary alloy were estimated using the basic thermodynamic principles and some simple physical parameters of Cu and La, such as electronegativity, atomic volume and electron density. Based on the Cu-La binary alloy phase diagram, the Gibbs free energy of the phase precipitation reactions of Cu6La and Cu5La was deduced. The results showed that the values of Δ H, S E, and G E of Cu-La binary alloy were all negative. Compared to the ideal solution, the activities of the components presented a large negative deviation from Raoult's law, which indicated that there was a strong interaction between Cu and La. The calculated data are well consistent with the experimental data. The Gibbs free energies of the phase precipitation reactions of Cu6La are lower than those for Cu5La, which means that Cu6La is thermodynamically more stable than Cu5La. Furthermore, the experimental results show that rareearth rich Cu6La phase particles in copper matrix are formed after La microalloying.

  4. A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung

    2015-12-01

    A thermodynamic review is presented on cryogenic refrigeration cycles for the liquefaction process of natural gas. The main purpose of this review is to examine the thermodynamic structure of various cycles and provide a theoretical basis for selecting a cycle in accordance with different needs and design criteria. Based on existing or proposed liquefaction processes, sixteen ideal cycles are selected and the optimal conditions to achieve their best thermodynamic performance are investigated. The selected cycles include standard and modified versions of Joule-Thomson (JT) cycle, Brayton cycle, and their combined cycle with pure refrigerants (PR) or mixed refrigerants (MR). Full details of the cycles are presented and discussed in terms of FOM (figure of merit) and thermodynamic irreversibility. In addition, a new method of nomenclature is proposed to clearly identify the structure of cycles by abbreviation.

  5. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    NASA Astrophysics Data System (ADS)

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-01

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information.

  6. Study of thermodynamic properties of liquid binary alloys by a pseudopotential method

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-11-01

    On the basis of the Percus-Yevick hard-sphere model as a reference system and the Gibbs-Bogoliubov inequality, a thermodynamic perturbation method is applied with the use of the well-known model potential. By applying a variational method, the hard-core diameters are found which correspond to a minimum free energy. With this procedure, the thermodynamic properties such as the internal energy, entropy, Helmholtz free energy, entropy of mixing, and heat of mixing are computed for liquid NaK binary systems. The influence of the local-field correction functions of Hartree, Taylor, Ichimaru-Utsumi, Farid-Heine-Engel-Robertson, and Sarkar-Sen-Haldar-Roy is also investigated. The computed excess entropy is in agreement with available experimental data in the case of liquid alloys, whereas the agreement for the heat of mixing is poor. This may be due to the sensitivity of the latter to the potential parameters and dielectric function.

  7. The Thermodynamics of Marine Biogeochemical Cycles: Lotka Revisited

    NASA Astrophysics Data System (ADS)

    Vallino, Joseph J.; Algar, Christopher K.

    2016-01-01

    Nearly 100 years ago, Alfred Lotka published two short but insightful papers describing how ecosystems may organize. Principally, Lotka argued that ecosystems will grow in size and that their cycles will spin faster via predation and nutrient recycling so as to capture all available energy, and that evolution and natural selection are the mechanisms by which this occurs and progresses. Lotka's ideas have often been associated with the maximum power principle, but they are more consistent with recent developments in nonequilibrium thermodynamics, which assert that complex systems will organize toward maximum entropy production (MEP). In this review, we explore Lotka's hypothesis within the context of the MEP principle, as well as how this principle can be used to improve marine biogeochemistry models. We need to develop the equivalent of a climate model, as opposed to a weather model, to understand marine biogeochemistry on longer timescales, and adoption of the MEP principle can help create such models.

  8. THE ROLE OF KOZAI CYCLES IN NEAR-EARTH BINARY ASTEROIDS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-03-15

    We investigate the Kozai mechanism in the context of near-Earth binaries and the Sun. The Kozai effect can lead to changes in eccentricity and inclination of the binary orbit, but it can be weakened or completely suppressed by other sources of pericenter precession, such as the oblateness of the primary body. Through numerical integrations including primary oblateness and three bodies (the two binary components and the Sun), we show that Kozai cycles cannot occur for the closely separated near-Earth binaries in our sample. We demonstrate that this is due to pericenter precession around the oblate primary, even for very small oblateness values. Since the majority of observed near-Earth binaries are not well separated, we predict that Kozai cycles do not play an important role in the orbital evolution of most near-Earth binaries. For a hypothetical wide binary modeled after 1998 ST27, the separation is large at 16 primary radii and so the orbital effects of primary oblateness are lessened. For this wide binary, we illustrate the possible excursions in eccentricity and inclination due to Kozai cycles as well as depict stable orientations for the binary's orbital plane. Unstable orientations lead to collisions between binary components, and we suggest that the Kozai effect acting in wide binaries may be a route to the formation of near-Earth contact binaries.

  9. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    SciTech Connect

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-15

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information. - Graphical abstract: Ni-Re phase diagram according to the present study. Highlights: Black-Right-Pointing-Pointer Re-investigation of the Ni-Re phase diagram. Black-Right-Pointing-Pointer Extended phase field of the hcp phase. Black-Right-Pointing-Pointer Different freezing ranges and peritectic reaction temperature. Black-Right-Pointing-Pointer Thermodynamic modeling of the studied system by using the CALPHAD method.

  10. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. PMID:26886302

  11. Thermodynamic analysis of organic Rankine cycle using dry working fluids

    SciTech Connect

    Wang, S.K.; Hung, T.C.

    1998-12-31

    Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

  12. Effects of thermodynamic profiles on the interaction of binary tropical cyclones

    NASA Astrophysics Data System (ADS)

    Jang, Wook; Chun, Hye-Yeong

    2015-09-01

    The interactions between idealized binary tropical cyclones (TCs) on f and β planes with different separation distance and thermodynamic soundings obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data averaged over the western North Pacific are investigated through ensemble three-dimensional numerical simulations with a horizontal resolution of 10 km in a single domain. In the simulations on the f plane, two TCs show mutual cyclonic rotations with symmetric structures. Two TCs with thermodynamic profiles of larger convective available potential energy (CAPE) and maximum potential intensity (MPI) show greater interaction than those with a smaller CAPE and MPI due to the stronger tangential velocity near the TC center. In the simulations on the β plane, the two TCs do not merge, because the beta effect prevents the attraction of the two TCs by generating asymmetric motions of the TC with northwestward forcing. The relative strengths of the two TCs change with time and depend on the low-level inflow influenced by the Coriolis parameter. Similar to the results on the f plane, the two TCs only merge with the thermodynamic soundings of large CAPE and MPI.

  13. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  14. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.

    1999-01-01

    Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.

  15. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures

    NASA Astrophysics Data System (ADS)

    Alekseechkin, Nikolay V.

    2015-08-01

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V ˙ ≡ d V / d t , x ˙ , and T ˙ . The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for T ˙ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  16. Effects of Alloying on Nanoscale Grain Growth in Substitutional Binary Alloy System: Thermodynamics and Kinetics

    NASA Astrophysics Data System (ADS)

    Peng, Haoran; Chen, Yuzeng; Liu, Feng

    2015-11-01

    Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems were derived and compared to their generally accepted definitions and interpretations. It is suggested that for an actual grain growth process, the classical driving force P = γ/D ( γ the grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e., P^' = γ /D - Δ P . Δ P represents the energy required to adjust nonequilibrium solute distribution to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force impeding GB migration. By incorporating the derived new driving force for grain growth into the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at. pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and kinetic parameters ( i.e., P, Δ P and the GB mobility ( M GB)) on nanoscale grain growth, were investigated. Upon grain growth, the decrease of P is caused by the reduction of γ as a result of solute segregation in GBs; the decrease of Δ P is, however, due to the decrease of grain growth velocity; whereas the decrease of M GB is attributed to the enhanced difference of solute molar fractions between the bulk and the GBs as well as the increased activation energy for GB diffusion.

  17. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    PubMed

    Alekseechkin, Nikolay V

    2015-08-01

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal. PMID:26254656

  18. Combined First Principles Electronic Structure Calculations and Thermodynamic Study of Binary Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoqing

    In the past decade, density functional theory (DFT), combined with the highly precise computational methods and the increasing computer power, has become a most successful tool to study the physical properties of atoms, molecules, solids, surfaces and disordered systems. In this dissertation, we present a common framework, based on the density functional theory, to study the electronic structure, structural stability and the phase equilibria of both ordered compounds and solid solution of the binary alloys which usually have very small energy differences. As an illustrative example, we have made a systematic study on the Al-Li alloys which have become promising low density, high strength aerospace materials. The Al-Li ordered compounds are calculated by the all electron self-consistent, full potential linearized augmented plane wave (FLAPW) method within the local density approximation. All the stable and metastable phases are correctly predicted due to the high precision of the method. The phase stability in Al-Li alloys can be understood by our assumption that the Li atoms basically transfer their valence electrons in between the Al bonds and the resultant strengthened bonds stabilize the Al-Li compounds. The unusually high elastic modulus of the Al-Li alloys is due to the increased anisotropic Al bonding (decrease of the Poisson's ratio) with increasing Li content. Very good agreement with experiment is obtained. To utilize the existing highly precise band calculation method, we describe the Al-Li solid solution by a supercell method based on the "theory of locality". The relatively small size of a supercell is shown to give a very good description of Al-rich Al-Li solid solution. A thermodynamic model is proposed, as a first step, to calculate the phase diagrams of the binary alloys. The grand partition function, constructed from volume-dependent internal energies obtained from local-density total-energy supercell calculations, permits the determination of the

  19. First-Principles Calculations of Thermodynamic Properties and Phase Diagrams of Binary Substitutional Alloys

    NASA Astrophysics Data System (ADS)

    Asta, Mark David

    In this dissertation it is shown how quantum and statistical mechanical computational techniques can be combined in order to make possible the calculation of thermodynamic properties for solid-state binary substitutional alloy phases from first principles, i.e., from a knowledge of only basic crystallographic information and the atomic numbers of the alloy constituents. The framework which is discussed here for performing such calculations is based on the formalism of cluster expansions. Using this formalism the statistical mechanical problem of computing substitutional alloy thermodynamic properties can be reduced to that of solving a generalized Ising model. It is shown how the parameters describing atomic interactions in such an Ising model can be derived with the structure inversion method from the results of quantum mechanical calculations of zero-temperature total energies for a number of ordered stoichiometric alloy compounds sharing a common underlying parent structure. Once the parameters in the generalized Ising model have been derived, alloy thermodynamic properties can be calculated by a variety of statistical mechanical techniques. In the work presented here the quantum and statistical mechanical calculations have been performed using the linear muffin-tin orbital and cluster variation methods, respectively. These computational methods are both described in some detail. The formalism and computational techniques mentioned in the previous paragraph are applied to the study of alloy phase stability in the Ti-Al and Cd-Mg systems. For Cd -Mg an effort is made to determine the relative magnitudes of the contributions to the alloy free energy arising from configurational disorder, structural relaxations, as well as vibrational and electronic excitations. It is shown that when all of these different contributions to the free energy are included, the calculated solid-state portion of the composition-temperature phase diagram for the Cd -Mg system is in

  20. A Triple Eclipsing System as a Test Case for Close Binary Formation through Kozai Cycles

    NASA Astrophysics Data System (ADS)

    Conroy, K. E.; Prša, A.; Stassun, K. G.

    2015-07-01

    Kozai cycles and tidal friction of a binary with a tertiary companion is one of the leading theories for the formation of close binary systems by tightening the orbit of the inner binary. According to simulations, such systems should evolve into tight inner binaries with eccentric tertiary companions on wide orbits, and importantly, predict the tertiary to have an orbital inclination misaligned relative to the plane of the inner binary, with an angle of misalignment that peaks strongly around 40 degrees. KIC 2835289 is a triple system comprising a ˜0.9-day inner binary and a tertiary on a ˜750-day orbit. The tertiary was identified through our eclipse timing variations and our finding of a tertiary eclipse event in the Kepler data. Here we show, using photodynamical modeling of the system, that the tertiary in this system is on an eccentric orbit inclined with respect to the inner binary, in agreement with theoretical prediction. KIC 2835289 is thus the first known triple system that directly attests to the key predictions of Kozai cycles and tidal friction as a mechanism to tighten binary star systems.

  1. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    Yari, Mortaza; Mahmoudi, S. M. S.

    2011-02-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone.

  2. Dixie Valley Binary Cycle Production Data 2013 YTD

    DOE Data Explorer

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  3. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  4. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  5. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant

  6. Thermodynamic properties of gaseous fluorocarbons and isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1977-01-01

    Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.

  7. Design of a condenser-boiler for a binary mercury-organic Rankine cycle solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Cotton, Randy M.

    1987-05-01

    A theoretical design was performed for the condenser/boiler of a space-based solar dynamic power system. The base system is a binary Rankine cycle with mercury and toluene as the working fluids. System output is 75 KWe with a combined efficiency of 41.1%. Design goals were to develop the most reliable, mass efficient unit possible for delivery to a space station. The design sized the unit based on toluene properties and used a computer generated heat balance to thermodynamically match the two fluids. Molybdenum was chosen as the material due to mass effectiveness in heat transfer, strength, and resistance to mercury corrosion. The unit transferred 137.46 kilowatts of thermal power and can operate at varying mass flow rates. Effectiveness in heat transfer is 0.96 and mass performance is 0.016 kg/KWth transferred. The design depends on using only existing technologies and the results call for no new developments.

  8. Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Tao; Liang, Xin-Gang

    2015-12-01

    In this paper, we try to use the entransy theory to analyze the heat-work conversion systems with inner irreversible thermodynamic cycles. First, the inner irreversible thermodynamic cycles are analyzed. The influences of different inner irreversible factors on entransy loss are discussed. We find that the concept of entransy loss can be used to analyze the inner irreversible thermodynamic cycles. Then, we analyze the common heat-work conversion systems with inner irreversible thermodynamic cycles. As an example, the heat-work conversion system in which the working fluid of the thermodynamic cycles is heated and cooled by streams is analyzed. Our analyses show that larger entransy loss leads to larger output work when the total heat flow from the high temperature heat source and the corresponding equivalent temperature are fixed. Some numerical cases are presented, and the results verify the theoretical analyses. On the other hand, it is also found that larger entransy loss does not always lead to larger output work when the preconditions are not satisfied. Project supported by the National Natural Science Foundation of China (Grant Nos. 51376101 and 51356001).

  9. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  10. On the thermal efficiency of power cycles in finite time thermodynamics

    NASA Astrophysics Data System (ADS)

    Momeni, Farhang; Morad, Mohammad Reza; Mahmoudi, Ashkan

    2016-09-01

    The Carnot, Diesel, Otto, and Brayton power cycles are reconsidered endoreversibly in finite time thermodynamics (FTT). In particular, the thermal efficiency of these standard power cycles is compared to the well-known results in classical thermodynamics. The present analysis based on FTT modelling shows that a reduction in both the maximum and minimum temperatures of the cycle causes the thermal efficiency to increase. This is antithetical to the existing trend in the classical references. Under the assumption of endoreversibility, the relation between the efficiencies is also changed to {η }{{Carnot}}\\gt {η }{{Brayton}}\\gt {η }{{Diesel}}\\gt {η }{{Otto}}, which is again very different from the corresponding classical results. The present results benefit a better understanding of the important role of irreversibility on heat engines in classical thermodynamics.

  11. Thermodynamic analysis of five compressed-air energy-storage cycles. [Using CAESCAP computer code

    SciTech Connect

    Fort, J. A.

    1983-03-01

    One important aspect of the Compressed-Air Energy-Storage (CAES) Program is the evaluation of alternative CAES plant designs. The thermodynamic performance of the various configurations is particularly critical to the successful demonstration of CAES as an economically feasible energy-storage option. A computer code, the Compressed-Air Energy-Storage Cycle-Analysis Program (CAESCAP), was developed in 1982 at the Pacific Northwest Laboratory. This code was designed specifically to calculate overall thermodynamic performance of proposed CAES-system configurations. The results of applying this code to the analysis of five CAES plant designs are presented in this report. The designs analyzed were: conventional CAES; adiabatic CAES; hybrid CAES; pressurized fluidized-bed CAES; and direct coupled steam-CAES. Inputs to the code were based on published reports describing each plant cycle. For each cycle analyzed, CAESCAP calculated the thermodynamic station conditions and individual-component efficiencies, as well as overall cycle-performance-parameter values. These data were then used to diagram the availability and energy flow for each of the five cycles. The resulting diagrams graphically illustrate the overall thermodynamic performance inherent in each plant configuration, and enable a more accurate and complete understanding of each design.

  12. The Thermodynamics of the Krebs Cycle and Related Compounds

    NASA Astrophysics Data System (ADS)

    Miller, Stanley L.; Smith-Magowan, David

    1990-07-01

    A survey is made of the enthalpies of formation, third law entropies and Gibbs energies available for Krebs cycle and related compounds. These include formate, acetate, succinate, fumarate, glycine, alanine, aspartate and glutamate. The potential of the NAD+/NADH couple is recalculated based on the ethanol/acetaldehyde and isopropanol/acetone equilibria. The reported enzyme catalyzed equilibrium constants of the Krebs cycle reactions are evaluated with estimated errors. These 28 equilibria form a network of reactions that is solved by a least squares regression procedure giving Gibbs energies of formation for 21 Krebs cycle and related compounds. They appear to be accurate to ±0.4 kJṡmol-1 for some compounds but ±1 kJṡmol-1 in less favorable cases. This procedure indicates which third law ΔfG and enzyme equilibria are inaccurate, and allows very accurate ΔfG to be determined for compounds related to the Krebs cycle by measuring enzyme equilibrium constants.

  13. THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES

    EPA Science Inventory

    The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...

  14. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    NASA Astrophysics Data System (ADS)

    Kleidon, A.; Renner, M.

    2013-03-01

    The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  15. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    NASA Astrophysics Data System (ADS)

    Kleidon, A.; Renner, M.

    2013-07-01

    The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and about the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  16. Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle.

    PubMed

    Abe, Sumiyoshi; Okuyama, Shinji

    2011-02-01

    The similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analog of the quantity of heat, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is studied, and its efficiency is shown to be identical to the classical one. PMID:21405832

  17. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  18. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  19. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  20. Correlation and prediction of thermodynamic properties of binary mixtures from perturbed chain statistical associating fluid theory

    NASA Astrophysics Data System (ADS)

    Almasi, Mohammad

    2014-11-01

    Densities and viscosities for binary mixtures of Diethanolamine (DEA) + 2 alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15-323.15 K. From the density and viscosity data, values of various properties such as isobaric thermal expansibility, excess isobaric thermal expansibility, partial molar volumes, excess molar volumes and viscosity deviations were calculated. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the intermolecular interactions between the unlike molecules of the binary mixtures. The ability of the perturbed chain statistical associating fluid theory (PC-SAFT) to correlate accurately the volumetric behavior of the binary mixtures is demonstrated.

  1. Evaluating the thermodynamic efficiency of hydrogen cycles at wet-steam nuclear power stations

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Egorov, A. N.

    2013-04-01

    Various schematic solutions for implementing a hydrogen cycle on the basis of thermal and nuclear power stations are discussed. Different approaches to construction of cooling systems for the combustion chambers used in hydrogen-oxygen steam generators are described. An example of solution is given in which the combustion chamber is cooled by steam, which is the most efficient one in the thermodynamic respect. Results from an assessment of the thermodynamic efficiency of hydrogen cycles organized on the basis of the power unit of a wet-steam nuclear power station equipped with a K-1000-60/1500 turbine are presented. The thermodynamic efficiency of different schematic and parametric versions of implementing a hydrogen cycle, including those with a satellite turbine operating on displaced steam, is carried out. It is shown that the use of satellite turbines allows the power output and efficiency of the power unit of a wet-steam nuclear power station to be upgraded in a reliable and effective manner.

  2. Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process

    NASA Astrophysics Data System (ADS)

    Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

    2012-12-01

    The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

  3. A New Thermodynamic Power Conversion Cycle and Heat Engine for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Baker, Karl W.

    2004-02-01

    A new heat engine concept has been invented that operates on a new two-phase thermodynamic power conversion cycle. This device exploits the space flight proven technique of using a porous capillary structure to separate liquid from vapor through heat addition. This new thermodynamic cycle, the Baker cycle, is different from the existing Rankine because liquid and vapor are at different pressures and are separated during the phase change heat addition process as opposed to the Rankine cycle where liquid and vapor are at the same pressure and mixed during phase change heat addition. This new cycle also differs from Rankine because the heat addition process occurs at varying pressures and temperatures, where as in a Rankine cycle heat addition occurs at constant pressure. It is advantageous to apply this new cycle to space applications because management of the two-phase working fluid in micro gravity can be accomplished as never before using space flight proven Loop Heat Pipe and Capillary Pumped Loop technology. This new power system contains many components with significant flight heritage. Thermodynamic performance calculations are presented for several design cases. The new power cycle and system is inherently more efficient than single-phase systems because minimal compression power is required. One case shows 31.1% overall efficiency with a maximum working fluid temperature of 637.4 K. Since the heat addition process occurs at varying temperatures, waste heat from the spacecraft could be tapped and recovered to supply a large portion of the input energy. For the example cases discussed, between 63.1 to 84.4% of the total input energy could be waste heat. This new system could be used in conjunction with phase change thermal energy storage to supplement power production replacing batteries for solar low-earth-orbit applications. It could also be used as a power converter with a radioisotope heat source yielding efficiencies over 30% while requiring a maximum

  4. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    PubMed

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D; Sagi, Amir

    2014-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  5. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    PubMed Central

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  6. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    SciTech Connect

    Polettini, Matteo Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks “in a box”, whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s{sup Y} between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s{sup Y}. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  7. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    PubMed

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction. PMID:25028009

  8. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-01

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = sY between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats sY. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  9. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  10. Thermodynamic properties of alloys of the binary Gd-In system

    NASA Astrophysics Data System (ADS)

    Shevchenko, M. A.; Ivanov, M. I.; Berezutski, V. V.; Sudavtsova, V. S.

    2016-01-01

    The thermochemical properties of melts of the binary Gd-In system were studied by the calorimetry method at 1470-1700 K over the whole concentration interval. It was shown that significant negative heat effects of mixing are characteristic features for these melts. Using the ideal associated solution (IAS) model, the activities of components, Gibbs energies and the entropies of mixing in the alloys of this systems and its phase diagram were calculated. They agree with the data from literature.

  11. Thermodynamic properties of alloys of the binary In-La system

    NASA Astrophysics Data System (ADS)

    Shevchenko, M. A.; Ivanov, M. I.; Berezutski, V. V.; Sudavtsova, V. S.

    2016-06-01

    The thermochemical properties of melts of the binary In-La system were studied by the calorimetry method at 1250-1480 K over the whole concentration interval. It was shown that significant negative heat effects of mixing are characteristic features for these melts. Using the ideal associated solution (IAS) model, the activities of components, Gibbs energies and the entropies of mixing in the alloys, and the phase diagram of this system were calculated. They agree with the data from literature.

  12. Thermodynamic properties of alloys of the binary In-Yb system

    NASA Astrophysics Data System (ADS)

    Shevchenko, M. A.; Ivanov, M. I.; Berezutski, V. V.; Sudavtsova, V. S.

    2016-05-01

    The thermochemical properties of melts of the binary In-Yb system were studied by the calorimetry method at 1160-1380 K over the whole concentration interval. It was shown that significant negative heat effects of mixing are characteristic features for these melts. Using the ideal associated solution (IAS) model, the activities of components, Gibbs energies and the entropies of mixing in the alloys, and the phase diagram of this system were calculated. They agree with the data from literature.

  13. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    SciTech Connect

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  14. The Carnot cycle and the teaching of thermodynamics: a historical approach

    NASA Astrophysics Data System (ADS)

    Laranjeiras, Cássio C.; Portela, Sebastião I. C.

    2016-09-01

    The Carnot cycle is a topic that is traditionally present in introductory physics courses dedicated to the teaching of thermodynamics, playing an essential role in introducing the concept of Entropy and the consequent formulation of the second Law. Its effective understanding and contribution to the development of thermodynamics is often hindered, however. Among other things, this is the result of a pragmatic approach, which usually limits itself to presenting the isotherms and adiabatic curves in a P-V diagram and is totally disconnected from the historical fundamentals of Heat Theory. The purpose of this paper is to reveal the potential of an approach to the subject that recovers the historical and social dimensions of scientific knowledge, and to promote reflections about the nature of science (NOS).

  15. Thermodynamic stability analysis of the carbon biogeochemical cycle in aquatic shallow environments

    NASA Astrophysics Data System (ADS)

    Lvov, S. N.; Pastres, R.; Marcomini, A.

    1996-10-01

    We carry out the thermodynamic stability analysis of the carbon cycle in a lagoon. Our approach differs from linear stability analysis, and is based on the excess entropy production. The coupled biogeochemical processes in the lagoon include gas transfer, photosynthesis, respiration, decomposition, sedimentation, and oxidation of algae. The thermodynamic stability criterion derived from this analysis indicates that, in addition to known limiting factors of biomass production such as temperature, light, and nitrogen and phosphorous concentrations, the rate of carbon dioxide delivery from the air reservoir to the water can be also a limiting factor. For the Venice lagoon, the criterion obtained predicts that a doubling of the CO 2 partial pressure in the atmosphere can render the system unstable, driving it to dramatic biomass production and degradation.

  16. Binary Stars "Flare" With Predictable Cycles, Analysis of Radio Observations Reveals

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers have completed a 5-year campaign to monitor continuously radio flares from two groups of binary star systems. This survey is of special interest because it provides evidence that certain binary star systems have predictable activity cycles like our Sun. The survey, which ran from January 1995 to October 2000, was conducted with the National Science Foundation's (NSF) Green Bank Interferometer. The report was presented at the American Astronomical Society (AAS) meeting in Albuquerque, New Mexico, by Mercedes Richards of the University of Virginia, and her collaborators Elizabeth Waltman of the Naval Research Laboratory, and Frank Ghigo of the National Radio Astronomy Observatory (NRAO). "This long-term survey was critical to our understanding of the short- and long-term magnetic cycles of these intriguing star systems," said Richards. The survey focused on the binary star systems Beta Persei and V711 Tauri -- both are about 95 light-years from Earth. Beta Persei is the prototype of the "Algol" class of interacting binary stars. An Algol system contains a hot, blue, main sequence star, along with a cool, orange/red star that is more active than our Sun. V711 Tauri is an "RS Canum Venaticorum" binary, which contains two cool stars that behave like our Sun. "Our survey was the longest-running continuous radio flare survey of Algol or RS Canum Venaticorum binary star systems," said Richards. A flare is an enormous explosion on the surface of a star, which is accompanied by a release of magnetic energy. Flares can be detected over the full range of wavelengths from gamma rays to the radio. It is estimated that the energy release in a flare on the Sun is equivalent to a billion megatons of TNT. The strength of the magnetic field and the amount of activity it displays, like sunspots and flares, are directly related to the rotation or "spin" of the star. In Beta Persei and V711 Tauri, the cool star spins once every 3 days, compared to once every month in the

  17. A point of view on Otto cycle approach specific for an undergraduate thermodynamics course in CMU

    NASA Astrophysics Data System (ADS)

    Memet, F.; Preda, A.

    2015-11-01

    This paper refers to the description of the way in which can be presented to future marine engineers the analyzis of the performance of an Otto cycle, in a manner which is beyond the classic approach of the course of thermodynamics in Constanta Maritime University. The conventional course of thermodynamics is dealing with the topic of performance analysis of the cycle of the internal combustion engine with isochoric combustion for the situation in which the working medium is treated as such a perfect gas. This type of approach is viable only when are considered relatively small temperature differences. But this is the situation when specific heats are seen as constant. Instead, the practical experience has shown that small temperature differences are not viable, resulting the need for variable specific heat evaluation. The presentation bellow is available for the adiabatic exponent written as a liniar function depending on temperature. In the section of this paper dedicated to methods and materials, the situation in which the specific heat is taken as constant is not neglected, additionaly being given the algorithm for variable specific heat.For the both cases it is given the way in which it is assessed the work output. The calculus is based on the cycle shown in temperature- entropy diagram, in which are also indicated the irreversible adiabatic compression and expansion. The experience achieved after understanding this theory will allow to future professionals to deal successfully with the design practice of internal combustion engines.

  18. Thermodynamic design of methane liquefaction system based on reversed-Brayton cycle

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Chung, Myung Jin; Kim, Min Jee; Park, Seong Bum

    2009-06-01

    A thermodynamic design is performed for reversed-Brayton refrigeration cycle to liquefy methane separated from landfill gas (LFG) in distributed scale. Objective of the design is to find the most efficient operating conditions for a skid-mount type of liquefaction system that is capable of LNG production at 160 l/h. Special attention is paid on liquefying counterflow heat exchanger, because the temperature difference between cold refrigerant and methane is smallest at the middle of heat exchanger, which seriously limits the overall thermodynamic performance of the liquefaction system. Nitrogen is selected as refrigerant, as it is superior to helium in thermodynamic efficiency. In order to consider specifically the size effect of heat exchangers, the performance of plate-fin heat exchangers is estimated with rigorous numerical calculations by incorporating a commercial code for properties of methane and the refrigerant. Optimal conditions in operating pressure and heat exchanger size are presented and discussed for prototype construction under a governmental project in Korea.

  19. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    SciTech Connect

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  20. THERMODYNAMIC ANALYSIS OF OPEN-CYCLE MULTISHAFT POWER SYSTEM WITH MULTIPLE REHEAT AND INTERCOOL

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program computes the specific power output, specific fuel consumption, and cycle efficiency functions of turbine-inlet temperature, compressor pressure ratio, and component performance factors for power systems having any number of shafts up to a maximum of five. On each shaft there can be any number of compressors and turbines up to a maximum of five each, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included in the system and turbine coolant flow can be accounted for. The combustion-gas thermodynamic properties are valid for any fuel consisting of hydrogen and/or carbon only. The program should be used with maximum temperatures no higher than about 2000 K (3140 degrees Fahrenheit) because molecular dissociation is not included in the stoichiometry. Improvements in cycle performance resulting from the use of intercooling, reheating, and recuperation can also be determined. This program has been implemented on the IBM 7094.

  1. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to examine cycle performance for Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using pure Refrigerants 12, 22 and 114 was theoretically carried out in the present paper. For the purpose of systematizing the heat pump cycle characteristics with pure refrigerants, the cycle analysis for Refrigerants 502, 13B1, 152a, 717 (NH3) and 290 (C3H8) was also examined. It became clear that the maximum coefficients of performance with various refrigerants were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  2. Thermodynamic analysis and optimization of fuel cell based Combined Cycle Cogeneration plant

    NASA Astrophysics Data System (ADS)

    Odukoya, Adedoyin

    Power plants operating in combined cycle cogeneration configuration are becoming increasingly popular because of high energy conversion efficiency and reduced pollutant and green-house gas emissions. On the other hand, fuel cell technology continues to be of global interest because it can operate with very low to 0% green-house gas emission depending on the fuel. The aim of the present work is to investigate the effect of co-firing of natural gas with synthetic gas generated from coal gasification on the thermodynamic performance of an air blown coal gasification Combined Cycle Cogeneration unit with a solid oxide fuel cell (SOFC) arrangement. The effects of the operating temperature of the SOFC and the pressure ratio and turbine inlet temperature of the gas turbine on the net work output and efficiency of the power cycles on the cogeneration unit are simulated. Simulations are also conducted on the thermal and cogeneration efficiencies of the individual power cycle as well as the overall plants respectively. The optimal pressure ratio, temperature of operation of the SOFC and, gas turbine inlet temperature was determined using a sequential quadratic program solver base on the Quasi-Newton algorithm.

  3. Thermodynamic parameters and counterion binding to the micelle in binary anionic surfactant systems.

    PubMed

    Maneedaeng, Atthaphon; Haller, Kenneth J; Grady, Brian P; Flood, Adrian E

    2011-04-15

    Competitive counterion binding of sodium and calcium to micelles, and mixed micellization have been investigated in the systems sodium dodecylsulfate (NaDS)/sodium decylsulfate (NaDeS) and NaDS/sodium 4-octylbenzenesulfonate (NaOBS) in order to accurately model the activity of the relevant species in solution. The critical micelle concentration (CMC) and equilibrium micelle compositions of mixtures of these anionic surfactants, which is necessary for determining fractional counterion binding measurements, is thermodynamically modeled by regular solution theory. The mixed micelle is ideal (the regular solution parameter β(M)=0) for the NaDS/NaOBS system, while the mixed micelle for NaDS/NaDeS has β(M)=-1.05 indicating a slight synergistic interaction. Counterion binding of sodium to the micelle is influenced by the calcium ion concentration, and vice versa. However, the total degree of counterion binding is essentially constant at approximately 0.65 charge negation at the micelle's surface. The counterion binding coefficients can be quantitatively modeled using a simple equilibrium model relating concentrations of bound and unbound counterions. PMID:21292278

  4. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    PubMed

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  5. Thermodynamic analysis of a new conception of supplementary firing in a combined cycle

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Balicki, Adrian

    2010-10-01

    The paper analyzes a new concept of integration of combined cycle with the installation of supplementary firing. The whole system was enclosed by thermodynamic analysis, which consists of a gas-steam unit with triple-pressure heat recovery steam generator. The system uses a determined model of the gas turbine and the assumptions relating to the construction features of steam-water part were made. The proposed conception involves building of supplementary firing installation only on part of the exhaust stream leaving the gas turbine. In the proposed solution superheater was divided into two sections, one of which was located on the exhaust gases leaving the installation of supplementary firing. The paper presents the results of the analyses of which the main aim was to demonstrate the superiority of the new thermodynamic concept of the supplementary firing over the classical one. For this purpose a model of a system was built, in which it was possible to carry out simulations of the gradual transition from a classically understood supplementary firing to the supplementary firing completely modified. For building of a model the GateCycle™ software was used.

  6. A parametric analysis microcomputer model for evaluating the thermodynamic performance of a reciprocating Brayton cycle engine

    SciTech Connect

    Tsongas, G.A. ); White, T.J. )

    1989-10-01

    A Brayton open-cycle engine is under development. It operates similarly to a gas turbine engine, but uses reciprocating piston compressor and expander components. The design appears to have a number of advantages, including multifuel capability, the potential for lower cost, and the ability to be scaled to small sizes without significant loss in efficiency. An interactive microcomputer model has been developed that analyzes the thermodynamic performance of the engine. The model incorporates all the important irreversibilities found in piston devices, including heat transfer, mechanical friction, pressure losses, and mass loss and recirculation. There are 38 input parameters to the model. Key independent operating parameters are maximum temperature, compressor rpm, and pressure ratio. The development of the model and its assumptions are outlined in this paper. The emphasis is on model applications.

  7. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-09-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (`alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF<-->OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events.

  8. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    PubMed

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  9. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    PubMed Central

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-01-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (‘alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events. PMID:26417850

  10. Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Byrne, Michael P.; Schneider, Tapio

    2016-05-01

    The wet gets wetter, dry gets drier paradigm explains the expected moistening of the extratropics and drying of the subtropics as the atmospheric moisture content increases with global warming. Here we show, using precipitation minus evaporation (P - E) data from climate models, that it cannot be extended to apply regionally to deviations from the zonal mean. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. Additionally, atmospheric circulation changes lead to a smaller increase in the zonal variance of P - E than would be expected from atmospheric moistening alone. The P - E variance change can be split into dynamic and thermodynamic components through an analysis of the atmospheric moisture budget. This reveals that a weakening of stationary-eddy circulations and changes in the zonal variation of transient-eddy moisture fluxes moderate the strengthening of the zonally anomalous hydrological cycle with global warming.

  11. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF

  12. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  13. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  14. IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY

    SciTech Connect

    Stephen M Bajorek; J. Schnelle

    2002-05-01

    This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All

  15. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  16. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    NASA Astrophysics Data System (ADS)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  17. Thermodynamic Evaluation of Reaction Abilities of Structural Units in Fe-O Binary Melts Based on the Atom-Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Wei, Meng-fang; Zhang, Jian

    2016-02-01

    A thermodynamic model for calculating the mass action concentrations Ni of structural units in Fe-O binary melts based on the atom-molecule coexistence theory, i.e., AMCT- Ni model, has been developed and verified to be valid through comparing with the calculated activities a_{R,i} of both O and Fe over a temperature range from 1833 K to 1973 K (1560 °C to 1700 °C). Moreover, activity coefficients γ_{O} or f_{{%,O} or f_{H,O} of O coupled with activity a_{R,O} or a_{%, O} or a_{H,O} of O and the corresponding first-order activity interaction coefficient \\varepsilon_{O}^{O} or e_{O}^{O} or h_{O}^{O} of O to O have also been determined by the developed AMCT- Ni model and verified to be credible. In addition, the molar mixing thermodynamic properties of Fe-O binary melts have been determined to be accurate. Values of the calculated mass action concentration N_{Fe} of free Fe are in good agreement with results of the calculated activity a_{R,Fe} of Fe relative to pure liquid Fe(l) as standard state in Fe-O binary melts. The calculated mass action concentration N_{O} of free O has a closely corresponding relationship with the calculated activity a_{R,O} of O relative to ideal O2 at 101,325 Pa as standard state in Fe-O binary melts. However, values of the calculated mass action concentration N_{O} of free O are much greater than results of the calculated activity a_{R,O} of O in Fe-O binary melts. The converted mass action concentration N_{O}^' of total O relative to ideal O2 at 101,325 Pa as standard state can be obtained through transferring standard state of the calculated mass action concentration N_{O} of free O. The converted mass action concentration N_{O}^' of total O or the converted activity a_{{R,O}^{AMCT} of O can well be matched with the calculated activity a_{R,O} of O in Fe-O binary melts. Although the obtained expression of first-order activity interaction coefficient \\varepsilon_{O}^{O} or e_{O}^{O} or h_{O}^{O} by the developed AMCT- Ni model for

  18. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    PubMed

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals. PMID:25495377

  19. A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle

    SciTech Connect

    Patzek, Tad W.

    2006-12-15

    This paper analyzes energy efficiency of the industrial corn-ethanol cycle. In particular, it critically evaluates earlier publications by DOE, USDA, and UC Berkeley Energy Resources Group. It is demonstrated that most of the current First Law net-energy models of the industrial corn-ethanol cycle are based on nonphysical assumptions and should be viewed with caution. In particular, these models do not (i) define the system boundaries, (ii) conserve mass, and (iii) conserve energy. The energy cost of producing and refining carbon fuels in real time, for example, corn and ethanol, is high relative to that of fossil fuels deposited and concentrated over geological time. Proper mass and energy balances of corn fields and ethanol refineries that account for the photosynthetic energy, part of the environment restoration work, and the coproduct energy have been formulated. These balances show that energetically production of ethanol from corn is 2-4 times less favorable than production of gasoline from petroleum. From thermodynamics it also follows that ecological damage wrought by industrial biofuel production must be severe. With the DDGS coproduct energy credit, 3.9 gallons of ethanol displace on average the energy in 1 gallon of gasoline. Without the DDGS energy credit, this average number is 6.2 gallons of ethanol. Equivalent CO{sub 2} emissions from corn ethanol are some 50% higher than those from gasoline, and become 100% higher if methane emissions from cows fed with DDGS are accounted for. From the mass balance of soil it follows that ethanol coproducts should be returned to the fields.

  20. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  1. Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production

    SciTech Connect

    Bader, R; Venstrom, LJ; Davidson, JH; Lipinski, W

    2013-09-01

    A thermodynamic analysis of continuous fuel production by redox cycling of ceria in a single solar reactor under isothermal conditions is presented. Ceria is partially reduced in a sweep gas flow of purified nitrogen and reoxidized with either steam or carbon dioxide to produce hydrogen or carbon monoxide, respectively. The sweep gas and oxidizer flows are preheated by the product gases. The influence of selected process parameters, including operating temperature, pressure, and the effectiveness of heat recovery, on the solar-to-fuel conversion efficiency is determined. For a solar concentration ratio of 3000, typical of state-of-the-art solar dish concentrators, and operating temperature of 1773 K, 95.5% of the available gas-phase heat must be recovered to reach conversion efficiencies of 10% and 18% for hydrogen and carbon monoxide production, respectively, assuming the flow rate of inert sweep gas is equivalent to that in a counter-current flow arrangement of gas and ceria. The efficiency depends strongly on the gas-phase heat recovery effectiveness and the sweep gas flow rate. Introducing a temperature swing of 150 K between reduction and oxidation steps strongly reduces the sweep gas flow rate and increases the efficiency from 10% to 31.6% for hydrogen production.

  2. From low- to high-potential bioenergetic chains: Thermodynamic constraints of Q-cycle function.

    PubMed

    Bergdoll, Lucie; Ten Brink, Felix; Nitschke, Wolfgang; Picot, Daniel; Baymann, Frauke

    2016-09-01

    The electrochemical parameters of all cofactors in the supercomplex formed by the Rieske/cytb complex and the SoxM/A-type O2-reductase from the menaquinone-containing Firmicute Geobacillus stearothermophilus were determined by spectroelectrochemistry and EPR redox titrations. All redox midpoint potentials (Em) were found to be lower than those of ubi- or plastoquinone-containing systems by a value comparable to the redox potential difference between the respective quinones. In particular, Em values of +200mV, -360mV, -220mV and -50mV (at pH7) were obtained for the Rieske cluster, heme bL, heme bH and heme ci, respectively. Comparable values of -330mV, -200mV and +120mV for hemes bL, bH and the Rieske cluster were determined for an anaerobic Firmicute, Heliobacterium modesticaldum. Thermodynamic constraints, optimization of proton motive force build-up and the necessity of ROS-avoidance imposed by the rise in atmospheric O2 2.5billionyears ago are discussed as putative evolutionary driving forces resulting in the observed redox upshift. The close conservation of the entire redox landscape between low and high potential systems suggests that operation of the Q-cycle requires the precise electrochemical tuning of enzyme cofactors to the quinone substrate as stipulated in P. Mitchell's hypothesis. PMID:27328272

  3. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.

    PubMed Central

    Zhao, Y; Kawai, M

    1994-01-01

    The effect of temperature on elementary steps of the cross-bridge cycle was investigated with sinusoidal analysis technique in skinned rabbit psoas fibers. We studied the effect of MgATP on exponential process (C) to characterize the MgATP binding step and cross-bridge detachment step at six different temperatures in the range 5-30 degrees C. Similarly, we studied the effect of MgADP on exponential process (C) to characterize the MgADP binding step. We also studied the effect of phosphate (Pi) on exponential process (B) to characterize the force generation step and Pi-release step. From the results of these studies, we deduced the temperature dependence of the kinetic constants of the elementary steps and their thermodynamic properties. We found that the MgADP association constant (K0) and the MgATP association constant (K1) significantly decreased when the temperature was increased from 5 to 20 degrees C, implying that nucleotide binding became weaker at higher temperatures. K0 and K1 did not change much in the 20-30 degree C range. The association constant of Pi to cross-bridges (K5) did not change much with temperature. We found that Q10 for the cross-bridge detachment step (k2) was 2.6, and for its reversal step (k-2) was 3.0. We found that Q10 for the force generation step (Pi-isomerization step, k4) was 6.8, and its reversal step (k-4) was 1.6. The equilibrium constant of the detachment step (K2) was not affected much by temperature, whereas the equilibrium constant of the force generation step (K4) increased significantly with temperature increase. Thus, the force generation step consists of an endothermic reaction. The rate constant of the rate-limiting step (k6) did not change much with temperature, whereas the ATP hydrolysis rate increased significantly with temperature increase. We found that the force generation step accompanies a large entropy increase and a small free energy change; hence, this step is an entropy-driven reaction. These observations

  4. Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2

    NASA Astrophysics Data System (ADS)

    Ziółkowski, Paweł; Zakrzewski, Witold; Kaczmarczyk, Oktawia; Badur, Janusz

    2013-06-01

    In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.

  5. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  6. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    NASA Astrophysics Data System (ADS)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  7. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. PMID:23201905

  8. Thermodynamic study of binary system Propafenone Hydrocloride with Metoprolol Tartrate: solid-liquid equilibrium and compatibility with α-lactose monohydrate and corn starch.

    PubMed

    Marinescu, Daniela-Crina; Pincu, Elena; Meltzer, Viorica

    2013-05-20

    Solid-liquid equilibrium (SLE) for binary mixture of Propafenone Hydrocloride (PP) with Metoprolol Tartrate (MT) was investigated using differential scanning calorimetry (DSC) and corresponding activity coefficients were calculated. Simple eutectic behavior for this system was observed. The excess thermodynamic functions: G(E) and S(E) for the pre-, post-, and eutectic composition have been obtained using the computed activity coefficients data of the eutectic phase with their excess chemical potentials μi(E) (i=1, 2). The experimental solid-liquid phase temperatures were compared with predictions obtained from available eutectic equilibrium models. The results indicate non-ideality in this mixture. Also, the compatibility of each component and their eutectic mixture with usual excipients was investigated, and the DSC experiments indicate possible weak interactions with α-lactose monohydrate and compatibility with corn starch. The results obtained were confirmed by FT-IR measurements. PMID:23545398

  9. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    SciTech Connect

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  10. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals

    PubMed Central

    Wood, Shona H.; Christian, Helen C.; Miedzinska, Katarzyna; Saer, Ben R.C.; Johnson, Mark; Paton, Bob; Yu, Le; McNeilly, Judith; Davis, Julian R.E.; McNeilly, Alan S.; Burt, David W.; Loudon, Andrew S.I.

    2015-01-01

    Summary Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3+) or short (CHGA+) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation. PMID:26412130

  11. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  12. Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor

    SciTech Connect

    Witusiewicz, V.T. . E-mail: victor@access.rwth-aachen.de; Sturz, L.; Hecht, U.; Rex, S.

    2004-11-08

    The temperature and enthalpy of transformation of organic alloys from the binary systems neopentylglycol-(D)camphor (NPG-DC) and 2-amino-2-methyl-1,3-propanediol-(D)camphor (AMPD-DC) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-DC and the AMPD-DC system exhibit a nonvariant eutectic reaction with the eutectic point at 36.2 mol% DC and 326.0 K and at 9.3 mol% DC and 362.0 K, respectively. In each system the temperature of the eutectic reaction is higher than the temperature of the transformation from the ordered crystals to the orientationally disordered (plastic) crystals. Unidirectional solidification experiments were performed with several alloys in order to verify the nature of eutectic growth: We find that in both systems eutectic growth occurs with both solid phases being non-facetted and with a lamellar or rod-like eutectic structure. Due to the optical activity of DC its distribution in the solid samples is well detectible in polarised light.

  13. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    NASA Astrophysics Data System (ADS)

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-01

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  14. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    SciTech Connect

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-28

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  15. Parametric thermodynamic analysis of closed-cycle gas-laser operation in space

    NASA Technical Reports Server (NTRS)

    Burns, R. K.

    1974-01-01

    Cycle efficiency and radiator area required were calculated for thermally and electrically pumped lasers operating in closed cycles with a compressor and the required heat exchangers. A thermally pumped laser included within a Brayton cycle was also analyzed. Performance of all components, including the laser, was parametrically varied. For the thermally pumped laser the cycle efficiencies range below 10 percent and are very sensitive to the high-pressure losses associated with the supersonic diffuser required at the laser cavity exit. The efficiencies predicted for the electrically pumped laser cycles range slightly higher, but radiator area also tends to be larger.

  16. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  17. Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO

    NASA Technical Reports Server (NTRS)

    Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.

    2016-01-01

    A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.

  18. Does thermodynamics require our cosmos to undergo a series of contraction/expansion cycles?

    NASA Astrophysics Data System (ADS)

    Recami, E.; Martinez, J. M.; Zanchin, V. T.

    A unified geometrical approach to strong and gravitational interactions has been recently proposed, based on the classical methods of general relativity. According to it, hadrons can be regarded as "black-hole type" solutions of new field equations describing two tensorial metric-fields (the ordinary gravitational field, and the "strong" one). In this paper, the authors seize the opportunity for an improved exposition of some elements of the theory relevant to our present scope, and they extend the Bekenstein-Hawking thermodynamics to the "strong black holes" (SBH). They show (1) that SBH thermodynamics seems to require a new expansion of our cosmos after its "big crunch"; (2) that a collapsing star with a mass 3 - 5 M_sun;, once reached the neutron-star density, could re-explode tending to form a (radiating) object with a diameter of the order of 1 light-day.

  19. Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels.

    PubMed

    Baral, Anil; Bakshi, Bhavik R

    2010-01-15

    While methods for aggregating emissions are widely used and standardized in life cycle assessment (LCA), there is little agreement about methods for aggregating natural resources for obtaining interpretable metrics. Thermodynamic methods have been suggested including energy, exergy, and emergy analyses. This work provides insight into the nature of thermodynamic aggregation, including assumptions about substitutability between resources and loss of detailed information about the data being combined. Methods considered include calorific value or energy, industrial cumulative exergy consumption (ICEC) and its variations, and ecological cumulative exergy consumption (ECEC) or emergy. A hierarchy of metrics is proposed that spans the range from detailed data to aggregate metrics. At the fine scale, detailed data can help identify resources to whose depletion the selected product is most vulnerable. At the coarse scale, new insight is provided about thermodynamic aggregation methods. Among these, energy analysis is appropriate only for products that rely primarily on fossil fuels, and it cannot provide a useful indication of renewability. Exergy-based methods can provide results similar to energy analysis by including only nonrenewable fuels but can also account for materials use and provide a renewability index. However, ICEC and its variations do not address substitutability between resources, causing its results to be dominated by dilute and low-quality resources such as sunlight. The use of monetary values to account for substitutability does not consider many ecological resources and may not be appropriate for the analysis of emerging products. ECEC or emergy explicitly considers substitutability and resource quality and provides more intuitive results but is plagued by data gaps and uncertainties. This insight is illustrated via application to the life cycles of gasoline, diesel, corn ethanol, and soybean biodiesel. Here, aggregate metrics reveal the dilemma

  20. Thermodynamic performance of a hybrid air cycle refrigeration system using a desiccant rotor

    NASA Astrophysics Data System (ADS)

    Hwang, Kyudae; Song, Chan Ho; Kim, Sung Ki; Saito, Kiyoshi; Kawai, Sunao

    2013-03-01

    Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.

  1. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle".

    PubMed

    González-Díaz, L A; Díaz-Solórzano, S

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011)], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy. PMID:26066282

  2. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle"

    NASA Astrophysics Data System (ADS)

    González-Díaz, L. A.; Díaz-Solórzano, S.

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011), 10.1103/PhysRevE.83.021121], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy.

  3. Thermodynamic property evaluation and magnetic refrigeration cycle analysis for gadolinium gallium garnet

    SciTech Connect

    Murphy, R.W.

    1994-12-01

    Based on relevant material property data and previous model formulations, a magnetothermodynamic property map for gadolinium gallium garnet (Gd{sub 3}Ga{sub 5}O{sub 12}) was adapted for refrigeration cycle analysis in the temperature range 4-40 K and the magnetic field range 0-6 T. Employing methods similar to those previously developed for other materials and temperature ranges, assessments of limitations and relative performance were made for Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. It was found that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as the limitations for materials previously examined, considerable improvement in cooling capacity and temperature lift combinations can be achieved by using regenerative cycles if serious loss mechanisms are avoided.

  4. Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Iranmanesh, A.; Mehrabian, M. A.

    2012-12-01

    The goal of this paper is to estimate the conductance of components required to achieve the approach temperatures, and gain insights into a double-effect absorption chiller using LiBr-H2O solution as the working fluid. An in-house computer program is developed to simulate the cycle. Conductance of all components is evaluated based on the approach temperatures assumed as input parameters. The effect of input data on the cycle performance and the exergetic efficiency are investigated.

  5. Thermodynamic Properties Of Alkali Species In Coal Based Combined Cycle Power Systems

    SciTech Connect

    Willenborg, W.; Wolf, K.J.; Fricke, C.; Moeller, M.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    The aim of this project is to support the development of a concept for a successful alkali removal. Two strategies are possible: optimizing the alkali retention potential of the coal ash slag in the combustion chamber and the liquid slag separators and separate alkali removal with solid sorbents (getters) at temperatures below 1450 C. Therefore in a first step the alkali partial pressure over coal ash slag should be determined in order to get information about the retention potential of the slag. The influence of additives on the retention potential of the slag should be investigated. The measurements should show if the alkali partial pressure over the slag is generally low enough in case of thermodynamic equilibrium. In case of too high alkali partial pressures a separate alkali removal is needed. Therefore in a second step commercial sorbent materials should be investigated concerning their sorption potential for alkalis. To get information about the influence of getter components on the sorption potential some mixtures of pure components, predicted by thermodynamic modeling to be most effective, should be investigated.

  6. The active RS Canum Venaticorum binary II Pegasi. IV. The SPOT activity cycle

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Berdyugin, A. V.; Ilyin, I.; Tuominen, I.

    1999-10-01

    A total of 6 new surface images of II Peg obtained for the years 1997 and 1998 confirms the recently revealed permanent active longitude structure. The lower limit of the active longitudes' lifetime is now extended up to 25 years. A new ``flip-flop'' phenomenon, redefined as a switch of the activity between the active longitudes, has started in summer of 1998. It coincides reasonably well with the moment predicted from the activity cycle of the star. This confirms definitely the cyclic behaviour of the activity of II Peg we recently discovered. Therefore, we assign numbers to the cycles of 4.65 yr since the earliest photoelectric observations of II Peg and define the active longitudes as ``odd'' and ``even'' corresponding to odd and even numbers of cycles. With such a definition, in late 1998 the 7th cycle began and the ``odd'' active longitude became more active. From the analysis of the spot area evolution within the active longitudes we conclude that the activity cycle is developed as a rearrangement of the nearly constant amount of the spot area between the active longitudes. We discuss the ``flip-flop'' phenomenon as a tracer of stellar activity and the role of the unseen secondary in establishing the cycle. Based on observations collected at the Nordic Optical Telescope (NOT), La Palma, Spain; the 1.25m telescope of the Crimean Astrophysical Observatory, Ukraine; the Phoenix 10 robotic telescope, APT Observatory, Arizona, USA.}

  7. Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoyong; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2015-10-01

    For practical absorption heat pump (AHP) plants, not all external heat reservoir heat capacities are infinite. External heat reservoir heat capacity should be an effect factor in modeling and performance analysis of AHP cycles. A variable-temperature heat reservoir AHP cycle is modeled, in which internal working substance is working in four temperature levels and all irreversibility factors are considered. The irreversibility includes heat transfer irreversibility, internal dissipation irreversibility and heat leakage irreversibility. The general equations among coefficient of performance (COP), heating load and some key characteristic parameters are obtained. The general and optimal characteristics are obtained by using numerical calculations. Besides, the influences of heat capacities of heat reservoirs, internal dissipation irreversibility, and heat leakage irreversibility on cycle performance are analyzed. The conclusions can offer some guidelines for design and operation of AHP plants.

  8. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  9. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces.

    PubMed

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B; Bedeaux, Dick

    2016-04-20

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager's reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances. PMID:26986039

  10. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. PMID:26624532

  11. Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations.

    PubMed

    Vreekamp, Remko; Castellano, Desire; Palomar, José; Ortega, Juan; Espiau, Fernando; Fernández, Luís; Penco, Eduvigis

    2011-07-14

    Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF(4)]. Solubility data (x(IL),T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, x(IL), with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies H(m)(E) and volumes V(m)(E), can be determined. Hence, at 298.15 and 318.15 K these can only be found with the first four alkanols. All mixing properties are correlated with a suitable equation ξ (x(IL),T,Y(m)(E) = 0. An analysis on the influence of the temperature in the properties is shown, likewise a comparison between the results obtained here and those of analogous mixtures, discussing the position of the -CH(3) group in the pyridinic ring. The (1)H NMR spectra are determined to analyze the molecular interactions present, especially those due to hydrogen bonds. Additional information about the molecular interactions and their influence on the mixing properties is obtained by quantum chemistry calculations. PMID:21648473

  12. Thermodynamical and structural properties of binary mixtures of imidazolium chloride ionic liquids and alcohols from molecular simulation

    NASA Astrophysics Data System (ADS)

    Raabe, Gabriele; Köhler, Jürgen

    2008-10-01

    We have performed molecular dynamics simulations to determine the densities, excess energies of mixing, and structural properties of binary mixtures of the 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) [amim][Cl] and ethanol and 1-propanol in the temperature range from 298.15to363.15K. As in our previous work [J. Chem. Phys. 128, 154509 (2008)], our simulation studies are based on a united atom model from Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the 1-ethyl- and 1-butyl-3-methylimidazolium cations [emim+] and [bmim+], which we have extended to the 1-hexyl-3-methylimidazolium [hmim+] cation and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the chloride anion [Cl-] and the force field by Khare et al. for the alcohols [J. Phys. Chem. B 108, 10071 (2004)]. With this, we provide both prediction for the densities of the mixtures that have mostly not been investigated experimentally yet and a molecular picture of the interactions between the alcohol molecules and the ions. The negative excess energies of all mixtures indicate an energetically favorable mixing of [amim][Cl] ILs and alcohols. To gain insight into the nonideality of the mixtures on the molecular level, we analyzed their local structures by radial and spatial distribution functions. These analyses show that the local ordering in these mixtures is determined by strong hydrogen-bond interactions between the chloride anion and the hydroxyls of the alcohols, enhanced interactions between the anion and the charged domain of the cation, and an increasing aggregation of the nonpolar alkyl tails of the alcohols and the cations with increasing cation size, which results in a segregation of polar and nonpolar domains.

  13. Thermodynamics and extraction modeling of trivalent lanthanides in the nuclear fuel cycle

    SciTech Connect

    Levitskaia, T.G.; Chatterjee, S.; Valerio, E.L.; Robinson, T.A.

    2013-07-01

    In this investigation, a combination of VPO (Vapor Pressure Osmometry) and water activity methods was applied to measure water activity and osmotic coefficients of binary lanthanide nitrate solutions at a temperature of 25 C. degrees. It was observed that the nature of the lanthanide nitrate has pronounced effect on the water activity in solution. In the solutions with the same Ln(NO{sub 3}){sub 3} molality, water activity is decreased in the order from the light to heavy lanthanides. This trend was explained by the contraction of the lanthanide ionic radii in the same order resulting in the [Ln(H{sub 2}O){sub n}]{sup 3+} (aq) hydration number of 9 for the early (La-Sm) and 8 for the late (Dy-Lu) lanthanides, with the intermediate metals exhibiting a mixture of eight and nine coordinate molecules. This results in the dissimilar effect of the light and heavy lanthanides on the water structure manifesting in the systematic changes of the water activity in the series of concentrated lanthanide solutions. Experimental water activity and osmotic coefficient data agree well with the literature for both 1:1 and 3:1 electrolyte systems. The Pitzer parameters obtained fitting these data are in an excellent agreement with the literature reported values for Ln(NO{sub 3}){sub 3} solutions.

  14. Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process.

    PubMed

    Guarino, Vincenzo; Guaccio, Angela; Guarnieri, Daniela; Netti, Paolo A; Ambrosio, Luigi

    2012-09-01

    The use of scaffold-aided strategies for the regeneration of biological tissues requires the fulfilment of an accurate architectural design, that is, micro and macrostructure, with the final goal of realizing architectures to adopt as guidance for those cell activities specific to the formation of novel tissues. Here, highly porous scaffolds made up of biodegradable poly(ε-caprolactone) (PCL) have been realized by thermally induced phase separation (TIPS). Two different polymer/solvent systems, derived by the dissolution of PCL in dioxane and DMSO respectively, were investigated. The aim was to demonstrate the high potential of TIPS technique, in imprinting specific pore features to the polymer matrices, by a conscious selection of polymer/solvent systems. The investigation of pore architecture by SEM/mercury intrusion porosimetry/image analyses, firstly allow to detect remarkable variations in porosity (from 92% to 78%,) and pore sizes, ranging from micro-scale (ca 10 µm) to macro-scale (greater than 100 µm) as a function of the used polymer/solvent systems. Moreover, experimental and theoretical evidences referred to scaffold shaped in custom-made molds--a thin Teflon ring between two copper plates--allow exploring how the sensitivity of polymer solution features (i.e., crystallinity, thermal inertia) to the cooling temperature can affect the alignment of polymer phases and, ultimately, scaffold pore anisotropy. Analytical results supported by preliminary biological studies demonstrate the higher ability of PCL/dioxane solution to promote the formation of aligned pores which provide a morphological guidance to cell advance during the preliminary stage of culture. These findings, taken as a whole, put the basis for a better informed regeneration of structurally complex tissues based on the modeling of scaffold micro and macro-architecture by thermodynamic forces. PMID:21527493

  15. Thermodynamic systems analysis of open-cycle Ocean Thermal Energy Conversion (OTEC)

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.; Bharathan, D.; Althof, J. A.

    1985-09-01

    This report describes an updated thermal-hydraulic systems analysis program called OTECSYS that studies the integrated performance of an open-cycle ocean thermal energy conversion (OTEC) plant, specifically, the effects of component performance, design parameters, and site specific resource data on the total system performance and plant size. OTECSYS can size the various open-cycle power cycle and hydraulic components. Models for the evaporator, mist eliminator, turbine-generator diffuser, direct-contact condenser, exhaust compressors, seawater pumps, and seawater piping are included, as are evaluations of the pressure drops associated with the intercomponent connections. It can also determine the required steam, cold seawater, and warm seawater flow rates. OTECSYS uses an approach similar to earlier work and integrates the most up-to-date developments in component performance and configuration. The program format allows the user to examine subsystem concepts not currently included by creating new component models. It will be useful to the OTEC plant designer who wants to quantify the design point sizing, performance, and power production using site-specific resource data. Detailed design trade-offs are easily evaluated, and several examples of these types of investigations are presented using plant size and power as criteria.

  16. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    NASA Astrophysics Data System (ADS)

    Matysko, Robert; Mikielewicz, Jarosław; Ihnatowicz, Eugeniusz

    2014-03-01

    The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.

  17. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (thermodynamics, we calculate the Onsager coefficients and show that the value of ηCA is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  18. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.

    PubMed

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime. PMID:25615071

  19. Thermodynamic and dynamic controls on the amplitude of the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert; Byrne, Michael; Schneider, Tapio

    2016-04-01

    The "wet gets wetter, dry gets drier" paradigm is a useful starting point for under- standing zonal-mean changes in precipitation minus evaporation (P-E). It can explain the expected moistening of the high latitudes and drying of the subtropics in response to global warming. We examine P-E changes over the next century in comprehensive climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We show that "wet gets wetter, dry gets drier" can not be extended to apply to regional variations about the zonal mean, which account for the majority of the spatial variability of P-E in the modern climate. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. The largest changes are in the tropical oceans where wet zones get drier and dry zones get wetter in response to a restructuring and decrease in strength of tropical circulations such as the Walker circulation. Further progress can be made by examining changes in the zonal variance of P-E. The zonal variance of P-E increases robustly at all latitudes in the Representative Concentration Pathways RCP8.5 scenario, but with a smaller fractional increase than the moisture content of the atmosphere. The variance change can be split into dynamic and thermodynamic components by relating it to changes in surface specific humidity, stationary-eddy divergent circulations, and transient-eddy fluxes. The modeled sub Clausius-Clapeyron change of zonal P-E variance gives evidence of a decrease in stationary-eddy overturning and in zonally anomalous transient-eddy moisture flux convergence with global warming.

  20. Reply to "Comment on 'Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle' ''.

    PubMed

    Abe, Sumiyoshi

    2015-05-01

    In their Comment on the paper [Abe and Okuyama, Phys. Rev. E 83, 021121 (2011)], González-Díaz and Díaz-Solórzano discuss that the initial state of the quantum-mechanical analog of the Carnot cycle should be not in a pure state but in a mixed state due to a projective measurement of the system energy. Here, first the Comment is shown to miss the point. Then, second, multiple projective measurements are discussed as a generalization of the Comment, although they are not relevant to the work commented. PMID:26066283

  1. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  2. Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2013-12-01

    This paper presents a gas turbine combined cycle plant with oxy-combustion and carbon dioxide capture. A gas turbine part of the unit with the operating parameters is presented. The methodology and results of optimization by the means of a genetic algorithm for the steam parts in three variants of the plant are shown. The variants of the plant differ by the heat recovery steam generator (HRSG) construction: the singlepressure HRSG (1P), the double-pressure HRSG with reheating (2PR), and the triple-pressure HRSG with reheating (3PR). For obtained results in all variants an economic evaluation was performed. The break-even prices of electricity were determined and the sensitivity analysis to the most significant economic factors were performed.

  3. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  4. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  5. Couplings between the seasonal cycles of surface thermodynamics and radiative fluxes in the semi-arid Sahel

    NASA Astrophysics Data System (ADS)

    Guichard, F.; Kergoat, L.; Mougin, E.; Timouk, F.; Bock, O.; Hiernaux, P.

    2009-04-01

    A good knowledge of surface fluxes and atmospheric low levels is central to improving our understanding of the West African monsoon. This study provides a quantitative analysis of the peculiar seasonal and diurnal cycles of surface thermodynamics and radiative fluxes encountered in Central Sahel. It is based on a multi-year dataset collected in the Malian Gourma over a sandy soil at 1.5°W-15.3°N (a site referred to as Agoufou) with an automated weather station and a sunphotometer (AERONET), complemented by observations from the AMMA field campaign. The seasonal cycle of this Tropical region is characterized by a broad maximum of temperature in May, following the first minimum of the solar zenith angle by a few weeks, when Agoufou lies within the West African Heat-Low, and a late summer maximum of equivalent potential temperature within the core of the monsoon season, around the second yearly maximum of solar zenith angle, as the temperature reaches its Summer minimum. More broadly, subtle balances between surface air temperature and moisture fields are found on a range of scales. For instance, during the monsoon, apart from August, their opposite daytime fluctuations (warming, drying) lead to an almost flat diurnal cycle of the equivalent potential temperature at the surface. This feature stands out in contrast to other more humid continental regions. Here, the strong dynamics associated with the transition from a drier hot Spring to a brief cooler wet tropical Summer climate involves very large transformations of the diurnal cycles. The Summer increase of surface net radiation, Rnet, is also strong; typically 10-day mean Rnet reaches about 5 times its Winter minimum (~30 W.m-2) in August (~150 W.m-2). A major feature revealed by observations is that this increase is mostly driven by modifications of the surface upwelling fluxes shaped by rainfall events and vegetation phenology (surface cooling and darkening), while the direct impact of atmospheric changes on

  6. Thermodynamic properties of binary mixtures containing dimethyl carbonate+2-alkanol: Experimental data, correlation and prediction by ERAS model and cubic EOS

    NASA Astrophysics Data System (ADS)

    Almasi, Mohammad

    2013-03-01

    Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, VmE. were calculated and correlated by the Redlich-Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, VmE, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng-Robinson-Stryjek-Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.

  7. Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system

    NASA Astrophysics Data System (ADS)

    Kürten, A.; Münch, S.; Rondo, L.; Bianchi, F.; Duplissy, J.; Jokinen, T.; Junninen, H.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Almeida, J.; Amorim, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Franchin, A.; Kirkby, J.; Kupc, A.; Makhmutov, V.; Petäjä, T.; Praplan, A. P.; Riccobono, F.; Steiner, G.; Tomé, A.; Tsagkogeorgas, G.; Wagner, P. E.; Wimmer, D.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.; Curtius, J.

    2015-09-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H2SO4-H2O) system and the ternary system involving ammonia (H2SO4-H2O-NH3) may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary system the formation of H2SO4·NH3 is very likely an essential step in the formation of sulfuric acid dimers, which were measured at 210, 223, and 248 K. We estimate the thermodynamic properties (dH and dS) of the H2SO4·NH3 cluster using a simple heuristic model and the measured data. Furthermore, we report the first measurements of large neutral sulfuric acid clusters containing as many as 10 sulfuric acid molecules for the binary system using chemical ionization-atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry.

  8. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  9. Experimental Determination of Thermodynamic Properties of Ion-Exchange in Heulandite: Binary Ion-Exchange Experiments at 55 and 85 oC Involving Ca2+, Sr2+, Na+, and K+

    SciTech Connect

    Fridriksson, T; Neuhoff, P S; Viani, B E; Bird, D K

    2004-04-26

    Fridriksson and others consistency among the equilibrium constants for three binary pairs was 900 J per mole of charge equivalents (eq) for the 55 C experiments and 2300 J eq-1 for the 85 C experiments. The applicability of the present experimental results and thermodynamic models was assessed by calculating the composition of heulandite in Icelandic geothermal systems from known compositions using the regressed thermodynamic properties of Ca{sup 2+}-Na{sup +} exchange at 85 C. Calculations predict an average Ca mole fraction [defined as Ca/(Ca+Na)] in heulandite of 0.74, in excellent agreement with observed compositions of heulandite from geothermal and metamorphic systems in Iceland (0.75). Thermodynamic data for heulandite ion exchange derived in this study can be used to predict partitioning of Ca, K, Na, and Sr between heulandite and aqueous solutions in geologic systems. Because heulandite is the most effective sink for Sr in basaltic aquifers that have undergone zeolite facies metamorphism, the experimental results of this study will provide essential data for modeling Sr transport in aquifers in low-grade metabasalts.

  10. Thermodynamic study of complex formation between Kryptofix-5 and Sn2+ in several individual and binary non-aqueous solvents using a conductometric method

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh

    2014-12-01

    The complex formation between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix-5) and Sn2+ ions was studied in pure acetonitrile (AN), dimethylformamide (DMF), 1,4-dioxane (DOX), and methanol (MeOH) and in acetonitrile-1,4-dioxane (AN-DOX), acetonitrile-dichloromethane (AN-DCM), acetonitrile-methanol (AN-MeOH), and acetonitrile-dimethylformamide (AN-DMF) binary mixed solvent solutions at different temperatures using conductometric method. 1: 1 [ML] complex is formed between the metal cation and ligand in most solvent systems but in the cases of AN-MeOH (MeOH = 90 mol %) binary mixture and in pure MeOH a 2: 1 [M2L] complex was observed, that is the stoichiometry of complexes may be changed by the nature of the medium. The stability order of the (Kryptofix-5·Sn)2+ complex in the studied binary mixed solvent solutions at 25°C was found to be AN-DOX > AN-DCM > AN-MeOH > AN-DMF and in the case of pure solvents at 25°C the sequence was the following: AN > DMF > DOX. A non-linear behavior was observed for changes of log K f of (Kryptofix-5·Sn)2+ complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent intractions and also by the preferential solvation of the f species involved in the complexation reaction. The values of standard enthalpy changes (Δ Hc°) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (Δ Sc°) were calculated from the relationship Δ Gc,298.15° = Δ Hc° - 298.15Δ Sc°. The results show that in most cases, the (Kryptofix-5·Sn)2+ complex is both enthalpy and entropy stabilized.

  11. A {approx} 40 YEAR VARIABILITY CYCLE IN THE LUMINOUS BLUE VARIABLE/WOLF-RAYET BINARY SYSTEM HD 5980?

    SciTech Connect

    Koenigsberger, Gloria; Hillier, D. John; Morrell, Nidia; Gamen, Roberto E-mail: georgiev@astro.unam.m E-mail: nmorrell@lco.c E-mail: rgamen@gmail.co

    2010-06-15

    The massive Wolf-Rayet stellar system HD 5980 in the Small Magellanic Cloud entered a sudden and brief {approx} 1-3 mag eruptive state in the mid-1990s. The cause of the instability is not yet understood, but mechanisms similar to those in luminous blue variables are suspected. Using a previously unreported set of spectroscopic data obtained in 1955-1967 and recently acquired optical and HST/STIS spectra, we find that (1) the brief eruptions of 1993 and 1994 occurred at the beginning of an extended ({approx} decades) high state of activity characterized by large emission-line intensities; (2) the level of activity is currently subsiding; and (3) another strong emission-line episode appears to have occurred between 1960 and 1965, suggesting the possibility that the long-term cyclical variability may be recurrent on a {approx} 40 year timescale. These characteristics suggest the possible classification of HD 5980 as an S Doradus-type variable. The effects due to binary interactions in the system are discussed, and we tentatively suggest that the short duration and relatively hot spectral type (WN11/B1.5I) observed during maximum in the visual light curve may be attributed to these interactions.

  12. KEPLER CYCLE 1 OBSERVATIONS OF LOW-MASS STARS: NEW ECLIPSING BINARIES, SINGLE STAR ROTATION RATES, AND THE NATURE AND FREQUENCY OF STARSPOTS

    SciTech Connect

    Harrison, T. E.; Coughlin, J. L.; Ule, N. M.; Lopez-Morales, M. E-mail: jlcough@nmsu.edu E-mail: mlopez@ieec.uab.es

    2012-01-15

    We have analyzed Kepler light curves for 849 stars with T{sub eff} {<=} 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate 'warm Jupiter' exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T{sub eff} {<=} 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 days {<=} P{sub rot} {<=} 126.5 days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As has been found in previous studies, stars with shorter rotation periods generally exhibit larger modulations. This trend flattens beyond P{sub rot} = 25 days, demonstrating that even long-period binaries may still have components with high levels of activity and investigating whether the masses and radii of the stellar components in these systems are consistent with stellar models could remain problematic. Surprisingly, our modeling of the light curves suggests that the active regions on these cool stars are either preferentially located near the rotational poles, or that there are two spot groups located at lower latitudes, but in opposing hemispheres.

  13. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  14. Thermodynamics of Resource Recycling.

    ERIC Educational Resources Information Center

    Hauserman, W. B.

    1988-01-01

    Evaluates the overall economic efficiency of a closed resource cycle. Uses elementary thermodynamic definitions of overall thermal efficiency for determining an economically quantifiable basis. Selects aluminum for investigation and includes a value-entropy diagram for a closed aluminum cycle. (MVL)

  15. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Astrophysics Data System (ADS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-04-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  16. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  17. Thermodynamic interpolation

    SciTech Connect

    Maiden, D E

    1998-10-01

    A method for constructing bicubic interpolation polynomials for the pressure P and internal energy E that are thermodynamically consistent at the mesh ponts and continuous across mesh boundaries is presented. The slope boundary conditions for the pressure and energy are derived from finite differences of the data and from Maxwell's consistency relation. Monotonicity of the sound speed and the specific heat is obtained by a bilinear interpolation of the slopes of the tabulated data. Monotonicity of the functions near steep gradients may be achieved by mesh refinement or by using a non-consistent bilinear to the data. Mesh refinement is very efficient for uniform-linear or uniform-logarithmic spaced data because a direct table lookup can be used. The direct method was compared to binary search and was 37 percent faster for logarithmic-spaced data and 106 percent faster for linear-spaced data. This improvement in speed is very important in the radiation-transport opacity-lookup part of the calculation. Interpolation in P-E space, with mesh refinement, can be made simple, robust, and conserve energy. In the final analysis the interpolation of the free energy and entropy (Maiden and Cook) remains a competitor.

  18. Thermodynamic Properties of Elements and Compounds in Al-Sc Binary System from Ab Initio Calculations Based on Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhou, Zeyou; Wu, Bo; Dou, Shushi; Zhao, Chunfeng; Xiong, Yuanpeng; Wu, Yufeng; Yang, Shangjin; Wei, Zhenyi

    2014-04-01

    The thermodynamic properties of FCC Al, HCP Sc, B2 AlSc, C15 Al2Sc, B82 AlSc2, and L12 Al3Sc were studied using ab initio calculations based on density functional theory. The 0 K (-273 °C) total energies were calculated using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The ab initio calculations of the phonon dispersion curves and the density of state of FCC Al, HCP Sc, B2 AlSc, C15 Al2Sc, B82 AlSc2, and L12 Al3Sc have been performed using the density functional theory and the direct method. Deduced from Helmholtz free energy, the thermal expansion, enthalpy, heat capacity, and entropy as a function of temperature were calculated and compared considerably with the experimental data and other computational results. Our calculations show that the enthalpies of formation are temperature-dependent, and the slope is about -3.4 J/mol/K for B2 AlSc, -2.3 J/mol/K for C15 Al2Sc, -0.8 J/mol/K for B82 AlSc2, and -2.7 J/mol/K for L12 Al3Sc, respectively.

  19. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  20. Liquidus of Silicon Binary Systems

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv; Tangstad, Merete

    2011-08-01

    Thermodynamic knowledge about liquid silicon is crucial for the production of solar-grade silicon feedstock from molten silicon. In the current study, liquidus for silicon binary alloys is formulated using a previously developed method in which the liquidus curve is calculated using two constants. The liquidus measurements for the silicon portion of the silicon alloys with Al, Ca, Mg, Fe, Ti, Zn, Cu, Ag, Au, Pt, Sn, Pb, Bi, Sb, Ga, In, Ni, Pd, Mn, and Rh are reviewed, and the consistent data were used to determine the liquidus constants. The liquidus curves for silicon binary systems are calculated and plotted. It is indicated that the calculated liquidus curves fit well with the experimental data. A correlation between the determined liquidus constants is also observed, which can be used to gain a better understanding of the thermodynamics of the silicon binary melts.

  1. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  2. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  3. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  4. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  5. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  6. The Search for Trojan Binaries

    NASA Astrophysics Data System (ADS)

    Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.

    2007-10-01

    We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.

  7. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  8. Thermodynamic holography.

    PubMed

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  9. Thermodynamic holography

    PubMed Central

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  10. Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Pravec, P.

    2006-06-01

    There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.

  11. Cycle Analysis

    Energy Science and Technology Software Center (ESTSC)

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  12. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  13. Thermodynamic cost of computation, algorithmic complexity and the information metric

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1989-01-01

    Algorithmic complexity is discussed as a computational counterpart to the second law of thermodynamics. It is shown that algorithmic complexity, which is a measure of randomness, sets limits on the thermodynamic cost of computations and casts a new light on the limitations of Maxwell's demon. Algorithmic complexity can also be used to define distance between binary strings.

  14. Thermodynamic evaluation of mass diffusion in ionic mixtures

    SciTech Connect

    Kagan, Grigory; Tang, Xian-Zhu

    2014-02-15

    The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant.

  15. New binary systems: beaming binaries

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Weingrill, J.; Mazeh, T.; Ribas, I.

    2011-11-01

    Exoplanet missions such as COROT and Kepler are providing precise photometric follow-up data of new kinds of variable stars undetected till now. Beaming binaries are among these objects. On these binary systems, the orbital motion of their components is fast enough to produce a detectable modulation on the received flux due to relativistic effects (Zucker et al. 2007). The great advantage of these systems is that it is possible to reconstruct the radial velocity curve of the system from this photometric modulation and thus, orbital parameters such as the mass ratio and the semi-major axis can be estimated from photometry without the necessity of spectroscopic follow-up. In this poster, we briefly introduce the analysis of this kind of binary systems and in particular, the eclipsing cases.

  16. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  17. Thermodynamic Reassessment of the Nd-Fe-B Ternary System

    NASA Astrophysics Data System (ADS)

    Zhou, G. J.; Luo, Y.; Zhou, Y.

    2016-01-01

    The Nd-B binary system and Nd-Fe-B ternary system were thermodynamically reassessed with the aim of obtaining more reasonable thermodynamic parameters and more accurate phase relations. Based on the metastable experimental information, a reasonable, self-consistent, and comprehensive thermodynamic description of the Nd-Fe-B ternary system considering the metastable phases Fe3B, Fe23Nd2B3, and Fe17Nd2B has been developed.

  18. Structure Map for Embedded Binary Alloy Nanocrystals

    SciTech Connect

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  19. Modelling of the Thermodynamical Diurnal Cycle in the Lower Atmosphere: A Joint Evaluation of Four Contrasted Regimes in the Tropics Over Land

    NASA Astrophysics Data System (ADS)

    Couvreux, F.; Guichard, F.; Gounou, A.; Bouniol, D.; Peyrillé, P.; Köhler, M.

    2013-10-01

    The diurnal cycle is an important mode of variability in the Tropics that is not correctly predicted by numerical weather prediction models. The African Monsoon Multidisciplinary Analyses program provided for the first time a large dataset to document the diurnal cycle over West Africa. In order to assess the processes and mechanisms that are crucial for the representation of the diurnal cycle, four different regimes that characterize the varying conditions encountered over land along a surface-temperature gradient are selected. A single-column modelling framework is used in order to relate the features of the simulated diurnal cycle to physical processes in these four distinct cases. Particular attention is given to providing realistic initial and boundary conditions at the surface and in the atmosphere, enabling the use of independent data for the evaluation of the simulations. The study focuses on the simulation of the surface energy budget and low-level characteristics and analyzes the balance between cloud/surface/boundary-layer processes at the sub-diurnal time scale. The biases and drawbacks of the simulations are found to change along the temperature gradient but they always involve the representation of clouds. They also explain parts of the bias obtained with the same model when used in a less constrained configuration. Surface-atmosphere-cloud interactions arising at the sub-diurnal time scale are invoked to explain the distinct features of the low-level diurnal cycle observed over West Africa.

  20. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780

  1. Entanglement thermodynamics

    NASA Astrophysics Data System (ADS)

    Schliemann, John

    2014-09-01

    We investigate further the relationship between the entanglement spectrum of a composite many-body system and the energy spectrum of a subsystem making use of concepts of canonical thermodynamics. In many important cases the entanglement Hamiltonian is, in the limit of strong coupling between subsystems, proportional to the energy Hamiltonian of the subsystem. The proportionality factor is an appropriately defined coupling parameter, suggesting to interpret the latter as a inverse temperature. We identify a condition on the entanglement Hamiltonian which rigorously guarantees this interpretation to hold and removes any ambiguity in the definition of the entanglement Hamiltonian regarding contributions proportional to the unit operator. Illustrations of our findings are provided by spin ladders of arbitrary spin length, and by bilayer quantum Hall systems at total filling factor ν = 2. Within mean-field description, the latter system realizes an entanglement spectrum of free fermions with just two levels of equal modulus where the analogies to canonical thermodynamics are particularly close.

  2. The Formation of Contact and Very Close Binaries

    SciTech Connect

    Kisseleva-Eggleton, L; Eggleton, P P

    2007-08-10

    We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).

  3. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  4. Descriptive thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, David; Huntsman, Steven

    2006-06-01

    Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.

  5. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria P.; Di Girolamo, Paolo; Schlüssel, Peter; Van Baelen, Joël.; Zus, Florian

    2015-09-01

    A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.

  6. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    SciTech Connect

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – and the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.

  7. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE PAGESBeta

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  8. Binary nucleation at low temperatures

    NASA Technical Reports Server (NTRS)

    Zahoransky, R. A.; Peters, F.

    1985-01-01

    The onset of homogeneous condensation of binary vapors in the supersaturated state is studied in ethanol/n-propanol and water/ethanol via their unsteady expansion in a shock tube at temperatures below 273 K. Ethanol/n-propanol forms a nearly ideal solution, whereas water/ethanol is an example of a strongly nonideal mixture. Vapor mixtures of various compositions are diluted in dry air at small mole fractions and expanded in the driver section from room temperature. The onset of homogeneous condensation is detected optically and the corresponding thermodynamic state is evaluated. The experimental results are compared with the binary nucleation theory, and the particular problems of theoretical evaluation at low temperatures are discussed.

  9. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    NASA Astrophysics Data System (ADS)

    Vysokomorny, Vladimir S.; Vysokomornaya, Vladimir S.

    2016-02-01

    The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analyzing of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  10. Nonergodicity of microfine binary systems

    NASA Astrophysics Data System (ADS)

    Son, L. D.; Sidorov, V. E.; Popel', P. S.; Shul'gin, D. B.

    2016-02-01

    The correction to the equation of state that is related to the nonergodicity of diffusion dynamics is discussed for a binary solid solution with a limited solubility. It is asserted that, apart from standard thermodynamic variables (temperature, volume, concentration), this correction should be taken into account in the form of the average local chemical potential fluctuations associated with microheterogeneity in order to plot a phase diagram. It is shown that a low value of this correction lowers the miscibility gap and that this gap splits when this correction increases. This situation is discussed for eutectic systems and Ga-Pb, Fe-Cu, and Cu-Zr alloys.

  11. Fundamental limitations for quantum and nanoscale thermodynamics.

    PubMed

    Horodecki, Michał; Oppenheim, Jonathan

    2013-01-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. PMID:23800725

  12. Fundamental limitations for quantum and nanoscale thermodynamics

    NASA Astrophysics Data System (ADS)

    Horodecki, Michał; Oppenheim, Jonathan

    2013-06-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit—when the number of particles becomes very large. Here we study thermodynamics in the opposite regime—at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.

  13. A thermodynamic study of interaction of Ag+, Mg2+, Ca2+, and K+ cations with 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine in some binary mixed non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh; Arefi, Donya; Maknoni, Fatemeh Zahra

    2016-02-01

    In the present work the complexation process between Ag+ and Mg2+ cations and 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine (HBFPY) ligand was studied in pure dimethylformamide (DMF), ethanol (EtOH), acetonitrile (AN) and in (DMF-EtOH), (AN-EtOH) and (DMF-AN) binary mixed solvent solutions at different temperatures using the conductometric method. Also in this work the complexation reaction between Ca2+, K+ cations and HBFPY ligand, was studied in pure dimethylformamide (DMF), propanol (PrOH), 1,4-dioxane (DOX), ethanol (EtOH) and in DMF-PrOH, DMF-DOX and DMF-EtOH binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between this ligand and the studied cations is 1 : 1 [ML]. In most cases, addition of HBFPY to solutions of these cations, causes a continuous increase in the molar conductivities which indicates that the mobility of complexed cations is more than the uncomplexed ones. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, GENPLOT. The stability constant of [Mg(HBFPY)]2+ complex in various neat solvents at 15°C decreases in order: EtOH > DMF > AN and the stability constant of [Ag(HBFPY)]+ complex in various neat solvents at 35°C decreases in order: DMF > EtOH. The values of standard enthalpy changes (Δ H° c ) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (Δ S° c ) were calculated from the relationship Δ H° c,295.15= Δ H° c -298.15Δ S° c .

  14. Thermodynamics of Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Doak, Jeff W.

    One challenge facing society is the responsible use of our energy resources. Increasing the efficiency of energy generation provides one path to solving this challenge. One commonality among most current energy generation methods is that waste heat is generated during the generation process. Thermoelectrics can provide a solution to increasing the efficiency of power generation and automotive systems by converting waste heat directly to electricity. The current barrier to implementation of thermoelectric systems is the low efficiencies of underlying thermoelectric materials. The efficiency of a thermoelectric material depends on the electronic and thermal transport properties of the material; a good thermoelectric material should be an electronic conductor and a thermal insulator, traits which generally oppose one another. The thermal properties of a thermoelectric material can be improved by forming nanoscale precipitates with the material which scatter phonons, reducing the thermal conductivity. The electronic properties of a thermoelectric material can be improved by doping the material to increase the electronic conductivity or by alloying the material to favorably alter its band structure. The ability of these chemical modifications to affect the thermoelectric efficiency of material are ultimately governed by the chemical thermodynamics of the system. PbTe is a prototypical thermoelectric material: Alloying PbTe with PbS (or other materials) creates nanostructures which scatter phonons and reduce the lattice thermal conductivity. Doping PbTe with Na increases the hole concentration, increasing the electronic conductivity. In this work, we investigate the thermodynamics of PbTe and similar systems using first principles to understand the underlying mechanisms controlling the formation of nanostructures and the amount of doping allowed in these systems. In this work we: 1) investigate the thermodynamics of pseudo-binary alloys of IV--VI systems to identify the

  15. Natural thermodynamics

    NASA Astrophysics Data System (ADS)

    Annila, Arto

    2016-02-01

    The principle of increasing entropy is derived from statistical physics of open systems assuming that quanta of actions, as undividable basic build blocks, embody everything. According to this tenet, all systems evolve from one state to another either by acquiring quanta from their surroundings or by discarding quanta to the surroundings in order to attain energetic balance in least time. These natural processes result in ubiquitous scale-free patterns: skewed distributions that accumulate in a sigmoid manner and hence span log-log scales mostly as straight lines. Moreover, the equation for least-time motions reveals that evolution is by nature a non-deterministic process. Although the obtained insight in thermodynamics from the notion of quanta in motion yields nothing new, it accentuates that contemporary comprehension is impaired when modeling evolution as a computable process by imposing conservation of energy and thereby ignoring that quantum of actions are the carriers of energy from the system to its surroundings.

  16. Advances in thermodynamics

    SciTech Connect

    Sieniutycz, S. ); Salamon, P. )

    1990-01-01

    This book covers: nonequilibrium thermodynamics for solar energy applications; finite-time thermodynamics as applied to solar power conversion; thermodynamics and economics; exergy analysis; and an analysis of cumulative exergy consumption and exergy losses.

  17. Binary Ni-Nb bulk metallic glasses

    SciTech Connect

    Xia, L.; Li, W.H.; Fang, S.S.; Wei, B.C.; Dong, Y.D.

    2006-01-15

    We studied the glass forming ability of Ni-Nb binary alloys and found that some of the alloys can be prepared into bulk metallic glasses by a conventional Cu-mold casting. The best glass former within the compositional range studied is off-eutectic Ni{sub 62}Nb{sub 38} alloy, which is markedly different from those predicted by the multicomponent and deep eutectic rules. The glass formation mechanism for binary Ni-Nb alloys was studied from the thermodynamic point of view and a parameter {gamma}* was proposed to approach the ability of glass formation against crystallization.

  18. Quantum cluster equilibrium model of N-methylformamide-water binary mixtures

    NASA Astrophysics Data System (ADS)

    von Domaros, Michael; Jähnigen, Sascha; Friedrich, Joachim; Kirchner, Barbara

    2016-02-01

    The established quantum cluster equilibrium (QCE) approach is refined and applied to N-methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the cis-trans-isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory (DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic trans-NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF.

  19. Quantum cluster equilibrium model of N-methylformamide-water binary mixtures.

    PubMed

    von Domaros, Michael; Jähnigen, Sascha; Friedrich, Joachim; Kirchner, Barbara

    2016-02-14

    The established quantum cluster equilibrium (QCE) approach is refined and applied to N-methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the cis-trans-isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory (DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic trans-NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF. PMID:26874486

  20. The Thermodynamics of a Refrigeration System.

    ERIC Educational Resources Information Center

    Azevedo e Silva, J. F. M.

    1991-01-01

    An attempt to clarify the teaching of some of the concepts of thermodynamics through the observation of an experiment with an ordinary refrigeration system is presented. The cycle of operation in the refrigeration system and the individual processes in the cycle are described. (KR)

  1. The Accretion Disk Limit Cycle Mechanism in the Black Hole X-Ray Binaries: Toward an Understanding of the Systematic Effects

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.

    1998-02-01

    We examine in detail several aspects of the physics of accretion disks that are of possible relevance to the outburst mechanism of the black hole X-ray transients. We adopt the one-dimensional, time-dependent model described in detail by Cannizzo, Chen, and Livio with parameters appropriate for a system such as A0620-00. We investigate (1) the effect of the grid spacing, utilizing a logarithmic radial spacing Δr ~ r in addition to the spacing Δr ~ r1/2, (2) the dependence of the local flow speed of gas within the hot part of the disk on radius and time during the time of the cooling wave propagation, (3) the shape of the outburst light curve as a function of the triggering location for the instability, (4) the long-term light curves of outbursts taken from trials in which complete cycles of quiescence and outburst are followed, both including and excluding the effect of evaporation or removal of matter from the inner edge of the disk, and (5) the strength of the self-irradiation of the outer parts of the disk by the X-rays from the inner disk. Our primary findings in each of these areas are that (1) low-resolution runs taking N ~= 20 grid points using the logarithmic spacing produce decay timescales that are artificially slow by factors of ~2-3 and slower than exponential; (2) the deviation from steady state within the outer part of the inner hot disk appears to be in accord with the discussion given in Vishniac and Wheeler--far from the transition front, the flow speed is ~αcs(h/r), whereas at the interface between the transition front and the cold disk, the flow speed is ~αcs (3) the outburst-triggering location must be >~100rinner for the rise time of the resulting outburst to be as short as is observed in the standard, bright systems; (4) the long-term light curves using the standard model produce frequent outbursts that are triggered near the inner disk edge and that have slow rise times, and the long-term light curves calculated assuming evaporation of

  2. Thermodynamics of wax precipitation in petroleum mixtures

    SciTech Connect

    Firoozabadi, A.; Lira-Galeana, C.L.; Prausnitz, J.M.

    1995-12-01

    A thermodynamic framework is developed for calculating wax precipitation in petroleum mixtures over a wide temperature range. The framework assumes that the precipitated wax consists of several solid phases; each solid-phase is described as a pure component or pseudocomponent which does not mix with other solid phases. Liquid-phase properties are obtained from an equation of state. Calculated wax precipitation data are in excellent agreement with experimental results for binary and multicomponent hydrocarbon mixtures, including petroleum.

  3. Thermodynamics of wax precipitation in petroleum mixtures

    SciTech Connect

    Lira-Galeana, C.; Firoozabadi, A.; Prausnitz, J.M. |

    1996-01-01

    A thermodynamic framework is developed for calculating wax precipitation in petroleum mixtures over a wide temperature range. The framework uses the experimentally supported assumption that precipitated wax consists of several solid phases; each solid phase is described as a pure component or pseudocomponent that does not mix with other solid phases. Liquid-phase properties are obtained from an equation of state. Calculated wax-precipitation data are in excellent agreement with experimental results for binary and multicomponent hydrocarbon mixtures, including petroleum.

  4. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  5. Thermodynamics of Radiation Modes

    ERIC Educational Resources Information Center

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  6. Combined thermodynamic study of nickel-base alloys. Progress report

    SciTech Connect

    Brooks, C. R.; Meschter, P. J.

    1981-02-15

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni/sub 4/Mo, (4) heat capacities of Ni and disordered Ni/sub 3/Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys. (MOW)

  7. Research into the origins of engineering thermodynamics

    SciTech Connect

    Bejan, A.

    1988-09-01

    This paper draws attention to a series of misconceptions and misstatements regarding the origin and meaning of some of the most basic concepts of engineering thermodynamics. The six examples exhibited in the paper relate to the concepts of reversibility, entropy, mechanical equivalent of the calorie, the first law of thermodynamics for open systems, enthalpy and the Diesel cycle. A complete list of the pioneering references concludes the paper.

  8. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  9. A thermodynamic database for zirconium alloys

    NASA Astrophysics Data System (ADS)

    Dupin, N.; Ansara, I.; Servant, C.; Toffolon, C.; Lemaignan, C.; Brachet, J. C.

    1999-11-01

    A thermodynamic database, Zircobase, was developed for zirconium alloys for use in the nuclear industry. Two examples of the assessments concerning the Sn-Zr and H-Zr systems are given. The complete set for the binary systems, compiled or assessed during the course of this study, is to be found on the web site: www.inpg.fr/ltpcm/base/zircobase. The utility of this database is demonstrated in examples of thermodynamic calculations of the α/β phase transformation temperatures performed on industrial Zr-Nb and Zy4 type alloys. These last results show fairly good predictions, using extrapolations of the actual thermodynamic database to ternary or higher order systems.

  10. Thermodynamics. II - The extended thermodynamic system

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1981-01-01

    The algebraic theory of thermodynamics developed in a previous paper is extended to include the algebraic structure that arises from the introduction of a physical body into the theory. The extension is based on very general definitions of both the thermodynamic states of a body and subsystems of that body. The algebraic analysis, which includes bodies in nonuniform states, shows that the set of all thermodynamic states of a body has the same algebraic structure as the set of thermodynamic states and that composite systems are induced by the algebraic structure of thermodynamic states. The analysis also justifies a variational treatment of thermodynamic bodies in uniform as well as nonuniform states. The variational calculation includes all conventional methods of calculation as special cases and helps to illuminate the origin and interpretation of the electrochemical potential.

  11. The "Sadly Cannot" Thermodynamic Cycle Revisited.

    ERIC Educational Resources Information Center

    Mills, David S.; Huston, Craig S.

    1991-01-01

    An exercise that gives students a chance to use the equations of state for both an ideal gas and for an adiabatic process in determining the points at which heat flow reverses direction and at which the working substance reaches its maximum temperature is demonstrated. (KR)

  12. Studies of cycles for liquid-metal magnetohydrodynamic generation of power

    NASA Technical Reports Server (NTRS)

    Lee, K.; Petrick, M.

    1969-01-01

    Studies of liquid-metal magnetohydrodynamic power cycles indicate that the overall efficiency of a binary cycle, employing a liquid-metal topping cycle and a bottoming steam cycle, may reach 60 percent. Details of analyses and data on cycles are presented, and the commercial potential of the binary cycle is discussed.

  13. Measuring Thermodynamic Length

    SciTech Connect

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  14. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  15. Thermodynamics: Frontiers and Foundations.

    SciTech Connect

    JEFFERY,; LEWINS, D.

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following new book for free distribution: Thermodynamics: Frontiers and Foundations, Preface by Sir Alan Cottrell Introduction 1. Four-Square Foundations: The Laws of Thermodynamics 2. Maximum Entropy and Minimum Energy: The Master Functions and Equations 3. Ideal Gases and their Applications 4. Real Fluids and Some Applications 5. Van der Waals: A Model for Real Fluids 6. Surface Tension: Bubbles and Drops 7. Inert and Reactive Mixtures; An introduction to Chemical Thermodynamics 8. Radiation Thermodynamics: Solar Power Potential 9. Outposts of the Empire 10. A Glimpse into Statistical Thermodynamics Envoi

  16. Thermodynamics: Frontiers and Foundations.

    Energy Science and Technology Software Center (ESTSC)

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following new book for free distribution: Thermodynamics: Frontiers and Foundations, Preface by Sir Alan Cottrell Introduction 1. Four-Square Foundations: The Laws of Thermodynamics 2. Maximum Entropy and Minimum Energy: The Master Functions and Equations 3. Ideal Gases and their Applications 4. Real Fluids and Some Applications 5. Van der Waals: A Model for Real Fluids 6. Surface Tension: Bubbles and Drops 7. Inert and Reactive Mixtures;more » An introduction to Chemical Thermodynamics 8. Radiation Thermodynamics: Solar Power Potential 9. Outposts of the Empire 10. A Glimpse into Statistical Thermodynamics Envoi« less

  17. Shear viscosity of binary mixtures: The Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  18. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  19. Open cycle thermoacoustics

    SciTech Connect

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  20. Two-fluid theory and thermodynamic properties of liquid mixtures: General theory

    PubMed Central

    Brandani, V.; Prausnitz, J. M.

    1982-01-01

    The two-fluid theory of binary mixtures postulates that the extensive thermodynamic properties of a binary mixture may be expressed by the contributions of two hypothetical fluids that mix ideally. This postulate, coupled with an expression for the partition function of the hypothetical fluid, permits evaluation of the properties of binary liquid mixtures by using only two adjustable binary parameters. Particular attention is given to the problem of nonrandomness in mixtures. A quantitative description of nonrandomness is achieved by combining the two-fluid concept with a hypothesis for ensemble averaging of a distribution of nearest-neighbor pairs. PMID:16593213

  1. Flip-Flopping Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Healy, James

    2015-04-01

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d ≈25 M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t =20 000 M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  2. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104

  3. Time and irreversibility in axiomatic thermodynamics

    NASA Astrophysics Data System (ADS)

    Marsland, Robert; Brown, Harvey R.; Valente, Giovanni

    2015-07-01

    Thermodynamics is the paradigm example in physics of a time-asymmetric theory, but the origin of the asymmetry lies deeper than the second law. A primordial arrow can be defined by the way of the equilibration principle ("minus first law"). By appealing to this arrow, the nature of the well-known ambiguity in Carathéodory's 1909 version of the second law becomes clear. Following Carathéodory's seminal work, formulations of thermodynamics have gained ground that highlight the role of the binary relation of adiabatic accessibility between equilibrium states, the most prominent recent example being the important 1999 axiomatization due to Lieb and Yngvason. This formulation can be shown to contain an ambiguity strictly analogous to that in Carathéodory's treatment.

  4. 3D Models of Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.

    2015-12-01

    Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.

  5. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  6. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  7. Qualitative and quantitative reasoning about thermodynamics

    NASA Technical Reports Server (NTRS)

    Skorstad, Gordon; Forbus, Ken

    1989-01-01

    One goal of qualitative physics is to capture the tacit knowledge of engineers and scientists. It is shown how Qualitative Process theory can be used to express concepts of engineering thermodynamics. In particular, it is shown how to integrate qualitative and quantitative knowledge to solve textbook problems involving thermodynamic cycles, such as gas turbine plants and steam power plants. These ideas were implemented in a program called SCHISM. Its analysis of a sample textbook problem is described and plans for future work are discussed.

  8. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.

    PubMed

    Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule

    2015-11-25

    The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure. PMID:26549642

  9. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  10. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy